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Solve the Puzzle of Instance Segmentation in
Videos: A Weakly Supervised Framework with

Spatio-Temporal Collaboration
Liqi Yan, Qifan Wang, Siqi Ma, Jingang Wang, Changbin Yu*

Abstract—Instance segmentation in videos, which aims to
segment and track multiple objects in video frames, has garnered
a flurry of research attention in recent years. In this paper,
we present a novel weakly supervised framework with Spatio-
Temporal Collaboration for instance Segmentation in videos,
namely STC-Seg. Concretely, STC-Seg demonstrates four con-
tributions. First, we leverage the complementary representa-
tions from unsupervised depth estimation and optical flow to
produce effective pseudo-labels for training deep networks and
predicting high-quality instance masks. Second, to enhance the
mask generation, we devise a puzzle loss, which enables end-
to-end training using box-level annotations. Third, our tracking
module jointly utilizes bounding-box diagonal points with spatio-
temporal discrepancy to model movements, which largely im-
proves the robustness to different object appearances. Finally,
our framework is flexible and enables image-level instance
segmentation methods to operate the video-level task. We conduct
an extensive set of experiments on the KITTI MOTS and
YT-VIS datasets. Experimental results demonstrate that our
method achieves strong performance and even outperforms fully
supervised TrackR-CNN and MaskTrack R-CNN. We believe that
STC-Seg can be a valuable addition to the community, as it
reflects the tip of an iceberg about the innovative opportunities
in the weakly supervised paradigm for instance segmentation in
videos.

Index Terms—Video instance segmentation, weakly supervised
learning, multi-object tracking and segmentation

I. INTRODUCTION

The importance of the weakly supervised paradigm cannot
be overstated, as it permeates through every corner of recent
advances in computer vision [1]–[3] to reduce the annotation
cost [1], [4]. In contrast to object segmentation [5]–[8], for
instance segmentation in videos [9]–[11], dense annotations
need to depict accurate instance boundaries as well as object
temporal consistency across frames, which is extremely labor-
intensive to build datasets at scale required to train a deep net-
work. Although a large body of works on weakly supervised
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image instance segmentation have been discussed in litera-
ture [12]–[14], the exploration in video domain remains largely
unavailable until fairly recently [5], [15]–[18]. Therefore,
understanding and improving the weakly supervised methods
of instance segmentation in videos are the key enablers for
future advances of this critical task in computer vision.

Developing a weakly supervised framework is a challenging
task. One core objective is to devise reliable pseudo-labels
and loss function to perform effective supervision [12], [19].
To date, a popular convention is to use class labels produced
by Class Activation Map (CAM) or its variants [20], [21]
to supervise image instance segmentation [13], [14], [22]–
[24]. However, the CAM-based supervision signal may capture
spurious dependencies in training due to two daunting issues:
1) It can only identify the most salient features on object
regions, which often lose the overall object structures, resulting
in partial instance segmentation [25]–[27]; 2) It cannot sep-
arate overlapping instances of the same class and generally
lose the capacity to describe individual targets, when dealing
with multiple instances present in an image [22], [28], [29].
The challenge is further compounded by instance appearance
changes caused by occlusion or truncation [30], [31]. Thus,
though CAM is outstanding in semantic segmentation, it
does not perform well in instance segmentation. Under the
circumstance, there is a necessity to explore novel weakly
supervised approaches with more effective pseudo-labels for
video-level instance segmentation.

Aside from the CAM-based family, a line of research has
attempted to tackle image instance segmentation with box-
level annotations [32]–[35]. Albeit achieving improvements
over CAM-based solutions, they generally have complicated
training pipelines, which incur a large computational budget
and long supervision schedule. To address this issue, a recent
work, BoxInst [36] introduces a simple yet effective mask
loss for training, including a projection term and an affinity
term. The first term minimizes the discrepancy between the
horizontal and vertical projections of the predicted mask and
the ground-truth box. The second term is to identify confi-
dent pixel pairs with the same label to explore the instance
boundary. With the same supervision level, BoxInst achieves
significant improvement over the prior efforts using box an-
notations [37]–[39]. This successful exploration highlights the
importance of loss function to train deep networks in a weakly
supervised fashion for the segmentation task.

On the basis of the preceding lessons, one could argue that
box-supervised instance segmentation in videos is feasible. In
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(a) Optical flow

(b) Depth estimation (c) Puzzle solver with puzzle lossInput video 

Box term

Pseudo-labels

Boundary term

Fig. 1. Working pipeline of STC-Seg. The pseudo-labels are generated from spatial and temporal signals, which capture the instance boundary with more
accurate edges. Our puzzle solver supervises mask predictions to assemble each sub-region mask together to match the shape of the target with box annotations.

view of the nature of video data, our conjecture is that one
can leverage the rich spatio-temporal information in video
to develop reliable pseudo-labels for enhancing the box-level
supervision. In particular, optical flow captures the temporal
motion among instances which ensures the same instances
have similar flow vectors (Fig. 1a), while depth estimation
provides the spatial relation between instance and background
(Fig. 1b). We leverage the complementary representation of
spatio-temporal signals to produce high-quality pseudo-label
to supervise instance segmentation in videos. To enable ef-
fective training with the proposed pseudo-labels, we propose
a novel puzzle loss that organizes learning in a manner
compatible with box annotations, including a boundary term
and a box term. The two terms collaboratively resolve the
puzzle of how to assemble suitable sub-region masks that
match the shape of the instance, facilitating the trained model
to be boundary sensitive for fine-grained prediction (Fig. 1c).
Furthermore, in contrast to previous efforts [10], [11], which
use simple matching algorithms for tracking, we introduce an
enhanced tracking module that tracks diagonal points across
frames and ensures spatio-temporal consistency for instance
movement. To establish the conjecture, our work essentially
delivers the following contributions:

• We develop a Spatio-Temporal Collaboration framework
for instance Segmentation (STC-Seg) in videos, which
leverages the complementary representations of depth es-
timation and optical flow to produce high-quality pseudo-
labels for training the deep network.

• We design an effective puzzle loss to assemble mask pre-
dictions on each sub-region together in a self-supervised
manner. A strong tracking module is implemented with
spatio-temporal discrepancy for robust object appearance
changes.

