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Abstract—In this work, we point out that the major dilemma
of image aesthetics assessment (IAA) comes from the abstract
nature of aesthetic labels. That is, a vast variety of distinct
contents can correspond to the same aesthetic label. On the
one hand, during inference, the IAA model is required to relate
various distinct contents to the same aesthetic label. On the other
hand, when training, it would be hard for the IAA model to learn
to distinguish different contents merely with the supervision from
aesthetic labels, since aesthetic labels are not directly related to
any specific content. To deal with this dilemma, we propose to
distill knowledge on semantic patterns for a vast variety of image
contents from multiple pre-trained object classification (POC)
models to an IAA model. Expecting the combination of multiple
POC models can provide sufficient knowledge on various image
contents, the IAA model can easier learn to relate various distinct
contents to a limited number of aesthetic labels. By supervising
an end-to-end single-backbone IAA model with the distilled
knowledge, the performance of the IAA model is significantly
improved by 4.8% in SRCC compared to the version trained
only with ground-truth aesthetic labels. On specific categories of
images, the SRCC improvement brought by the proposed method
can achieve up to 7.2%. Peer comparison also shows that our
method outperforms 10 previous IAA methods.

Index Terms—deep learning, image aesthetics assessment

I. INTRODUCTION

IMAGE aesthetics is significant in a variety of scenarios,
including image recommendation [1], image editing [2],

image retrieval [3], and photo management [4]. As a result,
image aesthetics assessment (IAA) approaches are sought for
evaluating visual aesthetic experiences automatically. State-of-
the-art (SOTA) methods [5]–[9] are mainly based on deep
learning, which relies on neural networks for learning to
extract aesthetic features (i.e., features for distinguishing dif-
ferent aesthetic levels) in a data-driven manner. As some works
[10]–[12] have suggested, semantic information can help to
improve the effectiveness of a deep IAA model. Kao et al. [11]
intuitively explained that semantic information is useful for
IAA since humans need to understand the content of an image
before assessing it. Besides such an intuitive explanation, we
believe that the reason why semantic information is useful
in IAA is that semantic information can make up for the
shortcoming of the abstractness of aesthetic labels.

Essentially, IAA can be regarded as a process that maps
different image contents into different aesthetic levels (as
shown in Fig. 1). And image contents relevant to aesthetics
are described by aesthetic features, which represent different
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Fig. 1: Motivation for distilling knowledge from POC models.
IAA by a deep model can be depicted as a process that
maps contents of a test image into contents corresponding
to different aesthetic levels known to the IAA model. In the
given example, image pairs with boundaries of the same color
represent relevant mappings. Since POC models can capture
semantic patterns for a large variety of image contents, we
distill knowledge from POC models to teach an IAA model
on semantic patterns for relating a larger variety of contents
to a limited number of aesthetic labels.

combinations of semantic patterns relevant to IAA. For se-
mantic patterns, we refer to a collection of pixels that are
organized in a certain way so that such a pattern can be clearly
identified across different images, and the combination of such
patterns is connected to a certain semantic meaning (e.g.,
an object). And constructing discriminative aesthetic features
requires sufficiently diverse semantic patterns to deal with a
vast variety of contents. In the example of Fig. 1, if the IAA
model does not know the semantic patterns for representing
a macro-photo of a flower, the IAA model cannot confidently
map the test image of a flower to the class of high-aesthetics.
However, since similar aesthetic labels can refer to images
with various contents, it is hard for deep models to learn
semantic patterns from aesthetic labels. To make up for the
handicap of aesthetic labels in providing semantic guidance
(i.e., guiding the IAA model to learn about semantic patterns),
one instant way is to define predicting semantic information as
an auxiliary task [10], [11], or use semantic information as an
auxiliary input [12]. However, these approaches require extra
human labels describing the semantics contained in images.

Thus, we aim to provide semantic guidance to improve an
IAA model without using labels from humans. Specifically,
for an IAA model that produces less discriminative aesthetic
features, we wish to provide extra supervision without human
labels to guide the IAA model to capture more relevant
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Fig. 2: Comparing generic semantic features (GSFs) to aes-
thetic features (AFs) constructed from GSFs. The score for the
test image is estimated by matching it to the most similar train-
ing image with GSFs or AFs. GT scores are given in the top-
right corner. GSFs are likely to match visually-similar images
with distinct scores, implying that some semantic patterns in
GSFs may not be relevant to IAA. Thus, we take knowledge on
IAA-relevant semantic patterns from GSFs instead of directly
using GSFs for semantic guidance. Quantitative evaluations of
GSFs and AFs on IAA by matching are given in Table IV.

semantic patterns for constructing more discriminative aes-
thetic features that can deal with a large variety of contents.
Typically, we consider a baseline IAA model constructed with
a single pre-trained backbone trained merely with aesthetic
labels. Therefore, the aesthetic features of the IAA model are
mostly constructed from the semantic patterns known to its
selected pre-trained backbone, if its backbone fail to learn
extra semantic patterns from aesthetic labels (and this is the
case when training an IAA model merely with aesthetic labels,
see Table V and Sec. IV-C for details). In this case, we may
introduce extra pre-trained object classification (POC) models
besides the selected pre-trained backbone to provide semantic
guidance so that the IAA model can learn extra semantic
patterns from them. Thus, one possible solution that provides
semantic guidance to an IAA model with extra POC models is
to encourage the IAA model to produce extra features as the
extra POC models, which will force the IAA model to capture
extra semantic patterns to construct extra features as the extra
POC models. However, this cannot guarantee that the extra
semantic patterns learned by the IAA model are relevant to
the downstream IAA task, since POC models are trained on
object classification instead of IAA.

For simplicity, we call features from the backbone of a POC
model as generic semantic features (GSFs). We give an exam-
ple in Fig. 2 to show whether GSFs can match images with
similar aesthetic levels. In some cases, images with similar
GSFs can have similar aesthetic scores (as shown in Fig. 2(a)).
While in some other cases, though the GSFs can match images
with similar visual appearances, the GSFs cannot fully distin-
guish images with different aesthetic levels (as shown in Fig.
2(b)). This implies that some semantic patterns represented by
GSFs may not be helpful for distinguishing aesthetic levels,
but can even lead to confusion. Thus, we propose to use a
knowledge distiller to select IAA-relevant semantic patterns
from GSFs for constructing aesthetic features. Specifically,
we train an IAA model as the knowledge distiller that can
directly predict image aesthetics from the GSFs, and the inputs

to the output layer of the knowledge distiller are regarded as
aesthetic features. As shown in Fig. 2 (and Table IV), the
aesthetic features constructed by the knowledge distiller can
better distinguish different aesthetic levels than GSFs. Finally,
the knowledge distiller can serve as the teacher model to
provide a student IAA model with semantic guidance: the
aesthetic features and predictions of the knowledge distiller
are regarded as knowledge on semantic patterns distilled for
IAA (i.e., teacher knowledge). The distilled knowledge is
then used for imposing supervision to the student aesthetic
features (i.e., input features to student’s output layer) and
student predictions. To ensure that the distilled knowledge can
allow the student IAA model to acquire extra knowledge on
semantic patterns for more discriminative aesthetic features,
we choose POC models deeper or trained with more data than
the student’s backbone for constructing the teacher model, and
verify that the teacher model has a higher IAA performance
than the student. Our contributions are summarized as follows:
• We point out the dilemma of IAA caused by the abstract

nature of aesthetic labels. To deal with this dilemma,
we propose a KD method to allow an end-to-end single-
backbone IAA model can learn about semantic patterns
relevant to IAA from multiple POC models via a knowl-
edge distiller.

• The knowledge distiller with the combined POC models
as feature extractors is an effective IAA model (i.e.,
teacher model) which outperforms 10 previous IAA
methods. Compared to the best-performed method among
the contenders, the model achieves 5% higher SRCC
performance.

• With the proposed KD scheme, the teacher model pro-
vides knowledge on semantic patterns to the training
of a single-backbone end-to-end IAA model (i.e., stu-
dent model). The performance of an end-to-end IAA
model can be significantly improved by 4.8% in SRCC
compared to the version trained only with GT aesthetic
labels. On specific categories of images, the improvement
brought by the proposed KD scheme can achieve up
to 7.2%. Compared to the teacher model, the student
model has a 99% lower computational cost, with only
3% lower SRCC performance. Peer comparison shows
that the student model also outperforms 10 previous
IAA methods. Compared to the best-performed end-to-
end IAA model among the contenders, the student model
achieves 7.1% higher SRCC performance.

