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Abstract—In real-world crowd counting applications, the
crowd densities in an image vary greatly. When facing density
variation, humans tend to locate and count the targets in low-
density regions, and reason the number in high-density regions.
We observe that CNN focus on the local information correlation
using a fixed-size convolution kernel and the Transformer could
effectively extract the semantic crowd information by using the
global self-attention mechanism. Thus, CNN could locate and
estimate crowds accurately in low-density regions, while it is hard
to properly perceive the densities in high-density regions. On
the contrary, Transformer has a high reliability in high-density
regions, but fails to locate the targets in sparse regions.

Neither CNN nor Transformer can well deal with this kind
of density variation. To address this problem, we propose a
CNN and Transformer Adaptive Selection Network (CTASNet)
which can adaptively select the appropriate counting branch
for different density regions. Firstly, CTASNet generates the
prediction results of CNN and Transformer. Then, considering
that CNN/Transformer is appropriate for low/high-density re-
gions, a density guided adaptive selection module is designed to
automatically combine the predictions of CNN and Transformer.
Moreover, to reduce the influences of annotation noise, we
introduce a Correntropy based optimal transport loss. Extensive
experiments on four challenging crowd counting datasets have
validated the proposed method.

Index Terms—Crowd counting, Transformer, Adaptive Selec-
tion.

I. INTRODUCTION

ENSE crowd counting is an important topic in com-

puter vision. Especially after the outbreak of coronavirus
disease (COVID-19), it plays a more essential role in video
surveillance, public safety, and crowd analysis [49]-[52], [57]-
[60]. Most recent state-of-the-art works generate a pseudo
density map by smoothing the sparse annotated points and
then train a CNN model by regressing the value at each pixel
in this density map. However, as shown in Figure 1, a major
challenge for the task is the extremely large scale variation of
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Fig. 1. There are large scale variations in the same scene and different scenes.
The intra-scene and inter-scene variations in appearance, scale, and perspective
make the problem extremely difficult.

crowds, which arises from the wide viewing angle of cameras
and the 2D perspective projection.

In recent years, numerous methods for handling large scale
variations have been proposed. One feasible workaround is
to adopt a multi-column convolution neural network (CNN),
which aggregates several branches with different receptive
fields for extracting multi-scale features [62], [80]. The scale
variations in images are continuous, while these methods only
consider several discrete receptive fields. They are unable to
cover the continuous scale variation, which leads to feature
redundancy among different branches [92]. Considering sim-
plifying network architecture, some methods deploy single and
deeper CNNs to combine features from different layers [103].
They usually aggregate the features from different layers in a
scale-agnostic way, which may lead to an inconsistent mapping
between feature levels and target scales [79]. The two kinds of
aforementioned methods benefit from the multi-scale feature
representations and have achieved inspiring performances.
However, due to the limited respective field and presentation
ability of CNN, it is still very difficult to accurately estimate
the count in sparse and dense regions at the same time.

In the real world, humans would adopt appropriate counting
modes for different density regions: they would accurately
locate and count the targets in sparse regions and reason
the target number in dense regions [29]. Motivated by the
human counting behaviors, an ideal counting method should
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Fig. 2. Visualization of the predicted results on a image from (a) VGG
network and (b) Transformer network.

have an adaptive ability to choose the appropriate counting
mode according to the crowd density. To be specific, it is
expected to count through localizing targets in low density
regions; whereas, in congested regions, it should behave in an
inference mode.

CNN constructs a powerful broad filter by focusing on
the local information correlation, and show effectiveness in
computer vision task. But it is usually too dependent on
certain local information, which may lead to the unreliability
of the extracted semantic information. Unlike the CNN, the
Transformer adopts the Multi-Head Self-Attention mechanism
which could provide the global receptive field. Such a Multi-
Head Self-Attention mechanism can understand the relation-
ship of different regional semantics in the entire image. In
Figure 2, we visualize the predicted results of CNN and
Transformer networks to show their differences. As shown in
the green dash framework of Figure 2 (a), the CNN estimation
could accurately locate and count targets in sparse crowds,
which is reliable. On the other hand, in crowded regions in
the red dash framework, the corresponding object sizes tend
to be very small and hard to locate. The CNN estimation
is unable to accurately reflect the density in these regions,
leading to a wrong estimation. While the Transformer network
could perform better on the occasion, since the Transformer
estimation has significantly different response intensities in
different density regions. This means that the Transformer
can effectively perceive the density of the area. However,
in the sparse-crowd regions in the green dash framework of
Figure 2 (b), the response position of Transformer estimation
is inconsistent with the target position.

