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All-Higher-Stages-In Adaptive Context Aggregation

for Semantic Edge Detection
Qihan Bo, Wei Ma, Yu-Kun Lai, and Hongbin Zha

Abstract—Convolutional Neural Networks (CNNs) can reveal
local variation details and multi-scale spatial context in images
via low-to-high stages of feature expression; effective fusion of
these raw features is key to Semantic Edge Detection (SED). The
methods available in the field generally fuse features across stages
in a position-aligned mode, which cannot satisfy the requirements
of diverse semantic context in categorizing different pixels. In this
paper, we propose a deep framework for SED, the core of which
is a new multi-stage feature fusion structure, called All-HiS-
In ACA (All-Higher-Stages-In Adaptive Context Aggregation).
All-HiS-In ACA can adaptively select semantic context from
all higher-stages for detailed features via a cross-stage self-
attention paradigm, and thus can obtain fused features with high-
resolution details for edge localization and rich semantics for edge
categorization. In addition, we develop a non-parametric Inter-
layer Complementary Enhancement (ICE) module to supplement
clues at each stage with their counterparts in adjacent stages.
The ICE-enhanced multi-stage features are then fed into the All-
HiS-In ACA module. We also construct an Object-level Semantic
Integration (OSI) module to further refine the fused features by
enforcing the consistency of the features within the same object.
Extensive experiments demonstrate the superior performance of
the proposed method over state-of-the-art works.

Index Terms—semantic edge detection, multi-stage feature
fusion, adaptive context aggregation, complementary feature
enhancement, object-level semantic integration

I. INTRODUCTION

S
EMANTIC Edge Detection (SED) in images aims at

jointly locating object boundaries and recognizing their

semantic categories. SED benefits a wide variety of research

topics and applications, including semantic visual SLAM [1],

image-based localization [2], and 3D geometry estimation [3].

SED can be viewed as a dual-task of semantic segmentation.

Differently, semantic segmentation decomposes an image into

semantic regions by categorizing each pixel according to

its spatial context [4]. The obtained semantic regions can

be converted to semantic edges by keeping only boundary

points and their semantical categories [5]. However, seman-

tic segmentation is error-prone in categorizing pixels near

boundaries, due to the complex context compositions around
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Fig. 1. Visual comparison of results obtained by CASENet [9], DFF
[10], MSC-SED [11] and our method (best viewed in color). We choose
CASENet, DFF and MSC-SED because they are representatives of state-of-
the-art methods with source codes provided. The input images are from SBD
dataset [15]. In (a), many samples at the small horse’s legs are misclassified as
non-horse by CASENet and DFF, and misclassified as non-edge by MSC-SED.
Our method obtains much better semantic edges due to the adaptive context
aggregation. In (b), the edges predicted by CASENet, DFF, and MSC-SED are
coarse and topologically wrong. The proposed method obtains much thinner
edges because the detail features are well preserved during feature fusions.

these pixels [6]–[8]. In contrast, focusing on locating and

categorizing contour samples, SED has potential to obtain

more accurate boundaries.

Convolutional Neural Networks (CNNs) have been widely

used in various image processing and understanding tasks.

CNN can extract multi-stage rich features from a single image,

in which the lower-stage features reflect local variations and

the higher-stage features contain more semantic clues. Effec-

tive fusion of the multi-stage features is key to SED. Existing

CNN-based SED methods generally solve this issue via cross-

stage concatenation or stage-by-stage gradual fusion in a

position-aligned mode. For example, CASENet [9] fuses the

highest stage feature maps with those of the lowest three stages

via position-aligned shared concatenation. All the feature maps

are rescaled to have the same size as the input image before

the fusion. Subsequently, Hu et al. [10] extended CASENet to

Dynamic Feature Fusion (DFF) for location-adaptive weights.

More recently, considering that the lower-stage features are

noisy, Ma et al. [11] proposed a Multi-scale Spatial Context

based network for SED (MSC-SED), which gradually selects

details and integrates them into higher-stage features at the

same position.
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Although great progress has been made in multi-stage

feature fusion for SED, existing methods have two limitations

as follows.

1) Firstly, the above position-aligned fusion strategies can-

not satisfy the diverse requirements of context clues at

different edge points. For example, for edge samples

located at the head of the big horse in Fig. 1(a), context

clues aggregated by CASENet, DFF and MSC-SED are

adequate for categorizing these samples. However, these

methods cannot aggregate context required for correct

categorization of the hard samples located at the little

animal’s legs. Correctly recognizing these hard samples

probably requires context from the easy-to-recognize big

horse, considering that a little animal next to a big horse

is probably a horse as well. As shown in Fig. 1(a),

CASENet, DFF and MSC-SED wrongly classify most

of the edge samples from the little horse as non-horse

or non-edge categories.

2) Secondly, it is hard for existing methods [9]–[11] to

generate fused features with clear details. Specifically,

the cross-stage concatenation [9], [10] upsamples multi-

stage features to the same size and then linearly com-

bines them together. The mixture of multi-scale features

results in fused features with blurred details. The gradual

fusion in [11] enhances abstract features in higher-stages

with details. The fused feature maps inherit the low-

resolution and abstract properties of the higher-stage

features. Edges predicted based on such coarse features

are generally thick and inaccurate, as it can be seen

from the results of CASENet, DFF, and MSC-SED

in Fig. 1(b). Non-Maximum Suppression (NMS) [12]

has been widely applied as a post-processing strategy

to thin the predicted edges [5], [13], [14]. However,

NMS cannot eliminate the topological errors caused by

the coarse features. For instance, the two sides of the

horse legs obtained by CASENet, DFF and MSC-SED

in Fig. 1(b) are wrongly adhered to each other, which

cannot be corrected via NMS.

In this paper, we propose a new deep framework for SED.

Instead of the position-aligned fusion, the proposed framework

performs the multi-stage feature fusion in an adaptive way.

Specifically, the proposed framework can adaptively aggregate

required semantics for lower stage features from any position

of any higher stage via cross-stage self-attention. We name this

fusion as All-Higher-Stages-In (All-HiS-In) adaptive context

aggregation. Due to the All-HiS-In adaptive context aggrega-

tion, our model can obtain fused features with clearer details

and richer semantics. SED based on such features can correctly

recognize hard samples located at the little horse contours in

Fig. 1(a) and obtain thin boundaries directly, as shown in Fig.

1(b).

In addition, existing SED methods generally use ResNet

as backbones for multi-stage feature extraction [9]–[11]. As

features at adjacent stages are complementary in details or

semantics, we propose an Inter-layer Complementary En-

hancement (ICE) module, with no learnable parameters, to

mutually supplement the feature representations of adjacent

stages in groups. The ICE-enhanced features are then sent

to All-HiS-In ACA. Besides, we propose an Object-level

Semantic Integration (OSI) module to enrich the higher-stage

features with object-level context. OSI helps regularize the

representation within objects for consistent categorization of

their edge points and suppression of inner edge points.

Our main contributions can be summarized as follows:

1) We propose a new All-HiS-In deep architecture for

semantic edge detection. The core of the architecture is

an All-HiS-In Adaptive Context Aggregation (All-HiS-

In ACA) fusion method. Compared to existing fusion

methods for SED, All-HiS-In ACA aggregates required

semantic context for samples adaptively while preserv-

ing precise and delicate edges after fusion, and thus can

obtain thinner and more accurate semantic edges.