II. RELATED WORKS

Semantic patterns in image aesthetics assessment (IAA).
To build a robust IAA model, major efforts have been made
to construct image features that distinguish different aesthetic
levels (i.e., aesthetic features). Assuming aesthetic levels can
be distinguished by judging whether a photo follows known
photography rules, early approaches attempt to predict image
aesthetics from hand-crafted features following photography
rules [13]–[15]. However, the number of well-defined pho-
tography rules is too limited to explain images on a large
scale. Therefore, SOTA methods [5]–[9] are mainly based on
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deep learning, which allows the model to learn to construct
aesthetic features in a data-driven manner. However, there is
still not a consensus about what a deep IAA model has learned
to distinguish images with different aesthetics. In this work,
we hypothesize that IAA is a process that maps different
combinations of semantic patterns (represented by aesthetic
features) into different aesthetic levels. Thus, the IAA model is
required to recognize more diverse relevant semantic patterns
for aesthetic features when more diverse image contents are
needed to be dealt with. This hypothesis can explain some
findings in previous works: 1) image aesthetics can be easier
distinguished among images with similar GSFs [16], since
it requires less semantic patterns to construct sufficiently
discriminative aesthetic features; 2) image aesthetics can be
accurately predicted from GSFs [7], [9], since GSFs contain
semantic patterns useful for constructing aesthetic features; 3)
introducing extra semantic information can help an IAA model
to achieve higher performance [10]–[12], since it allows the
IAA model to learn more semantic patterns for constructing
aesthetic features. According to this hypothesis, we further
propose methods to allow aesthetic features to be constructed
with more diverse semantic patterns, so that the aesthetic
features can deal with a larger variety of image contents:
1) we go beyond previous methods [7], [9] that construct
aesthetic features with GSFs from a single POC model, we
prepare more diverse semantic patterns with stacked GSFs
from multiple POC models, which allows SOTA models to
be achieved; 2) we also go beyond previous methods [10]–
[12] that introduce extra semantic labels, we distill knowledge
on semantic patterns from multiple POC models to provide
extra supervision to a weaker student model (e.g., a single-
backbone end-to-end model), which allows us to significantly
improve the performance of the student model without extra
human efforts on labeling.

Knowledge distillation (KD) beyond object classification.
KD has firstly been proposed by Hinton et al. [17] for
object classification, which transfers knowledge in the form
of softened output logits from a deep teacher model to a
rather shallower student model. Later on, various methods
have been proposed for KD on object classification [18]–
[22]. However, KD methods designed for object classification
may not be fully applicable to other tasks. Therefore, various
methods have been specifically designed for different tasks.
In object detection, Chen et al. [23] proposed to distill the
knowledge on imbalanced classification and bounding box
regression. In semantic segmentation, He et al. [24] proposed
to distill the knowledge on capturing long-term dependencies.
In road marking detection, Hou et al. [25] proposed to distill
the knowledge on the structural relationship of road scenes.
In our case, we expect to improve an IAA model from
knowledge on general object classification, where IAA and
general object classification are two different tasks. As dis-
cussed, aesthetic features are essential for IAA performance,
while more discriminative aesthetic features need to be built
upon sufficiently diverse semantic patterns. To this end, we
conduct KD to distill IAA-relevant knowledge on semantic
patterns from object classification models. As a relevant topic,
Zhang et al. [26] has proposed to adopt a POC model for

constructing an image quality assessment (IQA) model with
continual learning that can deal with various IQA scenarios,
which supports our hypothesis that GSFs can be used to guide
the downstream IAA model to produce more discriminative
features for distinguishing image aesthetics.

III. OUR APPROACH

A. Problem Statement

We consider a typical IAA model [27] that estimates the
aesthetic rating distribution directly from an image. Particu-
larly, given the i-th image Ii from an IAA dataset, the IAA
model Mθ(·) predicts the aesthetic rating distribution D̂i:

D̂i =Mθ(Ii). (1)

A direct way for obtaining the modelMθ(·) parameterized by
θ is to directly optimize its parameter θ towards the ground-
truth (GT) aesthetic rating distribution Di:

θ = arg min
θ

N∑
i=1

L(Di, D̂i), (2)

where the most commonly-used loss function for L(·) is earth
mover distance (EMD) loss [27]:

EMD(y, ŷ) =

√√√√ 1

n

n∑
k=1

|CDFy(k)− CDFŷ(k)|2, (3)

where CDFy and CDFŷ are cumulative density function for
GT distribution y and predicted distribution ŷ of length n,
respectively.

However, this approach overlooks the abstract nature of
the aesthetic labels Di. As we previously discussed, IAA
can be regarded as a process that maps different combina-
tions of semantic patterns into different aesthetic levels. On
the one hand, during inference, the IAA model is required
to relate various combinations of semantic patterns to the
same aesthetic label. On the other hand, when training, it
would be hard for the IAA model to learn to distinguish
different combinations of semantic patterns merely with the
supervision from aesthetic labels since aesthetic labels are not
directly related to any specific contents. To make up for the
abstractness of aesthetic labels, one instant way is to assign
an extra semantic label to each of the training samples for
IAA. Because each semantic label is a direct description of
the image contents (e.g., themes), the IAA model can learn
about semantic patterns related to each semantic label along
with the IAA objective, and aesthetic features covering more
image contents can be constructed from the semantic patterns
learned from semantic labels.

Nevertheless, there are several problems with semantic
labels: 1) it requires extra human efforts to assign semantic
labels to each of IAA training samples; 2) it is hard to define
what semantics in the image will be relevant to the downstream
IAA task, and therefore, it is hard to find a standard for
introducing semantic labels. Thus, our goal is to find a better
representation that provides semantic guidance, so that the
IAA model can learn about semantic patterns relevant to IAA
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Fig. 3: Details of training a single-backbone end-to-end IAA model (i.e., student model) under the supervision of the teacher
knowledge distilled from POC models via a knowledge distiller. The teacher aesthetic features and teacher predictions together
are deemed as teacher knowledge distilled from GSFs. The teacher aesthetic features and teacher predictions are stored for
imposing supervision on the aesthetic features and predictions of the student model when training the student model. Note
that the preparation of teacher knowledge is conducted separately from the training of the student model in practice (see Table
XIII for the analysis on extra computational costs).

Fig. 4: LayerCAM [28] visualization for explaining how the
proposed KD works in training the student model. For the
same image, different GSFs tend to capture different semantic
patterns. The knowledge distiller takes useful parts from GSFs
to produce the teacher aesthetic feature. The teacher aesthetic
features impose supervision to the student aesthetic features.
Through back-propagation, the supervision from teacher aes-
thetic features further guides the student model to capture more
IAA-relevant semantic features for producing more discrimi-
native aesthetic features as the teacher. Details of training the
knowledge distiller are given in Fig. 5.

for constructing more discriminative aesthetic features for a
large variety of image contents:

θ = arg min
θ

N∑
i=1

(La(Di, D̂i) + Ls(Si, Ŝi)), (4)

where Si and Ŝi are the GT and predicted representation
for semantic guidance, Di and D̂i are the GT and predicted
aesthetic rating distributions, and Ls(·) and La(·) are loss
functions for semantic and aesthetic guidance, respectively.
Here, semantic guidance is provided by imposing an extra
supervision to the training objective.

B. Knowledge Distillation for Semantic Guidance
As discussed in Sec. III-A, we aim for an extra supervision

for semantic guidance besides extra semantic labels. Since
POC models can recognize a vast variety of image contents,
our idea is to distill knowledge from POC models on semantic
patterns relevant to IAA. To cover a large variety of con-
tents, we can take multiple POC models trained on different
datasets to provide sufficiently diverse semantic patterns. And
the semantic patterns can be taken from the GSFs of the
selected POC models, as we earlier described in Sec. I. By
combining GSFs from different POC models, we can obtain
representations that can describe a large variety of contents:

fC = [f̄1|f̄2|...|f̄K ], (5)

where | denotes the concatentation operation that combines
pooled GSFs f̄k from K different POC models, resulting in
the combined feature fC . For extracting features from different
POC models, we adopt multi-layer spatial pooling (MLSP) [7]
as the pooling strategy to cover both low-level and high-level
semantic information in the resulting feature, which is denoted
as f̄k = MLSP (fk), where fk is the raw GSF from the k-th
POC model.

However, directly supervising the IAA model by the com-
bined GSFs is ineffective, since not all semantic patterns
represented by the combined GSFs are relevant to IAA. We
further describe the relationship between the combined GSFs
and aesthetic features by Fig. 4. As shown, red, green, and blue
circles are sets of patterns that can be captured by different
POC models. Since these models are trained with different
datasets, different models may be sensitive to a different
set of patterns. However, considering different POC models
trained on different datasets may share similar categories of
semantic patterns, these sets also have overlapped portions. For
example, for classifying the same bird, some models may tend
to classify by the beak, while some other models may tend to
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Fig. 5: Training of the knowledge distiller. Table III presents
performance of the teacher IAA model constructed with the
knowledge distiller and different POC models.

