
1

Attention in Attention: Modeling Context
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Abstract—Attention mechanisms have significantly boosted the
performance of video classification neural networks thanks to the
utilization of perspective contexts. However, the current research
on video attention generally focuses on adopting a specific aspect
of contexts (e.g., channel, spatial/temporal, or global context)
to refine the features and neglects their underlying correlation
when computing attentions. This leads to incomplete context
utilization and hence bears the weakness of limited performance
improvement. To tackle the problem, this paper proposes an
efficient attention-in-attention (AIA) method for element-wise
feature refinement, which investigates the feasibility of inserting
the channel context into the spatio-temporal attention learning
module, referred to as CinST, and also its reverse variant,
referred to as STinC. Specifically, we instantiate the video feature
contexts as dynamics aggregated along a specific axis with global
average and max pooling operations. The workflow of an AIA
module is that the first attention block uses one kind of context
information to guide the gating weights calculation of the second
attention that targets at the other context. Moreover, all the
computational operations in attention units act on the pooled
dimension, which results in quite few computational cost increase
(<0.02%). To verify our method, we densely integrate it into
two classical video network backbones and conduct extensive
experiments on several standard video classification benchmarks.
The source code of our AIA is available at https://github.com/
haoyanbin918/Attention-in-Attention.

Index Terms—Video Classification, Attention, Efficient Calcu-
lation.

I. INTRODUCTION

Convolutional neural networks (CNNs) have become the de-
facto standard for visual content understanding in computer
vision communities [1]–[3]. Currently, along with the rising
demand for video data processing, video CNNs (also called
3D CNNs) have stepped into a prosperous age in the past few
years. Most standard 2D and 3D CNNs achieve entire visual
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content reception through replicating stylized spatial/spatio-
temporal convolutions. Although sufficient replicates theoret-
ically enlarge the receptive field to cover the image/video in
full, the effective size of such fields is, in practice, consider-
ably smaller [4], especially in the previous layers. This has
been repeatedly corroborated by the significant performance
gains of incorporating global contexts to feature learning
(aka feature contextualization) in various image and video
understanding tasks [4]–[8]. This is because that visual content
can be flexibly analyzed from different perspectives or axes,
e.g., spatial, temporal and spatio-temporal, and thereby giving
attention to the axial context can enhance the plain feature
with such as long-range dependencies.

Current attention-based feature contextualization
approaches mainly focus on adjusting the plain features
(4-dimensional T ×H ×W ×C tensors) obtained from CNN
models (e.g., C3D [9], I3D [10], CNN-RNN [11], coupled-
CNN [12]) with different types of spatio-temporal contexts.
Generally, the attentional contexts could be information
dynamics aggregated from axes (e.g. T,H,W ) and are for
C channel. For instance, squeeze-and-excitation network
(SE-Net) [5] is the first one to use the dynamics aggregated
along space axes to contextualize the feature channels.
Separable 3D convolution with gating (S3D-G) [6] extends
the idea of SE-Net by squeezing along spatio-temporal axes
for video processing. As the temporal relation generally
plays the key role in video understanding, temporal excitation
and aggregation (TEA) [7] leverages the context under the
temporal perspective. However, since the video content can
be analysed from different perspectives, the single context
utilization is incomplete for modeling diverse videos. To
remedy this, there are also some attempts that explore
multiple contexts. For example, gather-excite network (GE-
Net) [4] generalizes SE-Net with various levels of context
granularity. Convolutional block attention module (CBAM)
[13] sequentially inserts its channel and spatial attention units
to the backbone.

All the above methods share the same paradigm that differ-
ent contexts work independently for generating attention map.
In other words, the attention map generation is used to be
all-at-once expression, which have no consideration for the
correlation between different contexts. This attention fashion
may be sub-optimal since the feature axis being refined has
little idea of whether the contextual information from other
axes is suitable or not. This could happen when the attention
result is not what the feature expects. For example, when
recognizing activities that require to catch the subtle movement
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Fig. 1. Overall pipelines of the proposed AIA modules incorporated in the
Residual block.

changes over time axis, the global information pooled over the
entire spatio-temporal axes as what has been done by SE-Net
will mess up those sub-activities. In this case, the under-refined
channels have to accept the rough adjustment passively with
nothing being done for reducing the ill impact.

To tackle this issue, we proposes Attention in Attention
(AIA) modules, for explicitly and purposefully modeling the
correlation between different video axial contexts. AIA mainly
consists of two parts: contexts formulation and correlation
capturing. Specifically, we design a family of attention units by
utilizing various global axial contexts from CNN-based video
features, and insert a different attention unit into an anchor
attention unit for guiding the attention map learning of the
anchor attention unit.

In terms of contexts formulation, we purposely derive four
kinds of global contexts from a video feature map by pooling
along four different axes. This pooling strategy is thus distinct
from the SE-Net that compresses the entire image to one
pixel. We further divide these contexts into two groups, i.e.,
channel group with {channel context} and spatio-temporal
group with {time-T, space-H, space-W contexts} based on
which two single attention units, i.e., channel attention (C)
unit and spatio-temporal attention (ST) unit, are constructed
respectively. In particular, the three contexts learn attention
weights individually and then merge for the final attention
mask in the ST unit. In contrast to many existing works,
e.g., SE-Net, GE-Net and S3D, that fixedly operates on the
channel dimension, the proposed C and ST units act on their
pooled dimension with unified 3×3×3 3D convolutions. The
underlying reasons lie in two aspects: (1) it can incorporate the
local information in a small receptive filed (3× 3× 3) within
the untouched axes to the global pooled information; and (2)
the pooled dimension has a very small size (2 in AIA modules)
and thus regarding it as the channel input of a 3D convolution
can significantly reduce the number of added parameters.