Based on the above analysis, we find that the CNN and
Transformer networks have their different strengths on differ-
ent crowd densities regions. The CNN based method could
localize and count each person precisely in the low density
regions since they concentrate on the local pixel correlation.
However, its reliability degenerates in crowded regions due to
the inaccuracy of regional density information perception. The
Transformer based approach is preferred for congested scenes.
Without localization information for each target, applying
them to sparse scenes may lead to wrong estimation. Motivated
by this understanding, we propose a novel crowd counting
framework named CNN and Transformer Adaptive Selection

Network (CTASNet), which is capable of adaptively locating
the target in the low density regions and perceiving the crowd
density in the high density regions.

To be specific, for a given image, the CTASNet first
generates two kinds of crowd density maps through CNN and
Transformer networks, respectively. To adaptively decide the
different counting modes for the sparse and dense regions, a
density guided Adaptive Selection Module (ASM) is proposed
to obtain the final prediction through automatically selecting
CNN/Transformer estimations in low/high density regions,
respectively. Note that point annotation is widely adopted in
crowd datasets, which is sparse and could only occupy a pixel
of the entire human head. There are unavoidable annotation
errors. To alleviate this issue, we design a transport cost
function based on correntropy [87] in an optimal transport
framework that could explicitly tolerate the annotation errors.

In summary, we make the following contributions:

e To model the different counting modes of humans in
sparse and dense regions, we design a CNN and Trans-
former Adaptive Selection Network for crowd counting.

o We propose a density guided Adaptive Selection Mod-
ule to automatically choose CNN/Transformer network
estimations for low/high density regions.

o We design a transport cost function based on correntropy
in an optimal transport framework to explicitly tolerate
the annotation errors.

o« We conduct extensive experiments on four datasets to
demonstrate the superiority of our method against state-
of-the-art competitors.

II. RELATED WORKS

A. Crowd Counting

Traditional crowd counting algorithms are mainly di-
vided into two categories: detection-based methods [73], [74]
and regression-based methods [75]-[77]. These methods are
mostly based on hand-crafted features which are specially
designed by domain experts. When faced with complex scenes
such as congestion and scale variation, the performances of
these hand designed methods are disappointing.

Scale Variation. To achieve accurate crowd counting in
complex scenarios, recent attention has shifted to deep learn-
ing. The common way to cope with large scale variation is to
obtain a richer feature representation [79]. MCNN designed
a Multi-Column Neural Network to estimate crowd numbers
accurately from different perspectives with three branches
[62]. Based on MCNN, Switching CNN trains a switch
classifier to select the best branch for density estimation [80].
DADNet uses different dilated rates in each parallel column
to obtain multi-scale features [28]. [4] used Inception-v3 as
the backbone and proposed a novel curriculum loss function
to resolve the scale variance issue. [5] aggregated different
modules to adaptively encodes the multi-scale contextual infor-
mation for accurate counting in both dense and sparse crowd
scenes. In summary, these methods employ multiple branches
architecture to address the scale variation problem, which may
introduce significant feature redundancy [92].
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Context. In contrast to those methods designing specific
architectures, recent methods concentrate on incorporating
related information like high-level semantic information and
contextual information into networks for obtaining rich feature
representations. CrowdNet used a combination of high-level
semantic information and low-level features for accurate crowd
estimation [95]. [26] incorporated a high-level prior into the
density estimation network enabling the network to learn glob-
ally relevant discriminative features for lower count error. [16],
[25] makes use of contextual information to predict both local
and global counts. This kind of method has been demonstrated
effective but is still difficult to accurately estimate the count
in the sparse and dense regions at the same time. The reason
may be that the fixed-size convolution kernel of CNN would
introduce a limited receptive field.