TABLE I: Comparison of GSFs for IAA from different models
trained with ImageNet on the train-test split from [29]. Full-
resolution images are used.

Model backbone Results

ResNet18 ResNet50 ResNet101 SRCC PLCC Acc

3 0.669 0.678 78.7%
3 0.713 0.718 80.2%

3 0.720 0.724 80.3%
3 3 0.718 0.723 80.3%

3 3 0.730 0.734 80.6%
3 3 0.724 0.727 80.5%
3 3 3 0.730 0.734 80.7%

classify by wings. Nevertheless, it is possible that all models
tend to classify an object as bird when they see the object
with feather is in the sky. However, since these POC models
are not trained for IAA, the patterns contained in these sets
may not all be relevant to IAA. As we show in Fig. 2, when
GSFs contain semantic patterns not relevant to IAA, GSFs may
match two visually-similar images but with distinct aesthetic
scores. In Fig. 4, we present the patterns relevant to IAA as
yellow.

Therefore, we propose a KD method based on a knowledge
distiller trained separately. To be specific, we train an IAA
model as the knowledge distiller with the combined GSF fC .
As shown in Fig. 5, the knowledge distiller is constructed with
a batch normalization layer followed by three linear layers
with ReLU activations. To train the knowledge distiller, we
use EMD loss (Eq. 3). The unified whole of selected POC
models and the trained knowledge distiller can also be viewed
as a teacher model (upper-stream of Fig. 3), and the single-
backbone end-to-end model (lower-stream of Fig. 3) is then
viewed as the student model that learns to imitate the teacher.
Thus, the knowledge distiller C(·) predicts a feature ft and an
aesthetic rating distribution D̂t from GSFs given by different
POC models:

{ft, D̂t} = C(fC), (6)

where {ft, D̂t} are deemed as teacher knowledge, including a
teacher aesthetic feature ft and a teacher prediction D̂t.

1ResNeXt101 32x8d: https://paperswithcode.com/lib/timm/resnext
2ig ResNeXt101 32x8d: https://paperswithcode.com/lib/timm/ig-resnext
3swsl ResNeXt101 32x8d: https://paperswithcode.com/model/swsl-resnext

TABLE II: Comparison of GSFs for IAA from ResNeXt101
trained with different data on the train-test split from [29].
Full-resolution images are used.

Training setting Results

ImageNet1 IG2 SWSL3 SRCC PLCC Acc

3 0.723 0.726 80.4%
3 0.756 0.760 81.8%

3 0.755 0.758 81.5%
3 3 0.764 0.766 81.9%

3 3 0.770 0.773 82.1%
3 3 0.763 0.765 81.9%
3 3 3 0.773 0.775 82.0%

Thus, the teacher knowledge is directly used for supervising
the student model. Accordingly, we formulate the KD loss for
training the student model from Eq. 4:

LKD(D̂t, D̂s, ft, fs) = EMD(D̂t, D̂s) +MSE(ft, fs), (7)

where D̂s, fs denote the student prediction and the student
aesthetic feature, EMD(·) and MSE(·) refer to EMD loss
and mean squared error (MSE) loss respectively. Accordingly,
ft here is expected to provide semantic guidance in the context
of IAA, and the student model is also expected to summarize
how the teacher predicts D̂t from ft. The architecture of
the student model follows a succinct design (lower-stream of
Fig. 3), which is constructed with a single CNN backbone
followed by a fully-connected (FC) network for aligning the
student aesthetic feature to the same size as the teacher
aesthetic feature. The aesthetic labels are finally predicted from
the student aesthetic feature by an FC softmax layer.

Note that in Eq. 7, the teacher aesthetic feature ft is
constructed from GSFs, and the student aesthetic feature fs is
constructed from semantic patterns relevant to IAA captured
by the student’s own backbone. And we hypothesize that the
teacher aesthetic feature ft are more discriminative than the
student aesthetic feature fs for effective semantic guidance.
Generally, to prepare more discriminative teacher aesthetic
features, the POC models for constructing the teacher model
should be selected according to the student model. For a
student model with a known backbone, we could expect the
constituent POC models of the teacher model should: 1) deeper
than the student’s backbone; or 2) trained with more data than
the student’s backbone. By combining multiple POC models
deeper or trained with more data, more diverse semantic
patterns are expected to be produced than the student’s pre-
trained backbone and more discriminative aesthetic features
are expected to be created. The points above are guidelines
for selecting POC models that are likely to produce more
diverse semantic patterns than the student’s backbone.
Note that since the effectiveness of a POC model also relies
on the training strategy and the quality of the training
data, we are not able to appropriately select POC models
merely according to the parameter size and training data
size. Thus, the criterion to verify whether the teacher aesthetic
features are more discriminative than the student aesthetic
features is to directly compare the performance of the teacher
model (i.e., knowledge distiller) to the student model without
KD. When the student model without KD performs poorer, it
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TABLE III: Comparison of different POC models as feature extractors of the teacher model. Experiments are conducted on
the same train-test split from [29], and results show that the knowledge distiller can effectively distill information needed for
IAA from GSFs.

Setting Model backbone Full resolution (∼640×640) Resized (300×300)
ResNet-v2 (BiTm)4 ResNeXt101 (SWSL)5 ResNeXt101 (IG)6 SRCC↑ PLCC↑ Acc↑ SRCC↑ PLCC↑ Acc↑

1 3 0.779 0.781 82.7% 0.762 0.764 82.2%
2 3 0.756 0.758 81.6% 0.739 0.742 80.8%
3 3 0.762 0.764 81.9% 0.753 0.754 81.6%
4 3 3 0.788 0.789 83.0% 0.771 0.773 82.3%
5 3 3 0.775 0.777 82.2% 0.762 0.764 81.8%
6 3 3 0.792 0.792 83.0% 0.779 0.779 82.4%
7 3 3 3 0.794 0.795 83.1% 0.780 0.781 82.7%

TABLE IV: Comparison of generic semantic features (GSFs)
and aesthetic features (AFs) on IAA by matching (as shown
in Fig. 2) on the split from [29]. Results show that AFs can
better matches images of the same score.

Feature SRCC PLCC Acc

GSF 0.414 0.417 71.7%
AF 0.657 0.657 78.3%

means that its aesthetic features are less discriminative than
those of the teacher. As long as the teacher model performs
better than the student model, the student model can learn to
construct better aesthetic features from the teacher, and the
selection of POC models for the teacher model is appropriate.
The points above will be experimentally discussed in Sec. IV-B
and Sec. IV-C.

C. Adaptation to Smaller Input Sizes

As shown in some previous works [7], [30], resizing input
images can harm the effectiveness of the IAA model due to
loss in high-resolution details. However, using high-resolution
images can introduce large computational costs. To cope with
the trade-off between input resolution and computational costs,
the proposed KD scheme is also designed to allow the student
model to adapt to smaller input sizes. In training the teacher
model, we adopt full-resolution inputs for feature extraction,
which allows semantic patterns on high-resolution details to
be preserved in the teacher knowledge. While for training
the student model, we adopt resized inputs and encourage
the student model to excavate high-resolution details from
the resized image with the teacher knowledge. Experimental
evidences are given in Table VII.

IV. EXPERIMENTS

In this section, we would like to answer the following
questions by experiments:
• How to construct more discriminative aesthetic features

from GSFs? (Q1)
• Does the supervision from the teacher model better than

ground-truth aesthetic labels? (Q2)

4resnetv2 152x4 bitm: https://paperswithcode.com/lib/timm/big-transfer
5swsl ResNeXt101 32x8d: https://paperswithcode.com/model/swsl-resnext
6ig ResNeXt101 32x48d: https://paperswithcode.com/lib/timm/ig-resnext

• How much improvement has been made in terms of
efficiency, and how much effectiveness is compromised,
by comparing the student to the teacher model? (Q3)

• How much improvement has been made by the teacher
and the student model compared to previous works? (Q4)

A. Experimental Settings

1) Dataset: Following previous works [6], [7], [27], [31]–
[36], our experiments are performed on the AVA dataset [29].
The AVA dataset includes ∼250,000 images, which have been
scored from 1∼10 by 78∼594 workers. We follow previous
works [6], [7], [9], [31], [32], [34], [37] to use the same train-
test split7 [29] for our experiments. The split adopts ∼230,000
images for training and ∼20,000 images for testing.