To explicitly explore the correlation between context groups
(C and ST), we further propose to insert one attention unit
into the other attention unit. Accordingly, we provide two
kinds of AIA modules, including C in ST attention module,
referred to as CinST, and ST in C attention module, referred
to as STinC. Figure 1 shows their overall pipelines. The

AIA paradigm is designed on the basis of the conjecture
that different contexts should be closely correlated with each
other in attention calculation. The proposed “A-in-B” structure
provides a possible solution to verify the conjecture, which
is different from and also outperforms the extended CBAM
model that shares similar spirit on pooling strategy but or-
ganizes attentions in a cascaded manner. Experimental results
also support it. In addition, we also present three combinations
of AIA modules through sequentially and parallelly connecting
them for more significant performance gains. All the AIA
variants are plug-and-play modules and can be easily inserted
into general networks at any layer without introducing a
heavy computational burden. For compatibility, we plug AIA
modules in two representative video network backbones such
as TSN [14] and TSM [15].

We summarize our contributions as bellow:
• Attention in Attention modules. We propose a new

regime named attention in attention (AIA) for video
feature refinement. AIA separately explores multi-axial
contexts and explicitly model the correlation between
contexts for more suitable attention weight learning.

• Efficient and easy to use. All attention unit variants in
AIA are designed in an efficient manner, and the attention
weight generation is acted on the pooled dimension with
incurring little computational burden (as low as 0.02%
extra computational cost). AIA variants are plug-and-play
modules and can be easily inserted into general video
CNNs at any layers.

• Significant performance gain. We verify AIA mod-
ules on five commonly used benchmarks, includ-
ing Something-Something V1&V2, Diving48, EGTEA
Gaze+ and EPIC-KITCHENS datasets. Experimental re-
sults show significant performance improvements for two
simple video CNN backbones (i.e., TSN and TSM).

II. RELATED WORK

The proposed AIA modules are targeted at refining the video
features obtained from CNN-based models. As a result, we
firstly review several video CNN models, including the 2D-
CNN based models and 3D-CNN based models, for clearly
showing the characteristics of their features. Since AIA be-
longs to attention regimes, we thus give brief reviews for the
visual attention literatures secondly, including the most related
approaches that use axial contexts and others with non-axial
contexts.

A. Video Networks

2D-CNN based video models. The most traditional way of
categorizing video activities is to directly extend the successful
2D CNNs to process 3D video signals. Here, 2D convolutions
are generally used to capture static spatial information from
video frames. To further model the sequential relationships
among frames, two kinds of schemes are commonly used.
The first one is that simply fusing the static frame features
along time axis. Representative works includes [16], [14]
and [17]. Particularly, [16] proposes to fuse information over
temporal dimension through the network, temporal segment



3

network (TSN) [14] adopts a segmental consensus function
to average per-frame prediction scores, and temporal relation
networks (TRN) [17] merge per-frame outputs with multi-
layer perceptrons. The simple temporal fusion strategies used
in these works weaken their capacity in modeling dynamic
relations. The other one, by contrast, utilizes the recurrent
neural networks (RNNs) that inherently possess the ability
of modeling temporal relations. For example, the work [18]
connects up 2D-CNN and RNN and trains it in an end-to-
end fashion, and [19] turns to employ the convolutional gated
recurrent unit (ConvGRU) to model spatio-temporal features.

3D-CNN based video models. Currently, research efforts
have been made to design unified spatio-temporal computation
unit. The most straightforward way is to replace all the 2D
spatial convolutions of a 2D-CNN with 3D spatio-temporal
convolutions. C3D [9] and I3D [10] are two examples of
this category, where I3D further inflates the pretrained 2D
convolution to its corresponding 3D convolution for network
initialization. V4D [20] even tries to use 4D convolution to
additionally capture the relations among sub-clips. Though
promising in spatio-temporal relation modeling, 3D/4D con-
volutions incur a tremendous computational burden. More re-
cently, there are various attempts that construct efficient spatio-
temporal units to tackle the above problem. Example works
include P3D [21], R(2+1)D [22], SlowFast [23], X3D [24],
TSM [15], RubikShift [25], GST [26], GSM [27], etc. P3D and
R(2+1)D reduce the number of parameters by decomposing the
3D spatio-temporal convolution into a 2D spatial+1D temporal
operation. SlowFast introduces dual-path CNNs to operate
on different sampling frequencies. X3D presents an efficient
strategy to search for optimal settings for space, time, width
and depth. TSM utilizes the parameter-free temporal shift
operation to achieve temporal modeling. GST decomposes the
feature channels into spatial and spatio-temporal groups for
efficient computation. GSM combines the efficient strategies
of TSM and GST for more improved network architecture.

B. Attention Mechanisms

Visual attention with axial contexts. Visual attention aims
to improve representation learning with various contexts. The
attention works most relevant to our AIA are axial context
based. Axial contexts are referred to as information aggregated
from a (multiple) visual feature axis (axes). Firstly proposed
in SE-Net [5], the squeeze-and-excitation mechanism, which
works as a self-gating operator to element-wisely refine the
features from extractors with global context, shows remarkable
success in visual feature contextualization. Another advan-
tage of the pooling-based mechanism is that it does not
increase model complexity much. Sharing similar spirit with
SE-Net, successors include GE-Net [4], CBAM [13], triplet
attention [28], S3D-G [6], expansion-squeeze-excitation (ESE)
[29], TEA [7], temporal adaptive module (TAM) [8] and
temporal-spatial mapping [30]. Specifically, GE-Net is the
generalized version of SE-Net and investigates various levels
of spatial context granularity. CBAM derives two kinds of
attention units to explore both channel and spatial contexts
and further arranges them in a sequential manner. Triplet

attention combines multiple contexts to learn the gating mask.
These works are focused on processing images. To leverage
video content processing, S3D-G and ESE borrow the idea
of SE-Net that compresses the entire video as a single voxel.
TEA and TAM also perform average pooling but only along
time axis to collapse spatial information towards time axis.
Temporal-spatial mapping incorporates the temporal attention
into a head ConvNet and uses the max pooling operation
to compute the attention weight. Although our approach has
similar consideration on context exploration with these works,
AIA combines different types of axial contexts in a joint unit
and arranges attention units in a cascade manner making full
use of various contexts.