Loss function. An appropriate loss measure can help to
improve the counting performance. BL [61] proposes a point-
wise Bayesian loss function between the ground-truth point
annotations and the aggregated dot prediction generated from
the predicted density map. DM-Count [98] design a balanced
Optimal Transport loss with an L2 cost function, to match
the shape of the two distributions. Based on DM-Count [98],
GL and UOT [104], [105] develop an unbalanced Optimal
Transport loss for crowd counting, which could output sharper
density maps. Overly strict pixel-level spatial invariance would
cause overfit noise in the density map generation. [3] use
locally connected Gaussian kernels to replace the original
convolution filter to overcome the annotation noise in the
feature extraction process.

Crowd Localization. To perform counting, density map
estimation, and localization simultaneously, [7] uses point-
level annotations to train a typical object detector. [6] proposed
a straightforward crowd localization framework that obtains
the positions and the crowd counts by segmenting crowds
into independent connected components. [8] propose a purely
point-based framework for joint crowd counting and individ-
ual localization. [9] consider the counting and localization
tasks as a pixel-wise dense prediction problem and integrate
them into an end-to-end framework. These crowd localization
methods have achieved inspiring performances on the crowd
counting task. However, they may have limited performance
on the extremely dense datasets (e.g., UCF-QNRF [90] and
UCF_CC_50 [89] dataset). Different from these localization
methods, we design an adaptive selection module making
CNN and Transformer models appropriate for estimating less
dense and more dense regions, respectively, which could
achieve better performance on extremely dense datasets.

B. Transformer

Transformers were introduced by [24] as a new attention-
based building block for machine translation. Dynamic atten-
tion mechanism and global modeling ability enable Trans-
former to exhibit strong feature learning ability [15]. In recent
years, Transformer has become comparable to CNN methods
in computer vision [20]. Specifically, DETR firstly utilizes
a CNN backbone to extract the visual features, followed by
the Transformer for the object detection [23]. ViT is the first

one that applies Transformer-encoder to images patch and
demonstrates outstanding performances [22]. SETR extended
a pure Transformer from image classification to a spatial
location task of semantic segmentation [21]. More recently,
the self attention mechanism and global modeling ability have
boosted the effective applications of Transformer in various
tasks such as object tracking and video classification [19], [19].
However, since the Transformer contains no recurrence and
no convolution, the self-attention mechanism in the Trans-
former does not explicitly model relative or absolute position
information [14]. A sub-optimal approach is to add "positional
encodings” to the input embeddings at the bottoms of the
encoder and decoder stacks [24]. Convolution can implicitly
encode absolute positions, especially zero padding, and bor-
ders act as anchors to derive spatial information [12], [13].

C. Correntropy

Correntropy, a novel similarity measure, is defined as the ex-
pectation of a kernel function between two random variables.
It has been successfully applied in robust machine learning
and signal processing to combat large outliers [87]. For two
different random variables X and Y, the correntropy between
X and Y is defined as:

V(X,Y)=E[k(X,Y)] = //{(z,y)dey(x,y) €))

where E is the expectation operator, x(x, y) is a shift-invariant
Mercer kernel, and Fyy(x,y) denotes the joint distribution
function of (X,Y). The most popular kernel used in corren-
tropy is the Gaussian kernel:

1
Ko (T,y) = Wor exp (—|lz — y||*/20%) 2

where the o > 0 denotes the kernel size (or kernel bandwidth).

III. PROPOSED METHOD

In this section, we first describe the proposed crowd count-
ing framework, CNN and Transformer Adaptive Selection
Network which is shown in Figure 3. Then we will present
a novel density guided Adaptive Selection Module (ASM),
which could automatically choose the estimations of CNN
and Transformer for different density regions. Finally, we
propose a transport cost function based on correntropy in
an optimal transport framework, to explicitly tolerate the
annotation errors.

A. Overview

Figure 3 presents an overview of the framework. There are
two parallel branches in the proposed framework: The trans-
former Estimation branch and the CNN Estimation branch.
For each image I, we first use the first 13 convolution layers
in the VGG16 backbone to extract the high-level feature
presentations F4, F5. In the Transformer estimation branch, the
deep feature F5 is flattened and transmitted into a Transformer
encoder. Then, a regression decoder is utilized to predict the
final density map D;. In the CNN estimation branch, the top
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[29] shows that: in the low crowd density regions, humans
would first locate the head and then count the number; while
facing the high crowd density regions, they may reason about
the number of people by estimating the degree of density. To
model the human different counting modes in sparse and dense
regions, we design a CNN and Transformer Adaptive Selection
Network for crowd counting which is presented in Figure 3.
The Transformer estimation branch is responsible for the dense
crowd regions, while the CNN estimation branch concentrates
on predicting the sparse crowd regions. Note that Transformers
require high computational costs. The cause of this challenge
is the need to perform attention operations that have quadratic
time and space complexity according to the context size [10].
To reduce computational consumption, we employ a VGG
16 backbone to obtain lower-resolution feature representations
which would be fed into the Transformer estimation branch
and CNN estimation branch, respectively. Specifically, given
the initial image I € R3*W>H  where W and H are the
image width and height, a VGG-16 backbone generates the
lower-resolution feature representations F'4 € RCX E R
F5 € RO%16 %16,