2) Implementation details: Our model is implemented with
PyTorch. As to the implementation of feature extraction, we
refer to previous works [7], [38], [39]. For the teacher model,
we train the model with batch size 512 for 12 epochs with
Adam optimizer with an initial learning rate 3e × 10−5 and
divided by 10 every 3 epochs. For the student model, we
train the model with batch size 16 for 12 epochs with Adam
optimizer with an initial learning rate 3e× 10−5 and divided
by 10 every 3 epochs.

Following previous works [7], [9], [27], [32], [34], [36],
we adopt Spearman Correlation Coefficients (SRCC), Pearson
Correlation Coefficients (PLCC), and Accuracy (Acc) for
evaluation. For evaluating SRCC and PLCC, we convert the
aesthetic rating distributions into aesthetic scores by weighted
average. As previous works [6], [7], [31]–[34], we take five as
the cut-off threshold for converting aesthetic scores into binary
aesthetic categories for evaluating Acc. We also use Floating
Point Operations (FLOPs)8 to evaluate computational costs.

B. Effectiveness of Generic Semantic Features (Q1)

1) Investigating aesthetic features constructed from GSFs:
To answer the question: “how to construct more discriminative
aesthetic features from GSFs”, we have picked two sets of
GSFs to investigate how GSFs from different POC models
and their combinations will impact the IAA performance:

7Note that the original source for the AVA dataset is no more available. The
official split is originated from: https://github.com/mtobeiyf/ava downloader/
blob/master/AVA dataset/aesthetics image lists/generic test.jpgl

8https://github.com/Swall0w/torchstat

https://github.com/mtobeiyf/ava_downloader/blob/master/AVA_dataset/aesthetics_image_lists/generic_test.jpgl
https://github.com/mtobeiyf/ava_downloader/blob/master/AVA_dataset/aesthetics_image_lists/generic_test.jpgl
https://github.com/Swall0w/torchstat
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TABLE V: Ablation study on the use of the proposed KD
scheme on the same train-test split from [29]. The results
imply that the proposed KD scheme enables the student’s
backbone to capture more IAA-relevant semantic patterns.

Setting SRCC↑ PLCC↑ Acc↑
Trainable backbone KD scheme

7 7 0.736 0.739 81.1%
3 7 0.735 0.737 80.8%
7 3 0.747 0.748 81.3%
3 3 0.770 0.770 82.1%

TABLE VI: Ablation study on the two terms of the proposed
KD loss (Eq. 7) on the same train-test split from [29]. Results
show that both terms of the KD loss contribute significantly
to the overall improvement.

Supervision SRCC↑ PLCC↑ Acc↑
Feature Output

7 7 0.735 0.737 80.8%
3 7 0.766 0.766 82.0%
7 3 0.758 0.758 81.6%
3 3 0.770 0.770 82.1%

• POC models of different architecture but trained on the
same data: ResNet18, ResNet50 and ResNet101 trained
on ImageNet are picked (see Table I).

• POC models of the same architecture but trained on
different data: ResNeXt101 trained on different data are
picked. Note that both IG version and SWSL version have
included the ImageNet training data (see Table II, sources
for pre-trained models are given in the footnotes).

The approaches including using POC models with larger sizes
or using POC models with more training data enable the GSFs
to provide more diverse semantic patterns. Combining GSFs
from different POC models further allows diverse semantic
patterns from different POC models to be considered for
aesthetic features. Thus, the experimental results imply that
the performance of different settings in Table I and Table
II mainly depend on whether the semantic patterns are suf-
ficiently diverse for constructing aesthetic features that can
deal with diverse contents in the AVA dataset. Considering
both the teacher model and the student model training merely
with aesthetic labels construct aesthetic features from semantic
patterns known to their pre-trained backbones (see Sec.IV-C
for details), the teacher model consists of extra POC backbones
with larger size and trained with more data, which is expected
to capture more diverse semantic patterns for constructing
aesthetic features covering more diverse contents.

2) Selecting POC models for KD: The targeted backbone
for the student model we mainly consider is ResNeXt101
(SWSL) [40], whose baseline SRCC is 0.735 (Table V). To
construct the teacher model for later experiments in KD,
we have selected three different POC models trained with
different data, including ResNet-v2 (BiTm) [41], ResNeXt101
(IG) [42], and the same ResNeXt101 (SWSL) as the student

TABLE VII: Ablation study with smaller-sized inputs on
the same train-test split from [29]. The performance drop
brought by smaller input sizes is given in red subscripts. The
results show that model with KD has lower performance drop,
implying that the proposed KD scheme enables the student
model to adapt to smaller-sized inputs.

Input size KD SRCC↑ PLCC↑ Acc↑ FLOPs (G)↓

640×640 7 0.756 0.758 81.6% 134.7
300×300 7 0.736−2.6% 0.739−2.5% 81.1% 30.6
640×640 3 0.775 0.777 82.4% 134.7
300×300 3 0.770−0.6% 0.770−0.9% 82.1% 30.6

(sources for the selected POC models are given in the footnotes
of Table III). Since ResNet-v2 (BiTm) and ResNeXt101
(IG) are deeper or trained with more data than ResNeXt101
(SWSL), the combined GSFs are expected to contain semantic
patterns captured by ResNeXt101 (SWSL) and extra semantic
patterns captured by ResNet-v2 (BiTm) and ResNeXt101 (IG).
The experimental results on teacher models using different
combinations among the three POC models are given in Table
III. The results for the best setting that combines all three POC
models above have achieved 0.794 in SRCC. Since the per-
formance is much higher than the student’s, the selected POC
models are valid for constructing the teacher model for the
designated student based on ResNeXt101 (SWSL) according
to the guidelines and criterion in Sec. III-B. In later sections,
“teacher model” will refer to the teacher model trained with
GSFs combined from ResNet-v2 (BiTm) , ResNeXt101 (IG)
, and ResNeXt101 (SWSL) with SRCC 0.794. Note that in
the peer comparison of Sec. IV-E, we will also use the same
teacher model for the student model based on ResNet18 or
ResNet50 backbone pretrained on ImageNet. The selected
POC models for the teacher model are all trained on ImageNet
along with extra data, and are much deeper than ResNet18 and
ResNet50. The baseline SRCC performance of ResNet18 and
ResNet50 are 0.721 and 0.735 (Fig. 6), which are poorer than
the teacher’s performance. Thus, using the same teacher model
also follows the guidelines and criterion in Sec. III-B and is
expected to provide effective semantic guidance.

3) Comparing GSFs to aesthetic features by matching:
Based on the teacher model, we also compare the com-
bined GSFs with the resulting aesthetic features following
the matching-based approach as described in Fig. 2. In this
way, we are able to see whether the aesthetic features are
more discriminative in aesthetics than the source GSFs. As
the results shown in Table IV, the resulting aesthetic features
significantly outperforms the source GSFs, which confirms the
effectiveness of the proposed knowledge distiller.

C. Effectiveness of Knowledge Distillation (Q2)

To answer the question “does the supervision from the
teacher model better than ground-truth aesthetic labels”, we
conduct ablation studies to investigate different settings of
the proposed KD scheme. Specifically, we firstly investigate
whether a single backbone is capable of learning teacher
knowledge and adapting to smaller input sizes under the
proposed KD scheme. To this end, we set up baseline models
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TABLE VIII: Comparison between teacher and student models on the same train-test split from [29]. The results show that
the student model sacrifices marginal effectiveness for a greater improvement in efficiency compared to the teachers.

Model Input Resolution Params (M) FLOPs (G) ↓ SRCC ↑ PLCC ↑ Acc ↑

Teacher
Composite∗ ∼640×640 1853.2 2940.5 0.794 0.795 83.1%

Teacher
Composite∗ 300×300 1853.2 653.8 0.780 0.781 82.7%

Student
ResNeXt101 (SWSL) 640×640 88.8 134.7 0.775 0.777 82.4%

Student
ResNeXt101 (SWSL) 300×300 88.8 30.6 0.770 0.770 82.1%

∗: combines features from pre-trained ResNeXt101 (SWSL), ResNeXt101 (IG) and ResNetv2 (BiTm)

TABLE IX: Comparison of results on different sub-categories
of the end-to-end IAA model based on ResNeXt101(SWSL)
with (3) or without (7) KD. The results are obtained from
the split from [29], and we choose sub-categories with top 8
portions in the testing set for the evaluation. The percentage of
improvements brought by the proposed KD scheme is labeled
in red subscripts. The results show that the effectiveness of the
proposed KD scheme is more obvious on some sub-categories.