2) We propose an ICE module, which can enhance features

at each stage by referring to adjacent stages. ICE brings

no burden to the training process since it contains no

parameters to learn, while enriching the features and

their inter-stage relevance.

3) We propose an OSI module to regularize the represen-

tation consistency of samples belonging to the same

object. OSI further refines the fused features for edge

localization and categorization.

4) All-HiS-In ACA, ICE and OSI are proved effective via

rich ablation studies. And the proposed network achieves

new state-of-the-art performance on both the SBD and

Cityscapes datasets.

II. RELATED WORK

A. Semantic Edge Detection

Early methods generally decompose the semantic edge

detection task into separate subtasks and complete them one

by one. For example, Hariharan et al. [15] proposed inverse

detectors to detect semantic contours by combining informa-

tion from a bottom-up contour detector and generic object

detectors. Bertasius et al. [16] proposed a High-for-Low (HFL)

scheme which produces category-agnostic edge points and

then associates the points with semantic categories by referring

to object-level features extracted by CNN. Maninis et al. [17]

proposed Convolutional Oriented Boundaries (COB) to detect

oriented contours and then assigned the contour points with

class labels according to the masks obtained via semantic

segmentation.

Recently, SED is generally treated as a multi-label classifi-

cation task [9]–[11], so that edge detection and categorization

are solved jointly with interaction in a unified framework.

The core of these frameworks is the fusion of multi-stage

CNN features. To fuse the multi-stage information for SED,

existing methods perform cross-stage concatenation [9], [10]

(as illustrated in Fig. 2(a)) or stage-by-stage gradual fusion

[11] (as illustrated in Fig. 2(b)).

The representative work using the cross-stage

concatenation-based fusion strategy is CASENet, proposed by

Yu et al. [9] in 2017. Specifically, it enhances each channel

of the side activations at the highest stage with low-level

detail features via concatenation. Subsequently, Yu et al. [13]
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argued that label noises caused by inevitable misalignment of

edges during annotation can degrade edge learning quality

and proposed a Simultaneous Edge Alignment and Learning

(SEAL) framework based on CASENet. Liu et al. [18] adopted

Diverse Deep Supervision (DDS) on all side activations of

CASENet to boost the hierarchical feature representation. Hu

et al. [10] improved CASENet with location-adaptive weights

via a Dynamic Feature Fusion (DFF) strategy. Zhen et al. [5]

developed an Pyramid Context Module (PCM) to aggregate

global semantical context for lower-stage features via global

pooling of higher stage features and then concatenating them

with lower-stage features. They also utilized clues from

semantic segmentation to suppress non-semantic edges for

boundary detection. The above cross-stage concatenation

methods perform fusion regardless of the noises in the lower

level features. Ma et al. [11] proposed a bottom-up gradual

fusion framework MSC-SED, which can suppress the noises

in the lower-level feature according to semantic context

during fusion and achieves higher performance.

Both the concatenation and gradual fusion methods perform

position-aligned context aggregation across certain stages for

all samples, which can not satisfy the adaptive semantic re-

quirements of different edge points. In addition, the cross-stage

concatenation and gradual fusion blur the detail features as we

analyzed in Section I. Their fused maps for categorization are

coarse at edge points and therefore the detected boundaries are

thick. Post-processing algorithms, e.g., NMS [12], [19], can

thin the boundaries but cannot correct the topological errors

(as illustrated in Fig. 1) caused by the coarse fused maps. The

proposed All-HiS-In fusion method (as illustrated in Fig. 2(c))

solves the above issues as we analyzed in Section I.
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Fig. 2. Three typical multi-stage feature fusion strategies, cross-stage
concatenation (a), stage-by-stage gradual fusion (b), and the proposed All-
HiS-In fusion (c). The green dashed boxes denote receptive fields. The gray
line in (a) indicates position-aligned cross-stage fusion. The black curves with
arrow heads in (b) represent stage-by-stage gradual and position-aligned fusion
in a bottom-up/top-down manner. The green and red curves with arrow heads
in (c) indicate the adaptive context aggregation in stages and positions for the
lower stages features.

B. Edge-Enhanced Semantic Segmentation

Semantic edge detection and semantic segmentation can be

seen as dual tasks. Semantic segmentation generates semantic

regions by describing and categorizing each pixel based on its

spatial context. In contrast, semantic edge detection focuses on

edge points and solves two subtasks, i.e., edge localization and

categorization, at the same time. Semantic segmentation results

can be conveniently converted to semantic edges. Therefore,

we here briefly review works on semantic segmentation.

Various methods have been developed for semantic seg-

mentation, e.g., U-Net [20], DeepLab series [21]–[23], and

FastFCN [24], based on Fully Convolutional Networks (FCN)

[25]. U-Net [20] adopts an encoder-decoder structure with

skip-connections for richer types of features. DeepLab [21]

employs dilated convolution operations to enlarge receptive

fields for non-local semantical context. SFANet [4] alleviates

the misalignment gap and seeks the balance between accuracy

and inference speed. Tian et al. [26] dealt with seman-

tic segmentation in the framework of unsupervised domain

adaptation and proposed partial domain adaptation to avoid

the negative transfer problem. Zhang et al. [27] extended

proposal-based object segmentation beyond detected bounding

boxes. DeepLabv3 [22] adopts Atrous Spatial Pyramid Pooling

(ASPP) module to capture multi-scale contextual information

and obtain image-level features that encode global context.

The above methods are not effective in categorizing samples

near boundaries, since the local variations of these samples are

blurred during semantical context aggregation and the context

of these samples is confusing for categorization.

Thereafter, many works try to improve the performance

of semantic segmentation in expressing boundary samples.

For example, GSCNN [6] introduces an extra gated shape

CNN stream to extract boundary-related information, which

is then merged with features from a regular semantic segmen-

tation branch for semantic categorization. BNF [28] utilizes a

global energy function to model the pairwise pixel affinities

based on the boundary prediction. In [29], a Boundary-aware

Feature Propagation module (BFP) is proposed to propagate

local features within object regions, which are enclosed by

boundaries learned using an extra branch of model. Chen

et al. [23] introduced a decoder into DeepLabv3 [22] to

refine segmentation results especially near object boundaries

by gradually recovering spatial information. Zhen et al. [5]

improved boundaries of semantic masks via boundary con-

sistency constraint. Ji et al. [30] developed a cascaded CRFs

and introduced it into the decoder of semantic segmentation

to supplement information at boundaries. All the above edge-

enhanced semantic segmentation methods try to compute

boundary clues via extra computations and integrate them into

the intermediate representation of semantic segmentation. The

idea and consequence are similar to those of CASENet series.

In this paper, we propose to aggregate context for boundary

samples adaptively. We believe that the proposed method

will also benefit the research on edge-enhanced semantic

segmentation.

C. Contour Edge Detection

If the categorization subtask in SED is ignored, SED will

degrade to contour edge detection. Recently, many CNN-based

methods have been developed for contour edge detection.

