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Abstract—Although the current generative adversarial 

networks (GAN)-generated face forensic detectors based on deep 

neural networks (DNNs) have achieved considerable performance, 

they are vulnerable to adversarial attacks. In this paper, an 

effective local perturbation generation method is proposed to 

expose the vulnerability of state-of-the-art forensic detectors. The 

main idea is to mine the fake faces’ areas of common concern in 

multiple-detectors’ decision-making, then generate local 

anti-forensic perturbations by GANs in these areas to enhance the 

visual quality and transferability of anti-forensic faces. 

Meanwhile, in order to improve the anti-forensic effect, a double- 

mask (soft mask and hard mask) strategy and a three-part loss 

(the GAN training loss, the adversarial loss consisting of ensemble 

classification loss and ensemble feature loss, and the 

regularization loss) are designed for the training of the generator. 

Experiments conducted on fake faces generated by StyleGAN 

demonstrate the proposed method’s advantage over the 

state-of-the-art methods in terms of anti-forensic success rate, 

imperceptibility, and transferability. The source code is available 

at 

https://github.com/imagecbj/A-Local-Perturbation-Generation-

Method-for-GAN-generated-Face-Anti-forensics. 

Index Terms—local perturbation, generated face, anti-forensics, 

generative adversarial network, double mask. 

I. INTRODUCTION 

MAGE synthesis technological advances have increasingly 

enabled the generation of forged faces visually realistic. The 

emergence of generative adversarial networks (GANs) [1] in 

particular makes it hard for human eyes to tell a real face from a 

fake one. As human faces have been widely used in facial 

recognition and biometric authentication, the broad 

dissemination of fake faces may cause ethical, social and 

security issues. 

Therefore, researchers have proposed various forensic 

methods [2-10] to detect the authenticity of face images by 

distinguishing between fake faces and real faces. Although the 

considerable performance has been obtained by the current 

forensic detectors on multiple benchmark datasets, these 

detectors are vulnerable to adversarial attacks. Sophisticated 

malicious forgers may try to exploit these loopholes to generate 
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faces that can bypass the detectors while maintaining high 

visual quality of face images. These detected and certified 

images may do more harm as they spread. Therefore, some 

researchers have investigated counter-measures [11-13] against 

forensics, called anti-forensics, to expose the vulnerability of 

the current forensic detectors. The study of anti-forensics could 

enable researchers to develop advanced forensic methods 

against forgery technologies. In addition, it can help prevent 

anonymous faces from being detected while ensuring the visual 

quality in the field of image anonymity based on face synthesis 

[14-16]. 

Regarding anti-forensics, in recent years, it has been shown 

that forensic detectors based on deep neural networks (DNNs) 

are vulnerable to adversarial perturbations [17-21]. By adding 

carefully designed and imperceptible anti-forensic noise to the 

fake face image, the forensic detectors are rendered ineffective. 

However, the existing attack-based methods [17-21] use the 

method of perturbing all pixels, and there are many redundant 

and meaningless perturbations. In addition, the transferability 

of these methods is still insufficient. 

 In order to further obtain a good trade-off between the visual 

quality and transferability of anti-forensic faces, we propose an 

effective local perturbation generation method. The predicted 

local areas are meaningful regions for the decision-making of 

the forensic detector. For the generation of anti-forensic 

perturbations, the GAN architecture is exploited due to its fast 

generation speed. Meanwhile, owing to the effectiveness of the 

ensemble model [22-23] and latent feature [24-26] to improve 

the ability of adversarial attacks, these means are combined to 

improve the anti-forensic effect. 

In this paper, our contributions are as follows: 

● We propose an invisible local region perturbation method 

to fool many state-of-the-art GAN-generated face forensic 

CNNs. A good trade-off between the visual quality and 

transferability of anti-forensic images is obtained by mining the 

areas of common concern of multiple detectors and adding 

adversarial noises in these areas. 

● We reveal that the forensic detectors have areas of 

common concern when making decisions. Then, we utilize 

multiple detectors to predict the soft-masks and hard-masks of 

perturbed regions and design a double mask guided local 

perturbation generation method. 

● In order to train an effective anti-forensic perturbation 

generator, in addition to the GAN training loss, the adversarial 

loss consisting of ensemble classification loss and ensemble 

feature loss, and the regularization loss are designed to guide 

the optimization and ensure anti-forensic ability and visual 

quality.  

A Local Perturbation Generation Method for 

GAN-generated Face Anti-forensics  

I 
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II. RELATED WORKS  

In this section, we first briefly discuss the existing 

technologies for generating fake face. Then, the existing 

anti-forensic methods are systematically summarized. The 

method proposed in this paper is based on local adversarial 

perturbation to realize anti-forensics. Therefore, finally, we 

introduce the relevant local adversarial attack methods in other 

image classification tasks. 

A. Fake Face Generation and Forensics 

Fake Face Generation. The GAN framework was first 

proposed by Goodfellow et al. in 2014 [1].  It can be described 

as an adversarial training between a generator and 

discriminator. Specific to fake face generation, Karras et al. 

proposed a network structure, called PGGAN [27], using a 

progressive training strategy to generate high-resolution images 

from low-resolution images. Later, inspired by image style 

transfer, they designed a new generator architecture, StyleGAN 

[28], by decoupling and separating high-level semantic 

attributes of images through unsupervised learning. Over time, 

GAN-generated faces have come ever closer to natural images 

and have been able to ‘mix the spurious with the genuine’. 

Fake Face Forensics. Traditional image forensic methods 

are usually based on specific traces left by a certain forgery 

method. However, their effectiveness is easily affected by 

forgery methods and changes in data distribution. Recently, 

deep learning-based approaches have proven capable of 

handling more sophisticated forgery methods. Yamagishi et al. 

[5] proposed a network called MesoNet that has fewer layers 

and focused on the mesoscopic features of images to detect 

tampering. Wang et al. [6] used the residual network ResNet50 

as a detection network and achieved good generalization under 

various GAN-generated face datasets. Liu et al. [7] added the 

Gram matrix module to ResNet18 to enhance its ability to 

extract global texture features. Rossler et al. [8] showed that the 

Xception network model outperforms other models on the task 

of fake face classification. Chen et al. [9] integrated of 

luminance and chrominance component and showed its 

effectiveness for GAN-generated face detection. Wang et al. 

[10] proposed an attention-based data augmentation framework 

to improve the ability of face forgery detection. In practice, 

many advanced network architectures in computer vision also 

achieve good performance, such as EfficientNet [29], 

DenseNet [30], and others.  

B. Image Anti-forensics 

In its early stages, research on image anti-forensics mainly 

focused on hiding tampering artifacts such as JPEG 

compression [31] and median filtering [13]. With the 

development of face forgery and generation models, some 

achievements have been made in anti-forensic researches on 

image forgery, especially fake face generation. In the 

anti-forensic process, detectors with knowledge such as 

architecture and parameters are called white-box detectors, 

while zero-knowledge detectors are called black-box detectors. 

For an anti-forensics task to be successful, the perturbed face 

must have a good visual quality and strong transferability. 

Transferability means that anti-forensic images generated by 

white-box detectors can also fool black-box detectors. At 

present, current research on anti-forensics seeks to improve the 

transferability and visual quality of anti-forensic images. From 

the perspective of algorithmic thinking, they can be divided 

into two categories: reconstruction and attack. Table I shows a 

summary of relevant studies on image anti-forensics. 

 From a reconstruction perspective, Nguyen et al. [32] 

proposed a method to fool detectors by transforming 

computer-generated images into new images with encoding 

features of natural images. Peng et al. [33] proposed a new 

generative adversarial network architecture, CGR-GAN, to 

resolve the problem of insufficient color, lack of texture details, 

and light changes of the work [32]. Peng et al. [34] 

subsequently proposed the BDC-GAN structure to realize 

bidirectional conversion between natural and 

computer-generated images. Neves et al. [11] tried to remove 

“GAN fingerprints” belonging to high-frequency signals using 

an autoencoder acting as a nonlinear low-pass filter.  Zhao et al. 

[12] achieved good anti-forensic performance by attacking 

ensemble detectors with a GAN structure. Huang et al. [35] 

reduced artifact patterns of GAN-generated images based on 

dictionary learning. 

From an attack point of view, adding carefully crafted 

perturbations to GAN-generated face images can render 

forensic detectors ineffective. Wang et al. [17] applied the fast 

gradient sign method (FGSM) [36] and the momentum iterative 

gradient sign method (MI-FGSM) [23] attacks to face images. 

Since they found that most of the perturbations in the YCbCr 

color space were concentrated in the Y channel, they assigned 

more perturbations to the Cb and Cr channels to improve the 

visual quality of anti-forensic images. Goebel et al. [18] 

utilized an optimization-based attack to incorporate the 

co-occurrence matrices taken from real images into 

GAN-generated images. Li et al. [19] performed an iterative 

attack called project gradient descent (PGD) [37] on the input 

latent vector and noise of the trained StyleGAN model to 

directly generate anti-forensic images. Ding et al. [20] 

proposed a new GAN structure with multiple generators and 

discriminators to improve visual quality of the anti-forensic 

images. Hussain et al. [21] utilized input transformation and 

PGD attack to generate adversarial deepfakes that are robust to 

JPEG compression. 

