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Slow Motion Matters: A Slow Motion Enhanced
Network for Weakly Supervised Temporal Action

Localization
Weiqi Sun, Rui Su, Qian Yu* Member, IEEE and Dong Xu, Fellow, IEEE

Abstract—Weakly supervised temporal action localization
(WTAL) aims to localize actions in untrimmed videos with
only weak supervision information (e.g., video-level labels). Most
existing models handle all input videos with a fixed temporal
scale. However, such models are not sensitive to actions whose
pace of the movements is different from the “normal” speed,
especially slow-motion action instances, which complete the
movements with a much slower speed than their counterparts
with a “normal” speed. Here arises the slow-motion blurred issue:
It is hard to explore salient slow-motion information from videos
at normal speed. In this paper, we propose a novel framework
termed Slow Motion Enhanced Network (SMEN) to improve the
ability of a WTAL network by compensating its sensitivity on
slow-motion action segments. The proposed SMEN comprises a
Mining module and a Localization module. The mining module
generates mask to mine slow-motion-related features by utilizing
the relationships between the normal motion and slow motion;
while the localization module leverages the mined slow-motion
features as complementary information to improve the temporal
action localization results. Our proposed framework can be
easily adapted by existing WTAL networks and enable them be
more sensitive to slow-motion actions. Extensive experiments on
three benchmarks are conducted, which demonstrate the high
performance of our proposed framework.

Index Terms—Weakly-supervised learning, temporal action
localization, slow motion.

I. INTRODUCTION

TEMPORAL action localization (TAL) is an important
yet challenging task for video understanding. It aims

at localizing the temporal boundaries (i.e., the starting and
ending frames) of the actions of interest and recognizing their
action categories in untrimmed videos [1], [2]. TAL has wide
real-world applications such as video surveillance [3] and
abnormality alarm [4] for aged care. Therefore, this task has
attracted increasing attention from the research community
and embraced great improvements [5]–[14] in recent years.
However, these fully supervised methods require extensive
manual frame-level annotations, which is labor-consuming and
time-costing.

To address this problem, researchers introduced the task
of weakly supervised temporal action localization (WTAL).
Specifically, instead of using the frame-level temporal an-
notation, WTAL leverages weaker but cheaper annotations,
e.g., video-level labels, during the training process. There are
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several solutions to the WTAL task. For example, the works
in [15]–[17] formulate this problem as a multiple instance
learning (MIL) task [18] and treat the entire untrimmed video
as a bag containing both positive and negative instances,
generating class activation sequence (CAS) to obtain the
localization results.

Although the existing WTAL works [15]–[17] have achieved
great progress, they overlooked the fact that action instances
could exhibit different paces of movement, especially Slow
Motion, which is defined as an action taking place at a slower
than normal speed. Slow motion actions are common, such
as the playback in sports videos: In THUMOS’14 [1] dataset,
there are more than 64.0% videos and 26.4% action instances
containing slow motion. As shown in Fig. 1a, the two clips
are from the same video. The first clip displays the action
“Javelin Throw” at normal speed, and the second clip shows a
slow-motion replay of the action. It is clear to see that a slow-
motion action is drastically different from the same action at
normal speed. A commonly used pipeline of the existing works
is to extract features from video frames sampled at a fixed
rate and then to process the extracted features to get the final
predictions. When determining the sampling rate, researchers
mainly consider actions occurring at a normal rate, i.e., normal
motion, and ignore the action segments with slow motion. As
a result, it is hard for the WTAL frameworks following this
pipeline to localize slow motion actions.

Localizing slow motion is not easy. First, unlike normal
motion which has salient characteristics, slow motion only has
subtle changes in consecutive frames within a temporal period,
as shown in Fig. 1a. As a result, slow motion is not easy
to be detected. Second, slow motion is easy to be confused
with background instances as they share similar characteristics
that most of the contents are unchanged in adjacent frames.
Therefore, to promote the development of WTAL, a model that
is not only sensitive to normal-motion actions but slow-motion
actions is expected.

This paper addresses the above problems by introducing
a novel framework called Slow Motion Enhanced Network
(SMEN). The idea is straightforward: To make a model be
sensitive to slow motion, the model should see sufficient slow
motion samples during the training process. We thus propose
a data mining strategy to find slow-motion-related features.
SMEN consists of two modules: 1) a Mining module to
generate masks for filtering out slow-motion-related features
from the whole video features, and 2) a Localization module
to leverage both the whole video features and minded slow-
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(a) Comparison of a normal motion and a slow motion. These two video segments are sampled from the same video at the
same sampling rate.

Ground Truth

Normal Motion Slow Motion

(b) Comparison of CAS value produced by two models respectively trained on the original video features and sub-sampled
features. Baseline network is the same.

Fig. 1. An example of action instance of the category “Javelin Throw” in the THUMOS’14 dataset. The barcode is the ground truth (GT). Specifically, the
green barcode is the action instance with normal motion, while the red is the action instance with slow motion. The following line charts are CAS value
of baseline (ACM-NET [19]) using normal-sampled feature and sub-sampled feature, respectively (i.e., CASnormal and CASsub). The baseline network
trained on sub-sampled feature can better handle action instances with slow motion.

motion features to predict temporal boundaries of actions.
Considering that only video-level labels are available un-

der the weakly-supervised setting, the conventional mining
strategy which relies on loss is not applicable. Therefore,
our proposed mining module mines slow motion actions by
using the prior that the action at normal speed is essentially
a “speed-up” version of its slow motion. In other words, a
slow motion action can be converted, or speed-up, to normal
motion through sub-sampling, so that their action characteris-
tics become more salient and they are easier to be detected by
the mining module. The proposed localization module then
respectively processes the mined slow-motion features and
the original video features with a two-branch architecture,
and produces the final temporal action localization results by
combining predictions of these two branches.

The contributions of this work are three-fold:

(1) We propose a novel weakly supervised temporal action
localization (WTAL) framework called Slow Motion En-
hanced Network (SMEN). To the best of our knowledge,
this is the first work to explore the salient slow-motion
information in the WTAL task.

(2) We introduce a novel slow-motion Mining strategy, which

utilizes a prior of slow-motion actions to improve their
“actionness”. A two-branch localization network is pro-
posed to handle slow- and normal-motion actions simul-
taneously.

(3) Comprehensive experiments conducted on two bench-
mark datasets, THUMOS’14 and ActivityNet v1.3,
demonstrate the effectiveness of our framework for the
WTAL task. Our proposed SMEN outperforms all state-
of-the-art methods by a significant margin. Furthermore,
our proposed framework can be easily adapted to different
base networks and effectively improve their performance
in the WTAL task.