• The flexibility of our STC-Seg enables weakly supervised
instance segmentation and tracking methods to have the
capacity to train fully supervised segmentation methods.

• We conduct extensive experiments and demonstrate that
our method is competitive with the state-of-the-art sys-
tem [17] and outperforms fully supervised MaskTrack R-
CNN [11] and TrackR-CNN [10].

II. RELATED WORK

Although weakly supervised instance segmentation in
videos is relatively under-studied, this section summarizes
the recent advances in the related fields regarding weakly
supervised instance segmentation, box-supervised methods,
and segmenting in videos [14], [23], [24], [33], [36], [40].

A. Fully Supervised Instance Segmentation

In the past decade, various fully supervised image in-
stance segmentation methods have been proposed. These ap-
proaches can generally be divided into two categories: two-
stage and single-stage approaches. Two-stage methods [41]–
[44] typically generate multiple object proposals in the first
stage and predict masks in the second stage. While two-
stage methods achieve high accuracy with large computational
cost, single-stage approaches [45]–[50] employ predictions of
bounding-boxes and instance masks at the same time. For
example, SipMask [49] proposes a novel light-weight spatial
preservation module that preserves the spatial information
within a bounding-box. BlendMask [50] is based on the
fully convolutional one-stage object detector (FCOS) [51],
incorporating rich instance-level information with accurate
dense pixel features. However, all these methods are built upon
accurate human-labeled mask annotations, which requires far
more human annotators than box annotations. In contrast, our
method uses only box annotations instead of mask annotations,
and thus dramatically reduces labeling efforts.

B. Weakly-supervised Instance Segmentation

Using class labels to extract masks from CAMs or similar
attention maps has gained popularity in training weakly su-
pervised instance segmentation models [14], [23], [40], [52].
However, CAM-based supervision is not intrinsically suitable
for the instance segmentation task as it cannot provide accurate
information regarding individual objects, which potentially
causes confusion in prediction [22], [28], [30], [31]. One
closely related work is flowIRN [17], which uses the flow
fields as the extra supervision signal to operate training.
Our technique is conceptually distinct in three folds: 1)
flowIRN only uses flow field to generate pseudo-labels and
thus fails to fully exploit the spatio-temporal representations.
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In contrast, we leverage the collaborative power of spatio-
temporal collaboration to produce high-quality pseudo-labels;
2) flowIRN trains different contributing modules (i.e., CAM
and optical flow) dis-jointly, resulting in an ineffective and
complicated training pipeline. We propose a puzzle solver
that organizes learning through the use of our pseudo-labels
with box annotations, enable a fully end-to-end fashion; 3)
flowIRN directly adopts exiting tracking method [10], while
our tracking module builds on a novel diagonal-point-based
approach. More comparison results will be provided in the
experiments. To address this issue, we aim to explore the more
effective pseudo-labels from spatio-temporal collaboration for
weak supervision.

C. Box-supervised Instance Segmentation

Our work is also closely related to the box-supervised
instance segmentation methods. At the image level, SDI [12]
might be the first box-supervised instance segmentation frame-
work, which utilizes candidate proposals generated by MCG
[53] to operate segmentation. In the same vein, a line of recent
work [33], [37], [54], [55] formulates the box-supervised
instance segmentation by sampling the positive and negative
proposals based on the ROIs feature maps. However, using
proposals for instance segmentation has redundant representa-
tions because a mask is repeatedly encoded at each foreground
feature around ROIs. In contrast, our method is proposal-free
as we remove the need for proposal sampling to supervise the
mask learning. BoxInst [36] is one of the works that is similar
to ours. It uses a pairwise loss function to operate training on
low-level color features. However, their pairwise loss works
in an oversimplified manner that encourages confident pixel
neighbors to have similar mask predictions, inevitably intro-
ducing noisy supervision. Different from BoxInst, our method
produces high-quality pseudo-labels derived from high-level
spatio-temporal priors for supervision. To organize learning,
we devise a novel puzzle loss to supervise our mask generation
to capture accurate instance boundaries with box annotations.

D. Video Segmentation

A series of fully supervised approaches have emerged for
segmentation in videos [9], [35], [45], [56]–[60]. For instance,
VIS [11] and MOTS [10] both extend Mask R-CNN [41]
from images to videos and simultaneously segment and track
all object instances in videos. To the best of our knowledge,
flowIRN [17] and BTRA [61] may be two of the few that
explore weakly supervised learning for the video-level instance
segmentation task. FlowIRN [17] trains different contributing
modules (i.e., CAM and optical flow) dis-jointly and incurs
additional dependencies, resulting in a dense training pipeline.
BTRA [61] only box to generate pseudo-labels and thus fails
to fully exploit the spatio-temporal representations for the
boundary supervision. To maximize synergies for instance
segmentation in videos, we propose a weakly supervised
spatio-temporal collaboration framework in the paper. Unlike
the aforementioned methods which overlook the sub-task of
tracking in videos, we implement a strong tracking module
to model instance movement across frames by using diagonal

points with spatio-temporal information. Compared to the prior
efforts [10], [11], [17], our tracking module has a more robust
tracking capacity.

E. Spatio-Temporal Collaboration

A bunch of previous works [4], [56], [62]–[67] explore
spatio-temporal collaboration to assist visual tasks. For ex-
ample, P3D ResNet [67] mitigated limitations of deep 3D
CNN by devising a family of bottleneck building blocks that
leverages both spatial and temporal convolutional filters.

SC-RNN [63] simultaneously captures the spatial coherence
and the temporal evolution in spatio-temporal space. ESE-
FN [64] captures motion trajectory and amplitude in spatio-
temporal space using skeleton modality, which is effective in
modeling elderly activities. However, these methods embed
spatio-temporal analysis into the entire model, where the
spatio-temporal modeling process is required during inference.
In our method, the spatio-temporal collaboration is only used
as the supervision signal during training, but not needed in the
segmentation prediction.