Transformer Estimation Branch: The Transformer encoder
adopts self-attention layers, which can connect all pairs of
input positions to consider the global relations of current fea-
tures. As a result, the Transformer encoder could understand
the relationship of different regional semantics in the entire

Input

Fig. 4. The proposed Transformer encoder consists of Multi-Head Attention,
LayerNorm (LN) and a feed forward network (FFN).

image, which is beneficial to perceive the regional density.
It is suitable to use a Transformer encoder to model human
reasoning in dense regions.

To be specific, we only adopt the Transformer encoder
with a regression decoder. As shown in Figure 4, the pro-
posed Transformer encoder consists of Multi-Head Atten-
tion (MHA), Layer Normalization (LN), and a feed forward
network (FFN). Meanwhile, the residual connection is also

employed. The output of the Transformer encoder is calculated
by:

Zi =MHA(Z1) + Z1 3)
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Fig. 5. The detail structure of the proposed Adaptive Selection Module.

Z,=LN (FFN (LN (Z]))+ LN (Z))) 4)

where Z; is the output of the l;, € 1,..., N Transformer
encoder, N is the Transformer encoder number. Z is the input
of the first Transformer layer. To be specific, the Transformer
encoder expects a sequence as i%)ut, hence we flatten the
spatial dimensions of F'5 € RC* 16 %16 into one dimension,
resulting in a C' x % feature Zj.

The MHA is the self-attention layer of the Transformer,
which enables to measure the similarity of all input pairs to
build the global relations of current features. At the MSA, the
input consists of query (Q), key (K), and value (V), which are

computed from Z;_;:

Q=2i_1Wo, K=Z_1Wkg, V=Z_ Wy ()
QKT>

MHA(Z;) = softmax | ——— |V 6

(Z1) X< Nz (6)

where id is a scaling factor based on the vector dimension

d. W, WE WV € R¥ three learnable weight matrices for
projections.

The FFN contains two linear layers with a RELU activation
function. Specifically, the first linear layer of FFN expands the
feature embedding dimension from d to 4d, while the second
layer shrinks the dimension from 4d to d. Finally, the output
Z of the Transformer encoder is fed into a regression decoder
to generate the estimated density map D;.

Since the Transformer encoder regards the input as a disor-
dered sequence and indiscriminately considers all correlations
among features, the obtained feature is position-agnostic. As
a result, the prediction of the Transformer cannot have the
ability to locate targets in sparse regions.

CNN Estimation Branch: Convolution is found to implicitly
encode absolute positions, using zero padding, and borders act
as anchors [13]. Therefore, we proposed a CNN Estimation
Branch to focus on the sparse crowd regions. As illustrated
in Figure 5, the heads in sparse regions are large, thus we
firstly input the feature presentation F5 into an Atrous spatial

k(i) X KG) blocks
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- N EEEEERN
M ixicow W . . . O
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pyramid pooling (ASPP) [1 1] module to obtain the scale-aware
contextual feature F5’. The ASPP module applies dilated
convolution with different rates (1,6,12,18) to the obtained
feature F5 for large receptive fields. To obtain accurate location
information in the regression decoder, we upsample the scale-
aware contextual feature F5’ and concatenate it with the lower
feature F4. Finally, the concatenated features are used to
generate the final density map D..

C. Density Guided Adaptive Selection Module

After the predicted density maps Dy, D, are acquired, we
try to select the proper prediction for different density regions.
The most common selection approach is to minimize counting
error for a specific patch. However, since we could not obtain
the ground truth during inference in advance, it is infeasible to
decide which prediction to select for the patch. As discussed
above, Transformer Estimation Branch is suitable to reason the
number in high-density regions and CNN Estimation Branch
could locate and count the target in the low-density regions.
Therefore, we proposed a density guided adaptive selection
module, which can automatically choose proper prediction
manners for different density regions.