II. RELATED WORKS

Weakly-supervised Temporal Action Localization.
More and more studies draw increasing attention to WTAL
due to the time-consuming and error-prone manual labeling
in a fully-supervised setting. UntrimmedNet [20] introduced
a classification module and a selection module for predicting
a classification score and selecting relevant video segments,
respectively. On top of that, STPN [21] introduces a sparse
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loss to enforce the sparsity of selected segments. W-
TALC [15], CoLA [22] and FTCL [23] employ deep metric
learning to force features from different classes to get farther
distance than those from the same classes. Nguyen et al. [21]
and BaS-Net [17] introduce an auxiliary background class
to model background activity. ACM-NET [19] introduces
a class-agnostic action-context branch to tackle the action-
context confusion issue. Wang et al. [24] and Li et al. [25]
utilize temporal consistency of video to refine localization
results especially for less discriminative action segments.
ACN [26] features a new coherence loss that better supervises
action boundary learning and facilitates proposal regression.

TSCN uses a self-training strategy with pseudo labels pro-
duced by two stream branches to improve the performance.
UGCT [27] and Huang et al [28] focuses on improving the
quality of pseudo labels. CO2-NET [29] utilizes a cross-modal
consensus module to filter out the information redundancy
in the main modality with the help of information from
different perspectives of the auxiliary modality. STAR [30],
3C-NET [31], SF-NET [32], SODA [33], and BackTAL [34]
use additional weak information during training and obtain
huge improvement.

Slow Motion in Video. Slow-motion action instance often
occurs in sports video [35]–[38] in the form of replays.
Many existing work [39]–[42] focus on detecting slow motion
in sports by playback speed classification. However, these
works usually employ a specific domain analysis. Differently,
SpeedNet [43] works on any videos and proposes a novel
network to automatically predict the “speediness” of moving
objects in videos, i.e., whether they are at or slower than their
“natural” speed. To the best of our knowledge, most existing
WTAL works do not consider that most videos contain action
instances with different movements and handle all input videos
with a fixed temporal scale. In addition, Zhu et al. [44] also
observed that the speed of motion varies constantly. They
proposed a Multirate Visual Recurrent Model (MVRM) by
encoding frames of a video clip with different intervals and
apply it in self-supervised learning in video domain. Unlike
previous WTAL works, we introduce a data mining module
to explore slow-motion information in a video and design a
two-branch network for learning from original video features
and the enhanced slow-motion features.

Masking Mechanism. Most WTAL methods tend to
focus on the most discriminative action segments but ignore
trivial action segments, e.g., the beginning or the end of
an action, which results in incomplete action localization.
Therefore, masking mechanism is proposed to highlight less
discriminative segments. For example, Hide-and-Seek [45]
proposes to randomly erase input segments during training,
which can force the model to discover less discriminative
segments. CleanNet [46] utilizes mask mechanism to help
improve boundary regression. And more sophisticated masking
mechanisms are used in later work such as Zhong et al. [47],
ASSG [48] and A2CL-PT [49].

Although our proposed Mining module also employs a
masking mechanism, it is distinguished from others as it
specifically focuses on mining slow-motion-related features.
Furthermore, the proposed Mining module works in a novel

way by utilizing the prior that the normal-motion action
can be treated as the accelerated version of the slow-motion
action. Thus we can convert a slow-motion action to the
corresponding normal-motion action by sub-sampling without
using any additional annotations or loss feedback.

III. METHODOLOGY

In this section, we first introduce basic notations and
preliminaries in Section III-A. In Section III-B, we briefly
review ACM-NET [19], which is used as the CAS generation
backbone in our Slow Motion Enhanced Network (SMEN).
We then introduce the proposed SMEN in Section III-C.

A. Notations and Preliminaries

Given an untrimmed video V , we first divide it into non-
overlapping 16-frame segments V =

{
vi ∈ R16×H×W×3}T

i=1
as in previous methods [15], [17], [21], where T denotes the
total number of segments. Each segment vi is then fed into a
pre-trained feature extraction network (e.g. I3D [50]) to gener-
ate a d dimension feature vector xi ∈ Rd, and feature vectors
of T segments are stacked together to form a feature sequence
X = [x1, x2, · · · , xT ]

> ∈ RT×d as the video representation.
Each video has a ground-truth video-level action class label,
i.e., a multi-hot vector Y = [y1, y2, · · · , yC , yC+1]

>, where
C is the number of action classes. yc = 1, c ∈ [1, 2, · · · , C]
indicates that the c-th action happens in the input video and
yC+1 = 1 indicates that the input video contains non-action
background class.

B. Review of ACM-NET

Our proposed SMEN uses ACM-NET [19] as our CAS
generation backbone to produce CAS in order to obtain the
sub-sampled mask and generate the temporal action localiza-
tion results. Note that our proposed SMEN can use any CAS
generation methods, and we take ACM-NET as an example in
this work. We also evaluate our proposed SMEN on different
CAS generation backbones in Section IV.

ACM-NET [19] first utilizes a classification branch to
generate the initial CAS (Eq. 1). Then, a three-branch class-
agnostic attention module is used to generate three sets of
attention weights A for discriminating action instance, action
context, and non-action background, respectively (Eq. 2).

CAS = Φcls(X) (1)

A = Φattn(X) (2)

where CAS ∈ RT×(C+1) denotes the classi-
fication logit of each action class over time,
A = {(attnins(t), attncon(t), attnbac(t))}Tt=1 ∈ RT×3

indicates the likelihood of t-th snippet being an action
instance, an action context, and a non-action background,
respectively.

Based on the attention weights generated by these three
branches, ACM-NET constructs three sets of CAS as follow:

CAS∗ = attn∗ × CAS, ∗ = {ins, con, bac} (3)
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Fig. 2. Overview of our proposed Slow Motion Enhanced Network (SMEN). Our proposed SMEN first extracts the video feature X from the original videos.
(a) The Mining module applies sub-sampling operation on the original video feature X and uses the CAS generation backbone to generate CASsub, which
is then used to produce the mask to generate the enhanced slow-motion feature Xslow . (b) The Localization module consists of two branches with one (i.e.,
the Normal Motion Centric Branch) taking the original video feature X as the input while the other one (i.e., the Slow Motion Centric Branch) taking the
enhanced slow-motion feature Xslow as the input. The CAS and the attention weights (i.e., CASnormal, attnnormal, CASslow , attnslow) generated
from these two branches are combined via Fusion module to output the final predictions.

which are then aggregated to compute video-level classifica-
tion scores for action instance, action context, and non-action
background.