For example, Bertasius et al. [31] extracted candidate con-

tour points via Canny edge detector and then scored each

candidate as a contour point based on the connected multi-

scale CNN features around the point. To suppress noise edges,

DeepContour [32] partitioned contour data into subclasses as

supervision to regularize CNN features. Xie et al. [33] adopted
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an end-to-end fully convolutional neural network and trained it

via deep supervision on side responses to solve the ambiguity

in edge and object boundary detection. RCF [34] concatenated

all layers of CNN features for edge detection in an image-to-

image fashion. Wang et al. [35] proposed a decoder structure to

obtain crisp object boundaries. LPCB [36] discussed the reason

of blurry edges and proposed a method to directly predict crisp

boundaries without post-processing. Kelm et al. [37] adopted

a top-down paradigm for multi-stage feature fusion in their

RefineContourNet. He et al. [14] developed a Bi-Directional

Cascade Network (BDCN) and supervised it with labeled

edges at each specific scale. Soria et al. [38] presented a Dense

Extreme Inception Network for Edge Detection (DexiNed),

in which two different strategies are tested for integration of

multi-scale outputs, namely concatenation-then-fusion (termed

as DexiNed-f) and averaging (termed as DexiNed-a). Deng

et al. [39] proposed a dense connection structure to effec-

tively utilize semantics and a novel loss for contour-structure

similarity. PiDiNet [40] adopted a lightweight approach for

edge detection by integrating the traditional edge detection

operators into convolutional operations.

Compared to contour edge detection, semantic edge detec-

tion is more challenging and needs extra category-relevant

semantics. Note that since contour edge detection is a sub-

problem of SED, SED methods can be used for contour edge

detection. We experimentally demonstrate that SED methods,

including the proposed one, outperform existing contour edge

detection methods in this task by large margins, due to the

assistance of category-relevant semantics.

III. APPROACH

In this section, we describe the proposed network in detail.

Firstly, we overview the overall architecture of the proposed

network. Then we introduce the key components, including the

Inter-layer Complementary Enhancement (ICE) module, All-

HiS-In adaptive context aggregation for multi-stage fusion, and

the Object-level Semantic Integration (OSI) module. Finally,

we describe the total loss used to train our network.

A. Overview of the Proposed Architecture

In this paper, we adopt ResNet-101 with the dilated strat-

egy [21], which has been widely acknowledged by existing

SED methods, as the backbone. Following [9], we remove

the original average pooling and fully connected layer, and

change the stride of the first and fifth convolution blocks

in ResNet-101 from 2 to 1 for better preservation of low-

level edge information. Note that the size of the final map

has a spatial resolution of 1/8 of the input image [10], [11].

For quick reference, we list the involved notations in Table

I. As shown in Fig. 3, the last four stages of feature maps

with different scales from ResNet-101 are fed into a 1 × 1
convolution layer to reduce channel number to 64. The outputs,

denoted as R1, R2, R3, R4, are then divided into two groups,

i.e., {R1, R2} and {R3, R4}. Each group is sent to an ICE

module, to enhance each stage’s features according to the

complementary information in the other stage’s features in the

same group.

TABLE I
NOTATION TABLE

Notation Description

Ri, i ∈ {1, 2, 3, 4} Four stages of features from the backbone.

Fi, i ∈ {1, 2, 3, 4} Four stages of features enhanced by the ICE

module.

Ti, i ∈ {1, 2, 3, 4} Four layers of intermediate features in the All-

HiS-In ACA module.

G Global semantic features obtained by globally

pooling the backbone’s top-stage features.

M1, ...,MK Intermediate semantic segmentation predic-

tion. K is the number of categories.

Tsum All-HiS-In ACA fused features.

Osum OSI refined features

Trans() Operation of mapping relationship evaluation

in the All-HiS-In ACA module, defined by

equation 5.

V (), Q(), K() 1×1 convolution operations used for different

elements in equation 5.

Wj,i Similarity matrix of Fj and Fi

Conv, Concat, Upsam Convolution, concatenation and upsampling

operations

After that, we obtain four stages of richer features, denoted

as F1, F2, F3, F4. The four sets of enhanced features and the

global semantics G from the top layer of the backbone will

be jointly delivered to the All-HiS-In ACA structure, where

appropriate semantics are adaptively selected from all the

higher-stages and then embedded in the lowest-stage features

to obtain Tsum as the fused features for SED.

Note that, beside the SED supervision, we perform inter-

mediate supervision after the ICE modules. Specifically, two

prediction branches are built based on the two ICE modules

for semantic segmentation and edge detection. Supervision on

these two branches of predictions will drive the features at

stages 3 and 4 to contain more semantics for categorization

and features at stages 1 and 2 to have more edge details.

As intermediate results, the prediction masks, denoted as

M1, ...,MK , in the semantic branch contains wealthy object-

level semantic priors. We use these intermediate predictions

in the OSI module to further unify the representations of

contour samples belonging to the same object, to boost the

completeness and semantic-correctness of contours in the final

SED results.

B. Inter-Layer Complementary Enhancement (ICE)

The idea of inter-layer complementary enhancement is

inspired by the following observations. As revealed in [18]

based on CASENet and agreed by most of the SED methods

[9], [11], the five stages of features in ResNet-101 have their

specialties. Features at the lowest three stages contain rich

edge-related details, but lack semantic clues to distinguish

contours from numerous edges and identify contours of a

specific semantical class. In other words, the lower layers of

the network tend to focus more on local gradient variations,

but cannot provide context even for contour-or-not binary

categorization. In the feature maps of the fourth and fifth

stages, the contours of objects are highlighted and endowed
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Fig. 3. Overview of the proposed network. The Inter-layer Complementary Enhancement (ICE) module is used to enhance feature representations by referring
to an adjacent stage with similar properties. The enhanced features are then sent to the All-Higher-Stages-In Adaptive Context Aggregation (All-HiS-In ACA)
module for multi-stage feature fusion. The fused features are refined in the Object-level Semantic Integration (OSI) module. There are three parts of supervision
in all: edge detection of the edge branch, semantic segmentation of the semantic branch and the final semantic edge detection based on the fused features.
∆M is the operation of obtaining object contours along the semantic dimension, imposed on the ground truth of semantic edges.

with rich semantic clues for categorization; the internal edges

and background textures can be suppressed as well. However,

the contours are much blurred in positions due to the low

resolution of the feature maps at these stages. Therefore, the

features at the fourth and fifth stages of ResNet-101 are more

suitable for semantic categorization than edge localization, as

opposed to the other three stages of the network.

According to the above facts, we group the second to the

fifth stages’ features obtained by ResNet-101 into two groups

according to their different specialties. Note that, the lowest

stage of features contains too much edge noise, and therefore

we will not use this stage in the following steps. As shown

in Fig. 3, we design a two-branch structure, including edge

branch and semantic branch. We enrich the two groups of the

features according to their specialties by using two strategies.

At first, although the two stages in each group are similar in

specialties, they have clues complementary to each other due

to stage-by-stage CNN encoding. Given features of a group

of two stages, the ICE module compensates for the ignored

details in the higher stage features due to down-sampling

and dilated convolution and compensates for the restricted

receptive field in the lower stage. These compensation opera-

tions enrich the multi-stage features and strengthen their inter-

layer relevance, and thus are helpful to the following adaptive

context aggregation based on cross-stage self-attention.