The reconstruction-based methods are generally based on 

learning natural image features or removing forged traces. 

However, the visual effect and anti-forensic performance of the 

reconstructed images still require improved. The attack-based 

methods are realized by adding adversarial perturbations to the 

clean fake faces. Such methods retain the image details of faces 

to a certain extent, and the perturbations have the characteristic 

of transferability. Therefore, attack-based methods can better 

ensure anti-forensic performance. However, all of these 

methods use the method of perturbing all pixels, and there are 

many redundant and meaningless perturbations. In addition, the 

transferability these attack-based methods [17-21] is still 

insufficient. Therefore, the proposed method utilizes local 

perturbation method to further obtain a good trade-off between  
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TABLE I 
THE SUMMARY OF RELEVANT RESEARCHES ON IMAGE ANTI-FORENSICS 

Category Methods Description Advantages Disadvantages 

Reconstruction 

Nguyen et 

al. [32] 

Use two autoencoders and a transformer net 

to transform the computer-generated images 

into new images with encoding features of 

natural images.  

Transformed images look natural. 
Nearly 50% of the transformed images 

can still be detected. 

Peng et al. 

[33] 

Use style transfer to regenerate the 

computer-generated images. 

Anti-forensic images possess the style 

of natural images and most of them 

can deceive detectors. 

Anti-forensic ability on 

computer-generated faces with 

black-skin is poor. 

Peng et al. 

[34] 

Use GAN technology to learn the 

bidirectional conversion between 

computer-generated images and natural 

images. 

Transformed images achieve good 

anti-forensic performance. 

Visual quality of transformed 

computer-generated images is affected 

by natural images. 

Neves et 

al. [11] 

Use an autoencoder as a nonlinear low-pass 

filter to remove “GAN fingerprints” 

belonging to high-frequency signals. 

It achieves a certain anti-forensic 

effect through a simple network. 

Anti-forensic ability is general on 

many detectors. 

Huang et 

al. [35] 

Use shallow reconstruction method based on 

dictionary learning to reduce up-sampling 

artifact patterns. 

Artificial traces of reconstructed faces 

are reduced and such faces have a 

good anti-forensic ability. 

Reconstructed faces look slightly 

blurry. 

Zhao et al. 

[12] 

Use GAN technology and multiple white-box 

detectors to falsify forensic traces associated 

with real images. 

Anti-forensic images can learn 

forensic traces and achieve good 

anti-forensic ability. 

Anti-forensic transferability on some 

other detectors is insufficient. 

Adversarial 

Attack 

Wang et 

al. [17] 

Use PGD attack method in YCbCr color 

space to allocate more perturbations to Cb 

and Cr channels instead of Y channel. 

It reduces the perturbations of Y 

channel and improve the visual 

quality. 

Anti-forensic transferability on some 

other detectors is insufficient.   

Goebel et 

al. [18] 

 Use optimization-based attack to impart the 

co-occurrence matrices taken from real 

images into GAN-generated images. 

Anti-forensic images achieve good 

anti-forensic effect on the detectors 

based on co-occurrence features. 

Anti-forensic images only aim at 

co-occurrence based detectors. 

Li et al. 

[19] 

Use the trained StyleGAN model to perturb 

the input latent vector and noise. 

Searching on StyleGAN’s manifold 

make anti-forensic faces have a good 

visual quality. 

Trained StyleGAN model is required 

and the transferability needs to be 

improved. 

Ding et al. 

[20] 

Use multiple generators and discriminators to 

enhance image visual quality and implement 

face swap anti-forensics. 

It enhances the visual quality by using 

multiple generators. 

The framework of network is 

complicated. 

Hussain et 

al. [21] 

Use PGD attack method and input 

transformation to generate robust adversarial 

deepfakes. 

Anti-forensic videos and images are 

robust against JPEG compression. 

The detectors in zero-knowledge 

scenarios are not considered. 

visual quality and transferability of anti-forensic images. 

C. Local Adversarial Attacks 

Several local adversarial attack methods have been proposed 

for general image classification tasks. According to the location 

of the perturbations, in [38], local attack methods have been 

divided into those that perturb several pixels and those that 

perturb a region. The former perturbs pixels that are usually 

nonadjacent, while the latter modifies the values of pixels in a 

continuous region. The proposed method belongs to the latter. 

The following describes these two types of local attack methods 

in detail. 

Attack methods that perturb several pixels are usually 

realized by constraining the number of perturbed pixels. The 

classical method JSMA [39] attempted to perturb a small 

number of pixels and it first utilized the norm constraint L0. Su 

et al. [40] tried to attack DNNs by perturbing only one pixel. 

Croce et al. [41] restricted the perturbed pixels to be located in 

regions with rich colors in addition to minimizing the L0 

distance. Although these methods reduce the number of 

perturbed pixels, there may be two problems. Firstly, since the 

number of perturbed pixels is limited, the adversarial 

perturbation is sparse; as a result, the adversarial ability is weak, 

especially for high-resolution images. Secondly, the methods 

only constrain a few perturbed pixels, which may cause 

excessive modifications of these pixels that are easily detected 

by human eyes.  

According to the visibility of adversarial perturbation, the 

attacks that perturb a region of pixels can be further divided into 

visible adversarial patch attacks and invisible local-region 

perturbation attacks: 

Visible adversarial patch attack. This attack type mainly 

uses patches to cover regions of images. Brown et al. [42] 

optimized the given patch by their designed objective functions 

to create a general, robust and targeted visible adversarial 

image patch. Karmon et al. [43] introduced some latent 

properties and proposed the LaVAN attack to generate local 

adversarial noises that do not cover the main object pixels.  

Invisible local-region perturbation attack. This type of 

attack mainly utilizes a mask to determine local areas and adds 

imperceptible perturbations in these areas. Qian et al. [38] 

proposed the CFR attack using the interpretability of neural 

networks and an optimization-based attack. Xiang et al. [44] 

utilized model interpretability and a gradient-based attack to 

generate an initial adversarial example. Then, they generated 

the final example through gradient estimation and random 

search.  

Perturbation invisibility is an important requirement in the 

task of anti-forensics. In addition, in order to avoid the
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  Fig. 1. Overall framework of our anti-forensic GAN

problems of perceptible perturbation and general adversarial 

ability caused by attack methods that perturb several pixels, we 

adopt the invisible local-region perturbation attack method.  

This method can reduce the perturbation while ensuring attack 

ability, thus achieving a good trade-off.  

III. PROPOSED METHOD 

In this section, we introduce our anti-forensic method in 

detail. In subsection III.A, the definition of anti-forensic 

problem is described first. Then, the overall framework is 

presented in subsection III.B. In the final three subsections, the 

specific methods adopted and loss functions for training are 

elaborated. 

A. Problem Definition of Anti-Forensics 

The goal of this paper is to fool GAN-generated face forensic 

detectors by adding well-designed perturbations to 

GAN-generated faces. The forensic detector predicts an input 

face x as： 

𝑦 = argmax
𝑘∈{0,1}

𝑓𝑘(𝑥),                               (1) 

where 𝑓𝑘(𝑥) is the formulation of an initial detector whose 

output is the probability for the category k, y is the predicted 

label, 𝑦 = 0 means that the label is ‘fake’ and 𝑦 = 1 denotes 

the ‘real’ label. 

In the anti-forensic scenario, the goal for the perturbed 

GAN-generated fake face is to be predicted as ‘real’ with the 

label 1. The targeted attack process can be represented as 

follows: 

argmax
𝑘∈{0,1}

𝑓𝑘(𝑥𝑓𝑎𝑘𝑒 + 𝛿) = 1,                         (2) 

where 𝑥𝑓𝑎𝑘𝑒  is the original GAN-generated face and 𝛿 is the 

added adversarial perturbation. The reason why we do not 

adopt an untargeted attack is that the detector may incorrectly 

predict a few images and we should take these images into 

account. 

B. Overall Framework 

We are the first to introduce the local attacks in the task of 

anti-forensics. Unlike the existing works [17-21] using the 

global adversarial attacks that perturb each pixel of images, our 

work using local attacks only changes the values of some pixels. 

We adopt such local perturbations for two main reasons. Firstly, 

forensic detectors have areas of common concern in decision- 

making, and these areas’ pixels are more useful than others for 

detector prediction. Therefore, perturbing such sensitive areas 

is enough to achieve strong anti-forensic effects. Secondly, 

local perturbations make the most of unmodified areas, which 

can improve the visual effect. In general, the proposed method 

is based on GANs to generate imperceptible and transferable 

anti-forensic adversarial examples. The overall framework of 

our anti-forensic GAN is based on AdvGAN [45], a classic 

adversarial perturbation generation framework. On the basis of 

AdvGAN, we design a double-mask guided local attack 

anti-forensic framework and three-part loss to ensure strong 

anti-forensic ability.  