In detail, as illustrated at the Figure 5, we compute the
predicted density map D;,: € ¢, t as:

dyi = Fi1 (Pave (Di, k(7)) , 051) @)

dysi = Fio (dps, 0i2) ®)

where d;; is the generated upsampled block density map
and d,; is the generated normalized attention map. The
function F};; contains a 1 x 1 convolution network and bilinear
interpolation. The function Fjs consists of a 1 x 1 convolution
network and a sigmoid function. 6;;(j =1, 2) is the learned
parameter in the 1 X 1 convolution of function Fj;(j =I,
2). Puye (., k(7)) averages the predicted density maps into
k(i) x k(i) blocks. We do this because the scale in a certain
region is similar and the value in the block density map rep-
resents the regional density. We apply the Transformer/CNN
prediction results in the high/low density regions. In practice,
we use k(i) = 6 for averaging pooling since it shows better
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performance compared with other settings (k(:) = 1,2,4,8).
To make the block density map Py, (D;,k(¢)) obtain the
same size of the predicted density map, we adopt the function
Fi1. To obtain a normalized attention map d,;;, the function
Fio is employed. With such an operation, the obtained atten-
tion map could highlight the high-density region.

To further increase the difference between dense and sparse
regions, we multiply the upsampled block density map dj; and
attention map d,¢;, and use sigmoid normalization to obtain
the final attention map A ;.

A i = sigmoid (dp; X dats) 9)

The value in the final attention map A, reflects the
regional density. Our goal is to use the Transformer estimation
branch in the dense regions and adopt the CNN estimation
branch in sparse regions. Therefore, the final density map z is
computed by:

Z=Agu X Dt+(1*Aatc) x D, (10)

As a result, this would make the network automatically
choose the proper prediction manner for different density
regions.

D. The Optimal Transport Loss based on Correntropy

For achieving target localization in sparse regions and
optimizing the entire network, we adopt the loss function
proposed in DM-Count [98]:

E(Z, i) = fc(z, 2) + O.].goT(Z7 i) + 0.0].||Z||1€TV(Z7 i) (11)

where ||z|| denote the vectorized dot-annotation map, ||Z]|
is the vectorized predicted density map. fc(z,2) =
[llz]]1 — ||2]|1| is the counting loss, || - ||; denote the L; norm
of a vector.

def.
(C,T) = ) Ci;Ty;

(%]

min

12
TeU(z,2z) ( )

lor(z,z) &

where (o is the Optimal Transport (OT) loss. The ground
truth z is the dot map. C € R}*™ is the transport
cost matrix, whose item C;; = c¢(z,2) measures the
cost for moving probability mass on pixel z to pixel z.
{T e RY*™ : T1, = 2, TT 1y, = 2} (1, is the transport ma-
trix, which assigns probability masses at each location z to z
for measuring the cost. U is the set of all possible ways to
transport probability masses from z to z.

z z Z Z

Izl [zl

by (z,2) = ’

_1‘

TV 2

[EA(P
(13)
The TV loss can increase the stability of the training proce-
dure.

The annotation label provided in popular datasets is in
a form of sparse point annotation, which occupies a very
small portion of target [17]. The annotation noise arises from
human annotation, which in general exists in this kind of

annotation label. The transport cost function adopted in [98]
is the Euclidean distance between two pixels, C;; = L?j =

H:c,» -y H; As shown in Figure 6 (a), the Euclidean distance
is unable to tolerate the annotation noise (i.e., the displacement
of the annotated locations). If the annotated locations shifted,
the distance would increase which result in a large transport
cost. This means that the cost function based on Euclidean
distance is sensitive to annotation noise. To alleviate negative
influences by annotation noises, we propose a transport cost
function based on correntropy for crowd counting:

2
o llai = b * _ |ai — by
T ke(a,bj) exp (—|la; — bj][?/20?)

where £, (a;,b;) is a shift-invariant Gaussian kernel. As
illustrated in Figure 6 (b), the proposed correntropy based
transport cost function can alleviate negative influences caused
by annotation error, since it is insensitive to annotation position
offset within a certain range.