Concretely, given the side outputs of a group of stages,

denoted as (R1, R2) or (R3, R4), we obtain an enhanced group

of features, denoted as (F1, F2) or (F3, F4), by aggregating

responses of the other layer in the same group via ICE. Taking

the second group as an example, as shown in Fig. 4, R3 and

R4 pass through the activation function σ (Sigmoid function

are used in experiments) , and become σ(R3) and σ(R4),
respectively. We also compute 1 − σ(R3) and 1 − σ(R4),

σ 1- σ ⊗ ⊕
C

⊕1- σ ⊗𝑅3
𝑅4 𝐹4

𝐹3𝑀1, … …, 𝑀K
σ

Fig. 4. The Inter-layer Complementary Enhancement (ICE) module located
in the semantic branch. σ represents a Sigmoid activation function.

⊗

and
⊕

represent element-wise multiplication and summation, respectively.
© represents the concatenation operation.

to represent the potentially missing responses in σ(R3) and

σ(R4), respectively. We use clues from the other stage of

features for compensation of the potentially missing clues.

Mathematically,

F3 = σ(R3) +R4 · (1− σ(R3)) (1)

F4 = σ(R4) +R3 · (1− σ(R4)) (2)

Note that in some positions, there might be no responses

even when taking into account complementary information

from both stages.The ICE module contains no learned param-

eters and therefore brings no burden to the network training.

The second strategy to enrich the two groups of features is

to supervise their training with suitable ground truth data. To

achieve this, besides the enhanced features, we output a set of

masks M1, ...,MK from ICE:

M1, ...,MK = Conv(Concat(F3, F4)) (3)

They are object-level masks and K is the number of categories.

In the edge branch, masks M1, ...,MK are category-agnostic



JOURNAL OF LATEX CLASS FILES, VOL. **, NO. **, APRIL 2022 6

binary contours and K = 1. We use the ground truth of seman-

tic segmentation and that of contour detection as supervision

of the semantic branch and edge branch, respectively.

C. All-Higher-Stages-In Adaptive Context Aggregation (All-

HiS-In ACA)

We develop the All-HiS-In ACA structure to achieve adap-

tive context aggregation in positions and stages. Particularly,

we enhance features at each stage with context adaptively

chosen from all its higher stages via cross-stage self-attention.

We then upsample the context-enhanced features at each stage

to the resolution of the lowest stage and fuse them together.

The fused features contain rich and adaptively selected context

for categorization while keeping the high-resolution details in

the lowest stage.

𝐹i

𝐹i+1

𝐹𝑁

𝑇i

1x1 conv

Query ⊗
1x1 conv

Key ⊗
1x1 conv

Value

C

HW𝑊𝑁,𝑖
HW / 𝑅𝑁2

…
 …
 

…
     …

    …

1x1 conv

Query ⊗
1x1 conv

Key

HWHW / 𝑅𝑖+12
𝑊𝑖+1,𝑖 ⊗

1x1 conv

Value

…
…

Fig. 5. The All-Higher-Stages-In Adaptive Context Aggregation (All-HiS-
In ACA) structure for the i-th layer. All stages higher than the ith stage,
including the global feature layer G, would be treated as context sources
of the i-th layer. After aggregating context from every higher stage, all the
context-enhanced results are concatenated as the final output Ti.

We depict the computation in aggregating context for the

ith stage of feature maps, denoted as Fi, in Fig. 5. We use

its all higher stages of feature maps {Fj , G} as the source of

semantic context clues. Here, j ∈ [i+ 1, N ]. N = 4, denoting

the total number of stages. G represents the global semantic

features obtained by globally pooling the top stage features

of the backbone network. The adaptive context aggregation is

the concatenation of all the context found from all the higher

stages of features and Fi itself, which can be mathematically

represented as:

Ti = Concat(

N∑

j=i+1

Trans(Fi, Fj), T rans(Fi, G), Fi) (4)

where Ti has the same scale as Fi. We perform a Trans

operation on Fj and Fi to fuse cross layer features Fi and Fj :

Trans(Fi, Fj) = V (Fj) · Sim(Q(Fi),K(Fj)) (5)

The Trans operation is inspired by the Transformer archi-

tecture [41] and evaluates the mapping relationship between

the two stages of features, i.e., Fi and Fj , with different

scales, as depicted in the blue dashed box of Fig. 5. In each

Trans operation, we transform Fi and Fj to Qi and Kj

via 1 × 1 convolutions as query and key, respectively. We

then compute the similarity between elements of Qi and Kj

by using dot product and obtain Wj,i. The scale of Wj,i

is jointly determined by the sizes of Fi and Fj . As the

depth of the network increases, the feature map Fj contains

more semantics and has a larger perceptive field (with a

lower spatial resolution), so the size of Wj,i decreases as j

increases. Finally, the similarity map Wj,i is multiplied with

V (Fj), which is obtained by applying two 1× 1 convolutions

consecutively on Fj , to generate Trans(Fi, Fj).
After enhancing all stages of feature maps via Equation 4,

we up-sample the enhanced features by bilinear interpolation

and sum them to obtain the final fused output Tsum:

Tsum =
N∑

i=1

Upsam(Ti) (6)

Tsum has the same resolution as the first stage of feature maps,

i.e., half of the original image size.

Due to the proposed All-HiS-In adaptive context aggre-

gation structure, the category-agnostic edges can be directly

attached with appropriate semantic cues, making the contours

stand out from the general edges. In addition, the operation of

Trans can aggregate context from inter- and intra-object areas

from all the higher-stages, which ensures sufficient context for

semantic categorization.

D. Object-Level Semantic Integration (OSI)

After the ICE module and All-HiS-In ACA structure, we

obtain features Tsum and the semantic masks prediction

M1, ...,MK , where K is the number of categories. The fused

features Tsum can be used for SED. Inspired by the object-

level context for semantic segmentation [42], to further restrict

the completeness of object contours in the final SED results,

we feed the predicted mask M1, ...,MK as semantic priors

into the OSI module to refine Tsum. As illustrated in Fig. 6,

there are K sets of features in the object-level representations,

where different colors represent features of different types of

objects. By regularizing the features in Tsum with object-level

context, we can obtain more consistent representation in edge

samples belonging to the same mask. In addition, the features

within each mask are regularized as well, which benefits

suppressing inner edges in the SED output. The pixel-object

relation obtained by multiplication of the two represents the

affiliation probability of a pixel belonging to a corresponding

object category, and has the same resolution as Tsum. Finally,

the regularized features are concatenated with the original

feature Tsum as the output of the OSI module, denoted as

Osum. Osum is then used for SED.

E. Loss Function

The total loss used for supervising the network training

consists of three parts, i.e., semantic edge detection loss Lsed,

semantic segmentation loss Lseg , and object contour detection

loss Lcon:

Ltotal = Lsed + λ1 · Lseg + λ2 · Lcon (7)
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…

K…

Pixel-object relation

1x1 conv3x3 conv

⊗𝑀1, … …, 𝑀K
…
K

Object-level representations

Query

Value

Key⊗ ⊗
C 𝑂𝑠𝑢𝑚

1x1 conv

1x1 conv

𝑇𝑠𝑢𝑚
Fig. 6. The structure of Object-level Semantic Integration (OSI) module.
This module utilizes the intermediate predictions of semantic segmentation as
semantic priors to refine the feature representations of the contour samples
belonging to the same object in Tsum.