In addition, some works adopts computational units to
adaptively learn the spatio-temporal information from a small
region, like two-stream collaborative learning with spatial-
temporal attention (TCLSTA) [31], stagNet [32] and [33].
In particular, all the three works utilize RNN or LSTM to
obtain temporal contexts. Besides, TCLSTA further uses a set
of convolutions to model spatial context, and stagNet regards
the spatial objects in a keyframe as an object sequence and
thus models the spatial context with LSTM.

Visual attention with non-axial contexts. There are also
some other works that explore non-aggregated visual contexts.
For example, non-local network [34] pairwisely compares
feature points in a tensor map and recomputes each feature
vector as a weighted sum of responses across all map positions.
Region-based non-local (RNL) [35] network extends the non-
local network by using a relative larger convolutional kernel
for enhancing region features. Compact bilinear augmented
query structured attention (CBA-QSA) [36] uses learnable
queries to attend on key spatio-temporal locations avoiding
the inefficient pairwise comparing.

III. ATTENTION IN ATTENTION MODULES

The proposed attention in attention (AIA) modules refine
the video feature map with various axial contexts. Considering
the tensor shape of a video feature map X, i.e., C × T ×
H ×W , we can instantiate four kinds of contexts by solely
squeezing along a specific axis. Specifically, we adopt average-
pooling (AvgPool) and max-pooling (MaxPool) operations
to explore both mean and max statistical responses. Formally,
we have

GC = Concat (AvgPool(X, C),MaxPool(X, C)) , (1)

GT = Concat (AvgPool(X, T ),MaxPool(X, T )) , (2)

GH = Concat (AvgPool(X, H),MaxPool(X, H)) , (3)

GW = Concat (AvgPool(X,W ),MaxPool(X,W )) , (4)

where GC ∈ R2×T×H×W , GT ∈ RC×2×H×W , GH ∈
RC×T×2×W and GW ∈ RC×T×H×2, and Concat(A,B)
concatenates A and B along the squeezing dimension.

The resulting contexts {GC ,GT ,GH ,GW } represent the
global statistics of a video feature when viewing from different
perspectives. Generally, we can divide them into two context
groups based on their feature attributes, i.e., channel group
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{GC} and spatio-temporal group {GT ,GH ,GW }. The chan-
nel group reflects the aggregated channel information while the
spatio-temporal group reflects the aggregated spatio-temporal
information of video features. Based on this categorization,
we can thus build two attention units: attention with channel
context, referred to as C unit, and attention with spatio-
temporal context, referred to as ST unit. As we analyzed
in Introduction, the single context utilization unit (C or ST)
ignores the correlation between different types of contexts.
Based on this, we accordingly propose two attention in at-
tention modules, i.e., CinST and STinC, where an attention
unit (C/ST) is incorporated into the other attention unit (ST/C)
for full utilization of different contexts. In the followings, we
elaborate these single and AIA attention modules.

A. Single Attention Unit, C and ST

The single attention units C and ST separately operate on
the contextual feature groups {GC} and {GT ,GH ,GW } with
the 3 × 3 × 3 3D convolution. The input channel dimension
of the 3D convolution is the pooling dimension, whose size is
2, and the output channel size is set to 1. Therefore, we can
easily calculate the parameters of the used 3D convolution
and that is 3 × 3 × 3 × (Cin = 2) × (Cout = 1) = 54. This
is an extremely small number of parameters compared to the
convolution in a regular residual block. Then, the Sigmoid
function is used to compute a 0 − 1 gating weight based the
element in the output of the 3D convolution. Next, we expand
the gating weights to have the same size with the input feature
X by element copying, yielding an attention mask Y for X.
The computation pipeline is formulized as

YC = Expand (Sigmoid (3DConv (GC))) , (5)

and

YT = Expand (Sigmoid (3DConv (GT ))) , (6)

YH = Expand (Sigmoid (3DConv (GH))) , (7)

YW = Expand (Sigmoid (3DConv (GW ))) , (8)

YST =
1

3
(YT + YH + YW ) . (9)

Finally, the refined feature Z are obtained in an element-wise
gating manner and we have

ZC = YC � X, (10)

ZST = YST � X, (11)

where � denotes the element-wise multiplication.
In general, both C and ST attention units compute their 1-

dimensional attention response in a 3× 3× 3 receptive filed,
which means that the global contexts (obtained with average-
pooling and max-pooling operations) are further compressed
under a local neighbourhood. Given the C attention unit as an
instance, the squeezed 2-dimensional channel statistics further
slims down to a 1-dimensional channel result with the 3D
convolution that slides the kernel along spatio-temporal axes.
As a result, besides the global aggregated information, the
resulting 1-dimensional channel context additionally contains

the spatio-temporal local information. It thus enables a 2D
ResNet model to have the ability of spatio-temporal modeling,
which is also demonstrated by the experimental result that the
extreme lightweight C unit can significantly improve the video
classification performance of a 2D ResNet model by a large
margin of > 20%.

B. AIA Modules, CinST and STinC

AIA modules take advantages of both the channel and
spatio-temporal contexts to achieve video feature refinement.
Different to the simple cascade and parallel connection of them
as done by CBAM [13], we propose to insert one attention unit
into the other, exploring their correlation. In the final, we also
empirically combine the two AIA modules to yield further
performance gains.

1) CinST: CinST module regards the ST unit as the host
attention and employs the C unit to refine the source feature X
firstly. Figure 2-(a) illustrates the workflow details of CinST.
Specifically, the obtained refined feature ZC computed from
Eq. (10) is used as the input tensor of ST unit instead of the
original feature map X in Eqs. (2-4). Consequently, the new
global contexts

{
G′T ,G′W ,G′W

}
are recomputed as

G′∗ = Concat (AvgPool(ZC , ∗),MaxPool(ZC , ∗)) , (12)

where ∗ can be T , H or W . The subsequent calculations for
the attention mask follow Eqs. (6-9, 11) but with the new
global contexts

{
G′T ,G′W ,G′W

}
as input.