1) Double-Mask Guided Local Attack Framework 

As shown in Fig. 1, our anti-forensic framework consists of 

two parts: critical region prediction and local-perturbation 

generation. The former predicts the local areas of the face 

images. Such areas play a key role in the decision-making of 

the ensemble of substitute target detectors. The area prediction 

is mainly realized by the proposed double-mask (soft mask and 

hard mask) strategy. The hard mask is used to restrict the 

perturbation area, while soft mask is utilized to constrain the 

perturbation degree of each pixel by regularization loss (please 

find more details in subsection III.E). The ensemble is a 
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Fig. 2. Critical region prediction

collection of well-trained white-box detectors. The latter 

(local-perturbation generation) makes the generated 

perturbations possess the anti-forensic capabilities through 

adversarial training of generator G and discriminator D.  

Specifically, the process of generating anti-forensic faces is 

described as follows. Firstly, a fake face is input into the 

ensemble of substitute target detectors to obtain a double-mask 

through the mask predicting and thresholding operations. 

Secondly, the face is input into G to generate the preliminary 

perturbation. Then, this perturbation is combined with the hard 

mask to retain the perturbations of critical areas and discard 

those of other regions. Finally, the obtained local perturbations 

are added to the input face to get the final anti-forensic face. 

2) Three-part Loss 

In the anti-forensic task, the three-part loss is designed for 

training G to make the perturbed faces achieve a strong 

anti-forensic ability and a good visual quality. The three-part 

loss is composed of GAN training loss, adversarial loss, and 

regularization loss. For the adversarial training of G and D, the 

GAN training loss is adopted to make perturbed faces 

indistinguishable from the input faces. For the anti-forensic 

ability of perturbed faces, the adversarial loss (consisting of 

ensemble classification loss and ensemble feature loss) is 

designed to give the generated local perturbations anti-forensic 

capabilities and excellent generalizability. Extra regularization 

loss is proposed to constrain the magnitude of perturbation and 

ensure visual quality. More details can be found in subsection 

III.E. 

C. Critical Region Prediction 

As described in subsection III.B, for a GAN-generated image, 

it is necessary to identify local areas and add adversarial 

perturbation to them to deceive detectors. These local areas 

must be critical regions for detectors’ decision-making. 

Considering that we must generate anti-forensic faces with 

strong transferability and good visual quality, the critical 

regions are obtained from the target detectors themselves. We 

look for the areas of common concern in their decision-making 

to designate as perturbed regions. On the one hand, such local 

perturbations leave most areas of the original face image 

unchanged, reducing the magnitude of the perturbation and 

ensuring visual quality. On the other hand, the local regions are 

predicted from multiple target detectors and are considered to 

be common sensitive areas of these detectors. These areas are 

likely to contribute more than others to model decisions. To a 

certain extent, such areas can intuitively guarantee strong 

anti-forensic ability and transferability. 

For the convenience of calculation, the shape of the critical 

region obtained can be represented by a binary matrix M: 

𝑀(𝑖, 𝑗) = {
1 𝑥𝑓𝑎𝑘𝑒(𝑖, 𝑗) ∈ 𝑟,

0  otherwise, 
                      (3)  

where 𝑥𝑓𝑎𝑘𝑒(𝑖, 𝑗) denotes the pixel value at coordinates (𝑖, 𝑗) of 

𝑥𝑓𝑎𝑘𝑒  and 𝑟 represents the critical regions predicted. Thus, 𝑟 

can be transferred to 𝑥𝑓𝑎𝑘𝑒 ⊙ 𝑀 , where ⊙  represents the 

Hadamard product. Correspondingly, the local perturbation can 

be expressed as 𝛿 ⊙ 𝑀. The whole anti-forensic process can be 

described as follows: 

argmax
𝑘∈{0,1}

𝑓𝑘(𝑥𝑓𝑎𝑘𝑒 + 𝐺(𝑥𝑓𝑎𝑘𝑒) ⊙ 𝑀) = 1.      (4) 

In order to find the critical regions r, gradient-weighted class 

activation mapping (Grad-CAM) is selected as our basic mask 

predicting method. The Grad-CAM proposed by Selvaraju et al. 

[46] tried to produce a visual explanation for CNN-based 

models. Using such a visual attention technique helps us 

quickly predict the sensitive areas of the input face for model 

decisions. In addition, to make better use of the predicted key 

areas, we calculate a double mask instead of a single binary 

matrix M. The double mask includes a soft mask and a hard 

mask. The former not only retains the information of critical 

areas, but also preserves the contribution of each pixel in those 

areas. The latter corresponds to the binary matrix M in (3), 

which only retains the information of the areas. The advantage 

of the double mask is that we can better guide the generation of 

local perturbations, utilizing the relative importance of different 

pixels. The entire critical region predicting process using 

Grad-CAM technology (i.e., the double-mask predicting 

operation) is shown in Fig. 2. 

As shown in Fig.2, the GAN-generated face 𝑥𝑓𝑎𝑘𝑒 is input 

into each forensic CNN in the ensemble. Then the feature maps 

output from the last convolutional layer of each detector can be 

taken out. Here, the Grad-CAM based operations (i.e., gradient 

computations, global average pooling, a weighted combination 

and rectified linear unit (ReLU)) are utilized to form an 

attention mask 𝑀𝑠 of the same size as the input. The value of 

each element in 𝑀𝑠 represents the importance of the coordinate 

pixels of the GAN-generated face. According to the magnitude 

of the value, an appropriate threshold can be set to obtain the 
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Fig. 3. Architecture of the adopted generator G.

soft mask of the sensitive areas for a single CNN. Then, the 

hard mask can be obtained by setting the soft mask value in the 

sensitive area to 1. 

Mathematically, firstly, the soft mask can be computed as 

follows: 

𝑆𝑀𝑠(𝑖, 𝑗) = {
𝑀𝑠(𝑖, 𝑗) 𝑀𝑠(𝑖, 𝑗) ≥ 𝜏,

0  otherwise, 
            (5) 

where 𝑆𝑀𝑠 is the soft mask obtained for the 𝑠-th single detector 

and 𝜏 is a threshold. 

Then, the binary matrix called a hard mask can be calculated 

as follows:  

𝐻𝑀𝑠(𝑖, 𝑗) = {
1 𝑆𝑀𝑠(𝑖, 𝑗) > 0,
0  otherwise, 

                  (6) 

where 𝐻𝑀𝑠 is the shape of the critical region in (3). 

Certainly, the aim of critical region prediction is to obtain the 

common critical areas of multiple detectors. Therefore, an 

ensemble of detectors rather than just one detector is used to 

determine the mask. Thus, a weighted combination operation is 

finally adopted to obtain the common areas of n detectors in the 

ensemble as follows: 

𝑆𝑀(𝑖, 𝑗) = {
∑ 𝛼𝑠𝑆𝑀𝑠

𝑛
𝑠=1 (𝑖, 𝑗) ∑ 𝛼𝑠𝑆𝑀𝑠

𝑛
𝑠=1 (𝑖, 𝑗) ≥ 𝜎,

0  otherwise, 
   (7) 

where n is the number of detectors in the ensemble, 𝜎  is a 

threshold, 𝛼𝑠 are the weights satisfying ∑ 𝛼𝑠 = 1𝑛
𝑠=1  and 𝛼𝑠 =

1/𝑛, ∀𝑠 ∈ {1,2, . . . , 𝑛}. 

After that, the final hard mask of the critical region can also 

be obtained by: 

                               𝐻𝑀(𝑖, 𝑗) = {
1 𝑆𝑀(𝑖, 𝑗) > 0,
0  otherwise, 

                        (8) 

D. Local Perturbation Generation 

Once the critical regions are obtained through the mask 

predicting operation, the local perturbation is generated by the 

well-trained generator. The training of the generator G is an 

iterative process with D and G alternately performing gradient 

descent on mini-batches. 

The generator G is utilized to map the input GAN-generated 

face to the adversarial perturbation manifold to achieve 

effective anti-forensic perturbations. The discriminator D 

distinguishes the input faces from the perturbed faces, and the 

ensemble of substitute target detectors gives the perturbations 

generated by G anti-forensic capabilities. The architectures of 

G and D are shown as follows. 

Generator G. Our generator adopts a structure similar to that 

of StarGAN [47]. The architecture is shown in Fig. 3. Since the 

dimension of the perturbation is the same as that of the input 

image, the generator adopts an encoder-decoder architecture, 

which is commonly used. Specifically, the encoder adopts a 

typical convolutional neural network architecture (mainly 

including three convolution blocks and three residual blocks) to 

down-sample the input image. Each convolution block’s  

 
Fig. 4. Architecture of the adopted discriminator D. 

convolution layer is followed by an instance normalization and 

a ReLU activation. For three blocks, the numbers of 

convolution kernels are 64, 128, and 256, respectively; the 

kernel sizes are 7×7, 4×4, and 4×4, respectively; the strides are 

2, 1, and 1, respectively. Subsequently, three residual blocks 

are adopted to further encode the features to a latent space 

representation. With the help of skip connections in the residual 

block, the efficiency of network convergence is improved. 