The ground truth data of semantic segmentation is provided

in the datasets, based on which we derive the ground truth

data of SED, as done in [5], [10], [11], [13], [22]. The ground

truth data of object contour detection is obtained by ignoring

all the category properties in the SED ground truth. The

supervision of contours and category masks are applied to the

edge branch and semantic branch in section III-B, respectively.

The predicted activations of the semantic branch are further

used as the prior information for the subsequent modules.

The semantic edges are the expected final predictions obtained

based on the fused features Osum.

We choose the auto-weighted loss proposed in [11] as Lsed.

Lseg is the cross-entropy loss widely adopted in existing se-

mantic segmentation works [6], [20], [22]. Lcon takes the form

of the loss function adopted in the mainstream edge detection

works [14], [43]. λ1 and λ2 are weights of the segmentation

loss and the contour detection loss. In our experiments, we

empirically set λ1 = 0.025 and λ2 = 0.015.

IV. EXPERIMENTS

A. Datasets

We evaluate our proposed method on two datasets popular

in the research of semantic edge detection: SBD [15] and

Cityscapes [44].

1) Semantic Boundary Dataset (SBD): It contains 11355

images from the train and val sets of PASCAL VOC2011,

with 8498 images as the training set, and the remaining 2857

images as the test set. The dataset contains both category-

level and instance-level segmentations and boundaries, with

20 object categories in all. Following existing methods [9],

we use the training set to train our network and the test set

for evaluation.

2) Cityscapes: It is a large-scale semantic segmentation

dataset containing 5000 finely annotated images, which are di-

vided into 2975 images for training, 500 images for validation,

and 1525 images for testing. Each image is of 2048 × 1024
size and has high quality pixel-level labels of 19 semantic

classes. However, the ground truth of the test set has not been

published. Following [5], [9]–[11], [13], we use the training

set for training and validation set for evaluation.

B. Implementation Details

1) Data Augmentations: We use random horizontal flip and

random cropping on both Cityscapes and SBD datasets. For

SBD, we augment the training data by resizing each training

image with scaling factors of {0.5, 0.75, 1, 1.25, 1.5} as [9]–

[11]. For Cityscapes, each training image is resized once with

a scaling factor randomly sampled from {0.5, 0.75, 1, 1.25,

1.5}.

2) Training Strategies: The proposed network is imple-

mented with PyTorch on an NVIDIA GTX2080Ti (11GB)

GPU. Following [9], [11], we adopt ResNet-101 pretrained

on MS COCO [45] as backbone. We use stochastic gradient

descent (SGD) to optimize the parameters of our network

without using the gradient accumulation in [11]. The weight

decay, momentum and batch size are set to 5e-4, 0.9 and 1,

respectively. We set the base learning rate, iteration number

and crop size to 3e-8/1e-8, 320k/900k and 352×352/512×512,

respectively, for SBD/Cityscapes. We optimize the network

by using the learning rate policy of ‘poly’, where the base

learning rate is multiplied by (1− itercur

itermax

)power with power=

0.9. Here, itercur and itermax represent the current iteration

number and the total iteration number, respectively.

C. Evaluation Metric

For performance evaluation, we follow the evaluation pro-

tocol proposed in [13], which is considered stricter than the

one used in [9]. The Maximum F-measure (MF) at Optimal

Dataset Scale (ODS) for each class is reported to evaluate

semantic edges. An essential parameter in the evaluation is the

matching distance tolerance, which is defined as the maximum

slack allowed for boundary predictions to be considered as

correct matches to the ground truth. We follow [11] and set

the matching distance tolerance as 0.02 for SBD and 0.0035

for Cityscapes. We also test the matching distance tolerance

of 0.00375 for Cityscapes for comparison with more related

methods. Following [10], the ground truth maps are down-

sampled to half of the original dimensions for Cityscapes, and

contain instance-sensitive edges for both datasets.

D. Ablation Experiments

We perform ablation experiments on SBD to verify the

effectiveness of the proposed modules, including All-HiS-In

ACA, ICE and OSI. The verification is conducted in two

modes, i.e., using the modules individually or adding them

one-by-one, based on the backbone of ResNet-101. All the

results are listed in Table II. The baseline method without

adding any component utilizes only the top stage of features

from ResNet-101 for semantic edge detection, as the Basic

method in [9]. Note that we do not validate OSI alone, since

it requires the semantic masks generated by ICE. ICE is

validated in two ways: as a whole and a composition of the

two parts, i.e., the ICE structure and the two branches of

supervision.

1) Ablation Study on All-HiS-In ACA Fusion: We val-

idate All-HiS-In ACA fusion on SBD dataset by adding

this structure to the backbone of ResNet-101 and record the

performance improvement that All-HiS-In ACA brings in. In

this study, the inputs of All-HiS-In ACA are feature sets

R1, R2, R3, R4, obtained from the last four stages of the

backbone. The output Tsum is used as the fused features for
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TABLE II
ABLATION STUDY ON THE CORE COMPONENTS OF THE PROPOSED MODEL BASED ON SBD DATASET. THE MEAN VALUE OF THE MF SCORES (%) OVER

ALL CATEGORIES IS PRESENTED. ∆ MF REPRESENTS THE INCREASE RELATIVE TO THE BACKBONE.

Network All-HiS-In ACA
ICE

OSI Mean MF ∆ MF
Complementary Enhancement Edge Loss & Segmentation Loss

Backbone (ResNet-101) 73.6

Our

√
76.1 +2.5

√
75.6 +2.0

√
75.3 +1.7

√ √
75.9 +2.3

√ √
76.5 +2.9

√ √ √
76.9 +3.3

√ √ √ √
77.3 +3.7

TABLE III
COMPARISON OF DIFFERENT MULTI-STAGE FEATURE FUSION STRUCTURES ON THE SBD DATASET. * REPRESENTS OUR IMPLEMENTATION. THE

PARAMETERS, MEMORY, AND FLOPS ARE ESTIMATED WITH AN INPUT IMAGE OF 352× 352 FROM THE SBD DATASET.

Backbone Method Mean MF Parameters(M) Memory(MB) FLOPs(G) Training time(H)

ResNet-101

Basic [9] 73.6 42.541 1716.84 96.99 8.95

Shared concatenation [9] 74.4 42.542 1726.91 97.02 9.78

Bottom-up fusion with LAM [11] 74.0 45.128 1835.94 103.66 11.9

Dynamic feature fusion [10] 74.3 42.725 1831.48 99.71 11.03

PCM * [5] (Our impl.) 74.5 43.161 1728.50 99.10 9.55

Our All-HiS-In ACA 76.1 42.970 1778.14 98.79 11.56

semantic edge detection. As it can be observed from Table

II, compared to SED based on the backbone, the proposed

All-HiS-In ACA structure brings 2.5% increase in mean MF.

We also evaluate the effectiveness and complexity of the

proposed All-HiS-In ACA structure by comparing it with

other multi-stage feature fusion strategies in accuracy and

complexity. The complexity is presented in terms of model

parameters, memory cost, FLOPs and required training time.

Results are given in Table III. The Basic structure is the

baseline in [9], which is constructed by adding a classification

head at the top of ResNet-101. The Shared concatenation is

the fusion strategy adopted by CASENet [9]. The bottom-up

fusion with LAM structure is derived from MSC-SED [11].

The Dynamic feature fusion [10] replaces the concatenation in

CASENet with pixel-level weighted summation. All the above

methods are implemented by using their original source codes.