III. STC-SEG APPROACH

A. Overall Framework

The overall framework of STC-Seg is shown in Fig. 2.
During training, the pseudo-labels are first generated with
spatio-temporal collaboration. The segmentation model is then
jointly learned based on the pseudo-labels and the box la-
bels/annotations via a novel puzzle solver. During inference,
we directly perform instance segmentation on input video data
without using any extra information (i.e., depth estimation or
optical flow). Essentially, our STC-Seg consists of three core
components: 1) the spatio-temporal pseudo-label generation,
which offers a supervision signal for our training; 2) the
puzzle solver, which organizes the training of video instance
segmentation models; and 3) the tracking module, which
enables robust tracking capacity. We present the details of each
component in the following sections.

B. Puzzle Solver with Spatio-temporal Collaboration

1) Pseudo-label Generation.: Most existing works [37],
[54], [55] rely solely on optical flow to generate pseudo-
label. In this work, we leverage both spatial and temporal
signals in our pseudo-label generation pipeline to better cap-
ture rich boundary information and effectively distinguish the
foreground (the instance) from the background. In particular,
our method adopts spatial signal Ss obtained from depth
estimation [68], and temporal signal St obtained from optical
flow [69].

As shown in Fig. 2, we directly employ depth estimation
xs ∈ Rh×w×1 and optical flow xt ∈ Rh×w×2 as the inputs
for our pseudo-label generation module. The above two inputs
keep the same resolution w×h with the input frame, in order
to build the pixel-to-pixel correspondence. Each signal x ∈
{xs,xt} is then fed into a mini network [19] to compute
the contextual similarity at each pixel location for obtaining
the spatial and temporal signals, respectively. Given a location
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Fig. 2. The overview of STC-Seg framework. During training, pseudo-labels from spatio-temporal collaboration and box labels from box annotation are
jointly fed into the puzzle solver to learn a unified instance segmentation network. During inference, the learned segmentation network is applied to every
frame, followed by a tracking module to perform robust object tracking. Dashed and solid paths are the pipelines for training and inference respectively.
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(i, j) on the input x, the contextual similarity score Si,j on
the corresponding signal S ∈ {Ss,St} is computed as:

Si,j =
∑
k1,k2

δ
(
wk1,k2 · x(i+λ·k1),(j+λ·k2),xi,j

)
(1)

where k1, k2 ∈ {−1, 0, 1}. w is the dilated kernel, and λ is
the dilation rate. δ(, )1 is the similarity measurement function.
For the obtained signals, we have Ss,St ∈ Rh×w×1.

To produce the pseudo-label M for training, we leverage
the complementary representations of the two signals by fusing
them together with a threshold filter:

M = (Ss − φs) ∧ (St − φt) (2)

where φs, φt denote the filter factor to determine the salience
threshold of each signal on the foreground instances. However,
noises may reside on the pseudo-labels and segregate one
target instance into multiple sub-regions.

2) Puzzle Solver.: As mentioned above, directly using the
pseudo-labels without constraints may result in excessively
noisy supervision and suboptimal training outcomes. In com-
parison to fully supervised information, which can be labeled

1δ
(
xi,j ,xi′,j′

)
= e

r·
∣∣∣∣∣∣xi,j−xi′,j′

∣∣∣∣∣∣
p .

pixel-by-pixel, solving the puzzle of predicting the imaginary
mask is difficult in the weakly supervised fashion. To address
this issue, we introduce a novel puzzle solver that organizes
learning through the use of our pseudo-labels with box anno-
tations.

Our puzzle solver essentially designs a puzzle loss that op-
erates supervision of mask prediction with two loss terms. The
first one is Boundary term, which explores all the candidate
sub-regions of the target instances to depict their boundaries.
The second one is Box term, which ensures maximal positions
of the predicted mask boundaries can closely stay within the
ground truths. The two terms work collaboratively to solve the
puzzle of how to assemble suitable sub-region masks together
to match the shape of the instance (see Fig. 3). Our puzzle
solver is to jointly optimize both the boundary term Lbd and
box term Lbx with respect to the network parameters θ:

arg min
θ

Lpz = arg min
θ

(Lbd + Lbx) (3)

Boundary term: With ground truths, fully supervised meth-
ods can use binary cross entropy (BCE) loss Lbce to supervise
the mask generation, which uses both positive samples (the
foreground) and negative samples (the background) in training.
However, as discussed in Section III-B1, our pseudo-labels are
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noisy references with unwanted inner negative samples inside
the object, which would introduce inevitable noises in training.
To address this issue, we modify Lbce by focusing on learning
positive examples to capture the instance boundaries (Fig. 3c).
Concretely, given a pixel location (i, j) on the pseudo-labels
M , its corresponding label mi,j can be mi,j ∈ {0, 1}, where 1
denotes the foreground instance and 0 denotes the background.
To learn the instance mask generation, our boundary loss only
operates learning of the posterior probability P (m̃i,j |mi,j =
1) from positive samples, where m̃i,j ∈ {0, 1} is the predicted
mask at (i, j). Given the input size w × h, our boundary loss
is given by:

Lbd = − 1

h× w

w∑
j=1

h∑
i=1

mi,j logP (m̃i,j = 1) (4)

At first glance, only using the positive sampling may not
work well in training. However, an important observation is
that our pseudo-labels allow the network to effectively learn
the dominant representations from the positive examples. With
additional box supervision, the boundary loss computation
effectively captures the instance boundaries, thus largely elim-
inating supervision noises.

Box term: To perform box-level supervision, BoxInst [36]
adopts dice loss [70], which computes the similarity distance
of the predicted bounding boxes and the ground truths. How-
ever, a prediction, which is larger or smaller than the ground
truth, may have a similar penalty in dice loss computation.
Thus, a model supervised by the dice loss tends to generate
overly saturated masks that go beyond the boxes. To address
this issue, we introduce a position penalty into dice loss Ldice
to penalize the model for generating a mask that exceeds the
box (as shown in Fig. 3d). This penalty term encourages the
mask boundary to align with the ground truth box:

L
′

dice(p, g) =

2
N∑
i

pigi

N∑
i

p2i + g2i︸ ︷︷ ︸
Dice loss Ldice

+

N∑
i

[max(pi − gi, 0)]2

N∑
i

g2i︸ ︷︷ ︸
Position penalty

(5)

where pi ∈ (0, 1) and gi ∈ {0, 1} are the log-likelihood
scores of the prediction and the ground truth respectively. N
is the length of the input sequence. The position penalty can
be understood as the proportion of the predicted region that
exceeds the ground truth region. As shown in Eq. 5, it is clear
that there is no position penalty for those points within the
ground truth. The final box term can be written as:

Lbx(m̃,B) = L
′

dice(Projx(m̃),Projx(B))

+L
′

dice(Projy(m̃),Projy(B))
(6)

where m̃ is the predicted instance mask. B is the corre-
sponding box annotations. Projx and Projy are the projection
functions [36], which map m̃ and B onto x-axis and y-
axis, respectively. It is worth mentioning that the new Lbx
effectively rectifies the expanded masks outside the box that
are introduced by the Lbd. In other words, the Lbd allows
the model to predict larger masks, while Lbx ensures the

model predicts precise masks that are consistent with the
ground truth boxes. Note that the segmentation generation
is independent of pseudo-label generation. The computational
cost only increases when calculating the losses, which has the
same computational complexity as the MSE loss. Therefore,
our method will not introduce additional computation cost.

Our method can also be applied to those tasks with noise
supervision, such as target segmentation tasks with inaccurate
box labeling or incorrect labels [71]–[74]. For the former
cases, we can slightly modify the loss of box term to assign a
larger weight to the positive feedback of the intersection area,
while assigning the negative feedback outside the intersection
area a smaller weight. For the latter cases, we can modify
the loss of boundary term by assigning a relatively large
weight to the positive item and a small weight to the negative
item in the cross entropy. In this way, our loss function is
able to deal with more inaccurate box annotations and label
predictions. Intuitively, the classification task can be regarded
as a regression problem by taking the irrelevant labels as
the ”background”, so that the regression boundary can shrink
inward on the feature plane until the accurate label boundary
is found.

C. Tracking Module

Existing methods [75]–[77] prioritize object position model-
ing for tracking, which may cause confusion when two objects
are extremely occluded or overlapped as shown in Fig. 2. To
address this issue, we place a premium on both object size
and position modeling in our tracking module. Moreover, the
spatio-temporal changes on individual objects should remain
within a reasonable range, given the consistency of video
object movement across frames. In light of both observations,
we introduce a novel tracking module using diagonal points
with spatio-temporal discrepancy.

1) Diagonal Points Tracking: To represent the object po-
sition and size, we adopt diagonal points to model the object
movement by using the upper-left corner (x1, y1) and the
lower-right corner (x2, y2) of the bounding box. Similar to
almost tracking methodology [76], [78], we adopt a recursive
Kalman Filter and frame-by-frame data association to predict
the future location for each tracked object. The movement
∆lt−1→to of a tracked object o in the tth frame is used to
predict the future location pt+1(lto) = ∆lt−1→to + lto of this
object at (t + 1)th, where lto is the location of object o and
∆lt−1→to is given by:

∆lt−1→to = (xt1 − xt−11 , yt1 − yt−11 , xt2 − xt−12 , yt2 − yt−12 )
(7)

During object tracking, we maintain a dictionary O≤t =

{ô}K̂ of K̂ tracked objects in former frames. Given K
detected objects Ot+1 = {o}K in (t+1)th frame, our tracking
is to build a list of one-to-one matching pairs ô = ϕ(o) ∈ O≤t
to minimize the Euclidean distance between ground truth
locations lt+1

o of each o ∈ Ot+1 and the predicted future
locations pt+1(ltϕ(o)):

arg min
ϕ

∑
Ot+1

< pt+1(ltϕ(o)), l
t+1
o > (8)
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2) Bi-greedy Matching: Conventional tracking methods are
generally one-directional as they perform a popular greedy
search, called Hungarian Algorithm, to build the correspon-
dences ϕ from the previous frame to the current one (e.g.,
JDE [79], DeepSORT [78], FairMot [80], CenterTrack [77]).
However, the position of the same object in the previous
frame may not always be the closest one that appeared in
the current frame, which causes confusion in tracking. To
address this problem, some methods use pre-trained CNN
descriptors to distinguish objects [11], [78], but computing
features takes too much time and the objects are sometimes
very similar. Thus, we consider matching from both directions
(i.e., previous-to-current and current-to-previous) and develop
a bidirectional greedy matching to output the tracking Tϕ as
follows (assuming that only DP is used):

Algorithm 1 Bi-greedy matching.
Input: O≤t = {ô}G, Ot+1 = {o}K .
Output: Tϕ = {(o, ϕ(o))}K for all o ∈ Ot+1

1: T ← ∅
2: Tϕ ← ∅
3: for all ô ∈ O≤t do
4: o′ ← arg min

o∈Ot+1

< pt+1(ltô), l
t+1
o >

5: T ← T ∪ (ô, o′)
6: end for
7: for all o ∈ Ot+1 do
8: if any ô, (ô, o) ∈ T then
9: ô← arg min

ô,(ô,o)∈T
< pt+1(ltô), l

t+1
o >

10: Tϕ ← Tϕ ∪ (o, ô)
11: else
12: Tϕ ← Tϕ ∪ (o,New ô)
13: end if
14: end for

As shown in Algorithm 1, our proposed matching algorithm
first finds the nearest instance o′ ∈ Ot+1 in the current frame
for each previous tracked object ô ∈ O≤t. There may exist two
cases: (a) more than one different previous instance may have
the same nearest current instance o, those previous instances
are collected as candidate instances; (b) it is also possible
that some current instances are not marked by any previous
instances. In the case (a), for this current instance o, we finally
get the matched previous instance ô by finding the nearest one
from those candidate instances. In the case (b), those current
instances are judged as a new instance. Since G > K in most
cases, to run traversal fist on O≤t is better than Ot+1 because
it focuses on the matched current instances o′ ∈ Ot+1 rather
than previous instances that are not in current frame. In each
round of matching, in order to avoid the occluded objects being
forgotten, we need to re-match the newly emerged objects.
Therefore, we adopt a matching cascade algorithm [78] that
gives priority to more frequently appearing objects to ensure
those objects that are briefly occluded and disappeared can be
re-identified.