2) STinC: In contrast to CinST, STinC takes the C unit
as the host attention and accordingly adopts the ST unit to
refine the source feature X, as shown in Figure 2-(b). Here, the
refined feature ZST by Eq. (11) is regarded as the input tensor
of C unit. The new G′C , Y′C and Z′C are therefore computed
as

G′C = Concat (AvgPool(ZST , C),MaxPool(ZST , C)) ,
(13)

Y′C = Expand
(
Sigmoid

(
3DConv

(
G′C

)))
, (14)

Z′C = Y′C � X. (15)

It is worth noting that all the calculations in CinST and
STinC are acted on the attention weights and do not change
the original feature map X before computing the final feature
map Z. In other words, the two single attention units C and
ST in CinST/STinC become an organic whole. That is why
we call CinST/STinC as an attention in attention module.

C. Attention Combination and Network Architecture

The two attention modules CinST and STinC can work
either solely or cooperatively for video feature refinement. In
this section, we present three combinations as shown in Figure
3. All the proposed AIA variants are plug-and-play modules
and can be easily integrated into existing video network
architectures (e.g., TSN [14] and TSM [15]). Here, we explain
the three combinations of AIA modules with the referenced
ResNet block. In particular, the three subfigures (d), (e) and (f)
in Figure 3 show their combination mechanisms respectively,
i.e., two types of sequential connection: (d) CinST→STinC
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Fig. 2. Architectures of the proposed CinST and STinC modules.

and (e) STinC→CinST, and one type of parallel connection: (f)
CinST+STinC. For comparison, we also give the integration
blocks with the similar connections of the two single attention
units C and ST as counterparts, illustrated by Figure 3-(a), (b)
and (c).

D. Discussion

The most related works to our AIA modules include SE-
Net [5], GE-Net [4], CBAM [13] and S3D-G [6], which
use the squeeze-and-excitation scheme for visual feature re-
finement. Among these models, SE-Net, GE-Net and CBAM
are designed for image classification tasks and S3D-G is an
extension of SE-Net but works for video processing. Attention

modules in SE-Net, GE-Net and S3D-G utilize parametric
operators to act on the channel dimension, while CBAM
and our AIA modules act on the pooled dimension requiring
much lower computational burden (only tens or hundreds
parameters). In addition, all the above attention modules are
single attention variants, whereas our CinST and STinC are
attention in attention modules. These differences are attended
from the aspect of model architecture. In terms of the feature
refinement mechanism, the attention modules produced by
the existing works generally redistributes the global pooled
information to local features (e.g., channels), while in contrast
our AIA modules incorporate the local information preserved
in a small receptive filed within the untouched axes to the
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global pooled information. In terms of motivation, our AIA
modules uses the “A-in-B” structure to explore the correlation
between two contexts, which is ignored by the other works.
In the experiment, we also show the superior performances of
our AIA modules to SE-Net, GE-Net, S3D-G and CBAM.

IV. EXPERIMENTS

We conduct extensive experiments on five standard bench-
marks for video classification and evaluate the performance
with top-1/5 accuracy (%). We also report the number of
parameters and FLOPs to clearly show model complexity.
Here, FLOPs describe how many operations are required to
run a single instance of a given model and are machine-
independent. Fewer FLOPs indicate that the model requires
fewer computational operations and thus is more efficient.

A. Datasets

Something-Something V1 and V2. Something-Something
V1 [37] and V2 [38] (SSV1 and SSV2 for short) datasets
have the same 174 action categories and only differ in data
scale. Specifically, SSV1/V2 contains ∼108k/220k videos,
with ∼86k/169k in training set and ∼12k/25k in validating set,
respectively. Videos in the datasets show fine-grained human
performing actions that occur in the physical world. It requires
strong temporal modeling for understanding.

Diving48. Diving48 [39] is a fine-grained video dataset of
competitive diving, consisting of ∼18k trimmed video clips
of 48 unambiguous dive sequences. The dataset is partitioned
randomly into a training set of ∼16k videos and a test set
of ∼2k. Dives may differ in stages (takeoff, flight, entry) and
thus require modeling of long-term temporal dynamics. The
used dataset is the recently cleaned version (V2).

EGTEA Gaze+. EGTEA Gaze+ [40] dataset consists of
∼10k first-person vision instances for 106 non-scripted activity
classes. We use the three official train/validation splits for
performance report.

EPIC-KITCHENS. EPIC-KITCHENS [41] also offers
first-person vision actions that happen in the kitchen but
focuses on object level visual reasoning in videos. In this

TABLE I
COMPARISONS OF PERFORMANCE, PARAMETERS AND FLOPS OF

DIFFERENT MODULES ON SOMETHING-SOMETHING V1 DATASET WITH 8
FRAMES/VIDEO AND THE 224× 224 CENTER CROP.

Model Block Params Top-1 Top-5 FLOPS

TSN

None 23.86M 19.7 46.6 32.88G
SE3D 26.38M 22.0 49.9 32.94G
GE3D-G 23.86M 22.3 51.1 32.92G
GE3D-DW133 24.36M 19.4 46.7 33.04G
GE3D-DW333 25.18M 44.2 72.6 33.31G
S3D-G 25.13M 28.9 59.3 32.89G
CBAM3D177 26.39M 28.1 57.6 32.94G
CBAM3D377 26.40M 43.4 72.2 32.96G
C 23.87M 44.3 72.7 32.88G
ST 23.87M 43.7 72.5 33.01G
C→ST 23.87M 44.3 73.2 33.01G
ST→C 23.87M 44.3 73.0 33.01G
C+ST 23.87M 43.6 72.5 33.01G
CinST 23.87M 46.9 75.6 33.01G
STinC 23.87M 44.5 73.2 33.01G
CinST→STinC 23.87M 48.5 77.2 33.15G
STinC→CinST 23.87M 47.1 75.8 33.15G
CinST+STinC 23.87M 46.9 75.5 33.15G

TSM

None 23.86M 45.6 74.2 32.88G
C 23.87M 47.9 76.3 32.88G
ST 23.87M 48.1 76.8 33.01G
C→ST 23.87M 48.3 77.1 33.01G
ST→C 23.87M 48.3 77.0 33.01G
C+ST 23.87M 48.3 77.1 33.01G
CinST 23.87M 48.7 77.4 33.01G
STinC 23.87M 48.4 77.8 33.01G
CinST→STinC 23.87M 49.2 77.5 33.01G
STinC→CinST 23.87M 48.6 77.1 33.15G
CinST+STinC 23.87M 49.1 77.4 33.15G

work, we select the EPIC-KITCHENS-55 for use and sep-
arately report the verb and noun classification results. The
train/validation partition is done by ourselves following the
similar strategy in [42].