(14)

y = X% y =X"2* exp(x*2/(2.0 * 16 * 16))
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Fig. 6. Comparison of transport cost functions based on Euclidean distance
and Correntropy.

IV. EXPERIMENTS

In this section, we present experiments evaluating the pro-
posed network, CTASNet. We first present detailed experimen-
tal setups including network architecture, training details, and
evaluation metrics. Then, we compare the proposed methods
with recent state-of-the-art approaches. Finally, we conduct
ablation studies to verify the effectiveness of the proposed
method.

A. Experimental Setups

Network Architecture. We adopt VGG16 as our backbone
network that is pre-trained on ImageNet. Specifically, follow-
ing [5], we remove the classification part of VGG-16 (fully-
connected layers) and adopt the first 13 layers from VGG16
as the backbone. In the Transformer Estimation Branch, we
refer to [24] for the structure of Transformer encoder. The
regression decoder in the Transformer Estimation Branch
consists of a bilinear upsampling, two 3x3 convolution layers
with 256 and 128 channels, and a 1x1 convolution layer to get
the final output. In the CNN Estimation Branch, the regression
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TABLE I
RESULTS ON THE SHANGHAITECH, UCF_CC_50, UCF-QNRF AND NWPU DATASETS.

Method ShanghaiTech A ShanghaiTech B UCF_CC_50 UCF-QNRF NWPU

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
MCNN [62] 110.2  173.2 26.4 41.3 377.6 509.1 | 277.0 426.0 | 232.5 714.6
Switch-CNN [80] 90.4 135.0 21.6 33.4 318.1 439.2 | 228 445 — —
CSRNet [92] 68.2 115.0 10.6 16.0 266.1 397.5 | 120.3 208.5 | 121.3 387.8
SANet [91] 67.0 104.2 8.4 13.6 258.4 3349 | — — — —
CAN [93] 62.3 100 7.8 12.2 212.2 243.7 | 107 183 106.3  386.5
BL [61] 62.8 101.8 7.7 12.7 229.3 308.2 | 88.7 154.8 | 105.4 454.0
SFCN [97] 67.0 104.5 8.4 13.6 258.4 3349 | 102.0 171.4 | 105.7 424.1
ADSCNet [95] 55.4 97.7 6.4 11.3 198.4 267.3 | 71.3 132.5 — —
CG-DRCN-CC-Res101 [72] | 60.2 94.0 7.5 12.1 - - 95.5 164.3 | — —
SASNet [79] 53.6 88.4 6.4 10.0 161.4 234.5 | 85.2 1473 | — —
NoiseCC [30] 61.9 99.6 7.4 11.3 - — 85.8 150.6 | 96.9 534.2
DM-Count [98] 59.7 95.7 7.4 11.8 211.0 291.5 | 85.6 148.3 | 88.4 388.4
CTASNet(ours) 54.3 87.8 6.5 10.7 158.1 2219 | 80.9 139.2 | 94.4 357.6

decoder consists of four convolution layers with 256, 64, 32,

ShanghaiTech A. Specifically, the

improvements are 9.04%

and 1 channel, respectively. The kernel sizes of the first three
layers are 3 x 3 and that of the last is 1 x 1.

Training Details. We first do the image augmentation using
random crop and horizontal flipping. The random crop size
is 512 x 512 in all datasets except ShanghaiTech A. As some
images in ShanghaiTech A contain smaller resolution, the crop
size for this dataset changes to 224 x 224. In all experiments,
we use the Adam algorithm with a learning rate 10~° to
optimize the network parameters.

Evaluation Metrics. The widely used mean absolute error
(MAE) and the mean squared error (MSE) are adopted to
evaluate the performance. The MAE and MSE are defined

as follows:
1 N
MAE = N; C; — C; (15)
1 <L a 2
MSE = N; Ci—C; (16)

where N is the number of test images, C‘Z and C; are the
estimated count and the ground truth, respectively.

B. Comparisons with State-of-the-Arts

We compare our proposed methods with other state-of-
the-art methods on several public crowd datasets, including
ShanghaiTech A [62], ShanghaiTech B [62], UCF_CC_50
[89], UCF-QNRF [90] and NWPU [45]. The quantitative
results of counting accuracy are listed in Table I.