3) Occluded Object Multi-stage Matching: The occluded
objects often get a low confidence level after passing through

…

Average

Pooling layer Dilated convolution layers

𝑆
Residual 

module

𝛿(∙,∙)

Fig. 4. The architecture of our mini network. We use the dilated convolution
layers to capture the spatial or temporal data difference between adjacent
pixels. The similarity measurement function δ(·, ·) is implemented by a
residual module.

the detection algorithm. The existing algorithms only set
a single confidence level threshold to divide the correctly
detected target and the wrongly detected target. This approach
causes the tracking of occluded objects to fail. We introduce
a multi-stage matching mechanism, that is to set two lower
thresholds of confidence scores, and treat the divided high-
scoring detection targets and low-scoring detection targets
differently, and perform two rounds of matching respectively
in turn. In this way, although the confidence obtained by the
occluded object position is lower, it can still be successfully
matched in the second round of matching.

4) Spatio-Temporal Discrepancy: Considering the fact that
the spatio-temporal changes on individual objects should retain
a reasonable range in videos, we extend the Eq. 8 by adding
the spatio-temporal discrepancy for tracking:

arg min
τ

∑
Ot+1

α1 < pt+1(ltϕ(o)), l
t+1
o >

+α2 < Dt(ltϕ(o)), D
(t+1)(lt+1

o ) >

+α3 < F t(ltϕ(o)), F
(t+1)(lt+1

o ) >

(9)

where Dt and F t denotes the depth and optical flow values of
the diagonal points for the tracked object o on the tth frame.
α1, α2, α3 are the trade-off weights that balance these terms.
The new objective essentially ensures the tracked objects are
aligned with the segmented instances among frames, while
at the same time being consistent with their spatio-temporal
positions. We demonstrate the improvements of our tracking
in Section IV-F.

IV. EXPERIMENTS

A. Datasets

We evaluate STC-Seg on two benchmarks: KITTI MOTS
[10] and YT-VIS [11]. The KITTI MOTS contains 21 videos
(12 for training and 9 for validation) focusing on driving
scenes. The YT-VIS contains 2,883 YouTube video clips with
131k object instances and 40 categories. On KITTI MOTS,
the metrics are HOTA, sMOTSA, MOTSA, and MOTSP from
[75]. On YT-VIS, the metrics are: mAP is the mean average
precision for IoU between [0.5, 0.9], AP@0.50 and AP@0.75
are average precision with IoU threshold at 0.50 and 0.75,
and AR@1 and AR@10 are average recall for top 1 and 10
respectively.
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TABLE I
QUANTITATIVE RESULTS ON KITTI MOTS TEST SET. RESULTS FOR FULLY SUPERVISED METHODS ARE RETRIEVED FROM THE MOTS BENCHMARK.
FOR WEAKLY SUPERVISED METHODS WISE AND IRN, THE RESULTS ARE OBTAINED FROM THEIR ORIGINAL CODES COMBINED WITH OUR TRACKING

MODULE. STC-SEG50 AND STC-SEG101 INDICATE USING RESNET-50 AND RESNET-101 AS BACKBONE RESPECTIVELY. ALL THE BASELINE METHODS
USE RESNET-101 WITH FPN.

Car PedestrianMethods HOTA sMOTSA MOTSA MOTSP HOTA sMOTSA MOTSA MOTSP

Fu
lly

ViP-DeepLab [81] 76.3 81.0 90.7 89.8 64.3 68.7 84.5 82.3
EagerMOT [82] 74.6 74.5 83.5 89.5 57.6 58.0 72.0 81.5

MOTSFusion [83] 73.6 74.9 84.1 89.3 54.0 58.7 72.8 81.5
PointTrack [84] 61.9 78.5 90.8 87.1 54.4 61.4 76.5 80.9

TrackR-CNN [10] 56.6 66.9 79.6 85.0 41.9 47.3 66.1 74.6

W
ea

kl
y WISE [13] 41.8 21.6 39.5 62.9 20.9 18.8 29.1 55.2

IRN [22] 44.7 25.9 41.1 64.1 22.9 19.1 31.6 56.4
FlowIRN [17] 50.2 45.1 63.8 71.4 27.5 19.4 35.9 62.7
PointRend [85] 51.8 49.3 70.6 74.2 28.3 20.0 37.5 64.4

MOTSNet + Grad-CAM [86] - 54.6 72.5 76.6 - 20.3 39.7 65.7
STC-Seg50 57.7 66.9 80.7 83.9 46.7 47.4 67.6 73.6
STC-Seg101 59.6 69.2 83.3 85.1 47.5 48.6 68.3 75.8

TABLE II
RESULTS ON YT-VIS VALIDATION SET. METRICS FOR SIPMASK [49] ARE OBTAINED FROM ITS ORIGINAL PAPER. ALL OTHER COMPARED RESULTS

ARE RETRIEVED FROM [17]. ALL METHODS USE RESNET-50 WITH FPN.

Methods mAP AP@0.5 AP@0.75 AR@1 AR@10

Fu
lly

IoUTracker+ [11] 23.6 39.2 25.5 26.2 30.9
DeepSORT [78] 26.1 42.9 26.1 27.8 31.3

MaskTrack R-CNN [11] 30.3 51.1 32.6 31.0 35.5
SipMask [49] 33.7 54.1 35.8 35.4 40.1

W
ea

kl
y WISE [13] 6.3 17.5 3.5 7.1 7.8

IRN [22] 7.3 18.0 3.0 9.0 10.7
FlowIRN [17] 10.5 27.2 6.2 12.3 13.6

STC-Seg50 31.0 52.4 33.2 32.9 36.2

B. Pseudo-Label Generation Network Architecture

In the pseudo-label generation of STC-Seg, unsupervised
Monodepth2 [68] and Upflow [69] are adopted for the depth
estimation and optical flow respectively. The depth and flow
outputs are fed into a mini network. The mini network is
composed of a 2D average pooling layer, dilated convolution
layers and a residual module, as shown in Fig. 4. In pre-
processing, we use a 2D average pooling layer to down-sample
the depth and the optical flow data. The kernel size and the
stride of the pooling layer are both set to 4 without padding.
After the 2D average pooling layer, dilated convolution is
applied since it enables networks to have larger receptive fields
with just a few layers. The dilation rate λ is set to 2 and the
kernel size is set to 3 in our experiments, so the padding size
is set to 2 to keep the output size equal to the input size.
The weight of the kernel is initialized as W = [wk1,k2 ]3×3,
where wk1,k2 ∈ {0, 1}. After the dilated convolution layers,
the residual module subtracts the output of the pooling layer
from the output of the dilated convolution layers and applies an
exponential activation function. The final output of the residual
module can be written as δ(xi,j ,xi′,j′) = er·||xi,j−xi′,j′ ||p

in Eq. 1, which represents the contextual similarity between
locations (i, j) and (i′, j′) in the frame, where r is the
similarity factor. We use the Frobenius norm (p = 2) in this
contextual similarity calculation. The similarity factor r is set
to 0.5 in our experiments.