Categories Portion KD SRCC↑ PLCC↑ Acc↑

Still life 17.6% 7 0.695 0.706 77.7%
3 0.745+7.2% 0.751+6.3% 79.0%

Architecture 15.5% 7 0.735 0.735 81.6%
3 0.761+3.6% 0.759+3.2% 82.7%

Landscape 15.3% 7 0.777 0.776 83.8%
3 0.805+3.6% 0.801+3.3% 85.6%

Animals 13.7% 7 0.734 0.734 80.4%
3 0.763+4.0% 0.767+4.6% 81.7%

Portraiture 13.0% 7 0.689 0.693 82.8%
3 0.737+6.9% 0.736+6.2% 83.6%

Floral 12.6% 7 0.742 0.738 79.0%
3 0.779+5.0% 0.774+4.9% 80.4%

Cityscape 12.5% 7 0.749 0.749 81.6%
3 0.775+3.6% 0.774+3.4% 81.9%

Food 12.5% 7 0.718 0.726 80.0%
3 0.764+6.4% 0.771+6.1% 82.0%

Overall 100.0% 7 0.735 0.737 80.8%
3 0.770+4.8% 0.770+4.6% 82.1%

trained directly with GT aesthetic rating distributions in the
situation when the ResNeXt101 (SWSL) backbone is trainable
or non-trainable. Then we introduce the proposed KD scheme
as comparisons. The results are given in Table V.

As the results suggest, without the proposed KD scheme,
similar results are obtained for both trainable and untrainable
backbone settings. This suggests that even we give the back-
bone the freedom of learning on new semantic patterns for
more discriminative aesthetic features, the IAA model has not
been improved. This supports our motivation that aesthetic
labels are too abstract to guide the neural network to learn
about semantic patterns. As a result, the IAA model can
only learn to create aesthetic features with semantic patterns
already-known to its pre-trained backbone, and merely learn
new semantic patterns for improving the discriminative power
of the resulting aesthetic features. Since our teacher model also
constructs aesthetic features from semantic patterns already-

known to the backbones of the selected POC models, if we
introduce extra POC models deeper or trained with more
data than the pre-trained backbone of the student model,
it is expected that the teacher model will construct more
discriminative aesthetic features than the student model. By
encouraging the student aesthetic features to be close to the
teacher aesthetic features in training, the student model is
guided to capture more relevant semantic patterns for more
discriminative aesthetic features as its teacher (Fig. 4).

By introducing the proposed KD scheme, both trainable
and untrainable backbone settings present substantial im-
provements in performance. The results have the following
implications: 1) when the backbone is set untrainable, the
student model with KD learns to construct more discriminative
aesthetic features with semantic patterns already-known to
its pre-trained backbone; 2) when the backbone is trainable,
the backbone of the student model with KD learns relevant
semantic patterns for more discriminative aesthetic features.
This confirms the effectiveness of the proposed KD scheme.

The KD loss (Eq. 7) can be further divided into feature
supervision (term 2 of Eq. 7) and output supervision (term 1
of Eq. 7). We detail our experiments to show the contribution
of each individual term in the proposed KD loss. We set the
whole network trainable in this experiment, and the model is
directly supervised by GTs when the output supervision is off.
The results are presented in Table VI. As the results show, both
terms substantially contribute to the performance of the student
model, and the student model achieves the best performance
when both terms are adopted.

Note that the student model takes 300×300 resized inputs
while it is supervised by teacher knowledge distilled from full-
resolution inputs. As discussed in Sec. III-C, this means we
expect the student model to be adaptive to the smaller-sized
inputs (learn full-resolution knowledge on semantic patterns
from resized inputs). To confirm, we also train a student model
with almost full-resolution (640×640) inputs as a comparison.
Specifically, we first pad all input images to 800×800 (where
800×800 is the largest size in the dataset), and center-crop
them into 640×640 to maintain the aspect ratio. The results
are presented in Table VII. The results show that the proposed
KD method also enables the student to be adaptive to smaller-
sized inputs, which allows the performance drop brought by
resizing (640×640 → 300×300) to be decreased from 2.6%
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TABLE X: Comparison with reported results of SOTAs on the same train-test split from [29]. Best results are presented in
blue, and the second best results are presented in red. Publication years are given in subscripts.

Method Backbone Input size SRCC↑ PLCC↑ Acc↑

DMA-Net15 [6] AlexNet 224×224 - - 75.4%
MNA-CNN16 [31] VGG16 224×224 - - 77.1%
NIMA†17 [27] ResNet50 224×224 0.654 0.662 78.6%
APM17 [37] ResNet101 500×500 0.709 - 80.3%
Hosu et al.‡19 [7] InceptionResNet-v2 640×640 0.756 0.757 81.7%
Zeng et al.19 [34] ResNet101 384×384 0.719 0.720 80.8%
GPF-CNN19 [32] ResNet18 224×224 0.671 0.682 80.3%
Hou et al.‡20 [9] InceptionResNet-v2 640×640 & 320×320 0.751 0.753 81.7%

Ours (Teacher model‡) Composite∗ ∼640×640 0.794 0.795 83.1%
Ours (Student model) ResNeXt101 (SWSL) 300×300 0.770 0.770 82.1%
Ours (Student model) ResNet50 300×300 0.745 0.745 81.4%
Ours (Student model) ResNet18 300×300 0.719 0.722 80.5%

∗: combines features from pre-trained ResNeXt101 (SWSL), ResNeXt101 (IG) and ResNetv2 (BiTm)
†: we re-implement the model with ResNet50 and evaluate the model on the same train-test split as other presented methods.

‡: not an end-to-end model

TABLE XI: Comparison with reported results of SOTAs on the same train-test split from [43]. Best results are presented in
blue, and the second best results are presented in red. Publication years are given in subscripts.

Method Backbone Input size SRCC↑ PLCC↑ Acc↑

PA IAA20 [33] DenseNet121 299×299 0.666 - 82.9%
HLA-GCN21 [36] ResNet101 300×300 0.665 0.687 84.6%

Ours (Teacher model) Composite∗ ∼640×640 0.732 0.751 85.3%
Ours (Student model) ResNeXt101 (SWSL) 300×300 0.701 0.722 84.9%
Ours (Student model) ResNet50 300×300 0.677 0.698 84.1%
Ours (Student model) ResNet18 300×300 0.652 0.677 83.5%

∗: combines features from pre-trained ResNeXt101 (SWSL), ResNeXt101 (IG) and ResNetv2 (BiTm)

to 0.6% in SRCC (0.756→0.736 vs. 0.775→0.770), which
leads to FLOPs to be saved by 77.2% (134.7 → 30.6). This
suggests that the trained student model is adaptive to lower
image resolution and change of aspect ratio after learning with
teacher knowledge.

To show the impact of the proposed KD scheme on the
performance of the student model on different categories of
images, we further present the results on specific categories
of the baseline model without KD and the student model with
KD. The results are presented in Table IX. As the results
show, compared to the overall improvement 4.8% on SRCC,
the improvement brought by the proposed KD scheme can
reach 7.2% for specific categories. This further confirms the
effectiveness of the proposed KD scheme.

D. Comparing Student with Teacher Model (Q3)

To answer the question “how much improvement has been
made in terms of efficiency, and how much effectiveness
is compromised, by comparing the student to the teacher
model”, we compare the efficiency and effectiveness between
teacher and student models. The results are presented in Table
VIII. Compared to the teacher model, the student model with
640×640 input size saves FLOPs by 95% (2940.5 → 134.7)
with 2.4% drop in SRCC (0.794 → 0.775). By shrinking the
input size to 300×300, the FLOPs is further saved by 77.2%
(134.5→ 30.6) with only 0.6% loss in SRCC (0.775→0.770).

E. Comparison with State-of-the-arts (Q4)

To answer the question “how much improvement has been
made by the teacher and the student model compared to
previous methods”, we compare the teacher model and the
student model with previous relevant methods [6], [7], [9],
[27], [31]–[34], [36], [37]. We take their reported results for
the comparison, and the results are presented in Table X.
Among these contenders, the reported results of DMA-Net [6],
MNA-CNN [31], Zeng et al.’s method [34], APM [37], Hou et
al.’s method [9], GPF-CNN [32] and Hosu et al.’s method [7]
are evaluated on the train-test split from [29], while PA IAA
[33] and HLA-GCN [36] are evaluated on the train-test split
from [43]9. We experimentally observed that the results on
the split from [43] typically have a higher accuracy while a
lower SRCC compared to the results on the split from [29] (see
more detailized discussions in Sec. V-A). To fairly compare
our method with the contenders, we separately compare the
performance results of our method on the same train-test split
as the contenders. Note that the reported results of NIMA have
evaluated neither on the split from [29] nor on the split from
[43]. Therefore, we re-implement NIMA and evaluate on the
split from [29]. For the comparison on the split from [29],
the results are given in Table X; for the comparison on
the split from [43], the results are given in Table XI.