The PCM is our implementation of the fusion strategy in [5],

which has no official open-source code. For fair comparison,

all the fusion strategy methods adopt the same backbone,

i.e., ResNet-101; all the fusion methods, except the Basic

method, utilize the last four stages of features obtained by

the backbone, as done in the proposed All-HiS-In ACA.

In addition, we remove unnecessary plugins and keep only

fusion-related structures. The ICE and OSI in our method are

also removed and only the All-HiS-In fusion is kept.

As seen from Table III, the Basic model is the simplest

in complexity but the lowest in mean MF. Compared to the

Basic model, the Shared concatenation, Bottom-up fusion with

LAM, Dynamic feature fusion and the PCM models com-

bine multi-stage features for classification in various position-

aligned fusion ways. Among them, the Bottom-up fusion with

LAM is the most complex one in terms of parameters, memory

cost, FLOPs and training time cost. In contrast, the proposed

All-HiS-In fusion method obtains the highest accuracy with

a medium level of parameters, memory cost, FLOPs and

training time cost. This can be easily read from Fig. 7, in

which we visualize the increased accuracy of all the fusion

structures versus their increased complexity, relative to the

Basic model. It needs to mention that we develop the All-

HiS-In ACA structure based on the most primitive version of

the self-attention paradigm, whose memory cost and FLOPs

can be significantly reduced while maintaining the accuracy,

(a) (b) (c) (d)

Fig. 7. Increased mean MF versus increased parameters(M), memory(MB), FLOPs(G) and training time(H) of all the methods relative to the Basic method.
All the data are derived from Table III.
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as proved in other tasks [46].

We also demonstrate the effectiveness of our All-HiS-In

ACA structure in generating discriminative features for SED

via visualization. Fig. 8 presents three input examples in the

first column and their edge maps, which are predicted by

using the edge branch in Fig. 3, in the second column. From

the edge maps, it can be seen that the contour samples are

highlighted but still contaminated by non-contour samples.

All-HiS-In ACA can aggregate semantic context for non-

contour and contour-class categorization. To show its effec-

tiveness, we compute similarities between elements based on

their aggregated context representations obtained by All-HiS-

In ACA and visualize the similarities in Fig. 8. Specifically,

we select one point (the red crosses in the first column of

Fig. 8) on the contour and compute its similarities with the

other elements based on their representations which encode

all higher stages of semantic context with the lowest stage of

details excluded. It can be observed that only the object-level

contours are highlighted, while the inner edges and those from

complex backgrounds are suppressed. Besides, we observe that

our All-HiS-In ACA structure could capture semantic context

dependencies across objects. For example, in the third column

of Fig. 8, the hard samples on the edges of the small horse,

which are wrongly classified by existing SED methods as seen

from Fig. 1, share similar context as the easy-to-recognize

samples on the edges of the large horse. Due to this ability,

our method outperforms existing methods and obtains correct

categorization on these hard samples, as seen from Fig. 1.

0.0

Image Predicted edge Similarity map

0.50.25 0.75 1.0

Fig. 8. Visualization of intermediate results. The first column shows original
images with selected contour samples (indicated by the red crosses). The
second column presents the predicted edges from the edge branch. We
compute the similarities between the selected samples and the others in the
same image, based on the aggregated context representations in All-HiS-In
ACA, and form similarity maps. The third and fourth columns present the
similarity maps overlaid on the input images and the maps themselves.

2) Ablation Study on ICE: We verify the two components

in ICE, i.e., the complementary enhancement structure and

the two branches of supervision, individually and together on

SBD dataset, based on the backbone. As seen from Table

II, the complementary enhancement and the two branches

of supervision bring in improvements of 2.0% and 1.7%,

respectively. The two components together, i.e. the whole ICE

module, boost SED performance by 2.3%.

We also test the effectiveness of the combination of ICE

and All-HiS-In ACA. From Table II, it can be seen that, the

proposed All-HiS-In ACA plus the ICE module boosts the

performance of SED to a mean MF (ODS) score of 76.9%,

3.3% higher than the baseline.

3) Ablation Study on OSI: The OSI module is designed

based on ICE to refine the representations of samples belong-

ing to the same object by referring to object-level semantics.

Therefore, we cannot verify it alone as we did for the other

modules. Here, we check the improvement brought in by

adding the OSI module to the architecture of All-HiS-In ACA

fusion plus ICE. From the last row of Table II, we obtain an

extra performance gain of 0.4% by adding OSI.

E. Comparison with State-of-the-Art SED Methods

We quantitatively and qualitatively compare the proposed

network with state-of-the-art SED methods, based on both

the SBD dataset and Cityscapes dataset. All the quantitative

results of the competitive methods are from their original

papers. The competitive methods for the two datasets are not

totally the same due to the availability of the quantitative

results. In addition, since semantic segmentation results can

be converted to semantic edges as we introduced in Section I,

we compare the proposed SED with state-of-the-art semantic

segmentation methods as well. Besides, SED methods can be

used for contour detection as we analyzed in Section II-C.

Therefore, we also test the proposed methods on contour edge

detection.

1) Comparisons with SED methods on SBD: We compare

the proposed network with methods in [9]–[11], [13], [18],

[19], in MF (ODS) with matching distance tolerance of 0.02.

All the methods adopt the same backbone of ResNet-101,

and the same resolution of training and testing images. As

it can be seen from Table IV, our network outperforms all the

other networks and achieves a new state-of-the-art accuracy

of 77.3% mean MF (ODS). In addition, in most classes, our

network obtains higher accuracy than the other networks.

To better understand the superiority of the proposed method,

we also visualize some prediction results in Fig. 1 and Fig. 9

for qualitative comparison. We chose CASENet [9], DFF [10],

and MSC-SED [11], whose source codes are available for us,

for comparison. From the figures, we can observe that the

proposed network can predict thinner, cleaner, more complete

and more semantically correct boundaries. Concretely, from

the first and second rows of Fig. 9, it can be seen that the

contour discontinuity problem is distinct in the results of the

other methods but is alleviated much by our method. From the

second and third rows of Fig. 9, it can be seen that the complex

textures in the background are more effectively suppressed by

our method, such as the pier and house in the second row and

the fence in the third row. From the second and fourth rows

of Fig. 9, we can see that the contours of the extremely small

objects are more clearly structured and correctly classified by

our method, some of which are not even annotated by humans

in the ground truth (e.g., the small horse in the fourth row).

2) Comparisons with SED methods on Cityscapes: We

compare the proposed network with several state-of-the-art

SED networks in MF (ODS) with matching distance tolerance
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TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE SBD TEST SET IN MF SCORES (%). THE MATCHING DISTANCE TOLERANCE IS 0.02.