These video-level classification scores are supervised by the
pre-defined labels Yins = [yc = 1, yC+1 = 0], Ycon =
[yc = 1, yC+1 = 1] and Ybac = [yc = 0, yC+1 = 1] for
action instance, action context, and non-action background,
respectively.

To train the ACM-NET [19], three binary cross-entropy loss
are used in the objective functions for these three branches,
which are denoted as Lins, Lcon and Lbac, respectively. The
whole ACM-NET is trained by jointly minimizing the overall
loss function as follow:

Lacm−net = Lcls + Ladd (4)

Lcls = Lins + Lcon + Lbac (5)

Ladd = λ1Lgui + λ2Lfeat + λ3Lspa (6)

where Lgui, Lfeat and Lspa are the attention guide loss, the
action feature separation loss and the sparse attention loss,
respectively. We kindly refer readers to [19] for more details
about ACM-Net.

C. Slow Motion Enhanced Network

As shown in Fig. 2, our Slow Motion Enhanced Network
(SMEN) consists of a Mining module and a Localization
module. The Mining module takes the original video feature
as input and outputs masks used to filter slow-motion-related
features. The Localization module takes both the mined slow-
motion features and the original video feature to produce
temporal action localization results. We will introduce the
details in the following sections.

1) Slow-motion Mining: The proposed Mining module
aims to mine slow-motion-related features. However, slow-
motion actions do not have characteristics as salient as normal
motions. Therefore, we first improve the “actionness” of slow-
motion actions by sub-sampling the original video feature
X ∈ RT×d with ratio τ , which results in a speed-up video
features Xsub ∈ R(T//τ)×d.

Specifically, we sample one snippet for every τ snippets
from the original video feature X to produce the sub-sampled
feature Xsub. After sub-sampling, the characteristics of slow
motion are enhanced, so that become easier to be detected.

We use ACM-NET as a backbone of the Mining module
which generates a mask M to localize slow-motion features
within sub-sampled feature Xsub. The CAS predicted by the
backbone network are used for mask generation.

To obtain high-quality masks, we apply a smooth mask
generation mechanism on the predicted CAS. In the smooth
mask generation mechanism, we use the maximum values
of the CAS across all action classes to represent the action
activations, which are then normalized by using the Min-Max
Normalization, i.e., Mnorm ∈ R(T//τ)×d.

Furthermore, inspired by [51], we use the Coefficient of
Variation Smoothing to smooth the normalized action acti-
vations Mnorm based on the variation in temporal domain
to remove the short temporal segments which are usually
considered as noise. Specifically, we define the Coefficient of
Variation cv as in Eq. 7:

cv =

√
D (Mnorm)

E (Mnorm)
(7)

where D(·) and E(·) are the functions to calculate the devi-
ation and the mean, respectively. We then use the Coefficient
of Variation cv together with a scale factor s to smooth the
normalized action activations Mnorm as follows:

Msmooth
i = (Mnorm

i )
α (8)
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α = 1− s× cv (9)

where Msmooth
i and Mnorm

i are the i-th element in the
smoothed action activations Msmooth ∈ R(T//τ)×d and the
normalized action activations Mnorm. Then we apply a binary
function to generate the mask M by using a pre-defined
threshold θ as following:

Mi =

{
1, Msmooth

i ≥ θ
0, Msmooth

i < θ
(10)

The mask M is then up-sampled to the temporal length of the
original video feature X by nearest neighbor interpolation,
finally get mask M ∈ RT×d.

As the mask is produced based on the high action activation
values generated by using the sub-sampled input feature Xsub,
it can be used to filter the slow-motion feature from the
original video feature X.

2) Temporal Localization: Once slow-motion-related fea-
tures are obtained, they can be used as complementary for
original video features for action localization. Precisely, the
Localization module consists of two branches, a Normal-
motion branch (N-branch) and a Slow-motion branch (S-
branch), which both are built upon our CAS generation
backbone (i.e., ACM-NET [19]). Similar to ACM-NET [19],
the N-branch takes the original video feature X as input and
produces the CAS and attention weights. While the S-branch
receives the enhanced slow-motion feature Xslow as input
which are generated by filtering the original video feature
with the mask produced by the Mining module. We then
apply max pooling operation to combine the CAS and the
attention weights generated from these two branches and use
the same post-processing method and inference method as
in [19] to produce the final weakly supervised temporal action
localization results.

3) Training Details: For demonstration, our proposed
SMEN framework uses the ACM-NET as the backbone. We
use Eq. 4-6 as loss functions to optimize the Mining module
and Localization module separately. Note that the Mining
module is first trained and then fixed to generate mask M .
Besides, as the Localization module consists of two branches,
there are two action feature separation loss Lnormalfeat and Lslowfeat .
We combine them as follows:

Lfusefeat = (1− β)Lnormalfeat + βLslowfeat (11)

In this work, we empirically set the hyper-parameter β = 0.5.
During the inference stage, the Mining module is discarded as
the Slow-motion branch of the Localization module is well
trained to focus on the salient slow-motion features. Both
branches in the Localization module take the original video
feature X as the input.

IV. EXPERIMENT

A. Datasets and Evaluation Metrics

1) Datasets.: We perform extensive experiments on
two temporal action localization benchmark datasets THU-
MOS’14 [1] and ActivityNet1.3 [61].

THMOUS14 [1] contains 200 and 213 untrimmed videos
for validation and testing sets, respectively, and the action
instances are annotated with precise temporal action bound-
aries and action classes from 20 different action categories. On
average, each video contains 15.4 action instances, and more
than 60% videos included slow motion. In addition, the video
length varies from a few seconds to more than one hour, which
makes it very challenging, especially for weakly-supervised
temporal action localization. Following previous works [17],
[19], we use the videos in the validation and the testing sets
for training and testing, respectively.

ActivityNet1.3 [61] contains 19,994 untrimmed videos with
10,024, 4,926, and 5,044 videos for training, validation, and
testing sets, respectively. All action instances in the training
and validation sets are labeled from 200 different action cate-
gories. On average, each video contains 1.6 action instances.

HACS [62] dataset contains 50k videos spanning 200
classes, where the training/validation/testing set consists of
38k/6k/6k videos, respectively. Compared with existing bench-
marks, HACS contains large-scale videos and action instances,
serving as a more realistic and challenging benchmark.