C. Main Network Architecture

Our segmentation network is crafted on CondInst [87] with
a few modifications. Following CondInst, we use the FCOS-
based network, which includes ResNet-50/101 backbones [88]
with FPN [89], a detection built on FCOS, and dynamic mask
heads. For the dynamic mask heads, we use three convolution
layers as in CondInst, but we increase the channels from 8
to 16 as in [36], which results in better performance with
an affordable computational overhead. Without any network
parameter consumption, our tracking module directly performs
tracking over the output of the segmentation network.

D. Implementation Details

1) Pseudo-Label Generation: To generate pseudo-labels,
unsupervised Monodepth2 [68] and Upflow [69] are adopted
for the depth estimation and optical flow respectively. The
Monodepth2 [68] is trained on the KITTI stereo dataset [90]
when we take experiments on KITTI MOTS. When using
the monocular sequences in KITTI stereo dataset for training,
we follow Zhou et al.’s [91] pre-processing to remove static
frames. This results in 39,810 monocular triplets (three tempo-
rally adjacent frames) for training and 4,424 for validation. We
use a learning rate of 10−4 for the first 15 epochs which is then
dropped to 10−5 for the remainder. When we take experiments
on YT-VIS, the model is pre-trained on NYU Depth dataset
[92] with a learning rate 10−4. Following [93], images are
flipped horizontally with a 50% chance, and randomly cropped
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and resized to 384 × 384 to augment the data and maintain
the aspect ratio across different input images. Monodepth2 is
finetuned on the YT-VIS with a learning rate of 10−5 and an
exponential decay rate of β1 = 0.9, β2 = 0.999. The Upflow
[69] is trained on KITTI scene flow dataset [94] when we
take experiments on KITTI MOTS. KITTI scene flow dataset
[94] consists of 28,058 image pairs (tth frame and (t − 1)th
frame). Following [95], the learning rate is set to 10−4 and
the Adam optimizer is used during training. When we take
experiments on YT-VIS, the Upflow [69] is pre-trained on
FlyingThings [96] for 100k iterations with a batch size of 12,
then trained for 100k iterations on FlyingThings3D [96] with
a batch size of 6. The learning rate of the above two stages is
both set to 1.2×10−4. The model is finetuned on YT-VIS for
another 100k iteration with a batch size of 6 and a learning
rate of 10−4. Our mini network includes 3 layers of dilated
convolutions. For Eq.1, the dilation rate λ is set to be 2 and
the kernel size of dilation convolution is set to be 3. The filter
factors φs, φt are set to be 0.3 and 0.4 respectively.

2) STC-Seg Training and Inference: The STC-Seg is im-
plemented using PyTorch. It is trained with batch size 8 using
4 NVIDIA GeForce GTX 2080 Ti GPUs (2 images per GPU)
with 16 workers. During training, the backbone is pre-trained
on ImageNet [97]. The newly added layers are initialized
as in FCOS [51]. Following CondInst, the input images are
resized to have a shorter side [640, 800] and a longer side at a
maximum of 1333. The same data augmentation in CondInst
[87] is used as well. For KITTI MOTS, we remove 485 frames
without any usable annotation so there are 4510 frames left
for training. For YTVIS, there are 61341 frames used for
training in total. Only left-right flipping is used as the data
augmentation during training. Following CondInst [87], the
output mask is up-sampled to 1/4 resolution of the input image,
and we only compute the loss for top 64 mask proposals per
image. For optimization, we use a multi-step learning rate
scheduler with a warm-up strategy in the first epoch. In our
multi-step learning rate schedule, the base learning rate is set
to be 10−4, which starts to decay exponentially after a certain
number of iterations up to 2×10−5. In the warm-up epoch, the
learning rate is increased linearly from 0 to the base learning
rate. The base learning rate is set to be 10−4, which starts
to decay exponentially after a certain number of iterations
up to 2 × 10−5. The exact number of iterations varies for
each setting as follows: (a) KITTI-MOTS: 10k total iterations,
decay begins after 5k iterations; (b) YouTube-VIS: 80k total
iterations, decay begins after 30k iterations. The momentum
is set to 0.9. The weight decay is set to 10−4, while it is not
applied to parameters of normalization layers. In inference, we
can directly perform instance segmentation on input video data
without using any extra information. The hyper-parameters
α1, α2, α3 are set to be 0.7, 0.2, and 0.1 respectively.

E. Main Results
1) Quantitative Results: On the KITTI MOTS benchmark,

we compare our STC-Seg against the state-of-the-art baselines.
The results are presented in Table I. It can be seen that our
methods achieve competitive results under all evaluation met-
rics. Our STC-Seg with ResNet-50 significantly outperforms

all weakly supervised methods which use a stronger backbone
(ResNet-101). In comparison with the fully supervised meth-
ods, our method with ResNet-101 can still achieve reasonable
results. For example, it outperforms TrackR-CNN [10] by
3.0% on HOTA, 2.3% on sMOTSA, 3.7% on MOTSA and
0.1% on MOTSP for the car class. The results for pedestrian
class also are consistent. We further provide comparison re-
sults of our STC-Seg with the state-of-the-art baselines on YT-
VIS in Table II. It can be seen that our method is competitive
with fully supervised MaskTrack R-CNN [11] and SipMask
[49]. When comparing with weakly supervised methods, our
method outperforms FlowIRN [17], IRN [22] and WISE [13]
with significant margins of 20.5%, 23.7%, and 24.7% in terms
of mAP metrics respectively.

