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Deep Idempotent Network for Efficient Single
Image Blind Deblurring
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Abstract—Single image blind deblurring is highly ill-posed as
neither the latent sharp image nor the blur kernel is known.
Even though considerable progress has been made, several
major difficulties remain for blind deblurring, including the
trade-off between high-performance deblurring and real-time
processing. Besides, we observe that current single image blind
deblurring networks cannot further improve or stabilize the
performance but significantly degrades the performance when
re-deblurring is repeatedly applied. This implies the limitation
of these networks in modeling an ideal deblurring process. In this
work, we make two contributions to tackle the above difficulties:
(1) We introduce the idempotent constraint into the deblurring
framework and present a deep idempotent network to achieve
improved blind non-uniform deblurring performance with stable
re-deblurring. (2) We propose a simple yet efficient deblurring
network with lightweight encoder-decoder units and a recurrent
structure that can deblur images in a progressive residual fashion.
Extensive experiments on synthetic and realistic datasets prove
the superiority of our proposed framework. Remarkably, our
proposed network is nearly 6.5× smaller and 6.4× faster than the
state-of-the-art while achieving comparable high performance.

Index Terms—Idempotent Network, Single Image Blind De-
blurring, Efficient Deblurring

I. INTRODUCTION

S INGLE image blind deblurring aims at estimating a sharp
image from a blurry input. It is a challenging ill-posed

problem as both the sharp image and the kernel need to be
estimated [12]–[15]. This problem becomes even more chal-
lenging for real-world complex blurry images when different
exposure times, camera motion, and multiple moving objects
exist. To tackle these difficulties, traditional optimization-
based approaches estimate the sharp image and the kernel
alternatively, where various priors have been exploited to reg-
ularize this procedure [12]–[14], [16], [17]. Recently, remark-
able progress has been made by designing different network
architectures to learn the mapping from a blurred image to its
corresponding sharp version in an end-to-end manner without
estimating the blur kernels [1], [3], [4], [8]. These approaches
have achieved profound success on benchmark datasets such
as GoPro [1]. Despite the advance, a very recent study [18]
reports that state-of-the-art models trained on the synthetic
dataset do not generalize well to real-world blurry images.
Therefore, it is still challenging for existing methods to address
complex non-uniform motion blurs in dynamic scenes.
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Fig. 1. Speed vs Performance. Each circle represents the performance of
a model in terms of FPS and PSNR on the GoPro [1] dataset with 1280 ×
720 images using an RTX 2080Ti GPU. The radius of each circle denotes
the model’s number of parameters. Our method achieves high performance
with real-time runtime and small parameters compared with state-of-the-art
blind deblurring methods including MS-CNN [1], SRN [2], DMPHN [3],
DeblurGAN [4], DeblurGANv2 [5], Gaoet al. [6], MT-RNN [7], SAPHN [8],
RADN [9], MSCAN [10] and MPRNet [11].

In practical applications, it is intuitive to determine whether
any obtained image is blurred or not, but it is difficult to assert
whether the image has been deblurred. Therefore, for an image
deblurring system, it is inevitable to repeatedly input an image
that has been deblurred. We expect the performance could be
improved or maintained when a deblurred image is repeatedly
input to an image deblurring model. To verify this hypothesis,
we repeatedly implement the state-of-the-art methods with
their pre-trained models [3], [7] and report their re-deblurring
performance in terms of PSNR in Fig. 2. Surprisingly, we
observe a significant performance decrease after re-deblurring.
This demonstrates that existing deblurring models cannot
further improve their performance by repetitively applying
themselves to blurry inputs.

Although we do not expect that re-deblur a deblurred image
once again would lead to a sharper image, at least it should
not significantly degrade the previously deblurred result. To
remedy this issue, we resort to the concept of idempotence
in mathematics, i.e., an operator can be applied many times
and still maintain the primary results. An ideal deblurring
model should also own this property, because there is a
theoretical upper limit (i.e., output the completely sharp image)
in deblurring. Therefore, the ideal situation is that the results
are consistent when we implement the algorithm repeatedly,
and we call it Idempotent Property. To achieve this goal, we
introduce an idempotent constraint into the network design and
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Fig. 2. The performance curve of repeatedly re-deblurring. We repeatedly
input the deblurred image to the network by multiple times and report
the deblurring results on the GoPro dataset. Our proposed deep idempotent
network achieves very stable deblurring results while the performance of
all other state-of-the-art methods decreases as the repeating times increase.
Note that, to keep the training settings consistent with our results without
idempotent constraint, we re-trained MT-RNN [7] without their multi-temporal
data augmentation.

propose our deep idempotent network for single image blind
deblurring. The idempotent constraint aims to maintain the
consistency between the deblurred image and the re-deblurred
image. With the introduced constraint, our network outputs
stable deblurred results even after deblurring multiple times,
as shown in Fig. 2.

Moreover, many state-of-the-art blind deblurring methods
have large model sizes and take long inference time, as shown
in Fig. 1. To satisfy the requirements of real-time (at least 30
FPS) applications, we design a novel, efficient, and lightweight
single image blind deblurring network. Our idempotent net-
work is composed of a lightweight encoder-decode module
within a progressively recurrent iteration structure. Here, we
can control the number of recurrent structure to balance the
deblurring efficiency and performance. The whole network is
trained by applying our idempotent constraint to the outputs of
the deblurring and re-deblurring processes. Once our network
is trained, it only runs in a single feed-forward fashion without
re-deblurring in testing.

Our proposed simple yet efficient idempotent network
achieves state-of-the-art deblurring performance on the Go-
Pro dataset with 1280 × 720 images and runs in real-time.
Our idempotent constraint is quite generic, and we further
demonstrate its superiority on the tasks of image dehazing
and deraining. Moreover, we apply the idempotent constraint
to the open-source code of the existing state-of-the-art models,
and further improve their results.

Our main contributions are summarized as follows:
1) We introduce an idempotent property to single image

blind deblurring, and propose an idempotent constraint to
improve non-uniform deblurring performance.