ShanghaiTech A Dataset. ShanghaiTech A dataset is col-
lected from the Internet and consists of 482 (300 for train, 182
for test) images with highly congested scenes. The images in
ShanghaiTech A are highly dense with crowd counts between
33 to 3139. Our CTASNet achieves the lowest MSE and the
second lowest MAE on ShanghaiTech A. Compared to DM-
Count, CTASNet significantly boosts its counting accuracy on

and 8.25% for MAE and MSE.

ShanghaiTech B Dataset. The ShanghaiTech B dataset con-
tains 716 (400 for train, 316 for test) images taken from
busy streets in Shanghai. The images in ShanghaiTech B
are less dense with the number of people varying from 9
to 578. It can be observed that the proposed CTASNet can
deliver comparable results with the best method (SASNet).
The effect of our CTASNet could not outperform SASNet.
The reason may be that ShanghaiTech B dataset contains
fewer people than other popular datasets. There are fewer
extremely dense regions that are suitable for reasoning, thus
our Transformer estimation branch is not so useful in these
low-density scenes. Compared with methods with the DM-
Count [98] performance, the CTASNet reduces the MAE by
12.16% and MSE by 9.32%.

UCF_CC_50. UCF_CC_50 is an extremely dense crowd
dataset but includes 50 images of different resolutions [89].
The numbers of annotations range from 94 to 4,543 with an
average number of 1,280. Due to the limited training samples,
5-fold cross-validation is performed following the standard
setting in [89]. As shown in Table I, our CTASNet surpasses
all the other methods. In particular, our method could achieve
the best performance with 5.77% MAE and 8.68% MSE
improvement compared to SASNet [79] with the second best
performance.

UCF-QNRF. UCF-QNREF is a challenging dataset that has a
much wider range of counts than currently available crowd
datasets [90]. Specifically, the dataset contains 1,535 (1,201
for train, 334 for test) jpeg images whose number ranges
from 816 to 12,865. By combining the CNN and Transformer
estimations, our method can achieve the second best perfor-
mance with an MAE of 80.9 and MSE of 139.2. Note that
our CTASNet makes a reduction of 6.34% on MSE compared
with DM-Count.

NWPU Dataset. The NWPU dataset is the largest-scale and
most challenging crowd counting dataset publicly available
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[45]. The dataset consists of 5,109 (3,109 for train, 500 for
val , 1,500 for test) images whose number ranges from 0 to
20,003. Note that the ground truth of the test image sets is not
released and researchers could submit their results online for
evaluation. As illustrated in Table I, our CTASNet achieves
the lowest MSE and the second lowest MAE on NWPU.

C. Ablation Study

1) Effect of each component:
Quantitative Analysis. The proposed CTASNet is composed
of four components: CNN Estimation Branch (CEB), Trans-
former Estimation Branch (TEB), Density Guided Adaptive
Selection Module (ASM) and Correntropy based Optimal
Transport loss (COT). We perform ablation studies on Shang-
haiTech A dataset to analyze the effect of each component.
We first adopt the CEB with different loss functions L2 loss
[92], Bayesian Loss (BL) [61], optimal transport (OT) loss in
DM-Count [98] and the proposed COT loss. Then, we use the
CEB and TEB for prediction, respectively. Finally, we adopt
two strategies ("concat” and ASM) to combine the predictions
of CEB and TEB. To be specific, in the “concat” strategy,
we concat the features generated from the encoders in CEB
and TEB. Afterwards, we feed the obtained feature into the
regression decoder for the final prediction. While ASM is the
proposed Adaptive Selection Module in the Methods Section.

All detail results are illustrated in Table II. Comparing the
results of CEB with different loss functions, we could observe
that the CEB with our COT loss achieves the best result.
Specifically, by replacing L2 loss with the proposed COT loss,
the performance of CEB is improved by 16.1% in MAE and
17.7% in MSE. This illustrates that the proposed COT loss
can significantly boost the counting accuracy.

One could observe that using both CNN and Transformer for
the prediction can effectively improve the counting accuracy.
Specifically, such a simple “concat” strategy can achieve an
MAE of 56.4 and an MSE of 90.3. However, for a specific
region, if we aggregate the predictions by adaptively selecting
the different counting modes in different density regions, the
MAE and MSE are improved to 54.3 and 87.8, denoted by
the ’"CEB + TEB + ASM + COT’ in Table II. This significant
improvement demonstrates the great potential of automatically
selecting the appropriate counting mode in different density
regions.