Among the residual blocks, each convolutional layer contains 

256 kernels with a size of 3×3. In order to obtain perturbed 

images with higher visual quality, our decoder uses the 

resize-convolution method for up-sampling rather than 

deconvolution as the deconvolution operation is prone to suffer 

from checkerboard artifacts. The decoder is composed of two 

up-sample blocks and one convolution layer. The numbers of 

convolution kernels in the decoder are 128, 64, and 3, while the 

kernel sizes are 5×5, 5×5, and 7×7, respectively. Finally, we 

apply a Tanh function to obtain the adversarial perturbation, 

which has the same dimensions as the input face. 

Discriminator D. For the GAN training, a discriminator 

with a simple structure can perform well. Accordingly, our 

discriminator adopts a relatively simple structure based on 

DCGAN [48]. Its architecture is shown in Fig. 4. It contains 

three convolutional blocks and each block is composed of a 

convolutional layer followed by a batch normalization layer 

and a leaky ReLU function. We set the kernel size to 4×4 and 

the stride to 2 for the convolutional layers in all the blocks. The 

final 512-dimensional features are fed into a convolutional 

layer followed by a sigmoid function, to generate a 

one-dimensional output. 

E. Training Loss Function 

For the training of the whole anti-forensic GAN, the training 

loss function consists of the objective function of G and the 

function of D trained alternately. As mentioned in Section II.B, 

a well-designed perturbed face must achieve two objectives: a 

strong anti-forensic ability and a good visual effect.  

Therefore, a three-part loss is designed to jointly guide the 

learning process of G according to the task requirements. It is 

composed of GAN training loss 𝐿𝐺𝐴𝑁_𝐺, adversarial loss 𝐿𝑎𝑑𝑣, 

and regularization loss 𝐿𝑟𝑒𝑔 , as follows:  

𝐿𝐺 = 𝐿𝐺𝐴𝑁_𝐺 + 𝐿𝑎𝑑𝑣 + 𝐿𝑟𝑒𝑔.                      (9) 

For the optimization of D, the GAN training loss 𝐿𝐺𝐴𝑁_𝐷 is 

calculated to implement adversarial training with G, as follows: 
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𝐿𝐷 = 𝐿𝐺𝐴𝑁_𝐷.                                              (10) 

Next, each of these loss functions is introduced in detail. 

GAN Training Loss 𝑳𝑮𝑨𝑵_𝑮 and 𝑳𝑮𝑨𝑵_𝑫. In order to ensure 

that the perturbed images are similar to the original images, this 

loss function is implemented to train the generator and 

discriminator. In the training process, the generator G requires 

to ensure that the images with local perturbations are as 

photo-realistic as possible so that the discriminator considers 

the generated images are the same distribution as the input 

images. On the contrary, the discriminator D tries to correctly 

distinguish the adversarial faces from the original faces. To 

increase the stability of the training process, the proposed 

method adopts the least square loss [49] instead of the 

commonly used cross-entropy loss. The function can be defined 

as follows: 

𝐿𝐺𝐴𝑁_𝐷 = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[(𝐷(𝑥) − 1)2 + ((𝐷(𝑥 + 𝐻𝑀 ⊙ 𝐺(𝑥)))2),(11) 

𝐿𝐺𝐴𝑁_𝐺 = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[(𝐷(𝑥 + 𝐻𝑀 ⊙ 𝐺(𝑥)) − 1)2],    (12) 

where 𝑝𝑑𝑎𝑡𝑎(𝑥) is the distribution of the input GAN-generated 

faces and HM is the binary matrix mentioned in (3) and (8). 

Here, HM mainly serves to discard the perturbations outside the 

critical areas. 

Adversarial Loss 𝑳𝒂𝒅𝒗. The goal of the adversarial loss is to 

give the generated local perturbations anti-forensic capabilities 

and excellent generalizability. Specifically, we hope that the 

perturbed image can fool the ensemble of substitute target 

detectors for training. The main reason for adopting a set of 

detectors instead of a single detector is that an ensemble attack 

can effectively enhance the transferability of adversarial 

examples. Liu et al. [22] pointed out that the decision 

boundaries of different models were similar, indicating that the 

ensemble method can improve the transferability of adversarial 

examples and allow them more easily attack black box models. 

Dong et al. [23] also improved the attack ability of adversarial 

examples via fooling multiple trained white-box source 

detectors in parallel. Therefore, the idea of integrated detectors 

is also adopted to allow the generated anti-forensic images to 

fool more detectors. 

The adversarial loss consists of two parts: ensemble 

classification loss and ensemble feature loss. A basic integrated 

loss strategy is introduced by the following: 

 𝐿𝑎𝑑𝑣 = 𝜆𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) ∑ 𝛽(𝑠)𝑛
𝑠=1 𝐿𝑐

(𝑠)(𝑥)                

               +𝜇𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) ∑ 𝛽(𝑠)𝑛
𝑠=1 𝐿𝑓

(𝑠)
(𝑥),     (13) 

where 𝐿𝑐
(𝑠)

and 𝐿𝑓
(𝑠)

are the classification loss and feature loss of 

the 𝑠-th detector in the ensemble of substitute target detectors, 

respectively, 𝜆 and 𝜇 are two hyperparameters and 𝛽(𝑠) are the 

ensemble weights, i.e., ∑ 𝛽(𝑠) = 1𝑛
𝑠=1  and 𝛽(𝑠) = 1/𝑛, ∀𝑠 ∈

{1,2, . . . , 𝑛}. 

The aim of the classification loss is to make the white-box 

detectors classify the perturbed GAN-generated face images, 

including images originally predicted as ‘real’, into the ‘real’ 

class. It utilizes the output space of each substitute detector, that 

is, the sigmoid cross-entropy between the anti-forensic image 

output and the real class: 

𝐿𝑐 = − ∑ 𝑡𝑏
2
𝑏=1 𝑙𝑜𝑔(𝑓(𝐻𝑀 ⊙ 𝐺(𝑥))𝑏),    (14) 

where 𝑓(⋅) is the substitute detector and 𝑡𝑏 is the 𝑏-th entry of 

target sigmoid vector with 1 for the ‘real’ class and 0 for the 

‘fake’ class. 

The feature loss forces to enlarge the distance between the 

anti-forensic image and the input image. It exploits the feature 

space of each substitute detector. Some works have shown that 

latent features can be utilized to improve the attack ability of 

adversarial examples. For example, Singh et al. [24] pointed 

out that latent features were more susceptible to adversarial 

perturbation, and Yu et al. [26] showed that the latent features 

in a specific robust model were very vulnerable to adversarial 

attacks. Thus, in this paper, the output space and feature space 

are combined to make the detectors classify the perturbed face 

images into the ‘real’ class as much as possible and boost the 

transferability of anti-forensic images. Concretely, the 

reciprocal of KL divergence is exploited as the feature space 

loss: 

𝐿𝑓 =
1

KL(𝔻(𝑥), 𝔻(𝐻𝑀⊙𝐺(𝑥))
                                                               

 = 𝐶/ ∑ (𝔻(𝐻𝑀 ⊙ 𝐺(𝑥), 𝑐) ⋅ log (
𝔻(𝐻𝑀⊙𝐺(𝑥),𝑐)

𝔻(𝑥,𝑐)+𝜖
+ 𝜖)𝐶

𝑐=1 ),(15) 

where 𝔻(⋅) is the output feature map of a certain hidden layer, 

𝐶 is the number of channels, and 𝜖 is a smoothing term that 

avoids the division by zero. 

Regularization Loss 𝑳𝒓𝒆𝒈.  The main purpose of 

regularization loss is to constrain the magnitude of perturbation, 

thus ensuring visual quality and avoiding the overfitting of the 

ensemble of substitute target detectors. As mentioned in 

subsection III.B, we predict a double mask to guide the 

generation of local perturbations. The soft-mask SM preserves 

the contribution of each pixel in the perturbed region. When 

HM is used to restrict the perturbation area, SM is utilized here 

to constrain the perturbation degree of each pixel in more detail. 

Concretely, we aim to add the greater perturbation in the more 

important pixels; the greater the value of the SM, the less the 

constraint on the magnitude of the pixel’s perturbation. In 

addition, a perception loss is employed to improve the 

naturalness of the anti-forensic faces and reduce the overfitting 

of the above feature loss. The regularization loss is defined as 

follows: 

 𝐿𝑟𝑒𝑔 = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑚𝑎𝑥 (0, ‖(1 − 𝑆𝑀) ⊙ (𝐻𝑀 ⊙ 𝐺(𝑥))‖
2

− 𝜍) 

                   +𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)𝐿𝑝𝑒𝑟𝑐,                                                          (16) 

where 𝜍  is a hyperparameter to control the amount of 

perturbation, and 𝐿𝑝𝑒𝑟𝑐 is a commonly used VGG perception 

loss [50] in style transfer tasks. 