2) We design a simple yet efficient deblurring network that
achieves real-time and high performance by progressive
residual deblurring with recurrent structure.

3) Our model, while achieving comparable high performance
on the GoPro benchmark, is nearly 6.5× smaller and

6.4× faster than the existing state-of-the-art approach, i.e.,
MPRNet [11].

4) Our proposed model achieves superior generalization per-
formance on the real captured RealBlur benchmark. The
proposed idempotent network architecture and constraint
can be easily generalized to dehazing and deraining and
improve their performance.

II. RELATED WORK

In this section, we briefly review both optimization-based
and learning-based blind image deblurring methods, and idem-
potence in deep learning.
Optimization based image deblurring. Existing methods
based on optimization mainly focus on exploiting different
image priors to recover sharp images from blurry images.
These valid priors can be enumerated as sparse gradients [19],
l0 norm prior [16], patch recurrence prior [12], dark channel
prior [13], bright channel prior [17], latent structure prior [20],
minimal pixels prior [21] and super-pixel prior [22]. Benefiting
from the hand-crafted priors, optimization-based algorithms
achieve competitive deblurring results for blurry images.
However, many priors are only designed for specific blurry
scenes and cannot generalize to cross-domain images. Besides,
Srinivasan et al. [23] introduce a general model for light field
camera motion estimation and image deblurring, and Mohan
et al. [24] decompose this model to achieve full-resolution
motion deblurring. Meanwhile, optimization-based methods
are often time-consuming and need a complex parameter-
tuning strategy for different datasets, which restricts their real-
world applications.
Deep image deblurring. Image deblurring greatly benefits
from the progress of deep learning. Deep neural networks learn
the nonlinear mapping between the blurred and sharp image
pairs to deal with complex motion blur. Previous deblurring
methods apply convolutional neural networks (CNN) in the
process of non-blind deblurring [25], [26].

Recently, researchers shift their attention to blind deblur-
ring [1]–[3], [6]–[8], [27]–[31]. Following a coarse-to-fine
scheme, MS-CNN [1] and SRN-Deblur [2] introduce multi-
scale deep networks to restore sharp images in an end-to-
end manner. DeblurGAN [4], [5] and DBGAN [32] regard
image deblurring as an image generation problem and use a
Generative Adversarial Network (GAN) [33] for deblurring.
Gao et al. [6] add nested skip connections and a multi-scale
parameter selective sharing strategy on a network. Lumentut
et al. [34] propose a recurrent network for full-resolution light
field image deblurring. Shen et al. [29] propose a human-aware
deblurring approach to remove the blur of foreground humans.
DMPHN [3] proposes a multi-patch hierarchical network to
better deal with spatially non-uniform motion blur. SAPHN [8]
combines the multi-patch hierarchical structure with global
attention and adaptive local filters to learn the transformation
of features in the deblurring process. MSCAN [10] proposes
a channel-attention convolutional neural network for single
image denblurring. Wang et al. [35] propose a recursive
video deblurring network, and MACNN [36] introduces the
multi-attention mechanism to video deblurring. MPRNet [11]
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proposes an effective multi-stage architecture with a cross-
stage feature fusion module and supervised attention module,
that progressively learns restoration functions for the degraded
inputs. MT-RNN [7] designs a shared weight neural network
with recurrent feature maps and proposed an incremental
temporal training strategy with additional temporal data aug-
mentation. In the training process, they used synthetic images
with different levels of blurriness as their supervision, thus
their network learned the ability to progressively deblur. On
the contrary, as shown in Table I and Fig. 9, our proposed deep
idempotent network achieves better deblurring performance
and still owns the ability of progressive deblurring without
using such temporal data augmentation strategy.
Idempotence in deep learning. There are few works in
exploring idempotence in deep learning. Zhao et al. [37]
propose a Merge-and-Run mapping with parallel residual
branches to keep the information flow linearly idempotent,
which assembles the residual branches in parallel. Xing et
al. [38] extend the Merge-and-Run block into a semantic
RGB-D segmentation task to effectively fuse two modality
inputs. Different from these works, we enforce our deblurring
network to achieve this idempotent property, thus keeping
the deblurring and re-deblurring results consistent. They try
to enforce the idempotency between the convolutional layers
but do not guarantee the idempotent property for the whole
network outputs, which do not achieve our goal of idempotent
deblurring. Another perspective to understand the idempotent
property of the model is from the fixed point theory. It can be
considered as finding a fixed point in the network output space
that can ensure the stability of the deblurring performance.
To achieve this goal, the deep equilibrium model [39] solves
the fixed point directly by a few convolutional layers. Instead
of solving the fixed point analytically, we introduce a novel
idempotent constraint to approximate realization of the fixed
point constraints and achieve stable re-deblurring.

III. DEEP IDEMPOTENT DEBLURRING FRAMEWORK

In this section, we propose a deep idempotent deblurring
framework that embeds the idempotent property into a deep
network for efficient single image blind deblurring. To begin
with, we first explain why idempotency is needed for an
image deblurring model. Then, we present the definition of
the idempotent network and introduce our idempotent network
architecture in detail. Finally, we describe the proposed idem-
potent constraint as the training loss function.

A. Why idempotent property is needed?

Images captured in the real world may have different
blurring levels from the extreme case of completely sharp
(without any blur) to seriously blurred. The image deblurring
algorithms deployed in a real-world system should be able to
handle these situations. A straightforward idea is to design
a classifier to select different deblurring models based on
the blurring levels. However, this classifier requires additional
computational effort and will lead to worse deblurring perfor-
mance when the classification results are incorrect. Therefore,

we would prefer an end-to-end model that can better handle
the complex non-uniform motion blur in practice.