9https://github.com/BestiVictory/ILGnet/tree/local/data/AVA1

https://github.com/BestiVictory/ILGnet/tree/local/data/AVA1
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(b) SRCC results on fixed split evaluation and random split cross-validation with ResNet18 backbone.
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(c) PLCC results on fixed split evaluation and random split cross-validation with ResNet18 backbone.

Fig. 6: Demonstration of generalizability of the proposed KD scheme across different train-test splits. Fixed A and Fixed
B denote the train-test split from [29] and [43], respectively. CV1 ∼ CV12 denote twelve cross-validation splits with non-
overlapping testing sets.

For our implementation, the ResNeXt101-based setting
adopts the SWSL version [40], and the ResNet50 and the
ResNet18 based settings utilize ImageNet pre-trained ver-
sions10 as the student model backbones. As shown in the
results, the teacher model based on combined GSFs signifi-
cantly outperforms the selected contenders in terms of SRCC,
PLCC and accuracy. Specifically, the relevant method by
Hosu et al. [7] based on InceptionResNet-v2 MLSP features,
which performs best in terms of SRCC and PLCC among all
contenders, is substantially surpassed by the teacher model
by 5%. Additionally, the proposed KD scheme helps to
significantly improve the model efficiency while preserving
the model effectiveness. As shown in Table X and Table XI,
though a performance drop can be observed comparing the
teacher model to the student model, the student model based
on ResNeXt101 still outperforms the contenders in terms of
SRCC, PLCC and accuracy, including the most recent methods
[9], [33], [36]. Comparing the student model to other end-to-
end models among the contenders, our student model achieves
0.770 in SRCC, which is 7.1% higher than the best performed
end-to-end models among the contenders (Zeng et al.’s method
[34] in Table X ).

10https://github.com/Cadene/pretrained-models.pytorch

V. FURTHER DISCUSSION

A. Performance Variations

As mentioned in Sec. IV-E, performance variations can be
observed when the same model is evaluated on different train-
test splits. As a very relevant topic, image quality assessment
(IQA) methods [44]–[48] typically conduct K-fold cross-
validation or take the average or median results evaluated on a
number of different random train-test splits (a.k.a. sessions) to
reduce performance variations as much as possible. However,
for the problem of IAA, the adopted datasets by IAA typically
have a much greater scale than IQA datasets. For example,
the commonly-adopted IQA dataset LIVE-IQA [49] contains
only 779 images. On the contrary, the commonly-adopted
IAA dataset AVA benchmark contains ∼255,000 images. This
essential difference on dataset scales makes previous works
on IAA mostly evaluate the methods only on a fixed train-
test split [6], [7], [9], [27], [31], [32], [34], [37] rather than
several random splits. However, evaluation on a fixed split
potentially causes worries about generalizability (e.g., the
method only works on a certain split). Additionally, several
versions of train-test splits have been adopted in previous
works (as mentioned in Sec. IV-E), which potentially cause
problems of unfairness when comparing the results on different

https://github.com/Cadene/pretrained-models.pytorch
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TABLE XII: Comparison between the proposed KD scheme and other approaches for semantic guidance. Methods are evaluated
on the split from [29]. Results show that the proposed KD scheme is more effective than using extra semantic labels.

Model Input Output Loss SRCC↑ PLCC↑ Acc↑

Baseline ResNet18 300×300 image Rating distribution EMD loss 0.702 0.706 80.0%

Multi-modal ResNet18
300×300 image
Two-hot semantic vector

Rating distribution EMD loss 0.709 0.712 80.2%

Multi-task ResNet18 300×300 image
Rating distribution
Two-hot semantic vector

Multi-task loss 0.714 0.716 80.3%

KD ResNet18 (proposed) 300×300 image Rating distribution KD loss 0.719 0.722 80.7%

Fig. 7: Demonstration of performance variations brought by
randomness in training. The teacher model has been run for
10 times on the split from [29], and the SRCC, PLCC and
accuracy results are plotted in separate box plots. The range for
SRCC, PLCC and accuracy are [0.792, 0.795], [0.792, 0.795]
and [0.830, 0.833], respectively. Results show the performance
variations brought by randomness in training are marginal.

train-test splits. Therefore, in this section, we discuss whether
the effectiveness of the proposed KD scheme is an outcome
of random variations, and whether the effectiveness of the
proposed KD scheme only works for a certain train-test split.

To begin with, we want to find out the actual range
of performance variations brought by different splits. Such
variations can be estimated by directly train and test the same
model on different splits. However, due to the randomness
in the training of deep learning models, even with the same
split, if we separately train a model with the same setting, the
results are possibly different. Therefore, we need to separately
consider the performance variations brought by train-test split
difference alone, and the performance variations brought by
randomness in training. That is:

δexp = δsplit + δtraining, (8)

where δexp is the performance variations observed from ex-
periments that evaluate the same model on different train-test
splits, δsplit is the actual performance variation brought by
using different train-test split, and δtraining is the performance
variation brought by randomness in training. To evaluate the
scale of δsplit, we first estimate the scale of δtraining by run-
ning the proposed teacher model 10 times on the same split. In
Fig. 7, the results show that the variations (difference between
the highest and the lowest results) caused by randomness in
training are around 0.003 for SRCC, PLCC and accuracy.

Then we estimate the scale of performance variations
brought by using different train-test splits. To this end, we
adopt both fixed split evaluation and cross-validation with
random splits. For fixed split evaluation, we apply the split

from [29] and the split from [43], which both left 20,000
images for testing. For cross-validation with random splits,
we also remain 20,000 images for testing. Since there are
∼255,000 images in total, twelve cross-validation splits with
non-overlapping testing sets are prepared. Then we evaluate
the results when a single-backbone end-to-end IAA model is
cooperated with or without the proposed KD scheme. The
results are presented in Fig. 6. As the results demonstrated,
the proposed KD scheme introduces performance gains for
all selected student backbones across all train-test splits. For
the ResNet18-based model, the ranges of improvements are
[0.011,0.024], [0.010,0.023], [0.5%,1.7%] for SRCC, PLCC,
and Acc, respectively. For the ResNet50-based model, the
ranges of improvements are [0.018,0.026], [0.015,0.041],
[0.4%,1.3%] for SRCC, PLCC, and Acc, respectively. For
the ResNext101-based model, the ranges of improvements are
[0.019, 0.038], [0.017,0.036], [0.8%,1.7%] for SRCC, PLCC,
and Acc, respectively. All improvements are larger than the
random variation 0.003, and thus, the improvements on all
experimented models on all splits are regarded as significant.

B. Comparing Different Strategies for Semantic Guidance

The proposed KD scheme is designed to provide semantic
guidance to the training of an IAA model. Two alternative
approaches for introducing semantic guidance are to adopt
semantic labels as auxiliary inputs, or train the model to
predict semantic labels as an auxiliary task. To compare the
effectiveness of the proposed KD scheme with the alternative
approaches for introducing semantic guidance, we take the
semantic labels provided by the AVA dataset [29] (two labels
per image and 66 distinct semantic labels in total) for building
models that are compared with the model trained with the
proposed KD scheme. Therefore, the following four models
are built for the comparison:

1) Baseline ResNet18: A ResNet18-based end-to-end IAA
model is trained with EMD loss subject to aesthetic label
prediction supervised by GT aesthetic labels, which follows
the same setting as the baselines in our previous experiments
in Sec. IV-C.

2) Multi-modal ResNet18: The two semantic labels of each
image in the AVA dataset is represented with a two-hot vector.
Based on the baseline model, a separate branch constructed
with two stacking fully-connected layers is introduced to
encode the two-hot semantic vector into semantic features.
Then the encoded semantic feature is merged with the visual
feature encoded by the ResNet18 for predicting the aesthetic
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Fig. 8: Comparison of the capability of different models on extracting the main subjects. We include the selected POC models
and IAA models trained with or without (w/o) KD in this comparison. Every two rows form a group of examples, where the
top row in each group presents source images and layerCAMs [28] obtained from the selected models; the bottom row of each
group presents GT main subject masks for the source images and masks derived from the corresponding layerCAMs (with
70 percentile of the layerCAMs as the segmentation threshold). The results show that the IAA model with KD better locates
main subjects than POC models and the IAA model without KD, implying teacher knowledge from POC models allows the
student model to capture semantic patterns more relevant to subject areas. Further quantitative results are given in Fig. 10.
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Fig. 9: LayerCAM examples of cases that do not have a clear
main subject. For these cases, the IAA model trained with KD
is still able to locate the most appealing parts.

label. Since only aesthetic labels are predicted, the model is
trained directly with EMD loss.