2) Qualitative Results: We compare qualitative results of
our method with those from fully supervised TrackR-CNN
[10] and MaskTrack R-CNN [11] on KITTI MOTS and
YT-VIS respectively. To demonstrate the advantages of our
approach, we select some challenging samples where TrackR-
CNN and MaskTrack R-CNN have weaker predictions (see
Fig. 5). In the KITTI MOTS examples, the masks generated
by Track RCNN have jagged boundaries or leave false negative
regions on the borders. In the YT-VIS examples, MaskTrack
R-CNN struggles to depict the boundary of instances with
irregular shapes (e.g., eagle beak or tail). On the other hand,
it is clear that our method captures more accurate instance
boundaries.

3) Discussion: The aforementioned results demonstrate the
strong performance of STC-Seg in videos. We thus argue
that it is effective to use the proposed pseudo-labels and
puzzle solver to supervise the mask generation, especially
for rigid objects (e.g., vehicles, boats, and planes). However,
we encounter notable performance degradation for non-rigid
objects (e.g., humans and animals) as the depth and flow
estimation become less accurate under the circumstance, which
compromises the corresponding pseudo-label generation for
supervision. For instances in Fig. 6, there are large false
positive regions between pedestrian legs (the top row); our
method fails to segment objects in front of the man (the
bottom row). The above weak predictions are primarily caused
by noisy pseudo-labels incurred by inaccurate depth and flow
estimation.

F. Ablation Study

In this section, we investigate the effectiveness of each
component in STC-Seg by conducting ablation experiments
on KITTI MOTS. For the assessment of our supervision
signals and loss terms, we focus on the improvement of mask
generation and thus include the average precision (AP) in
evaluation. To assess our tracking, we use HOTA, MOTSA,
and MOTSP from MOTS [75].

1) Supervision Signals: We show the impact of progres-
sively integrating the depth and flow signals for the pseudo-
label generation. As shown in Table III, compared to optical
flow, depth has a better performance for car class to produce
pseudo-labels when being used alone, while optical flow has
a better performance for pedestrian class. In contrast, by
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Fig. 5. Qualitative results of our STC-Seg in comparison with TrackR-CNN [10] and MaskTrack R-CNN [11] on KITTI MOTS and YT-VIS respectively.
All compared methods use ResNet-101 with FPN.

Fig. 6. Examples of weak predictions from STC-Seg. The first row is from
KITTI MOTS and the second row is from YT-VIS.

leveraging both depth and flow, we develop complementary
representations that retain richer and more accurate details
of the instance boundary for pseudo-label generation (see
Fig. 7a). Therefore, combining the two signals together enables
our model to achieve the best performance over the baselines
that use them separately.

2) Loss Terms: We first only use our box term Lbx(Ldice)
without the position penalty to supervise the mask gener-
ation as our baseline, followed by the variants supervised
by different loss combinations (see Table IV). We achieve
immediate improvements of 2.8% (car) and 3.7% (pedestrian)

TABLE III
THE RESULTS OF USING DIFFERENT SUPERVISION SIGNALS FROM

KITTI MOTS. C AND P DENOTE car AND pedestrian RESPECTIVELY.

AP HOTA MOTSASignal C P C P C P

Depth 55.6 37.5 57.7 45.0 82.1 66.2
Flow 55.0 37.9 56.8 46.2 80.7 66.9

Depth+Flow 56.1 38.2 59.6 47.5 83.3 68.3

TABLE IV
THE RESULTS OF USING DIFFERENT LOSS TERMS FROM KITTI MOTS. C

AND P DENOTE car AND pedestrian RESPECTIVELY.

AP AP HOTA MOTSA
Lbx Lbce Lbd C P C P C P

L
d
ic

e × × 53.3 34.5 53.9 40.3 78.1 61.7
X × 53.8 35.0 54.8 42.2 79.2 63.0
× X 54.7 36.9 56.7 44.1 81.6 65.4

L
′ d
ic

e × × 53.6 34.9 54.6 41.9 79.0 62.5
X × 54.2 36.4 55.4 43.2 79.7 64.6
× X 56.1 38.2 59.6 47.5 83.3 68.3

on AP for the model trained only by Lbce+Lbx(Ldice) over
the baseline. While using BCE loss Lbce and our Lbx(L′dice)
for supervision, we can obtain further performance gain over
the models trained by Lbce+Lbx(Ldice). The best results come
from the model trained by our puzzle loss Lbd+Lbx(L′dice),
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(a)

(b)

Fig. 7. Ablation study results: a). The pseudo-labels generated by depth signals (2nd column), optical flow signals (3rd column), and combination of both
(4th column); b). The same mask color indicates the same instance. The first row results are from CP [77], which often encounters the issue of ID switching.
The second row results are from ours, which is robust to object appearance changes.

TABLE V
THE IMPACT OF DIFFERENT MINI NETWORK DEPTH IN KITTI MOTS. C

AND P DENOTE car AND pedestrian RESPECTIVELY.

HOTA MOTSA MOTSPDepth C P C P C P

1 57.4 46.0 82.3 67.4 83.3 73.8
2 58.8 46.6 82.8 67.9 84.2 74.7
3 59.6 47.5 83.3 68.3 85.1 75.8
4 59.2 47.1 83.1 68.2 84.9 75.3

TABLE VI
THE IMPACT OF DIFFERENT MINI NETWORK DILATION RATE IN KITTI

MOTS. THE DEPTH OF THE MINI NETWORK IS FIXED TO 3. C AND P
DENOTE car AND pedestrian RESPECTIVELY.

HOTA MOTSA MOTSP
λ C P C P C P

1 56.7 45.4 81.9 66.8 83.0 73.1
2 59.6 47.5 83.3 68.3 85.1 75.8
3 57.9 46.7 82.5 67.2 84.3 74.4

whose margins over the second best results (Lbd+Lbx(Ldice))
by 1.4% (car) and 1.3% (pedestrian) on AP. The above
results confirm our assumption for our puzzle loss design
that the proposed box term and boundary term can work
collaboratively to generate a high-quality instance mask.

TABLE VII
THE IMPACT OF DIFFERENT MINI NETWORK FILTER FACTORS IN KITTI

MOTS. THE RESULTS ARE OBTAINED BY HOTA ON CAR AND
PEDESTRIAN CATEGORY RESPECTIVELY.