In addition, the output of an ideal deblurring model should
be a sharp image. If we apply the same model again on
the deblurred image, it should stably output the same sharp
image. We believe that an ideal deblurring model should have
the idempotent property. From another perspective, the re-
deblurring process can be regarded as deblurring an image
with a blur level of zero. Previous work [7] has shown that
a fully convolutional network can deal with different levels
of motion blur at different spatial locations. Based on this,
we use a uniform regularization term for each pixel with
non-uniform blurring levels by introducing the idempotent
constraint. We believe that the idempotent property also helps
improve convolution-based models’ ability to handle non-
uniform motion blur. In the subsequent sections, we will
present our idempotent deblurring framework in detail, which
makes our network output idempotent deblurred results. Ex-
periments show that idempotent constraint enables the model
to better deal with non-uniform motion blur.

B. Definition of Idempotent Network

Mathematically, an operation f(·) is called idempotent if
and only if f(f(·)) = f(·). This equation means a certain
operation can be applied multiple times and still maintains
the primary result.

In this paper, we extend this concept to deep neural net-
works. Given an input x, a network Φ with parameters Θ is
called an idempotent network if and only if the outputs by the
repeated implementation are the same, i.e.,

Φ(Φ(x; Θ); Θ) = Φ(x; Θ);

Φk(x; Θ) = Φ(x; Θ),
(1)

where k is a positive integer, indicating the number of re-
peating times. The above equation implies that for a deep
deblurring network, given a pair of blurry and sharp images
(IB , IS), if we feed the blurry image IB into the network,
the deblurred results Î should be idempotent nevertheless how
many times deblurring operations have been applied.

C. Idempotent Network Architecture

We propose a simple yet efficient single image blind de-
blurring network, the structure of this network is illustrated in
Fig. 3. This network uses a shared weight basic lightweight
encoder-decoder module with a recurrent structure to achieve
iterative residual deblurring. Then we repetitively implement
this network by taking the previous deblurred output as the
next deblurring input, and then apply a novel idempotent
constraint to these output results. Next, we will introduce each
component of our idempotent network.
Basic Encoder-Decoder Deblurring Unit. To implement a
simple network structure with minimal parameters, we first
use a lightweight U-Net [40] like encoder-decoder module as
our basic unit for iterative residual deblurring,

Îi = ΦBasic(Î
i−1; Θ), (2)
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where i is the index of the iterations of the overall structure
(i = 1, 2, ..., N ), and N is the total number of iterations.
Îi, Îi−1 are the deblurred images at the i-th and the (i-1)-
th iteration. Specially, when i equals to 1, Îi−1 indicates the
input blurry image. ΦBasic is the basic deblurring unit, which
has trainable parameters Θ.

As shown in Fig. 4, there are 15 convolutional layers with 6
residual connections [41] and 6 ReLU activation functions in
the encoder and decoder, respectively. Each of these residual
blocks consists of two convolution layers with stride=1, a

residual connection, and a ReLU layer, which do not change
the size of feature maps. In addition, two convolution layers
with stride=2 are interposed between the residual blocks in the
encoder to downsample the feature maps. Correspondingly, the
decoder has two transpose convolutional layers in a symmet-
rical position for upsampling. In all convolution layers, the
kernel size is 3×3. We also add a skip connection between
corresponding encoder and decoder levels to fuse feature
and enhance feature representation, this can facilitate network
learning. Note that the residual connection uses an addition
operation, while the skip connection uses concatenation.
Progressive Residual Deblurring. Iterative stacking or multi-
scale structure has been widely used in existing deblurring
networks [1]–[3], [7]. To progressively achieve better de-
blurring performance, we use the basic deblurring unit with
shared parameters to estimate the residual image for iterative
deblurring. As shown in Fig. 3, each output of the deblurring
unit is obtained as the sum of the input image and the residual
images:

Îi = Îi−1 + ΦBasic(Î
i−1; Θ). (3)

Given a blurry image IB = Î0 as input, our model
outputs the final deblurred image ÎN through iterative residual
deblurring. Without using additional data supervision like
MT-RNN [7], our model learns to progressively deblur the
input images. A visual comparison is shown in Fig. 9, which
demonstrates the progressive learning ability of our residual
deblurring structure.
Feature Maps Recurrence. We add a recurrent structure to
the basic residual network to establish the relationship between
two adjacent iterations. This mechanism recurs feature maps
F i−1
1 , F i−1

2 from the two last residual blocks in decoder
after upsampling layer at the (i − 1)-th iteration. And then
concatenate F i−1

1 , F i−1
2 corresponding with the feature maps

in encoder at the i-th iteration before downsampling layer. (c.f.
Fig. 4). Specifically, this structure is modeled as:

Îi, F i
1, F

i
2 = ΦFMR(Îi−1, F i−1

1 , F i−1
2 ; Θ), (4)
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where F i−1
1 , F i−1

2 are the feature maps from the decoder in
the (i − 1)-th iteration as the i-th iteration input, and output
feature maps F i

1, F
i
2 for next iteration.

Latent Code Recurrence. The feature map recurrence we
proposed above can only retain the information between two
adjacent iterations. As first used in SRN-Deblur [2], Long
Short-Term Memory (LSTM) [42], [43] can embed long
term blur patterns across multiple deblurring iterations. The
hidden state in LSTM retains the feature information from
the previous iterations. To achieve similar performance with
smaller parameters and cheaper computation, we use the Gated
Recurrent Unit (GRU) [44] as our Latent Code Recurrence
(LCR) module in our network.

Since the network is recurrent during multiple deblurring
iterations, the feature maps from the last convolution layer in
the encoder of each iteration are fed into GRU as the latent
code. After passing through the memory unit, the feature maps
can conditionally retain and forget the information of previous
iterations, then can be used as the input of the decoder to
restore the residual images of this iteration. The calculation
process is modeled as follows:

zi = sigmoid(Conv([hi−1, ei],Θz)),

ri = sigmoid(Conv([hi−1, ei],Θr)),

ĥi = tanh(Conv([ri � hi−1, ei],Θh)),

hi = (1− zi)� hi−1 + zi � ĥi,

(5)

where [·] is the concatenate operation and � represents the
Hadamard product. zi, ri and ĥi are the update gate, reset
gate and candidate activation vector in GRU. Θz,Θr,Θh are
the parameters of each convolution layer, respectively.