B. Implementation Details

We implement our AIA modules on TSN and TSM back-
bones which are based on ResNet-50 and pretrained on
ImageNet-1k dataset. We add a “Batch-Norm” after each
convolution in AIA modules. We follow the training/inference
protocols described in TSN [14] to conduct experiments. In
particular, video frames are initially resized with 240×320
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Fig. 3. Integration of attention modules into a ResNet block.



7

𝐗

𝐙

Global AvgPool

Scale

Sigmoid

𝑇 × 𝐻 ×𝑊 × 𝐶

𝑇 × 𝐻 ×𝑊 × 𝐶

𝐗

𝐙

DWConv+BN+ReLU

(1×3×3, stride (1,2,2))

Sigmoid

𝑇 × 𝐻 ×𝑊 × 𝐶

DWConv+BN+ReLU

(1×3×3, stride (1,2,2))

DWConv+BN+ReLU

(1×3×3, stride (1,2,2))

Interpolation

𝐗

𝐙

Global AvgPool

Scale

Sigmoid

𝑇 × 𝐻 ×𝑊 × 𝐶

𝑇 × 𝐻 ×𝑊 × 𝐶

FC

𝑇 × 𝐻 ×𝑊 × 𝐶

𝐗

𝐙

Global AvgPool

Scale

Sigmoid

𝑇 × 𝐻 ×𝑊 × 𝐶

𝑇 × 𝐻 ×𝑊 × 𝐶

FC+ReLU

FC

(b) GE3D-G (c) GE3D-DW133

(e) S3D-G

(a) SE3D

1 × 1 × 1 × 𝐶

1 × 1 × 1 ×
𝐶

16

1 × 1 × 1 × 𝐶

1 × 1 × 1 × 𝐶

1 × 1 × 1 × 𝐶

1 × 1 × 1 × 𝐶

𝑇 ×
𝐻

2
×

𝑊

2
× 𝐶

𝑇 ×
𝐻

4
×

𝑊

4
× 𝐶

𝑇 ×
𝐻

8
×

𝑊

8
× 𝐶

𝑇 × 𝐻 ×𝑊 × 𝐶

1 × 1 × 1 × 𝐶

1 × 1 × 1 × 𝐶

1 × 1 × 1 × 𝐶

𝐗

𝐙

AvgPool

Sigmoid+Scale

𝑇 × 𝐻 ×𝑊 × 𝐶

𝑇 × 𝐻 ×𝑊 × 𝐶

FC(
𝐶

16
)+ReLU+FC(𝐶)

(f) CBAM3D177

1 × 1 × 1 × 𝐶

1 × 1 × 1 × 𝐶

MaxPool

Channel Attention 

Module

Spatial Attention 

Module

𝑇 × 𝐻 ×𝑊 × 𝐶

AvgPool MaxPool

𝑇 × 𝐻 ×𝑊 × 2

Conv+BN+Sigmoid+Scale

(1×7×7, stride (1,1,1))

𝐗

𝐙

DWConv+BN+ReLU

(3×3×3, stride (1,2,2))

Sigmoid

𝑇 × 𝐻 ×𝑊 × 𝐶

DWConv+BN+ReLU

(3×3×3, stride (1,2,2))

DWConv+BN+ReLU

(3×3×3, stride (1,2,2))

Interpolation

𝑇 × 𝐻 ×𝑊 × 𝐶

(d) GE3D-DW333

𝑇 ×
𝐻

2
×

𝑊

2
× 𝐶

𝑇 ×
𝐻

4
×

𝑊

4
× 𝐶

𝑇 ×
𝐻

8
×

𝑊

8
× 𝐶

𝑇 × 𝐻 ×𝑊 × 𝐶

𝐗

𝐙

AvgPool

Sigmoid+Scale

𝑇 × 𝐻 ×𝑊 × 𝐶

𝑇 × 𝐻 ×𝑊 × 𝐶

FC(
𝐶

16
)+ReLU+FC(𝐶)

(g) CBAM3D377

1 × 1 × 1 × 𝐶

1 × 1 × 1 × 𝐶

MaxPool

Channel Attention 

Module

Spatial Attention 

Module

𝑇 × 𝐻 ×𝑊 × 𝐶

AvgPool MaxPool

𝑇 × 𝐻 ×𝑊 × 2

Conv+BN+Sigmoid+Scale

(3×7×7, stride (1,1,1))

Fig. 4. Architectures of SE3D, GE3D-G, GE3D-DW133, GE3D-DW333, S3D-G, CBAM3D177 and CBAM3D377. “DWConv” denotes the depthwise
convolution.

for SSV1/V2 and with the short-size as 256 for others before
inputting into networks. During training, a 224 × 224 center
crop is used as the model input. While for testing, we infer the
classification performance using center crops of a single clip
in ablation study and multiple clips in the final performance
report. The settings of sampled frames and clips will be
specified in the tables. The training settings are set as: 50
epochs with batch size 8 per GPU, learning rate (lr) 0.01,
decaying lr by 0.1 at epoch 20 and 40. All the results are
obtained with Pytorch codes running on 4×2080Ti or 3090
GPUs.