2) Evaluation Metrics.: We use the mean Average
Precision (mAP) with different temporal Intersection over
Union (t-IoU) thresholds to evaluate our weakly-supervised
temporal action localization performance, which denotes as
mAP@t-IoU. Specifically, the t-IoU thresholds used to calcu-
late the average mAP is [0.1:0.1:0.7] for THUMOS’14 [1],
[0.5:0.05:0.95] for ActivityNet v1.3 [61] and HACS [62].

B. Implementation Details

We use the I3D network [50], which is pre-trained based
on the Kinetics dataset [63], as our feature extractor to extract
both the RGB and optical flow features. The optical flow maps
are generated by using the TVL1 algorithm [64]. Instead of
extracting the features for each frame, we divide the video
into a set of non-overlapping 16-frame segments and extract
the RGB and flow features for each segment.

During the training process, the batch size is set to be 16,
512, and 64 for the THUMOS’14 dataset [1], the ActivityNet
v1.3 dataset [61], and the HACS dataset [62], respectively.
We train the proposed Mining module for 1500 iterations on
the THUMOS’14 and the ActivityNet v1.3 datasets and 10
iterations on the HACS dataset. For the optimizer, we choose
the Adam optimizer [65] for all three datasets. The learning
rate is set to be 5×10−5, 1×10−4, and 1×10−4, respectively.
We increased the learning rate to ten times its value to train
the Localization module. The hyperparameter r, θ and s are
set to be 4, 0.4 and 0.3 for all datasets.

We kindly refer readers to [19] for other parameters of back-
bones. All the experiments are conducted with PyTorch [66]
on a single GTX 2080Ti GPU.

C. Comparison with the State-of-the-arts Methods

We compare our proposed network with existing fully
supervised and weakly supervised temporal action localiza-
tion methods on two benchmark datasets THUMOS’14 [1],
ActivityNet v1.3 [61] and HACS [62].
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TABLE I
TEMPORAL LOCALIZATION PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS ON THE THUMOS’14 TEST SET [1]. NOTE THAT †

REPRESENTS METHODS THAT UTILIZE EXTERNAL SUPERVISION INFORMATION BESIDES FROM VIDEO LABELS.

Supervision Year Methods
mAP@t-IoU(%)

AVG[0.1-0.5] AVG[0.3-0.7] AVG[0.1-0.7]0.10 0.20 0.30 0.40 0.50 0.60 0.70

Full

2017 SSN [52] 66.0 59.4 51.9 41.0 29.8 - - 49.6 - -
2018 BSN [53] - - 53.5 45.0 36.9 28.4 20.0 - 36.8 -
2019 G-TAD [54] - - 54.5 47.6 40.2 30.8 23.4 - 39.3 -
2019 GTAN [5] 69.1 63.7 57.8 47.2 38.8 - - 55.3 - -
2021 BSN++ [55] - - 59.9 49.5 41.3 31.9 22.8 - 41.1 -

Weak†

2019 3C-NET [31] 59.1 53.5 44.2 34.1 26.6 - 8.1 43.5 - -
2020 SF-NET [32] 71.0 63.4 53.2 40.7 29.3 18.4 8.6 51.5 30.2 40.8
2021 SODA [33] - - 53.1 44.9 35.6 26.4 15.8 - 35.2 -
2021 BackTAL [34] - - 54.4 45.5 36.3 26.2 14.7 - 35.4 -
2021 LACP [56] 75.7 71.4 64.6 56.5 45.3 34.5 21.8 62.7 44.5 52.8

Weak

2017 Hide-and-seek [45] 36.4 27.8 19.5 12.7 6.8 - - 20.6 - -
2018 STPN [21] 52.0 44.7 35.5 25.8 16.9 9.9 4.3 35.0 18.5 27.0
2018 W-TALC [15] 55.2 49.6 40.1 31.1 22.8 - 7.6 39.8 - -
2018 Zhong et al. [47] 45.8 39.0 31.1 22.5 15.9 - - 30.9 - -
2018 STAR [30]† 68.8 60.0 48.7 34.7 23.0 - - 47.0 - -
2019 ASSG [48] 65.6 59.4 50.4 38.7 25.4 15 6.6 47.9 27.2 37.3
2019 CleanNet [46] - - 37.0 30.9 23.9 13.9 7.1 - 22.6 -
2019 ACN [26] - - 35.9 30.7 24.2 15.7 7.4 - 22.8 -
2020 BaS-Net [17] 58.2 52.3 44.6 36.0 27.0 18.6 10.4 43.6 27.3 35.3
2020 A2CL-PT [49] 61.2 56.1 48.1 39.0 30.1 19.2 10.6 46.9 29.4 37.8
2020 TSCN [57] 63.4 57.6 47.8 37.7 28.7 19.4 10.2 47.0 28.8 37.8
2021 Wang et al. [24] 66.1 60.0 52.3 43.2 32.9 - - 50.9 - -
2021 Li et al. [25] 67.8 61.9 54.1 43.7 32.7 22.1 12.3 52.0 33.0 42.1
2021 ASL [58] 67.0 - 51.8 - 31.1 - 11.4 - - -
2021 CoLA [22] 66.2 59.5 51.5 41.9 32.2 22 13.1 50.3 32.1 40.9
2021 UGCT [27] 69.2 62.9 55.5 46.5 35.9 23.8 11.4 54.0 34.6 43.6
2021 CO2-Net [29] 70.1 63.6 54.5 45.7 38.3 26.4 13.4 54.0 35.7 44.6
2021 ACGNet [59] 68.1 62.6 53.1 44.6 34.7 22.6 12.0 52.6 33.4 42.5
2022 FTCL [23] 69.6 63.4 55.2 45.2 35.6 23.7 12.2 53.8 34.4 43.6
2022 Huang et al. [28] 71.3 65.3 55.8 47.5 38.2 25.4 12.5 55.6 35.9 45.1
2022 ASM-Loc [60] 71.2 65.5 57.1 46.8 36.6 25.2 13.4 55.4 35.8 45.1
2021 ACM-NET [19] 68.9 62.7 55.0 44.6 34.6 21.8 10.8 53.2 33.4 42.6

- SMEN (Ours) 74.0 68.5 60.1 49.4 36.9 23.6 12.9 57.8 36.6 46.5

TABLE II
TEMPORAL LOCALIZATION PERFORMANCE COMPARISON WITH

STATE-OF-THE-ART METHODS ON THE ACTIVITY-NET V1.3 [61]
VALIDATION SET. NOTE THAT † REPRESENTS METHODS THAT UTILIZE

EXTERNAL SUPERVISION INFORMATION BESIDES FROM VIDEO LABELS.