After the iterative optimization of the above objective 

functions, a well-trained 𝐺 combined with the mask predicting 

operation can quickly generate local perturbations and then add 

perturbations to the GAN-generated faces to achieve 

anti-forensic effects. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, the experiments results are presented. In 

subsection IV.A, the experimental setting is introduced first. 

Then, we analyze the results of the proposed method in 

subsection IV.B. Finally, other experiments are discussed in 

subsection IV.C, including ablation study. 
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TABLE II 
BASELINE FORENSIC ACCURACIES OF THE TRAINED DETECTORS 

Detectors Denotes Accuracy 

ResNet-50 [6] 𝑚1 1.0000 

Xception [8] 𝑚2 0.9999 

EfficientNet-b0 [29] 𝑚3 0.9993 

DenseNet-121 [30] 𝑚4 0.9996 

MesoInception [5] 𝑚5 0.9981 

AlexNet [52] 𝑚6 0.9980 

Discriminator [48] 𝑚7 0.9980 

GramNet [7] 𝑚8 1.0000 

RFM [10] 𝑚9 0.9565 

A. Basic Setting 

Datasets. The experiments in this paper adopt CelebA [51] 

as the initial dataset, which contains 202,599 natural face 

images of 10,177 people. For the anti-forensics task, we create 

a GAN-generated face dataset based on the CelebA dataset. 

The created dataset is composed of 200,000 photo-realistic 

facial images generated by StyleGAN, which is the most 

commonly used tool to generate high-quality face images. The 

dataset is split into 190,000 images for anti-forensic GAN 

training and 10,000 images for testing. For all detection models 

used in the experiments, the natural image dataset CelebA and 

our created GAN-generated face dataset are uniformly adopted 

for training. For training convenience, all the images in the 

dataset are background-removed and resized to 128×128.  

Detectors. Before training and evaluating the anti-forensic 

attack, we first train the forensic detectors adopted in the paper. 

We select nine effective detectors [5-8, 10, 32-33, 48, 52] for 

computer vision and multimedia forensics tasks, and all the 

detectors are trained under the same conditions. The training 

details are as follows: the datasets are the same as those 

mentioned above, the target function is cross-entropy loss, the 

learning rate is set to 0.0001 with a weight decay of 0.0004, the 

batch size is 64 and AdamW is selected as the optimizer. For 

the convenience of expression, we denote the detectors as 𝑚𝑖, 

𝑖 = 1,2, . . . ,8 . The specific detectors and their detection 

accuracies are shown in Table II. We can find that all the 

selected detectors achieve accuracies close to 1.0 for the task of 

recognizing GAN-generated faces.  

Evaluation Metrics. To evaluate the performance of our 

method, the above forensic detectors are used to classify 

anti-forensic images and calculate the anti-forensic success rate 

(ASR), defined as follows: 

𝐴𝑆𝑅 =
𝐴𝑆𝐹_𝑁𝑈𝑀

𝐹_𝑁𝑈𝑀
 ,                       (17) 

where ASF_NUM is the number of perturbed faces classified as 

‘real’ and F_NUM is the total number of GAN-generated fake 

faces.  

Moreover, the mean of structural similarity (SSIM), seak 

signal-to-soise ratio (PSNR), learned perceptual image patch 

similarity (LPIPS) of all images in the testing dataset are 

adopted to evaluate the visual quality of anti-forensic images. 

Given the clean face U and the anti-forensic face V, the SSIM 

can be defined as follows: 

SSIM(𝑈, 𝑉) =
(2𝜇𝑈𝜇𝑉+𝐶1)(2𝜎𝑈𝑉+𝐶2)

(𝜇𝑈
2 𝜇𝑉

2 +𝐶1)(𝜎𝑈
2 𝜎𝑉

2+𝐶2)
 ,                   (18)  

where μU and μV are the means, σU and σV are the standard 

deviations, σUV is the cross-covariance, C1 = 0.0001 and 

C2=0.0009 are two constants for avoiding a null denominator. 

The PSNR is formulated as: 

PSNR(𝑈, 𝑉) = 10 𝑙𝑜𝑔10(
𝑀2

𝑀𝑆𝐸(𝑈,𝑉)
),                    (19) 

where M is the maximum pixel value, MSE is Mean Squared 

Error defined as:  

𝑀𝑆𝐸 = ∑ (𝑈𝑚 − 𝑉𝑚)2𝑝
𝑚=1 ,                         (20) 

where p is the number of pixels. 

The LPIPS is a popular CNN-based image quality 

assessment metric for semantic similarity measurement. 

Finally, we take the computational time required to generate 

an anti-forensic image in the inference stage as the index of 

anti-forensic efficiency. 

Experimental Environment. In this paper, all the 

anti-forensic experiments are implemented via PyTorch. The 

computational complexity of our method is 15.09GFlops and 

the number of parameters is 56.34M. We run our network and 

other experiments on 24GB GeForce RTX 3090, 3.80GHz 

i7-10700KF CPU, and 32GB RAM. 

Model Selection. For fairness, the ensemble of white-box 

substitute detectors used is uniformly the ensemble of 𝑚1, 𝑚2, 

and 𝑚3 in each experiment. And the remaining six detectors are 

black-box detectors to test the performance of the methods. The 

three white-box detectors are chosen for the reason that they are 

the commonly used and perform very well in GAN-generated 

face detection.  

Hyperparameter Setting. The specific details of our 

method are described as follows. The combination thresholds 𝜎 

in (7) and 𝜏 in (5) are dominant hyperparameters. Among that, 

𝜎  is set as 0.3 and 𝜏 for three detectors, 𝑚1, 𝑚2, and 𝑚3, are 

set as 0.4, 0.25 and 0.5, respectively. The hyper- 

parameters  𝜍 in (16),  𝜆  and 𝜇  in (13) are 1, 10 and 1, 

respectively. Adam is selected as the optimizer and the learning 

rate is set to 0.0001. The batch size is set to 64.  

Regarding the hyperparameter setting of the compared 

methods, the experimental settings are carried out according to 

their original literature. Five methods are developed as baseline 

in this paper: FGSM attack [36] under the Linf constraint, PGD 

attack [37] under the Linf norm constraint, AdvGAN [45] attack, 

and two anti-forensic methods [12, 17]. For the FGSM and 

PGD attacks, the perturbation bound 𝜀  is set as 6.0 for the 

trade-off between the ASR and visual quality. For the 

anti-forensic method of Wang et al., perturbation thresholds 𝜀𝑌, 

𝜀𝐶𝑏, and 𝜀𝐶𝑟 for different channels of YCbCr color space are set 

as 1.5, 3, and 3, respectively. Normal GAN training is 

conducted for AdvGAN and the method of Zhao et al. 

B. Anti-forensic Attack Experiments 

In the experiments of our anti-forensic method, G and D are 

trained alternately in each iteration. The proposed anti-forensic 

generator is trained for approximately 20,000 iterations in total. 

The generator training loss gradually tends to be smooth after 

iterating nearly seven epochs with 2969 iterations per epoch, in 

Fig. 5. 

1) Experiments in Zero-Defense Scenario 
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TABLE III 

ANTI-FORENSICS PERFORMANCE FOR THE WHITE-BOX SUBSTITUTE DETECTORS AND THE ZERO-KNOWLEDGE BLACK-BOX DETECTORS IN TERMS OF ASR.  

Methods 
White-box detectors  Black-box detectors Avg. 

ASR 𝑚1 𝑚2 𝑚3  𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9 

FGSM [36] 0.6289 0.9575 1.0000  0.7613 0.9985 0.2725 0.6030 0.8238 0.2223 0.6964 

PGD [37] 0.9828 0.9826 1.0000  0.9720 0.9997 0.2521 0.5614 0.9836 0.9253 0.8511 

AdvGAN[45] 0.9989 1.0000 1.0000  0.9535 0.9999 0.0412 0.2205 0.9957 0.4511 0.7401 

Wang’s [17] 0.9999 0.9999 0.9999  0.9998 0.9999 0.0950 0.3260 0.9999 0.9694 0.8211 

Zhao’s [12] 1.0000 1.0000 1.0000  0.9996 1.0000 0.0232 0.2113 0.9916 0.9766 0.8003 

Prop. 0.9999 1.0000 0.9990  0.9923 0.9409 0.2115 0.9904 0.9684 0.8910 0.8882 

 
Fig. 5. Curve of the generator training loss LG. 

Here, the anti-forensic faces encounter no defense means. In 

this scenario, the performances and discussion of our method 

and comparison methods are reported in white-box and 

black-box settings.  