Network aer. bike bird boat bot. bus car cat cha. cow tab. dog hor. mot. per. pot she. sofa tra. tv Mean

CASENet [9] 83.6 75.3 82.3 63.1 70.5 83.5 76.5 82.6 56.8 76.3 47.5 80.8 80.9 75.6 80.7 54.1 77.7 52.3 77.9 68.0 72.3

SEAL [13] 84.5 76.5 83.7 64.9 71.7 83.8 78.1 85.0 58.8 76.6 50.9 82.4 82.2 77.1 83.0 55.1 78.4 54.4 79.3 69.6 73.8

STEAL [19] 84.5 77.3 84.0 65.9 71.1 85.3 77.5 83.8 59.2 76.4 50.0 81.9 82.2 77.3 81.7 55.7 79.5 52.3 79.2 69.8 73.8

DFF [10] 86.5 79.5 85.5 69.0 73.9 86.1 80.3 85.3 58.5 80.1 47.3 82.5 85.7 78.5 83.4 57.9 81.2 53.0 81.4 71.6 75.4

DDS [18] 86.5 78.4 84.4 67.0 74.3 85.8 80.2 85.9 60.4 80.8 53.9 83.0 84.4 78.8 83.9 58.7 81.9 56.0 82.1 73.0 76.0

MSC-SED [11] 86.1 78.8 85.4 68.2 74.2 87.7 80.6 86.1 60.9 83.6 50.4 85.2 86.1 78.8 82.7 59.5 84.0 56.9 82.4 70.7 76.4

Ours 87.9 79.6 85.8 68.8 73.7 88.5 80.9 86.8 61.3 84.3 51.8 85.8 87.0 80.2 83.9 59.1 85.2 58.6 82.4 73.4 77.3

MSC-SED OursDFFImage Ground truth CASENet

Fig. 9. Qualitative comparison of results obtained by CASENet [9], DFF [10], MSC-SED [11] and ours on SBD dataset. Best viewed in color. The red
rectangular boxes indicate the areas where the advantages of our method can be seen more clearly.

of 0.0035. Quantitative results are given in the first part of

Table V. From the table, it can be seen that our network

outperforms all the other SED networks and achieves a new

state-of-the-art performance of 76.0% on the val set. Accord-

ing to Table V, compared to DFF [10], our approach does

not work better all the time. Our method outperforms DFF in

categories with distinct contour shapes, such as person, bus,

train, motorbike and bike. This is consistent with the design

objectives of our adaptive context aggregation and object-level

feature regularization. Even though, in those background-like

categories, such as road, side, building and sky, which are

easily obscured by foreground objects or have no specific

structures, our method achieves performance comparable with

DFF.

We also present the comparison in matching distance tol-

erance of 0.00375 in Table VI, with extra optional steps,

including NMS, multi-scale test and random flipping [5],

adopted by RPCNet [5]. From Table VI, it can be seen that in

the case without using any additional operations, our network

outperforms all the other networks by a large margin in mean

MF (ODS). RPCNet with all the additional operations obtains

the same mean MF score as ours. However, RPCNet adopts

eight layers of PCM modules and therefore is much more

complex than the proposed method.

For fair comparison with RPCNet, we also apply its addi-

tional operations on the proposed network. The parameters of

the additional steps are all the same as RPCNet. The post-

processing of NMS helps the refinement of the predicted

semantic edges. Results in Table VI show that our network

is superior to RPCNet by 0.3% in mean MF (ODS). Note that

the improvement brought in by NMS to our network is only

0.3%, while for CASENet and SEAL, the improvements are

all above 0.7%. This is a side evidence that our network itself

has the ability to predict finer boundaries, rather than relying

much on the post-processing of NMS, which cannot correct

topological errors or recover high-frequency contour details.

We then qualitatively compare the proposed method with

DFF [10] and MSC-SED [11], the two most recently proposed

methods with source codes available, based on Cityscapes.

Compared with SBD, Cityscapes dataset has more small ob-

jects and richer edges in each image. Therefore, thick predic-

tions risk more topological errors and over-smooth contours,

which cannot be corrected by NMS post-processing. As shown

in Fig. 10, the prediction results of our network are thinner and
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TABLE V
COMPARISON WITH STATE-OF-THE-ART SED AND SEMANTIC SEGMENTATION METHODS ON THE CITYSCAPES VAL SET IN MF SCORES (%). THE

MATCHING DISTANCE TOLERANCE IS SET TO 0.0035.

Network road sid. bui. wall fen. pole lig. sign veg. ter. sky per. rid. car tru. bus tra. mot. bike Mean

CASENet [9] 86.2 74.9 74.5 47.6 46.5 72.8 70.0 73.3 79.3 57.0 86.5 80.4 66.8 88.3 49.3 64.6 47.8 55.8 71.9 68.1

SEAL [13] 87.6 77.5 75.9 47.6 46.3 75.5 71.2 75.4 80.9 60.1 87.4 81.5 68.9 88.9 50.2 67.8 44.1 52.7 73.0 69.1

STEAL [19] 87.8 77.2 76.4 49.5 49.2 74.9 73.2 76.3 80.8 58.9 86.8 80.2 69.0 83.2 52.1 67.7 53.2 55.8 72.8 69.7

DFF [10] 89.4 80.1 79.6 51.3 54.5 81.3 81.3 81.2 83.6 62.9 89.0 85.4 75.8 91.6 54.9 73.9 51.9 64.3 76.4 74.1

MSC-SED [11] 88.5 77.2 76.4 57.2 57.0 70.8 78.6 80.1 80.1 60.3 86.5 82.5 75.3 90.3 66.5 80.5 68.9 67.6 75.1 74.7

Ours 87.9 78.7 77.3 53.8 54.4 80.5 81.5 81.1 82.4 61.1 88.7 85.5 77.7 91.2 64.6 82.6 69.2 68.2 77.7 76.0

HyperSeg [47] 53.7 73.0 67.3 39.0 36.3 73.5 62.6 66.5 76.0 54.3 78.1 50.9 57.4 70.2 44.3 67.0 38.9 46.5 60.7 58.8

SegFormer [48] 63.4 78.5 77.0 54.7 53.7 82.1 81.1 77.8 82.2 60.2 89.0 79.3 74.9 81.8 62.7 81.4 66.8 64.4 73.7 72.9

TABLE VI
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE CITYSCAPES VAL SET IN MF SCORES (%). CASENET * IS THE REIMPLEMENTATION OF

CASENET IN [19]. THE MATCHING DISTANCE TOLERANCE IS SET TO 0.00375. TEST NMS, MS FLIP REPRESENT THE POST-PROCESSING NMS,
MULTI-SCALE TEST AND RANDOM FLIPPING, RESPECTIVELY.

Network Test NMS MS Flip road sid. bui. wall fen. pole lig. sign veg. ter. sky per. rid. car tru. bus tra. mot. bike Mean

CASENet [9] 87.1 76.0 75.7 46.9 47.7 73.2 72.7 75.7 80.4 57.8 86.7 81.0 67.9 89.1 45.9 68.1 49.6 54.2 73.7 68.9

CASENet * 87.2 76.1 75.7 47.9 47.6 73.7 71.8 75.2 80.6 58.4 86.8 81.0 68.2 89.3 49.0 67.8 50.8 55.3 74.2 69.3

CASENet *
√

88.1 76.5 76.8 48.7 48.6 74.2 74.5 76.4 81.3 59.0 87.3 81.9 69.1 90.3 50.9 68.4 52.1 56.2 75.7 70.3

STEAL [19] 88.1 77.6 77.1 50.0 49.6 75.5 74.0 76.7 81.5 59.4 87.2 81.9 69.9 89.5 52.2 67.8 53.6 55.9 75.2 70.7

STEAL [19]
√

88.9 78.2 77.8 50.6 50.4 75.5 76.3 77.5 82.3 60.2 88.0 82.5 70.2 90.4 53.3 68.5 53.4 57.0 76.1 71.4

RPCNet [5]
√ √

90.9 82.3 82.1 57.2 59.0 84.5 83.3 82.3 84.9 64.2 89.9 86.3 78.5 92.6 67.8 82.8 68.5 69.2 80.1 78.2

Ours 89.2 80.4 79.4 59.4 59.0 81.2 82.8 82.0 83.6 63.5 89.9 86.5 79.2 92.0 70.2 84.9 72.6 70.5 79.6 78.2

Ours
√ √

89.5 80.6 80.0 59.6 59.1 82.7 83.0 82.0 84.3 63.6 90.2 86.5 79.5 92.1 70.2 85.1 72.9 70.6 80.0 78.5

more accurate, e.g., the contours of the traffic signs or poles

are clearer in structure and more consistent with the ground

truth data.