Supervision Methods
mAP@t-IoU(%)

AVG0.50 0.75 0.95

Full
SSN [52] 39.1 23.5 5.5 24.0
BSN [53] 46.5 30.0 8.0 30.0

BSN++ [55] 51.3 35.7 8.3 34.9

Weak

STPN [21] 29.3 16.9 2.6 -
STAR [30]† 31.1 18.8 4.7 -
ASSG [48] 32.3 20.1 4.0 -
TSM [67] 30.3 19.0 4.5 -

BaS-Net [17] 34.5 22.5 4.9 22.2
TSCN [57] 35.3 21.4 5.3 21.7

ACSNet [68] 36.3 24.2 5.8 23.9
Wang et al. [24] 37.1 24.1 5.8 24.1

UGCT [27] 39.1 22.4 5.8 23.8
FAC-Net [69] 37.6 24.2 6.0 24.0

FTCL [23] 40.0 24.3 6.4 24.8
Huang et al. [28] 40.6 24.6 5.9 25.0

ASM-Loc [60] 41.0 24.9 6.2 25.1
Li et al. [25] 40.9 25.7 5.6 25.6

ACM-NET [19] 40.1 24.2 6.2 24.6
SMEN (Ours) 41.7 25.6 6.6 26.0

1) Results on the THUMOS’14 Dataset: We report the
mAP results on the THUMOS’14 dataset [1] in Table I. We
observe that our proposed SMEN can achieve the average
mAP of 46.5%, which is 3.9% higher than that of the base-
line method ACM-NET [19]. We believe this improvement
is mainly brought by the salient slow-motion information
exploitation in our proposed modules. We also observe that
our proposed SMEN can achieve the best Average mAP results
and outperforms baseline models ACM-NET [19] by 7%,
9%, 9%, 11%, 7%, 8%, 19% at t-IoU=[0.1,:0.1,0.7] in terms
of relative improvement, indicating that our proposed SMEN
have consistent improvement across all t-IoU thresholds. It is
worthy to note that the methods like STAR [30], 3C-NET [31],
SF-NET [32], SODA [33], and BackTAL [34], use additional
information as supervision during training instead of using
the video-level annotations as the only supervision. However,
our proposed SMEN outperforms all these methods in terms
of all evaluation metrics. Furthermore, our proposed SMEN
even outperforms the fully supervised method SSN.

2) Results on the Activity-Net v1.3: In Table II, we report
the mAPs of our proposed SMEN and compare state-of-the-
art approaches at different t-IoU thresholds (i.e., t-IoU=0.5,
0.75, 0.95) on the validation set of the Activity-Net v1.3
dataset. Besides, we also report the average mAP, calculated by
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TABLE III
TEMPORAL LOCALIZATION PERFORMANCE COMPARISON BETWEEN OUR PROPOSED METHOD AND THE STATE-OF-THE-ART METHODS ON THE

HACS [62] VALIDATION SET. NOTE THAT + DENOTES THE METHODS USING FULLY SUPERVISION, † REPRESENTS THE METHODS THAT UTILIZE
EXTERNAL SUPERVISION INFORMATION IN ADDITION TO THE VIDEO LABELS. # DENOTES THE RESULTS ARE BASED ON THE IMPLEMENTATION IN

BACKTAL [34], THE OTHER RESULTS ARE FROM OUR IMPLEMENTATION.

Methods
mAP@tIoU

AVG[0.5-0.95]0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

SSN+# [52] 28.8 - - - - 18.8 - - - 5.3 19.0
BaS-NET# [17] 30.6 27.7 25.1 22.6 20.0 17.4 14.8 12.0 9.2 5.7 18.5
BackTAL†# [34] 31.5 29.1 26.8 24.5 22.0 19.5 17.0 14.2 10.8 4.7 20.0

ACM-NET [19] 25.4 23.2 21.0 18.6 16.5 14.4 12.5 10.1 7.5 4.7 15.4
SMEN(w/ ACM-NET) 27.6 25.2 23.1 20.9 18.7 16.4 14.1 11.4 8.5 5.4 17.1

BaS-NET [17] 30.8 28.0 25.7 23.5 21.0 18.7 16.2 13.5 10.5 6.4 19.4
SMEN(w/ BaS-NET) 32.1 29.4 26.9 24.3 21.8 19.4 16.7 13.9 10.5 5.9 20.1

TABLE IV
PERFORMANCE COMPARISON OF SEVERAL VARIATIONS FOR OUR

PROPOSED METHOD ON THE THUMOS’14 TEST SET [1]. THE AVERAGE
MAP (%) IS COMPUTED AT T-IOU THRESHOLDS [0.1:0.1:0.7].“TB”

DENOTES TWO BRANCHES; “MM” DENOTES MINING MODULE; “SSF”
DENOTES SUB-SAMPLED FEATURE.

TB MM SSF
mAP@tIoU

AVG[0.1-0.7]0.10 0.20 0.30 0.40 0.50 0.60 0.70

% % % 68.9 62.7 55.0 44.6 34.6 21.8 10.8 42.6
! % % 69.9 63.1 54.7 44.2 32.2 22.3 11.7 42.6
! % ! 71.4 64.8 56.0 45.9 33.9 21.5 11.0 43.5
! ! % 73.4 66.4 57.8 46.6 34.2 21.7 11.4 44.5
! ! ! 74.0 68.5 60.1 49.4 36.9 23.6 12.9 46.5

averaging all mAPs across multiple t-IoU thresholds ranging
from 0.5 to 0.95 with an interval of 0.05. We observe that
our proposed SMEN outperforms all state-of-the-art WTAL
approaches in terms of all evaluation metrics, including its
CAS generation backbone ACM-NET. Similar to our obser-
vations on the THUMOS’14 dataset, it can be seen that the
average mAP of our proposed SMEN is higher than that of
some fully supervised temporal action localization approaches
(e.g., SSN [52]) and STAR [30], which takes advantage of
extra supervision information other than video-level labels.