For the substitute detectors used in the training process, the 

anti-forensic performance is shown in Table III. Most methods, 

including the proposed method, achieve an ASR close to 1.0 for 

fooling three white-box detectors. This performance illustrates 

the effectiveness of the proposed method for anti-forensic tasks 

of known detectors. In addition, the proposed method 

outperforms the other methods regarding to visual quality. As 

shown in Table IV, it achieves a mean SSIM of 0.9849, a mean 

PSNR of 44.5047, and a mean LPIPS of 0.0045. These results 

show that the perturbed faces produced by our proposed 

generator maintain high visual quality. In Table IV, we also 

present the computational time of each method for generating 

an anti-forensic face with a resolution of 128128 in the same 

operating environment. Although the proposed method is not 

the fastest of the evaluated methods, it is still fast. 

For the zero-knowledge black-box detectors, the results are 

shown in Table III. Although the ASR of the proposed method 

on a single detector may be slightly lower than the optimal 

result, the method has the best average ASR, reaching 0.8441. 

The proposed method has better transferability than other 

methods. The possible reason is that different detectors share 

areas of common concern for a face image, which is consistent 

with the ideas of tasks in the classification scenario [38, 53]. 

We also find that the ASRs of all methods for 𝑚6 are lower than 

those on other detectors. The same phenomenon is shown for 

𝑚7 in addition to our method. The reason is speculated that the 

detectors are different in network modules and depth so that 

they have the sophisticated decision landscapes. Detectors 𝑚6 

TABLE IV 
VISUAL QUALITY MEASURES AND COMPUTATIONAL TIME IN THE INFERENCE 

STAGE OF DIFFERENT ANTI-FORENSIC METHODS 

Methods 
Mean 
SSIM 

mean 
PSNR 

mean 
LPIPS 

Computational 
Time (s) 

FGSM [36] 0.8582 38.6579 0.0090 0.0543 

PGD [37] 0.9360 42.5955 0.0044 0.4399 

AdvGAN[45] 0.9432 38.0376 0.0127 0.0127 

Wang’s [17] 0.9435 43.0803 0.0046 0.9148 

Zhao’s [12] 0.9467 34.5811 0.0405 0.0107 

Prop. 0.9849 44.5047 0.0045 0.0949 

 
Fig. 6. Examples of attention saliency maps generated by the ensemble of 

substitute target detectors, HM based on them and the corresponding 

perturbations. The first column are the original faces, the next three columns 

are the maps obtained by 𝑚𝑖, 𝑖 = 1,2,3, followed by the HM, perturbations and 

the anti-forensic faces. 

and 𝑚7 are more lightweight in architectures and shallower in 

depth. The anti-forensic perturbation generated from the 

detectors (𝑚1, 𝑚2 and 𝑚3) with relatively complex structure 

may have poor transferability on detectors (𝑚6 and 𝑚7) with 

relatively simple structure. This is consistent with the 

experimental conclusion in work [54]. The work [54] divided 

the models into three categories: huge CNNs, lightweight 

CNNs, and non-CNNs. Its experimental analysis shows that the 

adversarial transferability of different model families is quite 

different; in most cases, the adversarial samples obtained by 

models in one category have poor transferability to models in 

another category. These above results suggest that the proposed 

method has posed a sufficiently strong threat to both white-box 

detectors and black-box detectors, though the ASR for 𝑚6 is not 

ideal. In order to further analyze the effects of different 

anti-forensic methods, the attention saliency maps of faces 

before and after perturbation are shown in Figs. 6 and 7.  

In Fig. 6, it can be seen that different detectors have areas of 

common interest when making decisions. These areas are 

mainly located in the face areas, which is in line with human 

intuition. Meanwhile, the faces before and after perturbation 

are visually indistinguishable. The HM obtained by the 

ensemble of white-box detectors not only retains the areas of 

common concern, but also retains the important areas predicted 

by each single detector. The perturbed regions are the local 

areas obtained strictly according to HM.  
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Fig. 7. Examples of attention saliency maps of images before and after being perturbed. For the same face, the first column are the original faces and anti-forensic 

faces and the rest of columns from left to right are the corresponding attention saliency maps of six black-box detectors 𝑚𝑖, 𝑖 = 4, . . . ,9. 

  As shown in Fig. 7, the perturbations generated by the 

proposed method may greatly change the area originally 

focused on by the detector and achieve the overall best 

performance. The possible reason is that the proposed method 

utilizes the fake faces’ areas of common concern in 

multiple-detector decision-making to add local adversarial 

perturbations. The pixels in these areas of common concern are 

more useful for detector prediction than other pixels. The 

results are consistent with those of Wang et al. [55], who use 

feature importance to guide adversarial examples to disrupt 

important object-aware features for optimization; as a result, 

the attacked model could not capture important areas but focus 

on trivial areas instead. This change in the areas successfully 

improves the transferability. In addition, for detectors, such as 

𝑚6 and 𝑚7, the anti-forensic faces obtained by some compared 

methods do not change the critical area. To a certain extent, this 

shows that the transferability of related methods on these 

detectors is poor. Likewise, although the area of concern of 

𝑚6 has been changed by the proposed perturbations, the change 

is not complete. This may be a possible reason for the 

inadequate anti-forensic effect on 𝑚6 shown in Table III.  

2) Experiments in Defense Scenario 

In practice, generated anti-forensic faces may encounter 

defense solutions against anti-forensic attacks. In such scenario, 

the added anti-forensic perturbations may fail. Therefore, in 

this subsection, we specifically discuss the anti-forensic 

performances of the proposed method under defense 

operations.  

(a) Defenses that modify input faces  

In this type of defense, the parameters of the trained detectors 

(i.e., 𝑚𝑖 , 𝑖 = 1, 2, . . . ,9 ) are not changed. Common image 

filtering operations have been shown to be effective defense 

methods that can remove the adversarial noises in [56]. In 

addition, adding additional noise may also destroy anti-forensic 

perturbations. Thus, Gaussian filtering, median filtering, 

bilateral filtering, and Gaussian noise are respectively applied 

to the anti-forensic faces. The kernel sizes of all the filters are 

33 and the standard deviation of Gaussian noise is set to 3. 

The results are shown in Table V. It can be seen from Table V 

that the common filtering and noise operations fail to defend 

against our anti-forensic perturbations. On the contrary, 

anti-forensics are even more successful when these operations 

are applied. For example, the ASR of anti-forensic faces 

increases by 0.0266 after Gaussian filtering. In essence, image 

filtering does not improve the cognitive ability of neural 

networks. However, it can usually reduce the classification 

accuracy of clean samples due to the filtering of image details. 

Moreover, when the intensity of adversarial perturbation on the 

clean image is small, simple filtering is difficult to distinguish 

image details and adversarial noise. In this paper, the intensity 

of local perturbation is constrained, and the perturbation is 

subtle and invisible. Therefore, the common filtering and noise 

operations reduce detectors’ accuracy and promote the success 

of anti-forensics. 

Image compression [57] and input reconstruction [58] have 

also been proved to be effective defense means to eliminate the 

impact of adversarial perturbations. In this paper, we consider 

JPEG compression with the compression factor of 90. 

Concerning image reconstruction, two methods are considered: 

shallow reconstruction [35] and MagNet [58]. The shallow 

reconstruction used in Fakepolisher [35] originally utilizes 

dictionary learning to reconstruct the image and eliminate 

traces of up-sampling. MagNet [58] is an adversarial defense 

framework independent of the adversarial attack method. It 

tries to train an adversarial example detector and reformer 

through clean samples and reconstruct the perturbed examples 

closest to the clean samples. The anti-forensic effects against 

image compression and input reconstruction are shown in 

Table VI. The results show that: (1) Image compression has a 

small impact on our method with the average ASR decreased 

from 0.8882 to 0.7959, but it cannot make the local perturbation 

generated by the proposed method lose the anti-forensic 

performance; (2) Anti-forensic performance is enhanced after 

shallow reconstruction with the average ASR increased from 

0.8882 to 0.9581. The possible reason is that shallow 

reconstruction fails to fully destroy the anti-forensic 

perturbations but reduces the up-sampling artifact patterns, 

which some detectors may rely upon as forensic features; (3)  
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TABLE V 
ANTI-FORENSICS PERFORMANCE AFTER FILTERING OR ADDING NOISE IN TERMS OF ASR.  

Filter/Noise 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9 Avg.  

None 0.9999 1.0 0.9990 0.9923 0.9409 0.2115 0.9904 0.9684 0.8910 0.8882 

Gaussian Filter 1.0 1.0 1.0 0.9991 0.9999 0.2413 0.9996 0.9998 0.9932 0.9148 

Median Filter 1.0 1.0 1.0 0.9996 1.0 0.2548 0.9957 0.9998 0.9971 0.9163 

Bilateral Filter 1.0 1.0 0.9999 0.9991 0.9992 0.1079 0.9972 0.9992 0.9863 0.8988 

Gaussian Noise 0.9999 1.0 1.0 0.9959 0.9611 0.9095 0.9989 0.9740 0.9397 0.9754 

TABLE VI 
ANTI-FORENSICS PERFORMANCE AGAINST IMAGE COMPRESSION AND INPUT RECONSTRUCTION DEFENSES IN TERMS OF ASR 

Defense 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9 Avg. 