φs
φt 0.2 0.3 0.4 0.5

0.2 38.2 / 32.8 43.6 / 37.4 54.1 / 43.2 48.7 / 36.5
0.3 42.6 / 37.7 49.3 / 47.9 59.6 / 47.5 52.6 / 40.1
0.4 39.0 / 35.4 46.8 / 41.1 50.6 / 40.4 41.9 / 35.3

TABLE VIII
THE RESULTS OF USING DIFFERENT TRACKING STRATEGIES FROM

KITTI MOTS. CP, DP, AND SD ARE SHORT FOR CENTER POINT,
DIAGONAL POINTS, AND SPATIO-TEMPORAL DISCREPANCY

RESPECTIVELY.

HOTA MOTSA MOTSPTracking by C P C P C P

CP 58.9 47.1 83.1 68.0 83.9 74.5
DP 59.3 47.3 83.2 68.2 84.7 74.9

DP+SD 59.6 47.5 83.3 68.3 85.1 75.8

TABLE IX
THE COMPARISON RESULTS ON YT-VIS VALIDATION SET. * AND †

INDICATE THE USE OF THE GROUND TRUTH AND PSEUDO LABELS
RESPECTIVELY DURING TRAINING. ALL METHODS USE RESNET-101

WITH FPN.

Methods mAP AP@0.75 AR@10

YOLACT* 29.7 32.1 36.5
BlendMask* 32.0 34.1 39.7

HTC* 35.3 36.9 40.8

YOLACT† 28.9 31.2 35.8
BlendMask† 31.3 33.3 38.8

HTC† 34.5 36.3 40.0

3) Mini Network Architecture: We also evaluate the impact
of using different configurations for the mini network. Specifi-
cally, we vary the mini network depth (number of layers) from
the list of {1, 2, 3, 4} with the fixed dilation rate λ of 2 and
dilation convolution kernel size 3. We also vary the dilation
rate λ of the mini network from {1, 2, 3}, and use the grad
search to determine the filter factors φs, φt. The results are
shown in Table V, Table VI and Table VII respectively. Those
results show that a reasonable mini network configuration
can account for better supervision, where the mini network
includes 3 layers of dilated convolutions with a dilation rate
of 2 and a kernel size of 3. To achieve better performances,
the filter factors φs, φt are set to be 0.3 and 0.4 respectively.
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4) Tracking Strategy: We finally evaluate the impact of
using different elements for tracking (see Table VIII). For CP,
we use the state-of-the-art CenterTrack [77]. For DP, we only
use diagonal points in our tracking module. For DP+SD, it
uses both diagonal points and spatio-temporal discrepancy.
From the results we can see that DP provides immediate
improvements in tracking over the baseline that uses CP.
DP+SD further improves the tracking capacity compared to
DP, demonstrating strong tracking robustness (see Fig. 7b).
These results suggest that each element (i.e. DP and SD)
individually contributes towards improving the tracking per-
formance.

G. Extending Instance Segmentation to Videos

In this section, we evaluate the flexibility and generaliza-
tion of the proposed STC-Seg framework. In particular, we
leverage our STC-Seg framework (i.e. pseudo-label generation,
puzzle solver, and tracking module) to extend image instance
segmentation methods to the video task. We select three widely
recognized instance segmentation methods, YOLACT [45],
BlendMask [50] and HTC [44]), and integrate with our STC-
Seg framework. The results of two set of experiments, i.e.
training with ground truth labels and pseudo labels, on YT-VIS
are shown in Table IX. Each of the selected methods is crafted
with our tracking module and uses the same implementation
as discussed in Section IV. It can be seen that methods
trained using the proposed pseudo-labels achieve comparable
results with the models trained on ground truth labels. This
observation is consistent among all three selected methods,
which demonstrates that our STC-Seg framework can flexibly
extend image instance segmentation methods to operate on
video tasks.

TABLE X
RESULTS OF USING GROUND TRUTHS OR NOT IN SPATIO-TEMPORAL

SIGNALS GENERATION WHEN TRAINING OUR STC-SEG ON KITTI
MOTS. “×” DENOTES SIGNAL IS OBTAINED FROM THE PREDICTED DEPTH

OR FLOW, WHILE “X” DENOTES SIGNAL IS OBTAINED FROM THEIR
GROUND TRUTH. C AND P DENOTE car AND pedestrian RESPECTIVELY.

Signal GT HOTA MOTSA MOTSP
Depth Flow C P C P C P

× × 59.6 47.5 83.3 68.3 85.1 75.8
X × 63.1 48.3 89.9 69.0 86.6 75.9
× X 61.4 49.2 87.5 69.8 86.4 76.1
X X 64.2 51.1 92.7 70.5 86.9 76.2

H. Results Using Ground Truth Depth and Flow

Since depth estimation and optical flow are critical factors
to generate our pseudo-label, we also directly employ the
ground truth depth and flow for the pseudo-label generation
in training to investigate the performance gap between using
the predicted spatio-temporal signals and ground truths. Table
X demonstrates the results on KITTI MOTS. We can see that
using depth and flow ground truths can further improve the
performance. Thus, we argue that with strong depth and flow
predictions, our method can achieve further performance gain.

V. CONCLUSION AND LIMITATION

Instance segmentation in videos is an important research
problem, which has been applied in a wide range of vision
applications. In this study, we propose a weakly supervised
learning method for instance segmentation in videos with a
spatio-temporal collaboration framework, titled STC-Seg. In
particular, we introduce a weakly supervised training strategy
which successfully combines unsupervised spatio-temporal
collaboration and weakly supervised signals, helping networks
to jointly achieve completeness and adequacy for instance
segmentation in videos without pixel-wised labels. STC-Seg
works in a plug-and-play manner and can be nested in any
segmentation network method. Extensive experimental results
indicate that STC-Seg is competitive with the concurrent
methods and outperforms fully supervised MaskTrack R-CNN
and TrackR-CNN. Albeit achieving strong performance, our
method requires box labels to operate training which limits
its applicability to new tasks without any prior knowledge.
This challenge remains open for our future research endeavors.
There are several ongoing investigations. For example, we are
exploring unsupervised or weakly supervised object detection
methods to obtain box labels. These predicted box labels can
then be used to predict instance segmentation.
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