C. Ablation Study

The ablation study is conducted on Something-Something
V1 dataset. Here, we study the performance changes of dif-
ferent AIA modules and also compare them with the existing
methods such as SE-Net [5], GE-Net [4], S3D-G [6] and
CBAM [13]. Particularly, as SE-Net, GE-Net and CBAM are
proposed for image processing, we thus make some minor
changes for the operations in their attention blocks to facilitate
video data input. We rename them as SE3D, GE3D and
CBAM3D respectively. For SE-Net, we only need to replace
the original 2D spatial pooling operation with 3D spatio-
temporal pooling operation. While, since there are multiple
network variants in GE-Net, we select two representative mod-
ules for comparison, i.e., the global average pooling one (GE-
G) and the depthwise convolution one (GE-DW). Similarly,
for GE-Net, the 2D global pooling in GE-G is changed to a

3D version, referred to as GE3D-G, and the 2D depthwise
convolutions in GE-DW are changed to 3D counterparts,
referred to as GE3D-DW, including GE3D-DW133 with a
1 × 3 × 3 convolution, and GE3D-DW333 with a 3 × 3 × 3
convolution. Finally, for CBAM, the 2D global pooling op-
erations is changed to a 3D version and 2D convolutions
are accordingly replaced with 3D convolutions in its channel
and spatial attention units, resulting in two corresponding
CBAM3D variants CBAM3D177 (using a 1×7×7 convolution)
and CBAM3D377 (using a 3 × 7 × 7 convolution). Figure 4
shows their detailed architectures.

Table I shows their results. Firstly, the proposed single
attention units C and ST significantly improve the back-
bones’ performances (19.5%→44.3%/43.7% for TSN and
45.6%→47.9%/48.1% for TSM) but only incur ∼0.003M
(<0.012%) extra parameters and ∼0.006G (<0.02%) extra
FLOPs. Secondly, AIA modules CinST and STinC consistently
outperform the single units C and ST, and also perform better
than C→ST, ST→C and C+ST on the two backbones, which in
a sense demonstrates the effectiveness of context correlation
modeling. Thirdly, the combination variants CinST→STinC,
STinC→CinST and CinST+STinC further boost the perfor-
mance of backbones to new heights (i.e., 46.9%-48.5% for
TSN and 48.7%-49.2% for TSM). Among the three combi-
nation variants, CinST→STinC achieves the best results on
the two backbones. We thus select CinST→STinC as the ulti-
mate AIA version for the performance comparison with other
methods. Finally, we give the comparison with the existing
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Fig. 5. Per-category top-1 accuracy comparison for TSN and TSN+{C, ST, STinC, CinST, CinST→STinC} over 10 selected activity categories on Something-
Something V1 dataset (validation set).

plug-in modules. As shown in this table, all the proposed
attention modules far outstrip SE3D, GE3D-G/DW133, S3D-G
and CBAM3D177, which have not the function of modeling
local spatio-temporal patterns, in classification accuracy. When
using a 3D convolution, GE3D-DW333 and CBAM3D377 ob-
tains significant performance improvements (19.4%→44.2%
and 28.1%→43.4%), which are still worse than ours. This
gives evidence that local spatio-temporal information is very
important in video content understanding.

D. Example Demonstration
We show the per-category results of TSN+{C, ST, STinC,

CinST, CinST→STinC} models to understand the impacts
of axial contexts and the proposed AIA regime on different
types of video activities in Figure 5. Firstly, as shown in the
subfigure 5(a), all the attention variants significantly boost the
recognition of activities that need long-range dependencies,
e.g., “ ID-10: Holding something”, “ID-26: Lifting a surface
with something on it but not enough for it to slide down” and
“ID-118: Putting something that cannot actually stand upright
upright on the table, so it falls on its side”. This is probably
because that the global axial pooling operation can offer
the attention modules the capability of modeling such long-
term dependencies, which is much suitable for recognizing
the continuous actions. Secondly, the proposed AIA modules
STinC and CinST consistently perform better than the single
attention units C and ST, which also provides evidence for
the superiority of AIA. In addition, we show the failure cases
that C and ST do not bring performance improvement to the
backbone in the subfigure 5(b). Most of these activities contain
short/partial motions/movements. For example, to recognize
the activity of “ID-34: Moving part of something”, the model
needs to perceive the subtle change of a small spatial region
or object sensitively, however it is obviously that the C unit
that smoothens the feature channels with pooling operations
may harm the motion information. The other example “ID-84:
Pretending to throw something” only contains a very short,
small amplitude at the beginning of video. Consequently, both
C and ST units drop the performance. But, since we use local
convolutions on the uncompressed axes, STinC and CinST, to
an extent, lessen the risk of performance degradation. Finally,
the the shortcomings of single attention units are made up and
their advantages are mutually complemented in the cascade
CinST→STinC, achieving performance improvement at last.

E. Visualization

In this section, we visualize the class activation maps using
TSN with {C, ST, C→ST, ST→C, C+ST, STinC, CinST,
CinST+STinC, STinC→CinST and CinST→STinC} to clearly
show the vital parts they learn. Figure 6 shows some examples
of heatmaps obtained using the Grad-CAM [43] technique.
Specifically, we use 8-frame center crops as input. These
videos are selected from Something-Something V1 dataset.
The categories in Something-Something dataset emphasize
various kinds of action interactions, such as the short-term
interaction between objects (e.g., “Putting something in front
of something”), the semi-intergradation (e.g., “Holding some-
thing over something” and “Attaching something to some-
thing”), and the long-range interaction (“Pretending or failing
to wipe something off of something”). In this case, a good
model should jointly capture the interactions as completely
as possible. From the visualization results, we find that the
combined AIA variants, i.e., CinST+STinC, STinC→CinST
and CinST→STinC, can mostly pick the core locations that
have object interactions and CinST→STinC yields more rea-
sonable class activation maps than others in terms of these
video samples.

F. Comparison with SOTAs

In this section, we compare our AIA module
(CinST→STinC) with state-of-the-art (SOTA) methods
on the used five datasets respectively.