3) Multi-task ResNet18: Instead of taking the two-hot se-
mantic vector as an auxiliary input, the multi-task ResNet18
setting is designed to predict the two-hot semantic vector.
Specifically, based on the baseline model, the multi-task
ResNet18 model not only predicts the aesthetic labels accord-
ing to the visual features from the ResNet18 backbone, but also
predict the two-hot semantic vector with the visual feature.
Aesthetic label prediction is learned subject to the EMD loss
as previous settings; for the semantic prediction, the model is
trained subject to binary cross-entropy (BCE) loss. The multi-
task loss is given as:

LMT (D̂a,Da, v̂s, vs) = EMD(D̂a,Da) +BCE(v̂s, vs),
(9)

where Da denotes a GT aesthetic label (in the form of
distribution), vs represents a GT semantic label (in the form
of two-hot vector), D̂a denotes a predicted aesthetic label, and
v̂s denotes a predicted semantic label.

4) KD ResNet18: This setting denotes the ResNet18-based
IAA model trained with the proposed KD scheme as intro-
duced in Sec. III.

All above-mentioned models are trained with the same
setting as Sec. IV-A. The results are presented in Table XII. As
the table shows, with extra semantic labels, performance gains
can be observed from the results of the Multi-modal ResNet18
model or the Multi-task ResNet18. This confirms that semantic
guidance can help IAA models to learn how to measure image
aesthetics better. However, even with extra semantic labels, the
Multi-modal ResNet18 model or the Multi-task ResNet18 are
inferior to the setting with KD, this indicates that the proposed
KD scheme can more effectively provide semantic guidance
than using extra semantic labels, which supports our earlier
discussion on weaknesses of using human semantic labels in
Sec. III-A.

C. Capability of Extracting the Main Subjects

Since it is a widely accepted opinion that an aesthetically-
pleasant image should be able to lead the attention of the
observer to the main subject [50], semantic patterns for aes-
thetic features should be relevant to the subject area. Therefore,
a more explainable way for measuring the performance of a
deep IAA model is to evaluate the capability of a deep IAA
model on extracting main subjects from aesthetically-pleasant
images. To this end, we collect a number of aesthetically-
pleasant images and manually label their main subjects. Then
for different IAA models, we can derive the predicted main
subjects from their class activation maps and compare the
accuracy of extracting main subjects across different models.

Specifically, we collect those aesthetically-pleasant images
from the AVA testing set under the split from [29]. Images with
average scores greater than 6.5 are regarded as aesthetically-
pleasant images. Then main subjects are firstly detected with a
salient object detection model [51]. We find that some types of
images, such as landscapes, may not have a clear main subject.
For these cases, it may be hard to conclude a definite salient
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TABLE XIII: Comparison between extra computational costs brought by the proposed KD scheme and the computational costs
for training or testing an end-to-end IAA model.

Setting Remark Model Input size
Cost per input
(in FLOPs(G))

# Epochs
Cost per input × # Epochs
(in FLOPs(G))

1
Feature extraction with POC models

ResNeXt101 (SWSL) (3, 640, 640) 134.7 1 134.7
2 ResNeXt101 (IG) (3, 640, 640) 1280 1 1280.0
3 ResNet-v2 (3, 640, 640) 1525.8 1 1525.8
4 Train the knowledge distiller in Fig.5 (1, 23424) 0.3 12 3.6
5 Distill teacher knowledge in Fig.5 (1, 23424) 0.1 1 0.1

Total extra cost per input 2944.2

6 Train the end-to-end IAA model with KD ResNeXt101 (SWSL) (3, 300, 300) 91.8 12 1101.2
7 Test the end-to-end IAA model with KD ResNeXt101 (SWSL) (3, 300, 300) 30.6 1 30.6
8 Train the end-to-end IAA model w/o KD ResNeXt101 (SWSL) (3, 300, 300) 91.8 12 1101.2
9 Test the end-to-end IAA model w/o KD ResNeXt101 (SWSL) (3, 300, 300) 30.6 1 30.6

object detection result. Therefore, we firstly select images
whose detected main subjects occupy 10%∼30% of its area.
Then we manually remove images with poor salient object
detection results. Finally, 504 images with salient object masks
are prepared, where the salient object masks are regarded as
GT labels for the main subjects. Note that for those removed
cases, the IAA model trained with the proposed KD scheme is
still able to locate their most appealing part as demonstrated
in Fig. 9. While these cases do not have a commonly-accepted
guideline to outline their main subjects, and therefore, these
cases are not included in the evaluation of this section.

The model trained with the proposed KD scheme is then
compared to the version trained without KD and the selected
POC models in terms of locating the main subjects. Some
selected cases are given in Fig. 8. We firstly extract layerCAMs
[28] from the selected models. Then masks for the main
subjects are derived from the layerCAMs by setting the 70
percentile of the layerCAM as the threshold for segmenting
the regions of the main subjects. We can observe from Fig. 8
that: 1) different POC models tend to have different focuses,
implying different POC models have sensitivities to different
semantic patterns; 2) the IAA model without KD captures
semantic patterns less relevant to the subject area, which
supports our claims that aesthetic labels are too abstract to
guide the deep model to learn about semantic patterns for
constructing aesthetic features; 3) the IAA model with KD
supervised by knowledge on semantic patterns tend to have
a better focus on subject areas than the version without
KD, implying that KD allows the student model to capture
semantic patterns more relevant to the subject area; 4) the
focused subject areas of the IAA model with KD are further
improved from those of the POC models, which implies that
the knowledge distiller can build aesthetic features upon GSFs.

Besides qualitatively analyzing the impact of teacher knowl-
edge on the student model, to confirm the judgments in
qualitative analysis, we further quantitatively evaluate the per-
formances of the selected models on extracting main subjects
with the collected dataset. To this end, we measure mean
intersection-over-union (mIoU) between the masks derived
from layerCAMs and the GT masks. Since the mIoU results
are varied subject to different segmentation thresholds, we plot
the change of mIoU subject to segmentation thresholds from
5 to 95 percentile of the layerCAMs. According to Fig. 10,
from best to worst, the performance on main subject detection
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POC ResNetv2 POC ResNeXt101(IG)
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Fig. 10: Curves for depicting mIoU varying by segmentation
thresholds from 5 to 95 percentile. Different curves present
the performance of different models on extracting the main
subjects on aesthetically-pleasant images in terms of mean
intersection-over-union (mIoU). We include the selected POC
models and IAA models trained with or without (w/o) KD in
this comparison. Higher mIoU means better performances on
extracting main subjects on our collected dataset.

can be ranked as: IAA ResNeXt101 with KD > selected POC
models > IAA ResNeXt101 without KD. This further confirms
our judgments concluded in the qualitative analysis.

D. Cost and Benefit Analysis

The extra cost of the proposed KD scheme is brought by:
1) extracting GSFs from multiple POC models; 2) training
the knowledge distiller; 3) distilling teacher knowledge from
GSFs; 4) computing losses between teacher aesthetic features
and student aesthetic features when training the student model.
To compare the scale of these extra computational costs to the
computational cost for training a baseline IAA model, the costs
are estimated and listed in Table XIII. Specifically, the scale
of the training cost is measured as three times of the testing
costs for the same model with the same input [52]. Since all
the above-mentioned four parts that bring extra computational
costs can be conducted separately, the overall extra compu-
tational costs are computed by linear combination. In Table
XIII, to show the total extra cost brought by the proposed
KD scheme, we present the costs for feature extraction with
POC models (Setting 1, 2, 3), training the knowledge distiller
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TABLE XIV: Comparison of training with GT (with mixed
loss or mixed label) or without GT (with teacher prediction
only) along with teacher predictions for supervision (evaluated
on train-test split from [29]).

Setting SRCC PLCC Acc

with teacher prediction 0.770 0.770 82.1%
with mixed loss 0.773 0.773 82.2%
with mixed label 0.769 0.769 82.0%

(Setting 4), and distill teacher knowledge with the knowledge
distiller (Setting 5). Compared to the forward-propagation or
backward-propagation via the models, the computational costs
for loss computations are negligible, and therefore, costs for
loss computations are not listed in Table XIII. Therefore, the
total extra cost per input is the sum of the costs brought by
feature extraction with POC models, training the knowledge
distiller, and distilling teacher knowledge with the knowledge
distiller. As to the cost for training the end-to-end IAA model
with or without KD (Setting 6, 8), their computational costs
are the same since the negligible cost for computing the KD
loss is the only difference that brings the extra cost for the
setting with KD. For the cost for testing the end-to-end IAA
models with or without KD (Setting 7, 9), the costs are the
same since their settings are the same in the testing phase.