3) Results on the HACS: We conduct experiments on
HACS dataset with the baseline methods ACM-NET [19]
and BaS-NET [17]. The experimental results are shown in
Table III. Our method can achieve the average mAP of
17.1% and 20.1%, which is 1.7% and 0.7% higher than
baseline methods ACM-NET and BaS-NET, respectively. The
improvements mainly come from the salient slow-motion
information exploitation in our proposed modules. It is worthy
mentioning that our proposed SMEN, which uses the video-
level annotation as the only supervision, outperforms the
SOTA method BackTAL [34] slightly, which uses additional
weak information during training. Furthermore, our proposed
SMEN even outperforms the state-of-the-art fully supervised
approach SSN [52].

D. Model Analysis

In this section, we perform a series of experiments on the
THUMOS’14 dataset [1] to further demonstrate the contribu-
tion of individual components of our proposed SMEN, and

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT β FOR OUR PROPOSED

METHOD ON THE THUEMOS’14 TEST SET. THE AVERAGE MAP (%) IS
COMPUTED AT T-IOU THRESHOLDS [0.1:0.1:0.7].

β

mAP@t-IoU
AVG[0.1-0.7]0.10 0.20 0.30 0.40 0.50 0.60 0.70

0.00 71.3 65.0 56.8 47.0 35.1 21.8 11.7 44.1
0.25 72.6 66.8 58.7 47.7 35.8 23.3 12.3 45.3
0.50 74.0 68.5 60.1 49.4 36.9 23.6 12.9 46.5
0.75 73.6 68.2 59.4 49.0 36.4 23.9 13.1 46.2
1.00 55.1 47.1 37.6 26.5 16.4 9.0 2.9 27.8

TABLE VI
PERFORMANCE COMPARISON BETWEEN DIFFERENT SOTA BACKBONES
AND OUR PROPOSED METHOD ON THE THUEMOS’14 SLOW-MOTION

TESTING SET. THE AVERAGE MAP (%) IS COMPUTED AT T-IOU
THRESHOLDS [0.1:0.1:0.7].

Methods
mAP@tIoU

AVG[0.1-0.7]0.10 0.20 0.30 0.40 0.50 0.60 0.70

BaS-NET 43.5 40.4 35.4 31.5 22.7 18.7 14.2 29.5
SMEN(w/ BaS-NET) 49.0 45.3 41.1 35.9 27.5 20.9 14.3 33.4

ASL 48.3 43.9 37.5 33.2 26.1 20.1 14.1 31.9
SMEN(w/ ASL) 50.9 47.9 43.3 38.5 32.7 26.2 19.4 37.0

ACM-NET 55.8 52.1 47.2 40.4 31.9 23.3 13.4 37.7
SMEN(w/ ACM-NET) 58.7 54.5 48.5 42.6 35.2 24.8 16.0 40.0

provide more insights about this task. Unless specified, all the
reported results are achieved by using ACM-NET [19] as the
CAS generation backbone.

1) Ablation Studies: Given that our proposed Localiza-
tion module consists of two branches, we start from a plain
two-branch baseline model, which is essentially an ensemble
model of two ACM-NET models. As shown in the first and
second row of Table IV, the temporal action localization
performance cannot be improved by simply combining two
ACM-NET models, i.e., both the baseline model and the two-
branch variant achieve the mAP of 42.6%.

Sub-sampled feature. On top of the baseline model, we
replace the input of one branch with the sub-sampled features
in which the slow-motion-related features are enhanced. We
can see that by using sub-sampled features, it can bring
about 1% improvement (43.5% vs. 42.6%), which verifies the
effectiveness of the prior used in our method, i.e., normal
motion actions can be treated as the speed-up version of slow
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motion, and the characteristics of the slow motion will become
more salient after speeding up.

Mining module. The key of our proposed SMEN is the
slow-motion mining module. In our proposed SMEN, the
mining module takes the sub-sampled feature as the input
during the training process and outputs a mask to be used for
filtering slow-motion-related features. As shown in the third
and fifth rows of Table IV, the mining module significantly
increases the performance from 43.5% to 46.5%, i.e., 3%
improvement.

It is interesting to see that even only with the original video
features, the mining module can increase the average mAP by
1.9% (44.5% vs. 42.6%) as shown in the second and fourth
row. A possible explanation is that the mining module learns
to filter out less discriminative features from the original video
features for the action-instances with normal motion. This is
because a pre-defined threshold (Eq. 10) is used to generate
masks by preserving areas with high activation scores, which
helps to suppress false positive predictions.

Balance Coefficient β. We conduct an ablation study on β
and report the results in Table V. A bigger β means the action
feature separation loss generated from the S-branch produces
a larger weight. When β = 0.5, the model achieves the best
performance.

Performance on Slow Motion. To test the performance of
the proposed method on handling slow-motion actions, a slow-
motion testing set is formed by manually annotating the slow-
motion action instances in THUMOS’14 testing set. Three
volunteers are involved. This slow-motion testing set consists
of 126 videos with 839 slow-motion action instances from all
20 action categories. That means there are more than 60%
videos and 25% action instances of the THUMOS’14 testing
set contain slow motion.

We compare the WTAL performance on slow-motion ac-
tion instances of three baseline method, i.e. BaS-NET [17],
ASL [58] and ACM-NET [19] and our proposed SMEN. Note
that we replaced the feature corresponding to normal-motion
action with 0 ∈ Rd during testing. The results are reported in
Table VI. We can see that our proposed SMEN achieves the
average mAP of 33.4%, 37.0%, 40.0%, surpassing the baseline
methods BaS-NET(29.5%), ASL(31.9%), ACM-NET (37.7%)
by 3.9%, 5.1%, 2.3%, respectively. This margin demonstrates
the superiority of our proposed SMEN in localizing slow-
motion actions. All results listed in Table IV and Table VI
show that our proposed mining module and the two-branch
localization module can work cooperatively to enhance the
model‘s localization ability.

2) The Role of Each Branch in Localization Module:
We additionally conduct experiments to show the role of
individual branch, i.e., Normal-motion branch (N-branch) and
Slow-motion branch (S-branch), of the localization module.
We first directly evaluate their performance respectively, and
the results are shown in Table VII. It is not surprisingly to see
that the S-branch performs poorly on this task since this branch
only “see” slow-motion-related features during training.