Thus, our basic unit for progressive residual deblurring with
feature maps recurrence and latent code recurrence can be
modeled as follows:

Îi, F i
1, F

i
2, h

i = ΦLCR(Îi−1, F i−1
1 , F i−1

2 , hi−1; Θ), (6)

where hi−1, hi represent the hidden state output by previous
iteration (i− 1) and current iteration i.
Idempotent Re-Deblurring by Multiple Times. It is difficult
for a deep network to output the same results as the input, so
we propose a idempotent constraint to train our deblurring
network. As shown in Fig. 3, our model first outputs the
deblurring result Î1 = ÎN1 , then takes it as next input and
get the re-deblurring result Î2 = ÎN2 (N denotes the number
of iterations) for multiple times.

Note above re-deblurring only exists in training, and in the
inference phase, we only need to apply our model once to
get the deblurred result. Because of the residual deblurring
structure, the idempotent constraint can be satisfied when the
sum of all the residual outputs is close to zero.

D. Idempotent Constraint

To keep the deblurring network output idempotent and
enhance the deblurring performance with idempotent property,
we enforce the idempotent constraint as a loss function to
supervise the training process. We term such loss function as
an idempotent loss. As shown in Fig. 3, the network is repeated

twice and we directly constrain these two deblurring outputs
to be consistent. Therefore, the idempotent loss is defined by
the L1 distance as:

LIdem = ‖Î1 − Î2‖1, (7)

where Î1 and Î2 denote two latent sharp image outputs by
deblurring and re-deblurring.

We use pairs of blurry and sharp images (IB , IS) to
supervise the training of our deblurring network, and then
calculate the L1 distance as our deblurring loss at each output
by re-deblurring:

LSharp =

2∑
j=1

αj‖Îj − IS‖1. (8)

The final objective function is reached as:

L = λLIdem + LSharp, (9)

where αj and λ are the trade-off parameters.

IV. EXPERIMENTS

A. Experimental Details

Datasets. Following the general setting of single image de-
blurring task [1]–[4], [7], [9], [11], [30], we use the GoPro
dataset [1] to train our proposed model. The blurry images
of the GoPro dataset are synthesized by averaging different
numbers (7–13) of successive latent frames from 240 FPS
video sequences captured by a GoPro Hero 4 camera. As a
common benchmark for image motion deblurring, it contains
3,214 blurry-sharp image pairs. We follow the widely used
split method as [1] and use 2,103 pairs from the linear subset
for training and the remaining 1,111 pairs as the test set for
evaluation.

We also evaluate the generalization ability of our method
on a real-world blurry scenes dataset, i.e., RealBlur [18], a
commonly used dataset in recent years. It contains two ver-
sions named as RealBlur-J (JPEG compressed) and RealBlur-
R (RAW), where each version includes 980 pairs of geo-
metrically aligned real-world blurry and ground-truth sharp
images captured by a well-designed image acquisition system
composed of a beam splitter. Following the original settings of
the RealBlur dataset, we also conduct photometric alignment
between the outputted deblurred images and ground-truth
sharp images before computing PSNR and SSIM.
Implementation Details. We implement our model1 by Py-
Torch [45] with two NVIDIA RTX 2080Ti GPU for training
and one for evaluation. The trade-off parameter α1, α2 is set
to 1.0 and λ is 0.1, respectively. We define the number of
iterations N as 6. All weights are initialized from scratch by
the Xavier method [46]. The Adam [47] solver is used to
optimize our network for 3,000 epochs with default parameters
β1 = 0.9, β2 = 0.999 and ε = 10−8. The training mini-batch
size is set to 6. The initial learning rate is 10−4 and decays by
0.5 after every 500 epochs. Following DMPHN [3], the input
blurry images are normalized to range [0, 1] and subtracted
by 0.5. In training, the input blurry images and corresponding

1Our code and pre-trained model will be released.
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TABLE I
QUANTITATIVE RESULTS ON THE GOPRO TEST DATASET [1] IN TERMS
OF PSNR, SSIM, NUMBER OF PARAMETERS AND INFERENCE TIME. THE
1ST, 2ND AND 3RD BEST PERFORMANCES ARE HIGHLIGHTED WITH RED,

BLUE AND GREEN (BEST VIEWED IN COLOR).

Methods PSNR (dB) SSIM Param. Time(s)

Sun et al. [27] 24.64 0.843 - -
MS-CNN [1] 29.23 0.914 21.0M 0.94
DeblurGAN [4] 28.70 0.958 3.50M 0.12
DeblurGANv2 [5] 29.55 0.934 60.9M 0.058
SRN-Deblur [2] 30.26 0.931 3.76M 0.25
Gao et al. [6] 30.92 0.942 2.84M 0.76
MT-RNN [7] 31.15 0.945 2.63M 0.048
DMPHN [3] 30.25 0.935 7.23M 0.032
Stack(4)-DMPHN [3] 31.20 0.945 28.9M 0.35
Stack(2)-VMPHN [3] 31.50 0.948 28.9M (0.55)
MSCAN [10] 31.24 0.945 7.5M 0.42
RADN [9] 31.76 0.953 - (0.038)
SAPHN [8] 31.85 0.948 24.0M (0.28)
MPRNet(1) [11] 30.43 - 5.6M (0.04)
MPRNet(2) [11] 31.81 - 11.3M (0.08)
MPRNet(3) [11] 32.66 0.959 20.1M 0.15

Ours(w/o Idem.) 31.80 0.949 3.11M 0.028
Ours(w/ Idem.) 31.92 0.953 3.11M 0.028

ground-truth sharp images are randomly cropped to 256×256
pixels patches. Additionally, we randomly rotate and/or flip the
image patches for data augmentation. The color saturation is
also randomly changed on the input images for robust learning.