As it can be seen from Table XIII, the total extra cost is
2944.2 FLOPs(G) while the training cost for an end-to-end
IAA model is 1101.2 FLOPs(G) (Setting 6, 8). This means
that the total extra cost is ∼1.7 times higher than training an
end-to-end IAA model. Do note that the total training cost
(Setting 6, 8) is a multiple of the number of epochs, while
our setting adopts a rather fewer number of epochs in training
(i.e., 12 epochs), which makes the extra cost seemingly higher.
While it is common to use a few tens of epochs in training
an end-to-end IAA model. For example, Li et al.’s method
[33] adopts 50 epochs in training. If our model is also trained
for a few tens of epochs, the extra cost will be less than the
training costs for an end-to-end model. On the contrary, among
all three parts within the extra cost (Setting 1∼5), only the
cost brought by training the knowledge distiller is a multiple
of the number of epochs (Setting 4), and other parts of the
extra cost will stay constant. Since the cost brought by training
the knowledge distiller is on a scale of 1, increasing the
number of epochs for training the knowledge distiller does not
significantly increase the overall extra cost. With the extra cost,
the model performance can be effectively improved by 4.8%
(in Table VIII), and such an improvement is generalizable (in
Fig. 6). Therefore, we believe that the proposed KD scheme
is a rather cost-effective way for improving the performance
of an end-to-end IAA model.

E. Discussion on Cause of Improvements brought by KD

A better IAA model requires more discriminative aesthetic
features, and more discriminative aesthetic features require
more diverse semantic patterns.

For the teacher model, using POC model with larger sizes,
using POC model with more training data, or combining
GSFs from different POC models can significantly improve the
teacher models’ performance (Table I and Table II). The main

TABLE XV: Results for ablation studies on tasks besides
distribution prediction (evaluated on train-test split from [29]).

Dataset Task Setting SRCC PLCC Acc

CUHK-PQ Classification
Teacher - - 96.9%
w/o KD - - 96.2%
with KD - - 96.9%

AVA Classification
Teacher - - 82.8%
w/o KD - - 80.0%
with KD - - 81.7%

AVA Regression
Teacher 0.784 0.785 82.3%
w/o KD 0.687 0.689 78.0%
with KD 0.707 0.693 78.9%

reason is that all above-mentioned approaches can provide
more diverse semantic patterns that potentially provides more
relevant patterns for constructing aesthetic features covering
more contents. As a result, more discriminative aesthetic
features further lead to performance gains.

For the student model, the performance improvement
brought by KD can be explained by the semantic patterns
learned from the teacher. As we experimentally show in
Sec. IV-B and Sec. IV-C, both the teacher model and the
student model trained merely with aesthetic labels construct
aesthetic features from semantic patterns captured by their
own pretrained backbones. Since the selected POC models
for the teacher model can capture more semantic patterns
than the student’s backbone, the teacher aesthetic features are
expected to cover more contents than the student aesthetic
features. Thus, teacher aesthetic features can be used for
extra supervision that guides the student model to capture
more relevant semantic patterns for constructing aesthetic
features covering more contents, which leads to higher IAA
performance. Besides ablation studies on IAA in Table V,
results on detecting the subject areas (Fig. 8 and Fig. 10) also
imply that the IAA model learns to capture more IAA-relevant
semantic patterns (related to the subject areas).

F. Variants of KD Loss

In this section, we further investigate some variants of the
proposed KD loss along with the proposed method.

1) Combine GT with teacher predictions: We first inves-
tigate whether combining GT with teacher predictions will
further improve the student model’s performance. To this end,
we have set up two settings to supervise the student model
with the mixture of GT and teacher predictions:
• Mixed loss: GT and teacher predictions are separately

used for loss computation as follows:

L1(D̂t, D̂s,DGT , ft, fs) =
1

2
EMD(D̂t, D̂s)

+
1

2
EMD(DGT , D̂s) +MSE(ft, fs),

(10)

where D̂t, ft denote the teacher prediction and the teacher
aesthetic feature, D̂s, fs denote the student prediction and
the student aesthetic feature, DGT denotes GT, EMD(·)
and MSE(·) refer to EMD loss and mean squared error
(MSE) loss respectively.
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• Mixed loss: GT and teacher predictions are linearly
combined before loss computation:

L2(D̂t, D̂s,DGT , ft, fs) = EMD(
1

2
DGT +

1

2
D̂t, D̂s)

+MSE(ft, fs).
(11)

The above-mentioned two settings are compared with the
results of supervision with only teacher predictions. All models
are based on ResNeXt101 (SWSL). The experimental results
are given in Table XIV. As the results show, both settings
with a mixture of GT and teacher predictions as supervision
do not significantly outperform the setting merely with teacher
predictions as supervision, considering a 0.003 performance
variations as discussed in Sec. V-A. We interpret the results
as follows. Compared to directly supervising the student model
with GT, supervision with teacher predictions provide easier
solutions to the student to map from aesthetic features to
aesthetic predictions. Even trained with easier supervisions,
there is still a performance gap between the teacher model
and the student model. This means even we mix the GT with
the teacher predictions for supervision, it is less likely that the
student model will able to learn more information from GT.

2) Generalized to other IAA tasks: Since the distribution
labels are not available on some IAA datasets, it would be
better to verify the effectiveness of the proposed method when
binary labels or MOSs are used as the GT. To this end, we
adjust the KD loss to the cases when only binary labels or
MOSs are available.
• For the case of binary classification, the first term can be

replaced with a binary cross-entropy (BCE) loss:

LKD(ŷt, ŷs, ft, fs) = BCE(ŷt, ŷs) +MSE(ft, fs),
(12)

where ŷt ∈ [0, 1], ft denote the teacher prediction and the
teacher aesthetic feature, ŷs ∈ [0, 1], fs denote the student
prediction and the student aesthetic feature, BCE(·) and
MSE(·) refer to BCE loss and mean squared error
(MSE) loss respectively.

• For the case of score regression, the first term can be
replaced with a MSE loss:

LKD(ŷt, ŷs, ft, fs) = MSE(ŷt, ŷs) +MSE(ft, fs),
(13)

where ŷt, ft denote the teacher prediction and the teacher
aesthetic feature, ŷs, fs denote the student prediction
and the student aesthetic feature, MSE(·) and MSE(·)
refer to MSE loss and mean squared error (MSE) loss
respectively.

We have conducted experiments on both CUHK-PQ dataset
[14] (binary classification) and AVA dataset (binary classi-
fication and score regression) with above-mentioned losses.
The results are given in Table XV. The results show that the
proposed KD scheme is still effective in the two other cases
of IAA.

VI. CONCLUSION

In this paper, we have focused on the problem of ab-
stractness of aesthetic labels. On the one hand, during in-

ference, the IAA model is required to relate various distinct
semantic patterns to the same aesthetic label. On the other
hand, when training, it would be hard for the IAA model to
learn to distinguish different semantic patterns merely with
the supervision from aesthetic labels. When the supervision
was merely provided by aesthetic labels, experimental results
(Table V) have implied that an IAA model mostly learned
to construct aesthetic features from semantic patterns already-
known to its pre-trained backbone, instead of learning new
semantic patterns for more discriminative aesthetic features.
Therefore, an IAA model can be improved by providing
semantic guidance in training, so that the IAA model can
learn extra semantic patterns for more discriminative aesthetic
features.

The proposed method is inspired by the observation that
different POC models tend to capture different sets of se-
mantic patterns (Fig. 8). And therefore, an IAA model that
captures less diverse semantic patterns can learn from these
POC models to capture more diverse semantic patterns for
more discriminative aesthetic features covering more contents.
However, since knowledge from POC models may not directly
applicable to IAA (Fig. 2, Fig. 4, and Table IV), we have
proposed to train a separate knowledge distiller to take relevant
parts from the knowledge of POC models. Thus, a single-
backbone end-to-end model can be trained for IAA with
semantic guidance from multiple POC models (Fig. 3). Since
the selected POC models are deeper or trained with more data,
extra semantic patterns are learned by the student for more
discriminative aesthetic features (Table I, Table II, Table III).

Extensive experiments showed that: 1) the proposed KD
scheme enables the student IAA model to capture more IAA-
relevant semantic patterns for building more discriminative
aesthetic features (Table V, VI, IX, Fig. 8, 10); 2) the proposed
KD scheme also allows the student IAA model to adapt to
smaller-sized inputs (Table VIII, VII); 3) the proposed KD
scheme is generalizable across different train-test splits (Fig.
7, 6); 4) the proposed KD scheme is a rather cost-effective
way for improving the performance of an IAA model (Table
XIII); 5) the proposed IAA method significantly outperforms
10 previous relevant methods (Table X, XI); 6) the proposed
approach can be adapted to binary classification and regression
scenarios of IAA while keeping its effectiveness (Table XV).
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