To reveal the role of the S-branch, we provide the perfor-
mance of the variant that using the CAS predictions of the
N-branch and the attention predictions of the S-branch, i.e.,

TABLE VII
PERFORMANCE COMPARISON OF SEVERAL VARIANTS FOR OUR PROPOSED

METHOD ON THE THUMOS’14 TESTING SET. N-BRANCH DENOTES THE
RESULTS FROM NORMAL-BRANCH, WHILE S-BRANCH DENOTES THE

RESULTS FROM SLOW-BRANCH. SMEN-COMBO DONATES THE VARIANT
WHERE CAS IS FROM THE NORMAL-BRANCH WHILE ATTENTION VALUES

FROM THE SLOW-BRANCH. THE AVERAGE MAP (%) IS COMPUTED AT
T-IOU THRESHOLDS [0.1:0.1:0.7].

sub-sampled feature
mAP@tIoU

AVG[0.1-0.7]
0.10 0.20 0.30 0.40 0.50 0.60 0.70

N-branch 70.8 63.3 53.2 41 28.9 18.1 9.7 40.7
S-branch 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1
SMEN 74.0 68.5 60.1 49.4 36.9 23.6 12.9 46.5

SMEN-combo 73.5 67.6 59.2 48.0 34.8 22.7 12.1 45.4

TABLE VIII
PERFORMANCE COMPARISON OF OUR PROPOSED METHOD WHEN USING

DIFFERENT BACKBONES ON THE THUMOS’14 TEST SET [1]. THE
AVERAGE MAP (%) IS COMPUTED AT T-IOU THRESHOLDS [0.1:0.1:0.9].

Methods
mAP@tIoU

AVG[0.1-0.9]0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

BaS-NET 58.2 52.3 44.6 36.0 27.0 18.6 10.4 3.9 0.5 27.9
SMEN(w/ BaS-NET) 60.7 55.3 47.9 38.5 28.5 21.4 11.8 4.5 0.7 29.9

ASL 67.0 - 51.8 - 31.1 - 11.4 - 0.7 32.2
SMEN(w/ ASL) 69.0 63.7 54.9 43.7 32.9 22.7 14.3 6.5 1.0 34.2

SMEN-combo in Table VII. In other words, SMEN-combo
differs from the N-branch in that it uses the attention values
predicted by the S-branch to compute the final CAS (Eq. 3).
As shown in Table VII, SMEN-combo outperforms N-branch
by 4.7%, suggesting that the S-branch alone is incapable of
localizing a specific action, but it helps N-branch by providing
more accurate attention weights. To be more specific, origi-
nally the slow-motion actions are easily confused with action
context or non-action background by the N-branch. Since the
S-branch learns from the enhanced slow-motion features, it
becomes more sensitive than the N-branch in discriminating
action-instance, action-context, and non-action background.

3) Generalization: Our proposed SMEN framework can
be easily adapted to different baseline methods. We con-
duct experiments by changing the CAS generation back-
bone with different existing networks, such as BaS-NET [17]
and ASL [58]. The average mAPs (at t-IoU thresholds
[0.1:0.1:0.9]) of our proposed SMEN with different CAS
generation backbones are reported in Table VIII. We observe
that SMEN (w/ BaS-NET) and SMEN (w/ ASL) can achieve
the average mAP of 29.9% and 34.2%, which are 2.0%
higher than those of the baseline methods BaS-NET [17]
and ASL [58], respectively. This indicates that our proposed
SMEN can generalize to different CAS generation methods
and consistently improve their performance in the task of
weakly-supervised temporal action localization.

4) Smooth Mask Generation: In order to verify the ef-
fectiveness of the proposed Smooth Mask Generation strategy
used in the Mining module, we conduct experiments by
comparing two different methods: 1) generating mask with
a fixed threshold, i.e., normal mask; 2) generating mask with
the proposed Coefficient of Variation Smoothing mechanism
which is inspired by [51], i.e., smooth mask. Our proposed
SMEN adopts the latter option. Table IX compares the average
mAPs achieved by using these two mask generation methods
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Ours Prediction
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(a) An example of action class “SoccerPenalty”.

Ground Truth

Baseline Prediction

Ours Prediction

Baseline CAS

Ours CAS

Normal MotionNormal Motion

Time

Slow Motion Slow Motion

(b) An example of action class “Blizzards”.

Normal Motion Background

Ground Truth

Baseline Prediction

Ours Prediction

Baseline CAS

Ours CAS

Time

Slow MotionNormal Motion Normal Motion

(c) An example of action class “LongJump”.

Ground Truth

Baseline Prediction

Ours Prediction

Baseline CAS

Ours CAS

Normal Motion Slow MotionBackground Normal Motion

Time

Normal Motion

(d) An example of action class “Diving”.

Fig. 3. Qualitative comparisons with baseline on THUMOS’14 dataset. The barcode is the ground-truth (GT). Specifically, the green barcode is the action
instance with normal motion while the red barcode is the action instance with slow motion. The following line charts are CAS value of baseline model
(ACM-NET [19]) and our proposed SMEN, respectively. For beteer clarity, the frames with green bounding boxes refer to ground-truth actions with normal
motion, the frames with red bounding boxes refer to ground-truth actions with slow motion, while those in blue refer to ground-truth backgrounds. The red
dotted boxes show that our proposed SMEN performs better in localizing slow-motion action instances. The yellow dotted box shows that SMEN can suppress
the false positive instance, i.e., Background→Action, incorrectly predicted by the baseline model (ACM-NET [19]).
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Normal Motion Background

Ground Truth

Baseline Prediction

Ours Prediction

Baseline CAS

Ours CAS

Time=62.3s

Normal Motion Background

1.2s6.7s

(a) A failure example of action class “JavelinThrow”.

Normal Motion Normal Motion

Ground Truth

Baseline Prediction

Ours Prediction

Baseline CAS

Ours CAS

Time=29.1s

Normal Motion Normal MotionNormal Motion

2s4.5s 2.4s 3.9s 3.8s

(b) A failure example of action class “Diving”.

Fig. 4. Failure case of our proposed SMEN. The barcode is the ground-truth (GT). Specifically, the green barcode is the action instance. The following line
charts are CAS value of baseline model (ACM-NET [19]) and our proposed SMEN, respectively. For better clarity, the frames with green bounding boxes
refer to ground-truth actions with normal motion, while those in blue refer to ground-truth backgrounds. The purple dotted boxes show that our proposed
SMEN can not well localize the action instances of short duration.