1) Something-Something V1 and V2: Table II shows the
performance comparisons. Firstly, similar to the observation
from Table I, our AIA module consistently outperforms its
base networks, indicating that the proposed CinST→STinC
is capable of enhancing both the 2D (TSN) and 3D (TSM)
deep networks. Surprisingly, AIA module improves the per-
formance of the 2D TSN network by an absolute increase
of 28.8% (19.7%→48.5% with 8×1×1) on SSV1 and 30.3%
(30.0%→60.3% with 8×1×1) on SSV2. This strongly demon-
strates the effectiveness of the proposed feature contextualiza-
tion strategies for robust video representation learning. Sec-
ondly, AIA networks achieve comparable performances with
the TEA. When further considering its lightweight in model
complexity (parameters and FLOPs), AIA (23.87M/33.15G) is
superior to the related attention based networks such as Non-
local I3D (35.3M/168.0G), TAM (25.6M/33.0G), RNL TSM
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Fig. 6. Visualization of class activation maps on sample video clips from the Something-Something V1 dataset. The first row presents original frames and
each of the other rows presents the visualization results of a model.
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TABLE II
PERFORMANCE COMPARISON OF STATE-OF-THE-ARTS ON SOMETHING V1 AND V2 DATASETS. ALL THE COMPETING METHODS ADOPT RESNET-50 OR

ITS 3D/4D VARIANTS AS BACKBONE.

Method Backbone Frames×Crops×Clips Params FLOPs V1 V2
Top-1 Top-5 Top-1 Top-5

TSN [14] ResNet-50 8×1×1 23.9M 32.9G×1 19.7 46.6 30.0 60.5
MFNet-C50 [44] ResNet-50 10×1×1 — — 40.3 70.9 — —
I3D [10]

ResNet-50 32×1×2
28.0M 153.0G×2 41.6 72.2 — —

NLI3D [34] 35.3M 168.0G×2 44.4 76.0 — —
NLI3D+GCN [45] 62.2M 303.0G×2 46.1 76.8 — —
RubiksNet [25] ResNet-50 8×1×2 — — 46.4 74.5 61.7 87.3
SlowFast [46] ResNet-50 (4+32)×3×2 32.9M 65.7G×6 — — 61.9 87.0
TAM [8] ResNet-50 8×1×1 25.6M 33.0G×1 46.5 75.8 60.5 86.2
TAM [8] 16×1×1 25.6M 66.0G×1 47.6 77.7 62.5 87.6
GST [26] 16×1×1 21.0M 59.0G×1 48.6 77.9 62.6 87.9
TIN [47] ResNet-50 (8+16)×1×1 — 101G×1 49.6 78.3 — —
PAN [48] (8+8)× 4 — 67.7 × 1 50.5 79.2 63.8 88.6
ABM [49] 16×3×1 67M — 49.8 — — —
TSM [15] ResNet-50 8×1×2 23.9M 32.9G×2 47.3 76.2 61.7 87.4
TSM [15] 16×1×2 23.9M 65.8G×2 48.4 78.1 63.1 88.2
TSM [15] (8+16)×1×2 23.9M 98.7G×2 50.3 79.3 64.3 89.0
TSM+TPN [50] ResNet-50 8×1×1 24.3M 33.0G×1 49.0 — 62.0 —
TEINet [51] ResNet-50 8×1×1 30.4M 33.0G×1 47.4 — 61.3 —
TEINet [51] 16×1×1 30.4M 66.0G×1 49.9 — 62.1 —
SmallBig [52] ResNet-50 8×3×2 — 57.0G×6 48.3 78.1 61.6 87.7
SmallBig [52] (8+16)×3×2 — 171.0G×6 51.4 80.7 — —
STM [53] ResNet-50 8×3×10 24.0M 33.3G×30 49.2 79.3 62.3 88.8
STM [53] 16×3×10 24.0M 66.5G×30 50.7 80.4 64.2 89.8
CorrNet-50 [54] V4DResNet-50 32 × 10 — — 49.3 — — —
DFB-Net [55] ResNet-50 16×1×1 — — 50.1 79.5 — —
V4D [20] ResNet-50 8×3×10 — — 50.4 — — —
RNL TSM [56]

ResNet-50
8×3×2 35.5M 41.2G×6 49.5 78.4 — —

RNL TSM [56] 16×3×2 35.5M 82.4G×6 51.0 80.3 — —
RNL TSM [56] (8+16)×3×2 — 123.6G×6 52.7 81.5 — —
TEA [7] ResNet-50 8×3×10 24.5M 35.0G×30 51.7 80.5 — —
TEA [7] 16×3×10 24.5M 70.0G×30 52.3 81.9 — —

Our AIA(TSN) ResNet-50

8×1×1 23.9M 33.1G×1 48.5 77.2 60.3 86.4
8×1×2 23.9M 33.1G×2 49.5 78.4 61.3 87.1
8×3×2 23.9M 33.1G×6 49.8 78.5 61.9 87.4
12×1×1 23.9M 49.7G×1 49.0 76.4 61.2 86.6
12×1×2 23.9M 49.7G×2 49.9 78.2 61.8 87.2
12×3×2 23.9M 49.7G×6 50.3 78.6 62.4 87.7
16×1×1 23.9M 66.3G×1 49.2 77.9 61.4 86.6
16×1×2 23.9M 66.3G×2 50.0 78.6 62.2 87.3
16×3×2 23.9M 66.3G×6 50.5 79.2 62.7 87.6

(8+16)×3×2 — 99.4G×6 52.9 81.0 65.0 89.3
(8+12+16)×3×2 — 149.1G×6 53.8 81.9 65.9 89.8

Our AIA(TSM) ResNet-50

8×1×1 23.9M 33.1G×1 49.2 77.5 61.7 87.2
8×1×2 23.9M 33.1G×2 50.2 78.6 62.7 87.8
8×3×2 23.9M 33.1G×6 50.4 79.1 63.4 88.2
12×1×1 23.9M 49.7G×1 50.9 79.0 62.5 87.4
12×1×2 23.9M 49.7G×2 51.5 79.7 63.4 88.1
12×3×2 23.9M 49.7G×6 52.0 79.7 64.0 88.4
16×1×1 23.9M 66.3G×1 50.4 78.6 63.0 87.8
16×1×2 23.9M 66.3G×2 51.1 79.6 64.0 88.7
16×3×2 23.9M 66.3G×6 51.6 79.9 64.3 88.9

(8+16)×3×2 — 99.4G×6 53.9 81.8 66.7 90.4
(8+12+16)×3×2 — 149.1G×6 55.0 82.4 67.2 90.8

TABLE III
PERFORMANCE COMPARISON ON THE UPDATED DIVING48 DATASET

USING THE TRAIN/VALIDATION SPLIT V2.