B. Comparison with the State-of-the-art Methods

In this subsection, we perform quantitative and qualitative
studies with existing state-of-the-art methods on the bench-
mark datasets (i.e. GoPro and RealBlur).
Quantitative Evaluations. Following the common experimen-
tal setting as previous works [3], [7]–[9], we compare the
performance and generalization ability across different datasets
of our deep idempotent deblurring network with previous
state-of-the-art deblurring methods in a quantitative way. The
experimental results in terms of PSNR, SSIM, Parameters and
Time for different deblurring methods on GoPro test dataset
are shown in Table I. For a fair comparison, we perform the
experiments of running time on a single RTX 2080Ti GPU.
Except for Stack(2)-VMPHN [3], RADN [9] and MPRNet-
(1)&(2) [11] are from their paper which do not provide the
opensource code or the corresponding model, SAPHN [8] are
provided by the authors (bracketed in Table I).

On the GoPro test dataset, our method achieves comparable
high performance to state-of-the-art methods with smaller
parameters and faster inference time. In particular, although
MPRNet(3) [11] achieves higher performance, our model is
nearly 6.5× smaller and 6.4× faster than it. The comparison
with MPRNet(2) shows that we achieve equivalent perfor-
mance with fewer parameters and shorter inference time.
Moreover, the adversarial loss improves the visual quality but
may sacrifice the pixel-wise metric results, while the SSIM
metric prefers the structural similarity rather than the pixel-
wise intensity similarity. Therefore, the GAN-based meth-
ods [4] tend to achieve better SSIM than other methods trained
with the L1 loss. And the L1 loss often leads to smooth results.

TABLE II
QUANTITATIVE ANALYSIS ON THE RealBlur TEST DATASET [18] FOR

MODELS ONLY PRE-TRAINED ON GOPRO DATASET [1]

RealBlur-J RealBlur-R

Methods PSNR (dB) SSIM PSNR (dB) SSIM Time(s)

MS-CNN [1] 27.87 0.827 32.51 0.841 0.77
Stack(4)-DMPHN [3] 27.80 0.847 35.48 0.947 0.29
DeblurGAN [4] 27.97 0.834 33.79 0.903 0.098
MT-RNN [7] 28.44 0.862 35.77 0.951 0.039
SRN-Deblur [2] 28.56 0.867 35.66 0.947 0.20
DeblurGANv2 [5] 28.70 0.867 35.26 0.944 0.048
MPRNet(3) [11] 28.70 0.873 35.99 0.952 0.16

Ours(w/o Idem.) 28.69 0.868 35.79 0.949 0.023
Ours(w/ Idem.) 28.72 0.876 35.86 0.951 0.023

TABLE III
QUANTITATIVE ANALYSIS ON MULTI-BLURRING LEVEL SYNTHETIC

DATASET. DIFFERENT NUMBER IN THE FIRST ROW MEANS THE NUMBER
OF SUCCESSIVE LATENT FRAMES USED TO SYNTHESIZE THE BLURRY

IMAGES.

Methods \ PSNR(dB) 5 7 9 11 13 15

MT-RNN [7] 35.17 33.67 32.37 31.12 29.91 28.68
Stack(4)-DMPHN [3] 33.15 32.90 32.26 31.19 29.85 27.73

Ours(w/o Idem.) 34.77 33.82 32.81 31.75 30.55 29.14
Ours(w/ Idem.) 35.05 33.98 33.00 31.92 30.72 29.31

We also perform a quantitative comparison of generalization
results on the RealBlur [18] dataset for models only pre-trained
on the GoPro dataset. The quantitative results are reported
in Table II. We can observe that our model performs better
compared to previous state-of-the-art methods, which confirms
that our model is more robust in real-world scenes with
better generalization ability across different datasets for image
deblurring. Note that these results are from [18], except for
MT-RNN [7] which is reproduced by us. Due to the different
image sizes of the RealBlur dataset, we test the average
inference time of each model, and our model maintains a very
fast inference speed.

To further demonstrate the deblurring performance and
generalization ability for different blur levels, we resynthesized
a multi-blurring level dataset following the synthesis pipeline
of the GoPro dataset [1]. Quantitative results in Table III
show that our model achieves better deblurring performance
on the multi-blurring level dataset, indicating the superiority
of our idempotent framework for dynamic scene non-uniform
deblurring. Note that MT-RNN [7] uses blurry images of
different blur levels for supervision during the training process.
This strategy makes MT-RNN more advantageous when using
datasets synthesized at blur level 5 or 7, and causes the
performance of our network to be inferior to MT-RNN when
the blur level is 5. However, when the blur level is 7-15, the
performance of our proposed idempotent deblurring network
is significantly better than MT-RNN and DMPHN.
Qualitative Evaluations. We perform the visual quality com-
parison of deblurred images by our proposed model and recent
CNN-based dynamic scene deblurring networks, including
MT-RNN [7] and Stack(4)-DMPHN [3] (Considering the
space, we only tested the best of the two open-source meth-
ods). Fig. 5 shows several blurry images from the GoPro test
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(a) Blur input (b) MT-RNN [7] (c) Stack(4)-DMPHN [3] (d) Ours

Fig. 5. Visual comparisons on the GoPro testing dataset. Column (a) is the original blurry images, (b), (c), (d) are the deblurring results from MT-RNN [7],
Stack(4)-DMPHN [3] and our method, respectively. Best Viewed on Screen.

(a) Blur input (b) MT-RNN [7] (c) Stack(4)-DMPHN [3] (d) Ours

Fig. 6. Visual comparisons on the RealBlur dataset. Column (a) is the original blurry images, (b), (c), (d) are the deblurring results from MT-RNN [7],
Stack(4)-DMPHN [3] and our method, respectively. Best Viewed on Screen.

dataset and their corresponding deblurring results produced by
the above methods. We can observe that although the above
methods can play a good deblurring effect, the handling of

some details such as blurred structure recovery and blurred
edges is not satisfactory. For example, on the first row in Fig. 5,
our proposed model can better handle highly blurred scenes,
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(a) Blur input (b) MT-RNN [7]

(c) Stack(4)-DMPHN [3] (d) Ours
Fig. 7. Visual comparisons on the motion blurred thermal samples from [48]. Column (a) is the original blurred thermal images, (b), (c), (d) are the
deblurring results from MT-RNN [7], Stack(4)-DMPHN [3] and our method, respectively. Best Viewed on Screen.

especially in the zoom-in region (Such as recovering the
structure of the “window” is better than Stack(4)-DMPHN).
And on the second row in Fig. 5, our proposed model can
also perform better on recovering the blurred edges caused by
the large depth of field and highly dynamic moving objects.