F. Comparison with Semantic Segmentation Methods

We compare the proposed method with state-of-the-art

semantic segmentation algorithms, including HyperSeg [47]

and SegFormer [48], in semantic edge detection by converting

their resulted masks into semantic boudaries. HyperSeg and

SegFormer are chosen as representatives of CNN-based and

vision transformer-based semantic segmentation algorithms,

respectively. Both of them have open-source codes. Results

on Cityscapes are shown in Table V. According to the table,

semantic segmentation methods have no advantages in locating

and categorizing semantic edges. As we analyzed in Section I,

semantic segmentation is error-prone in classifying boundaries

pixels due to the complex context around the points. The

proposed SED method achieves the best performance. The

CNN-based DFF and MSC-SED also outperform the two

semantic segmentation methods.

G. Applying Our Method to Contour Edge Detection

We verify the effectiveness of the proposed method on

contour edge detection. Following [11], we conduct experi-

ments on the SBD dataset. The experimental results are shown

in Table VII, where the values of HED [33] , RCF [34] ,

BDCN [14] and MSC-SED [11] are from [11]. DexiNed-f and

DexiNed-a [38] and RefineContourNet [37] are retrained based

on the SBD dataset without semantics with the provided source

codes. We adopt the same metrics of ODS, OIS and AP under

two matching distance tolerances as [11] for evaluation on

contour detection. As seen from Table VII, the SED methods,

i.e., MSC-SED and our method, outperform non-SED contour

detection methods by large margins. This is probably because

the two methods are originally designed for semantic edge

detection in favor of capturing category-relevant clues which

contour detection requires. And the proposed model even

utilizes categories as supervision to learn category-relevant

features.

TABLE VII
COMPARISON WITH CONTOUR EDGE DETECTION METHODS BASED ON THE

SBD DATASET IN F-MEASURE AT OPTIMAL DATASET SCALE (ODS),
OPTIMAL IMAGE SCALE (OIS) AND AVERAGE PRECISION (AP) UNDER

TWO MATCHING DISTANCE TOLERANCES.

Matching distance
tolerance = 0.02

Matching distance
tolerance = 0.0075

ODS OIS AP ODS OIS AP

HED [33] 71.9 74.9 75.2 62.6 64.2 61.5

RCF [34] 73.5 76.3 76.5 64.4 66.0 62.5

BDCN [14] 76.8 79.3 72.8 68.1 69.5 59.6

RefineContourNet [37] 67.1 70.1 68.8 57.5 59.4 52.6

DexiNed-f [38] 71.1 74.1 68.8 61.9 63.8 53.9

DexiNed-a [38] 70.2 73.0 70.7 60.6 62.4 55.4

MSC-SED [11] 82.5 84.7 84.1 72.5 73.6 69.1

Ours 84.3 86.4 84.6 74.9 76.3 69.7

Qualitative results are given in Fig. 11. From the figure,

it can be observed that beside of ours and MSC-SED [11],

the other methods generate noisy edges inside or outside

objects. To show the advantages of our method over MSC-

SED, we present several close-up views of their results in

Fig. 12. According to the figure, the proposed method obtains

much smoother edges than MSC-SED, which means pixels

near edges can be more correctly classified as edges or not.

Methodologically, compared to the bottom-up fusion in MSC-
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MSC-SED OursDFFImage Ground truth

Fig. 10. Qualitative comparison of the results obtained by DFF [10], MSC-SED [11] and our method on Cityscapes. Best viewed in color. The red rectangular
boxes indicate the enlarged areas.

SED, our adaptive context aggregation can better keep the

detail structures while aggregating rich semantics in the fused

features for classification.

MSC-SED OursImage MSC-SED OursImage

Fig. 12. Close-up views of the contour detection results obtained by MSC-
SED [11] and ours. The red rectangular boxes indicate the enlarged areas.

V. CONCLUSION

The paper presented an effective multi-stage CNN feature

fusion strategy, called All-HiS-In ACA, for SED. It is an ef-

fective complement to existing multi-stage CNN feature fusion

strategies in the field of SED. Based on this fusion strategy,

we developed a deep network which can adaptively aggregate

clues from all higher-stage features and fuse them with low-

stage features. The fused features keep the high-resolution

detail features for accurate edge localization and contain rich

semantic context for semantic categorization. In addition, we

proposed a non-parametric ICE module, to enhance features

according to inter-layer complementary clues. We also pre-

sented an OSI module, which can refine the fused features

according to the object-level semantics. Due to the high-

quality fused features, the proposed network outperforms state-

of-the-art SED and semantic segmentation methods in edge

localization and categorization. The proposed method was

also applied to contour edge detection and showed superior

performance to state-of-the-art contour detection methods. We

believe that the proposed SED method and its ideas in fusion

and non-parametric inter-layer complementary enhancement

will benefit both SED and other related fields, e.g., edge-

enhanced semantic segmentation and SED-based applications.

The proposed method still has limitations. Firstly, as we can

see from Fig. 10, our method and the other methods cannot

well handle partially-occluded targets, which are common in

indoor and street scenes. In the future, multi-view SED will

be considered, to better deal with the occlusion problem by

exploiting complementary information from multiple views.

Secondly, we try to test both the proposed method and

MSC-SED [11], the two performing the best in the ex-

periments in Section IV, on the much more challenging

dataset ADE20K [49]. ADE20K contains various scenes with

stuff/things of 150 categories, which means each edge point

has a solution space much larger than those of the SBD and

Cityscapes datasets, in the multi-label learning framework [9]

widely adopted by SED algorithms including ours. Besides,

the samples among different categories in ADE20K are ex-

tremely imbalanced. 50% samples belong to only six of the

150 categories. Due to the above challenges, the mean MF

score of the proposed method trained with the raw ADE20K

data (no data augmentation) over all classes and that over the

6 categories are only 21% and 33.8%. Those of MSC-SED

are 20.2% and 31.9%, respectively. In our future research, we

will take the above challenges into consideration.

In addition, SED evaluation usually uses MF scores, which

are not enough to reflect the true quality of semantic contours.

In the future, we will propose supplementary metrics for

SED, in aspects of the thickness, completeness and topological
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BDCNCRFImage Ground truth HED DexiNed-f DexiNed-a OursRefineContourNet MSC-SED

Fig. 11. Qualitative comparison of contour detection results obtained by HED [33], RCF [34], BDCN [14], RefineContourNet [37], DexiNed [38], MSC-SED
[11] and ours. The test images are from the SBD dataset.

correctness of semantic edges.
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