Method Backbone #Frame Top-1 Top-5
TSN ResNet-50 8 72.4 96.8
C3D 3DResNet-50 8 73.4 96.0
GST ResNet-50 8 74.2 94.5
TSM ResNet-50 8 77.6 97.7
AIA(TSN) ResNet-50 8 79.3 97.5
AIA(TSM) ResNet-50 8 79.4 97.5

(35.5M/41.2G) and TEA (24.5M/35.0G). When using (8+16)
frames × 6 clips as input, our AIA(TSM) achieves the best
53.9% and 66.7% top-1 accuracy on SSV1 and SSV2 datasets
among the competing methods that adopt the same setting.
Finally, we also ensemble AIA models with {8, 12, 16} frames
and achieve the highest 55.0%/67.2% top-1 accuracy.

2) Diving48: Since this newly released version of the
dataset has been thoroughly cleaned, we re-run all the compet-
ing methods by ourselves, including TSN [14], C3D [9], GST
[26] and TSM [15], for a fair comparison. Table III shows
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the obtained results with 8 frames as input. Dives are the
synthesis of continuous motion changes at different stages.
Consequently, the simple frame-level fusion as done by TSN
can achieve relatively satisfactory result. It is sure that further
capturing the temporal relations among subtle body poses can
further improve the recognition, which is demonstrated by
the performance gain (72.4%→77.6%) of TSM. Moreover,
our AIA additionally considers the long-range context and
thus achieve the best performances 79.3% for AIA(TSN) and
79.4% for AIA(TSM).

TABLE IV
PERFORMANCE COMPARISON ON EGTEA GAZE+ DATASET USING
TRAIN/VALIDATION SPLIT 1/2/3. THE RESULTS OF I3D-2STREAM,
R34-2STREAM AND SAP ARE CITED FROM [40], [57] AND [58],

RESPECTIVELY. EXCEPT R34-2STREAM USING RESNET-34 AS
BACKBONE, ALL THE OTHER MODELS ADOPT RESNET-50 AS BACKBONE.

Method #Frame Split1 Split2 Split3
I3D-2stream 24 55.8 53.1 53.6
R34-2stream 25 62.2 61.5 58.6
SAP 64 64.1 62.1 62.0
TSN (our impl.) 8 61.6 58.5 55.2
C3D (our impl.) 8 62.1 59.2 57.0
GST (our impl.) 8 63.3 61.2 59.2
TSM (our impl.) 8 63.5 62.8 59.5
AIA(TSN) 8 63.7 62.1 61.5
AIA(TSM) 8 64.7 63.3 62.2

TABLE V
PERFORMANCE COMPARISON ON EPIC-KITCHENS-55 DATASET. THE

RESULTS OF ALL THE METHODS ARE OBTAINED USING OUR
TRAIN/VALIDATION SPLIT.

Method #Frame Verb Noun
TSN (our impl.) 8 37.4 23.1
C3D (our impl.) 8 45.2 21.5
GST (our impl.) 8 46.4 21.1
TSM (our impl.) 8 48.2 22.9
AIA(TSN) 8 49.5 23.5
AIA(TSM) 8 50.2 24.3

3) EGTEA Gaze+ and EPIC-KITCHENS: Activities in the
two first-person vision datasets contain rich human-object
interactions occurring in native environments. It generally
requires modeling both spatial and temporal patterns to achieve
activity recognition. As shown in Table IV, when using the
same number of input frames (i.e., 8), the spatial-temporal
methods, such as C3D, TSM, GST and our AIAs, obtain better
performance than the spatial-only TSN. Also, equipped with
spatio-temporal context, our AIA models perform best among
all the competing methods. On EPIC-KITCHENS, models are
required to separately recognize the motion ingredient (i.e.,
verb) and the object ingredient (i.e., noun) of activities. Table
V shows the performance comparison on the two terms. We
observe different performance trends on verb and noun terms.
That is, the 3D models C3D, GST and TSM perform signif-
icantly better than the 2D model TSN for verb recognition,
while TSN obtains a better performance for noun recognition.
This may be because objects need more spatial modeling rather
than temporal modeling. Among all the competing methods,
our AIA models achieve the best results in both verb and noun
recognition tasks, which further proves its good performance
on recognizing diverse activities.

V. CONCLUSION

We have presented the attention in attention (AIA) mech-
anism for video feature contextualization. We firstly explore
various kinds of global contexts aggregated along different
axes of the video feature map. Then, we construct two types
of single attention units C and ST to separately operate on the
grouped contextual features. To further achieve local informa-
tion modeling, C and ST adopt 3D spatio-temporal convolu-
tions to influence global contexts. Since these units regard the
squeezed dimension as the channel input of 3D convolution,
both C and ST are much lightweight (< 0.012%/0.02% extra
parameters/FLOPs to the backbone). We also propose the idea
of inserting one attention unit to the other unit to utilize the
correlation information between them and empirically com-
bine those AIA variants. In the experiment, we densely plug
AIA modules into TSN and TSM backbones. Classification
results on five video benchmarks show that the proposed
AIA modules can significantly improve the performances of
backbones by large margins (e.g., 28.8%/30.3% for TSN on
SSV1/SSV2) and also perform much better than the existing
attention modules (e.g., SE-Net, GE-Net and S3D-G).
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