We compare the qualitative results on the RealBlur test
datasets, as shown in Fig. 6. We can observe that our proposed
model has a very outstanding advantage for deblurring the
text in the scene accompanied by uneven lighting, while there
are still noticeable artifacts for the results of MT-RNN and
Stack(4)-DMPHN. Moreover, our model performs better for
deblurring faces (Fig. 6 second row) and tiny objects with
intricate details (Fig. 6 third row).

Our proposed idempotent deblurring network can be applied
to other imaging modalities. Following [48], we perform a
qualitative analysis of our pre-trained model and MT-RNN,
Stack(4)-DMPHN on motion blurred thermal images on the
dataset of [48]. The visualization comparisons are shown
in Fig. 7. We can observe that our model recovers sharper
details from the blurred thermal inputs, especially for highly
dynamic moving objects and structural details of the image.
The experiments on the thermal images show that our proposed
deblurring framework can generalize well to other image
modalities.

C. Ablation studies

In this section, we perform ablation studies on the GoPro
test dataset to analyze the effectiveness of each component of
our proposed method. The relevant experimental results are re-
ported in Table IV. FMR represents whether using feature map
recurrence. LCR denotes whether to use latent code recurrence
to embed states during iterations. Times means the deblurring
times in training, including deblurring and re-deblurring. Idem.
means whether using an idempotent constraint on the repeating

TABLE IV
QUANTITATIVE ANALYSIS OF ABLATION STUDIES.

FMR LCR Times Idem. Iters PSNR (dB) SSIM

(a) - - 1 - 1 29.463 0.9259
(b) - - 1 - 2 29.958 0.9323
(c) - - 1 - 4 30.933 0.9434
(d) - - 1 - 6 31.337 0.9461
(e) - - 1 - 8 31.464 0.9468

(f ) X - 1 - 6 31.479 0.9468
(g) X - 2 - 6 31.403 0.9465
(h) X - 2 X 6 31.521 0.9469

(i) X X 1 - 6 31.796 0.9487
(j) X X 2 - 6 31.684 0.9471

(k) X X 3 X 6 31.892 0.9523

(l) X X 2 X 6 31.917 0.9527
(m) X X 2 X 8 31.972 0.9529

re-deblurring outputs. Iters is the total number of iterations N
in a single deblurring process.
Effectiveness of the Idempotent Constraint. We first conduct
two experiments to evaluate the effectiveness of the idempotent
constraint. As shown in Table IV (i) and (l), after using the
idempotent constraint during the training process, the deblur-
ring performance can be improved from 31.796dB to 31.917dB
in terms of PSNR. Real-world deblurring performance on
the RealBlur dataset reported in Table II also demonstrates
the effectiveness of our idempotent constraint. If we only
perform re-deblur and use sharp loss LSharp to supervise
without idempotent loss LIdem (c.f. Table IV (j)), the result
will be severely reduced. We analyze that directly repeating
the whole deblurring model will cause a bottleneck in the
information flow, which explains the inferior result of (j)
to (i), and demonstrates the effectiveness of our proposed
idempotent constraint. We experiment with deblurring 3 times
with the idempotent constraint. The results of (k) and (j)
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(a) MT-RNN [7] (b) Stack(4)-DMPHN [3] (c) Ours (d) Ground-Truth

Fig. 8. Visual comparisons of model idempotence. Columns 1 to 3 show the deblurred results on the GoPro dataset when re-deblurring 10 times, and
column 4 is the ground-truth sharp image for visual comparison.

show a significant performance improvement. This comparison
demonstrates the effectiveness of the idempotent constraint in
deblurring multiple times. However, as the performance of (k)
is comparable to (l), considering the faster training speed, we
set the deblurring times of our idempotent framework to 2.

In Fig. 2, compared with others, our model trained with the
idempotent constraint could retain stable performance when
re-deblurring multiple times. We compare our model with
MT-RNN [7] and Stack(4)-DMPHN [3] by repeating the re-
deblurring process for 10 times. As shown in Fig. 8, after
repeating 10 times, more noise appears in the outputs of
Stack(4)-DMPHN while the result of MT-RNN shows overly
smoothed and unrealistic effects. In contrast, our model with
the idempotent constraint produces a visually realistic result
that is close to the sharp ground-truth image. The re-deblurring
results are repeated 10 times just to highlight the degradation
trend of these methods. We only need to repeat twice in
training, and for real application, the deblurring algorithm
only needs to be done once i.e. no re-deblurring. Benefiting
from the idempotent constraint, our model maintains stable
idempotence for multiple re-deblurring results.
Effectiveness of Progressive Residual Deblurring. By train-
ing the model with progressive residual deblurring, we allow
the network to consider wider image contexts and gradually
restore the sharp image. In Table IV, we experiment on the
influence of iterations when training the progressively deblur-
ring model. As shown in Line (a)-(e), our model achieves
improved performance as the iteration number increase, which
validates the effectiveness of the progressive residual learning
mechanism. The results in Line (k) and (l) for iterations 6 and
8 also demonstrate this. The iteration number is a hyperpa-
rameter that we can manually choose to achieve either better
deblurring performance or faster inference. Considering the
trade-off between inference time and deblurring performance,
we set the iteration number to 6.
Effectiveness of the Feature Maps Recurrence. We observe
that results become better with the help of the feature maps
recurrence structure in Table IV (d) and (f ). Because it
inherently passes the high-frequency features from the decoder
to the next encoder, the high-frequency features will be further
emphasized. The highlighted high-frequency features thus lead
to better deblurring performance.
Effectiveness of the Latent Code Recurrence. In Table IV
(h) and (k), the latent code recurrence improves PSNR by

TABLE V
QUANTITATIVE RESULTS OF RETRAINED DMPHN AND MT-RNN

WITH OUR IDEMPOTENT CONSTRAINT.