TABLE IX
PERFORMANCE COMPARISON OF OUR PROPOSED METHOD WHEN USING
DIFFERENT MASK GENERATION METHODS ON THE THUMOS’14 TEST

SET [1]. THE AVERAGE MAP (%) IS COMPUTED AT T-IOU THRESHOLDS
[0.1:0.1:0.7].

mask generation methods
mAP@tIoU

AVG[0.1-0.7]
0.10 0.20 0.30 0.40 0.50 0.60 0.70

normal 73.4 67.6 59.4 48.9 36.5 23.7 13.3 46.1
smooth 74.0 68.5 60.1 49.4 36.9 23.6 12.9 46.5

TABLE X
PERFORMANCE COMPARISON OF OUR PROPOSED METHOD WHEN USING

DIFFERENT SUB-SAMPLING METHODS ON THE THUMOS14 TEST SET [1].
THE AVERAGE MAP (%) IS COMPUTED AT T-IOU THRESHOLDS

[0.1:0.1:0.7].

sub-sampled methods
mAP@tIoU

AVG[0.1-0.7]
0.10 0.20 0.30 0.40 0.50 0.60 0.70

frame 74.1 68.1 58.9 47.9 36.0 22.9 12.1 45.8
feature 74.0 68.5 60.1 49.4 36.9 23.6 12.9 46.5

on the THUMOS‘14 dataset. We can observe that using the
smooth mask generation mechanism can achieve a 0.4% higher
average mAP than using the normal mask. A possible expla-
nation for this is that the smooth mask generation mechanism
can de-noise CAS values and produce more robust masks for
selecting slow-motion-related features.

TABLE XI
PERFORMANCE COMPARISON OF OUR PROPOSED METHOD WHEN USING

DIFFERENT SUB-SAMPLING RATE ON THE THUMOS14 TEST SET [1]. THE
AVERAGE MAP (%) IS COMPUTED AT T-IOU THRESHOLDS [0.1:0.1:0.7].

τ
mAP@tIoU

AVG[0.1-0.7]
0.10 0.20 0.30 0.40 0.50 0.60 0.70

1 73.4 66.4 57.8 46.6 34.2 21.7 11.4 44.5
2 73.5 67.7 58.8 47.8 35.4 22.9 12.0 45.5
4 74.0 68.5 60.1 49.4 36.9 23.6 12.9 46.5
8 72.5 66.5 58.1 48.0 35.4 23.4 12.4 45.2

TABLE XII
COMPARISON BETWEEN OUR PROPOSED METHOD AND THE BASELINE

METHODS IN TERMS OF MEMORY USAGE, TRAINING TIME AND
INFERENCE TIME ON THE THUMOS’14 DATASET [1].

Methods Memory traing time(s/epoch) inference time(s/video)

BaS-NET 3536MB 6.64 0.02
SMEN(w/ BaS-NET) 5430MB 11.27 0.03

ASL 1743MB 3.87 0.03
SMEN(w/ ASL) 2239MB 4.64 0.04

ACM-NET 2335MB 4.92 0.07
SMEN(w/ ACM-NET) 3201MB 7.93 0.10

5) Sub-sampling Strategy: Feature-level vs. Frame-level.
We sub-sample on video features in our proposed framework
to speed-up slow motion to normal motion. However, we can
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alternatively speed up the motions by sub-sampling on video
frames. Therefore, we compare the performance of using these
two sub-sampling strategies.

Table X shows the average mAPs achieved by using dif-
ferent sub-sampling methods on the THUMOS‘14 dataset.
We can see that sub-sampling on video features can achieve
0.7% higher average mAP than sub-sampling on input video
frames. Apart from superior performance, sub-sampling on
video features is more efficient as it does not require re-
extracting video features by a pre-trained feature extractor.

Sub-sampling Rates. We also investigate the influence
of different sub-sampling rates for generating sub-sampled
features. The results are reported in Table XI. It can be seen
that when the sub-sampling rate τ = 4, our proposed SMEN
can achieve the best temporal action localization performance.
A possible explanation is that a lower sub-sampling rate may
not speed up the slow motion actions enough to stand out
their salient characteristics, while a larger sub-sampling rate
may lead to losing too much temporal information, making it
hard to discriminate from background instances.

6) Efficiency: We compare the efficiency of several base-
line methods and our proposed SMEN on the machine with a
single GTX 2080Ti GPU. The results are shown in Table XII.
The inference time of our proposed SMEN is slightly higher
than the baseline methods.

E. Qualitative Results

We visualize the localized regions and the CAS results
for four actions on the THUMOS’14 dataset in Fig. 3. Our
proposed SMEN has a more informative CAS distribution
compared to baseline method, thus leading to more accurate
localization for slow-motion segments.

Figure 3a depicts a typical case (“SoccerPenalty”) that the
video contains two segments, one is normal motion and the
other is slow motion. Specifically, the second action segment
is the slow-motion replay of the first. As shown in Fig. 3a,
both segments begin from preparing Soccer Penalty. After 3-
second interval, the normal-motion segment turns to finish,
but the slow-motion segment just turns to torch the ball. With
the Mining module, the Localization module can leverage
the generated mask to filter slow-motion-related features as
complementary information to improve the temporal action
localization results. As a result, while the backbone model
fails to localize the slow-motion action segments, our proposed
SMEN can accurately localize the action instance at a much
slower speed. Another example in shown in Fig. 3b.

On the other hand, by introducing the Mining module, our
proposed SMEN can filter out less discriminative features,
thereby avoiding many false positives produced by a sin-
gle branch (backbone). Fig. 3c demonstrates an example of
“LongJump” action in which the backbone model incorrectly
localizes a background segment (highlighted in blue box). This
background segment belongs to the class of “action context”
which is not the target action but contains similar scenes
and slow movements. Such action context segments are easily
confused with actions, especially slow motion actions. Another
example in shown in Fig. 3d.

By considering the slow motion, our proposed SMEN can
distinguish action-instances from slow-motion-alike action-
contexts, and therefore, improve the WTAL results.

Failure Cases. As shown in Fig. 4, the baseline method and
our proposed SMEN cannot well handle the action instances
with very short duration well (highlighted in purple dotted
boxes). A possible explanation is both the baseline and our
method do not have any specific designs for such cases. We
will leave this problem in our future work.

V. CONCLUSION

This paper has proposed a novel framework, SMEN, to
address the problem that slow motion provides little informa-
tion for the WTAL frameworks to understand the content and
distinguish them from action instances. The new framework
consists of two modules, a Mining module and a Localization
module. The Mining module is proposed to generate slow-
motion-related mask and the Localization module is designed
to leverage the generated mask to select enhanced slow-
motion features as complementary information to improve the
temporal action localization results. Experiments conducted on
three benchmarks, including THUMOS’14, ActivityNet v1.3,
and HACS, have validated the state-of-the-art performance of
SMEN.
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