JPEG Compression 0.9996 0.9793 0.7018 0.9998 0.4313 0.3680 0.6975 1.0 0.9857 0.7959 

Shallow Reconstruction [35] 1.0 1.0 1.0 0.9998 1.0 0.6486 0.9743 1.0 1.0 0.9581 

MagNet [58] 1.0 0.9999 0.5564 0.9993 1.0 0.0625 0.5296 1.0 0.9999 0.7942 

None 0.9999 1.0 0.9990 0.9923 0.9409 0.2115 0.9904 0.9684 0.8910 0.8882 

TABLEVII 
ANTI-FORENSICS PERFORMANCE AGAINST DETECTORS RETRAINED BY ANTI-FORENSIC FACES GENERATED BY PGD ATTACK IN TERMS OF ASR WHEN THE WHITE-BOX 

DETECTORS USED IN THE ANTI-FORENSIC PROCESS ARE KNOWN 

METHOD 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9 Avg. 

FGSM [36] 0.0096 0.0000 0.0149 0.0080 0.0000 0.0000 0.0072 0.0017 0.0013 0.0047 

PGD [37] 0.0236 0.0161 0.0071 0.0080 0.0001 0.0000 0.0042 0.0008 0.0038 0.0071 

ADVGAN [45] 0.0962 0.0005 0.0167 0.0285 0.0001 0.0000 0.0258 0.0322 0.0031 0.0225 

WANG’S [17] 0.0233 0.0813 0.0039 0.0151 0.0043 0.0000 0.1013 0.0003 0.0080 0.0264 

ZHAO’S [12] 0.8075 0.0176 0.3715 0.7617 0.0001 0.0034 0.1012 0.8020 0.2360 0.3446 

PROP. 0.6932 0.6757 0.5320 0.6722 0.0011 0.2079 0.8523 0.8040 0.2692 0.5230 

TABLE VIII 
ANTI-FORENSICS PERFORMANCE AGAINST DETECTORS RETRAINED BY ANTI-FORENSIC FACES GENERATED BY DIFFERENT METHODS IN TERMS OF ASR WHEN THE 

WHOLE ANTI-FORENSIC ATTACK MECHANISM IS KNOWN 

Method 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9 Avg. 

FGSM [36] 0.0 0.0001 0.0009 0.0005 0.0001 0.0006 0.0002 0.0034 0.0 0.0006 

PGD [37] 0.0043 0.0158 0.0162 0.0043 0.0001 0.0009 0.0068 0.0036 0.0006 0.0058 

AdvGAN [45] 0.0004 0.0002 0.0051 0.0020 0.0011 0.0024 0.0019 0.0052 0.0 0.0012 

Wang’s [17] 0.0017 0.0026 0.0285 0.0023 0.0039 0.0045 0.0031 0.0113 0.0049 0.0070 

Zhao’s [12] 0.0 0.0005 0.0004 0.0 0.0001 0.0019 0.0012 0.0002 0.0 0.0005 

Prop. 0.0032 0.0001 0.0335 0.0055 0.0099 0.0029 0.0 0.0159 0.0001 0.0078 

TABLE IX 
ANTI-FORENSICS PERFORMANCE OF SECONDARY ATTACK AGAINST RETRAINED DETECTORS RETRAINED BY ANTI-FORENSIC FACES GENERATED BY DIFFERENT 

METHODS IN TERMS OF ASR 

Method 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9 Avg. 

FGSM [36] 0.0006 0.0005 0.1596 0.0008 0.0001 0.0001 0.0008 0.0123 0.0 0.0194 

PGD [37] 0.0912 0.9523 0.9946 0.0059 0.0001 0.0008 0.0084 0.0084 0.0109 0.2303 

AdvGAN [45] 0.9988 0.9998 0.9993 0.2635 0.0408 0.0093 0.0609 0.9616 0.1272 0.4957 

Wang’s [17] 1.0 1.0 1.0 0.012 0.0204 0.0040 0.0013 0.9830 0.0829 0.4560 

Zhao’s [12] 0.9936 0.9966 0.9954 0.4038 0.1309 0.1323 0.2196 0.9570 0.2128 0.5602 

Prop. 0.9763 0.9947 0.9745 0.5132 0.6023 0.4187 0.2521 0.1863 0.2258 0.5715 

The average ASR is decreased about 0.09 under the MagNet 

input reconstruction defense, but it can still maintain its 

anti-forensic effect for most detectors. 

(b) Defenses that modify detectors 

In addition to the above defenses that modify input faces, 

there are also defense means of changing detector parameters. 

If our attack mechanism is partially or completely known, the 

defender may retrain the detectors using data augmentation to 

enhance the detectors robustness against adversarial attack [59]. 

Specifically, the defender may know the white-box detectors 

used in our anti-forensic process or even the whole 

anti-forensic method. Therefore, we conduct experiments on 

these two types of retraining defenses.  

If the white-box detectors used in our anti-forensic process 

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2022.3207310

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Oulu University. Downloaded on September 26,2022 at 05:30:42 UTC from IEEE Xplore.  Restrictions apply. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

Copyright © 20xx IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to 

pubs-permissions@ieee.org. 

 

are known, the defender may try to use a known attack method 

to generate adversarial examples, then use these adversarial 

examples to retrain the detectors. In the test, we choose PGD 

attack as the known attack method, as it is the most commonly 

used method. Table VII presents the corresponding anti- 

forensic performance. It can be found that our anti-forensic 

faces can still maintain a certain anti-forensic ability against the 

robust detectors retrained by PGD-attacked faces.  

If the whole anti-forensic attack mechanism is known, the 

defender can directly add the anti-forensic faces generated by 

the attack to the detector training process through data 

augmentation. Therefore, in this test, we replace the original 

clean fake faces in the training process of the nine detectors 

with anti-forensic faces at a proportion of 50%. Table VIII 

shows that all the compared methods are ineffective under the 

retraining defense. This is a normal phenomenon because using 

adversarial examples for data augmentation is an important 

way to reduce model overfitting and improve model robustness, 

including resisting anti-forensics. Although the retrained 

detectors have strong defensive performance against 

anti-forensic faces, they are still vulnerable to a secondary 

attack by the corresponding attack method. In other words, in 

the real-world context, the white-box detectors are available; 

thus, we can replace the original white-box detectors trained by 

using clean faces with the above-mentioned retrained robust 

detectors. Then, our attack method can be carried out again. 

Table IX shows the results of the secondary attack on the 

retrained model. The proposed method still has good 

anti-forensic performance for the retrained white-box detectors. 

This is mainly because the retrained white-box detectors 

directly participate in the training of our perturbation generator. 

In addition, our method still has stronger transferability to the 

retrained black-box detectors than other attack methods. 

C. Other Experiments 

1) Ensemble Strategy  

For the ensemble strategy of substitute target detectors, there 

are four ensemble strategies: ensemble in loss, ensemble in 

logits, ensemble in predictions [22], and an alternative method 

[19]. Ensemble in loss is the above-mentioned basic method in 

which the loss function of each substitute white-box forensic 

detector is calculated separately and then aggregated. Ensemble 

in logits means fusing the output logits to compute the final loss. 

Ensemble in predictions calculates the loss directly via the 

output probabilities. In the alternative scenario, the detector in 

the ensemble is utilized alternatively in each step to carry out a 

gradient-descent updating process. The performances of the 

four strategies are shown in Table X. All the strategies achieve 

good anti-forensic results for white-box detectors, but the 

effects differ for zero-knowledge detectors. Although some 

strategies have achieved the highest ASR for a single black-box 

detector, in general, the basic loss ensemble strategy has the 

best overall anti-forensic transferability. 

2) Perturbations in Some Specific Areas 

In this paper, the perturbed areas (the predicted masks) are 

fully determined by the ensemble of substitute target detectors. 

In order to further explore the influence of the perturbed areas  

 
Fig. 8. Examples of specific masks and corresponding perturbed faces. The 

first line are the original clean faces. For the same face, the first column are the 

specific masks and the second column are the perturbed faces. 

on the effect of anti-forensics, we carry out some additional 

experiments on perturbing specific areas, such as the eyes, nose, 

and mouth. Specifically, we use the Dlib tool for face key-point 

detection to obtain the masks of specific areas. These areas are 

used to directly replace the hard masks in our framework shown 

in Fig. 1. The anti-forensic performance is shown in Table XI. 