Methods DMPHN DMPHN(w/ Idem) MT-RNN MT-RNN(w/ Idem)

PSNR (dB) 30.25 30.36 31.15 31.28
SSIM 0.935 0.936 0.945 0.945

TABLE VI
QUANTITATIVE ANALYSIS OF RE-DEBLURRING PERFORMANCE. THE

FIRST TWO COLUMNS REPRESENT USING DIFFERENT METHODS TO
DEBLUR THE ORIGINAL BLURRY IMAGES FROM THE GOPRO DATASET.

THE REMAINING THREE COLUMNS REPRESENT EACH METHOD’S
DEBLURRING RESULTS WHEN RE-DEBLURRING THE DEBLURRED IMAGES

BY THE FIRST COLUMN’S METHODS.

Deblur Method Deblur Re-deblur Method 1st Re-deblur 2nd Re-deblur

Ours 31.917 Ours 31.916 31.914

Stack(4)-DMPHN [3] 31.402 Stack(4)-DMPHN [3] 30.192 29.896
Ours 31.370 31.369

MTRNN [7] 31.149 MTRNN [7] 30.538 30.322
Ours 31.041 31.039

about 0.396dB. This demonstrates that our LCR indeed miti-
gates the problem of fewer channel numbers at the bottleneck
caused by the lightweight network. The GRU module encodes
blurry patterns into hidden states among multiple iterations,
thus the progressive residual deblurring process can fully
utilize features that are more helpful to restore the sharp image.

D. Idempotent Property on Previous Methods

To demonstrate the effectiveness of our proposed idempo-
tent constraint, we retrain DMPHN and MT-RNN with our
idempotent constraint. The evaluation results on the GoPro
test dataset are reported in Table V. Our proposed idempotent
constraint can improve the deblurring performance of these
two methods without any modification of the network.

To verify the robustness of our method when dealing
with deblurred images, we further perform experiments by
feeding images obtained from other deblurring methods into
our model. In Table VI, we report the re-deblurring perfor-
mance of our model and the re-deblurring performance of
Stack(4)-DMPHN and MT-RNN. We can observe that the re-
deblurring performance of our method is significantly better
than Stack(4)-DMPHN and MT-RNN. This demonstrates that
our proposed idempotent framework can effectively deal with
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Blur Input Iter1                    Iter2                   Iter3                   Iter4                      Iter5                    Iter6

Ours

MT-RNN

Ours

MT-RNN

Fig. 9. Progressively deblurred results of our method and MT-RNN [7]. Same as MTRNN, our model can achieve progressive iterative deblurring over
multiple iterations, but without their temporal data augmentation in the training process.

TABLE VII
QUANTITATIVE ANALYSIS OF ITERATIVE RESIDUAL DEBLURRING COMPARED WITH MT-RNN [7].

Method Deblurring Times Calculation Data 1 2 3 4 5 6

Ours

1
PSNR (dB) 25.475 25.556 26.347 28.191 30.975 31.917

Every 3.614 4.992 3.834 3.123 4.302 3.903
Sum 3.614 6.235 5.492 8.329 11.674 13.026

2
PSNR (dB) 31.903 31.903 31.897 31.895 31.895 31.973

Every 0.359 0.422 0.142 0.381 0.675 0.673
Sum 0.359 0.298 0.540 0.531 0.359 0.071

MT-RNN [7]

1
PSNR (dB) 26.432 27.606 29.001 30.363 31.083 31.127

Every 2.324 3.118 3.283 3.203 2.572 1.217
Sum 2.324 5.102 7.811 10.226 11.943 12.469

2
PSNR (dB) 31.093 31.002 30.884 30.762 30.637 30.509

Every 0.386 0.535 0.584 0.586 0.580 0.579
Sum 0.386 0.803 1.175 1.491 1.765 2.020

images acquired from arbitrary sources (i.e., original blurry
images and deblurred images from other deblurring methods).

E. Comparison of Our Method and MT-RNN

Fig. 9 shows the output of progressively deblurred results of
our method and MT-RNN [7] in different deblurring iterations.
Our model archives progressively deblurring similar to MT-
RNN, but do not need their temporal data augmentation. The
degradation curve of MT-RNN in Fig. 2 is relatively more
stable than other methods without our idempotent constraint
(except for Ours (w/Idem.)). We believe this is mainly because
they train the model using additional temporally augmented
data. This data is composed of 3 to 13 (odd numbers) frames
respectively, which is more than the commonly used split by
GoPro [1]. The results of our re-trained MT-RNN without their
data augmentation also prove this belief.

We report the quantitative results of iterative residual deblur-
ring from every deblurring unit on the GoPro test dataset [1] in
Table VII. The first deblurring (Deblurring Times 1) uses the
blurry image as the model input, and the second deblurring
(Deblurring Times 2) uses the deblurred image at the first
time as the input. PSNR represents the distortion between the
deblurred image at each iteration and the ground-truth sharp

image. Every is the absolute value of the residual image output
by the network in each iteration. Sum is the absolute value of
the sum of the residual images from the current and previous
iterations, which is equivalent to the difference between the
current deblurred image and the input image of the network
at the first iteration. Note that these absolute values are defined
in the image value range from [0, 255].

For the first deblurring time, the deblurring performance
improves with the increase of the number of iterations. Al-
though the trend is similar, the variation (Every and Sum) of
each iteration is quite different. In the process of the second
deblurring (i.e., re-deblurring), our performance is more stable
and the PSNR of the final output is better.

In particular, the value of each residual is very small, and
the sum of the residual is very close to zero. As mentioned
in Section III-C, the idempotent constraint can be satisfied
when the sum of all the residual outputs is close to zero in
the re-deblurring process. On the contrary, the Sum value of
MT-RNN [7] increases with multiple iterations step by step.
This also leads to its worse and unstable performance in the
second deblurring process and shows the effectiveness of our
idempotent constraint by comparison.
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(a) Hazy input (b) Grid-DehazeNet [49] (c) Ours (d) Ground-Truth

Fig. 10. Visual comparisons on the SOTS indoor dataset for image dehazing. Column (a) is the input hazy images. (b), (c) is from Grid-DehazeNet [49]
and our method, respectively. (d) is the ground-truth image. Best Viewed on Screen.

(a) Rainy input (b) PreNet [50] (c) Ours (d) Ground-Truth

Fig. 11. Visual comparisons on the R100H dataset for image deraining. Column (a) is the input rainy images. (b), (c) is from PreNet [50] and our
method, respectively. (d) is the ground-truth image. Best Viewed on Screen.
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TABLE VIII
QUANTITATIVE ANALYSIS ON THE SYNTHESIZED GOPRO DATASET

WITH DIFFERENT LEVELS OF GAUSSIAN NOISE. THE DIFFERENT
NUMBERS IN THE FIRST ROW MEAN THE MAGNITUDE OF THE GAUSSIAN

NOISE ADDED ON THE INPUT BLURRY IMAGES.

Methods \ PSNR(dB) Original σ = 5 σ = 10 σ = 15 σ = 20

Ours(w/o Idem.) 31.80 30.76 29.58 28.16 26.05
Ours(w/ Idem.) 31.92 30.89 29.66 28.24 26.55

F. Noise Adaptation of Our Method

To verify the robustness of our model to noise, we analyze
the performance of our pre-trained model by adding different
levels of Gaussian noise to the blurry input of the GoPro
dataset [1]. The noise levels include 5, 10, 15 and 20, where
each number represents the standard deviation of the normal
distribution noise within the pixel range of [0, 255]. Then we
evaluate the deblurring performance of our pre-trained model
with or without our proposed idempotent constraint to ana-
lyze the noise adaptability. The deblurring performance under
different noise levels is reported in Table VIII. Experimental
results show the stability of our model for noisy inputs. This
observation illustrates that our proposed idempotent constraint
can make the model more robust to noise than the model
without the constraint.

G. Extension to Image Dehazing

Our proposed deep idempotent framework is rather general
and not limited to image deblurring. We perform image de-
hazing with our proposed model and the idempotent constraint
to investigate the versatility and scalability of different image
restoration tasks. Following the same training pipeline of Grid-
DehazeNet [49], our model is trained on Indoor Training Set
(ITS) and tested on the Synthetic Objective Testing Set (SOTS)
Indoor Subset in RESIDE dataset [51]. Table IX shows that
with the idempotent constraint, our model achieves state-of-
the-art performance on the SOTS indoor dataset. These results
show that our idempotent constraint can boost the dehazing
performance by a large margin (1.86dB). Fig. 11 shows the
visual comparison of dehazing results on SOTS indoor dataset.
Compared with Grid-DehazeNet [49], our model has a clear
advantage in visual effects. For instance, previous methods
may not fully dehaze some image regions and produce black
artifacts in the zoom-in areas.

TABLE IX
QUANTITATIVE RESULTS OF APPLYING OUR IDEMPOTENT

FRAMEWORK ON THE SOTS INDOOR DATASET FOR IMAGE DEHAZING.
BEST AND SECOND-BEST SCORES ARE HIGHLIGHTED AND UNDERLINED.

Methods [52] [53] [49] [54] [55] Ours(w/o) Ours(w/)

PSNR (dB) 19.82 30.23 32.16 36.39 36.56 34.78 36.64
SSIM .8209 .9800 .9836 .9556 .9905 .9823 .9851

H. Extension to Image Deraining

We also extend our proposed deep idempotent framework
to image deraining. Following the same training pipeline of

TABLE X
QUANTITATIVE RESULTS OF APPLYING OUR IDEMPOTENT

FRAMEWORK FOR IMAGE DERAINING. BEST AND SECOND-BEST SCORES
ARE HIGHLIGHTED AND UNDERLINED.

Test100 [56] Rain100H [57] Rain100L [57]
Methods PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

DerainNet [58] 22.77 0.810 14.92 0.592 27.03 0.884
SEMI [59] 22.35 0.788 16.56 0.486 25.03 0.842
DIDMDN [60] 22.56 0.818 17.35 0.524 25.23 0.741
UMRL [61] 24.41 0.829 26.01 0.832 29.18 0.923
RESCAN [62] 25.00 0.835 26.36 0.786 29.80 0.881
PreNet [50] 24.81 0.851 26.77 0.858 32.44 0.950
MSPFN [63] 27.50 0.876 28.66 0.860 32.40 0.933

Ours(w/o Idem.) 28.94 0.889 29.97 0.881 34.14 0.942
Ours(w/ Idem.) 29.00 0.892 30.10 0.882 34.68 0.954

MSPFN [63], we train our model on about 13,700 clean/rain
image pairs collected from [56], [57]. We evaluate the per-
formance on the testing datasets, including Test100 [56],
Rain100H [57] and Rain100L [57]. The results in Table X
show that our designed structure and idempotent constraint
boost the deraining performance, respectively. Fig. 10 shows
the visual comparison of deraining results on R100H dataset.
Compared with PreNet [50], our model has better visual
effects.

V. CONCLUSION

In this paper, we have presented a novel deep idempotent
network for efficient single image blind deblurring. First,
we introduced the idempotent constraint to the deep deblur-
ring network, which improves the non-uniform deblurring
performance and achieves stable results w.r.t. re-deblurring
multiple times. Second, we designed a simple yet efficient
deblurring network through progressive residual deblurring
with recurrent structure. Our model achieves state-of-the-art
performance with smaller parameters and faster inference time
than the state-of-the-art methods. The introduced idempotent
constraint, as a regularization term, plays an important role
in reducing the solution search space and thus leads to a
more stable solution regardless of the times of re-deblurring.
By adopting our idempotent constraint in model training,
our model shows great generalization performance on real-
world and synthetic datasets. Our framework is not limited
to image deblurring, and we have verified the superiority of
our framework in image dehazing and image deraining. In the
future, we will further extend it to other image restoration
tasks such as image denoising [64]. It is also promising to
explore a tailored multiple-image input idempotent network
for video [35] or light field image deblurring [23].
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