In order to illustrate the visual quality after adding perturbation, 

we also present some examples of specific areas and their 

corresponding perturbed faces in Fig. 8. The following can be 

observed from Table XI and Fig. 8: (1) When the perturbation 

area is small, such as the nose and mouth areas, the 

anti-forensic performance is generally low for both white-box 

and black-box detectors. The reason is that the small 

perturbation area weakens the adversarial ability and makes the 

perturbation intensity in the small area strong. As a 

consequence, the perturbation is easily detected by human eyes; 

(2) When simultaneously perturbing the eyes, nose and mouth, 

the anti-forensic perturbations are invisible and achieve good 

anti-forensic performance for the white-box detector. However, 

their transferability to the black-box detectors is not as good as 

the proposed method. This shows that in addition to specific 

areas, other areas of the face are also meaningful for the 

forensic detectors.  

3) Ablation study 

The architecture of our anti-forensic GAN is based on the 

baseline classical adversarial sample generation method, 

AdvGAN. Compared with AdvGAN, the mask predicting 

operation is proposed to generate perturbation in critical local 

regions, and the ensemble strategy and hidden layer 

information are combined to improve the anti-forensic effect. 

In this subsection, we mainly analyze the effectiveness of 

relevant strategies, including the mask predicting operation, the 

ensemble and ensemble feature loss 𝐿𝑓 . Moreover, the 

additional role of the VGG perceptual loss 𝐿𝑝𝑒𝑟𝑐 in reducing 

overfitting is also presented. 

The results of ablation experiments on adopting an ensemble 

of substitute detectors are shown in Table XII. For each single 

detector, it can be found that its performance of anti-forensics is 

average in the black-box scenario that is, the generated 

perturbation is less transferable. This demonstrates the 

effectiveness of the ensemble.  
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TABLE X 

PERFORMANCE COMPARISON OF FOUR ENSEMBLE STRATEGIES FOR BOTH THE WHITE-BOX AND BLACK-BOX DETECTORS 

Strategies 
White-box detectors  Black-box detectors Avg. 

ASR 
mean 
SSIM 

mean 
PSNR 

mean 
LPIPS 𝑚1 𝑚2 𝑚3  𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9 

Loss 0.9999 1.0000 0.9990  0.9923 0.9409 0.2115 0.9904 0.9684 0.8910 0.8882 0.9849 44.5047 0.0045 

Logits 1.0000 1.0000 0.9269  0.8752 0.3522 0.2717 0.5321 0.6735 0.8272 0.7176 0.9836 44.6694 0.0044 

Predictions 0.9997 1.0000 0.9988  0.9930 0.8543 0.0714 0.3419 0.9778 0.8875 0.7916 0.9866 45.3070 0.0037 

Alternative 1.0000 1.0000 1.0000  0.9882 0.8359 0.0022 0.0067 0.9376 0.2499 0.6689 0.9791 43.2220 0.0026 

TABLE XI 

ANTI-FORENSICS PERFORMANCE OF SPECIFIC MASKS FOR BOTH THE WHITE-BOX AND BLACK-BOX DETECTORS IN TERMS OF ASR  

Specific 

Mask 

White-box detectors  Black-box detectors Avg. 

𝑚1 𝑚2 𝑚3  𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9  

Eyes 0.8995 0.9985 0.1848  0.7342 0.9880 0.0095 0.1418 0.1940 0.1041 0.4727 

Nose 0.4817 0.9989 0.0112  0.5244 0.8817 0.1755 0.8133 0.1785 0.0509 0.4573 

Mouth 0.4565 0.9983 0.0437  0.0280 0.9148 0.1574 0.2236 0.0296 0.0431 0.3217 

All 0.9894 0.9990 0.9483  0.9919 0.9885 0.0118 0.0164 0.4325 0.1198 0.6108 

Prop. 0.9999 1.0000 0.9990  0.9923 0.9409 0.2115 0.9904 0.9684 0.8910 0.8882 

TABLE XII  
PERFORMANCE COMPARISON OF ADOPTING AN ENSEMBLE OF SUBSTITUTE DETECTORS OR A SINGLE ONE. THE FIRST COLUMN REPRESENTS THE WHITE-BOX 

DETECTOR USED IN TRAINING PROCESS 

Detectors 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9 Avg. 

𝑚1 0.9999 0.2096 0.0577 0.7062 0.0655 0.0009 0.0439 0.7149 0.7638 0.3958 

𝑚2 0.4789 0.9967 0.0361 0.2268 0.1953 0.1282 0.1973 0.2257 0.6721 0.3507 

𝑚3 0.3514 0.0429 0.9987 0.2596 0.3499 0.0040 0.0762 0.1817 0.6185 0.3204 

𝑚1+𝑚2+𝑚3 (Prop.) 0.9999 1.0000 0.9990 0.9923 0.9409 0.2115 0.9904 0.9684 0.8910 0.8882 

TABLE XIII 

ABLATION STUDY OF THE MASK PREDICTING (MP) OPERATION, FEATURE SPACE LOSS AND VGG PERCEPTUAL LOSS ABLATION EXPERIMENTS 

Ablation 
White-box detectors  Black-box detectors Avg. 

𝑚1 𝑚2 𝑚3  𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9  

Without MP 1.0000 1.0000 1.0000  0.6420 0.8275 0.0018 0.0047 0.9992 0.9346 0.7122 

Without 𝐿𝑓 0.9998 1.0000 0.9998  0.9986 0.7944 0.0379 0.9856 0.9886 0.7802 0.8428 

Without 𝐿𝑝𝑒𝑟𝑐 1.0000 1.0000 1.0000  0.9981 0.9380 0.1081 0.7948 0.9520 0.7930 0.8427 

Prop. 0.9999 1.0000 0.9990  0.9923 0.9409 0.2115 0.9904 0.9684 0.8910 0.8882 

TABLE XIV 
ANTI-FORENSICS PERFORMANCE ON PGGAN AND WGAN_GP DATASETS 

Datasets 
White-box detectors  Black-box detectors Avg. 

ASR 

mean 

SSIM 

mean 

PSNR 

mean 

LPIPS 𝑚1 𝑚2 𝑚3  𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9 

PGGAN 0.9960 0.9978 0.9618  0.9756 0.8920 0.3674 0.4651 0.9458 0.8113 0.8236 0.9859 42.8203 0.0038 

WGAN_GP 0.9920 0.9915 0.9501  0.4986 0.4457 0.1224 0.6109 0.7581 0.8144 0.6971 0.9873 45.9328 0.0028 

StyleGAN 

(Prop.) 
0.9999 1.0000 0.9990  0.9923 0.9409 0.2115 0.9904 0.9684 0.8910 0.8882 0.9849 44.5047 0.0045 

The corresponding results of the ablation experiments on the 

mask predicting (MP) operation and two losses are shown in 

Table XIII. The results without MP operation show that 

removing this operation leads to a drop in the ASRs for the 

black-box detectors. This also shows that different detectors 

have areas of common concern and demonstrates the 

effectiveness of our proposed MP operation on anti-forensic 

transferability. The results without  𝐿𝑓 and 𝐿𝑝𝑒𝑟𝑐  show that 

these two loss functions contribute to the effect of anti-forensic 

perturbations. The reason may be that the hidden layer features 

are helpful for the transferability of adversarial perturbations 

and the VGG perceptual loss essentially utilizes the 

intermediate layer features of the model pretrained on the 

ImageNet dataset, reducing overfitting. 

4) Experiments with Other Datasets  

All the above experiments are carried out on StyleGAN- 

generated faces. Here, we further verify the anti-forensic 

effectiveness of the proposed method on two other face 

generation models, i.e., PGGAN [27] and WGAN_GP [60]. As 

shown in Table XIV, the proposed method also performs well 

with the faces generated by PGGAN and WGAN_GP, 

achieving an average ASR of 0.8236 for the PGGAN-generated 

faces and 0.6971 for the WGAN_GP-generated faces. 

Moreover, it also achieves a good trade-off between 

anti-forensic ability and visual quality. However, compared to 

the results for StyleGAN, the average ASRs for both PGGAN 
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and WGAN_GP are lower. The possible reason is that the 

detectors have a strong forensic ability for GAN-generated 

faces of poor quality, and the quality of WGAN_GP and 

PGGAN-generated face is inferior to that of 

StyleGAN-generated face [61]. 

V. CONCLUSION 

In this paper, an effective local anti-forensic method is 

proposed. The proposed method utilizes the fake faces’ areas of 

common concern in multiple-detector decision-making to add 

local adversarial perturbations. Through the utilization of 

ensemble model and latent features, good anti-forensic 

performance is achieved for the white-box and zero-knowledge 

scenarios. The experimental results show that the anti-forensic 

method exposes the vulnerability of state-of-the-art forensic 

detectors.  

However, the transferability of our method to some 

black-box detectors requires further enhanced. In addition, 

possible defense solutions, especially methods that modify 

detectors by retraining with adversarial examples, may affect 

the adversarial ability of the existing anti-forensic methods 

including the proposed method. Therefore, in the future, we 

want to focus on improving the transferability and robustness of 

perturbation against possible defense solutions. 
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