TABLE I
ANALYSIS OF THE EFFECT OF DIFFERENT COMPONENTS. ALL
EXPERIMENTS ARE PERFORMED ON SHANGHAITECH A DATASET.

Components MAE MSE

CEB + L2 67.6 113.9

CEB + BL 62.4 100.5

CEB + OT loss in DM-Count [98] 59.2 96.4
CEB + COT 56.7 93.7

TEB + COT 61.2 95.4

CEB + TEB + concat + COT 56.4 90.3
CEB + TEB + ASM + COT 54.3 87.8

Qualitative Analysis. To further demonstrate the advantage
of the ASM strategy, we visualize the predictions of *CEB+

COT’, "TEB+ COT’ and 'CEB + TEB + ASM + COT’
in Figure 7. Specifically, (a) is the input image; (b) is the
prediction of TEB; (c) is the prediction of CEB; (d) is
the prediction of CTASNet; (e) is the prediction of TEB in
CTASNet; (f) is the prediction of CEB in CTASNet.

Firstly, comparing the yellow frames in (a), (b), and (c),
we could observe that Transformer has significantly different
response intensities in dense regions of varying degrees. This
illustrates that Transformer has a strong ability to perceive the
regional density. While for sparse-crowd regions in red frames,
the Transformer fails to locate and count accurately the target
head. CNN shows opposite characteristics in prediction: CNN
could well locate and count in the sparse-crowd region but has
a similar response intensity in dense-crowd regions of varying
degrees. It means that CNN may be suitable for sparse-crowd
region counting and Transformer may work well in dense-
crowd region counting.

The (d) image in Figure 7 presents our CTASNet predic-
tions. In Figure 7 (d), it is easy to observe that our CTASNet
can locate targets in low-density regions and has different
response intensities for different density regions. This verifies
that our CTASNet could take full advantage of CNN and
Transformer to achieve accurate counting on both sparse and
dense regions. More specifically, in Figure 7 (e) and (f), we
visualize the predictions of TEB and CEB in the proposed
CTASNet. One could observe that the TEB prediction only
focuses on dense regions. Also, the CEB prediction mostly
concentrates on sparse regions. These results fully demonstrate
that our CTASNet can adaptively select the appropriate count-
ing mode for different density regions. This is consistent with
people’s counting behavior.

Analyze the predictions of CEB and TEB. To further show
that the CNN and the Transformer branches are responsible
for less dense and more dense regions, respectively, we con-
duct a quantitative experiment. Specifically, we first choose
a relatively dense subset (contains 26 images, about 15%
test set) from the test images (contains 181 images) in the
ShanghaiTech A dataset. Then, we divide them into 4 x 4
blocks which contain low and high-density regions. Finally,
we compare the count predictions and ground truth between
CNN and Transformer branches in Figure 8.

As shown in Figure 8 (A), it could be observed that the
prediction of CTASNet is close to the ground truth. While for
the extremely dense regions (ground truth of region >400),
the CTASNet underestimates them. The reason may be that
these extremely dense regions are too less to learn effective
features for accurate estimation.

Figure 8 (B) has presented that, when facing the less dense
regions (ground truth of region <250), the prediction of CEB
is close to the ground truth. While for TEB in Figure 8 (C),
we could observe that the prediction of TEB approximates 0.
This means that the estimation of TEB contributes less to these
sparse regions. It confirms the CNN branch is responsible for
less dense regions. On the contrary, when estimating more
dense regions (ground truth of region >325), the prediction
of TEB occupies a main component of the final estimation
compared to the prediction of CEB. It illustrates that the
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Fig. 7. Visualization of the prediction results: (a) Input Image; (b) Prediction of Transformer; (c) Prediction of CNN; (d) Prediction of CNN and Transformer
Adaptive Selection Network (CTASNet); (e) Prediction of Transformer Estimation Branch in CTASNet; (f) Prediction of CNN Estimation Branch in CTASNet.
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TABLE III
EFFECT OF ENCODER LAYER NUMBERS. EACH ROW CORRESPONDS TO A MODEL WITH THE VARIED NUMBER OF ENCODER LAYERS. PERFORMANCE
GRADUALLY IMPROVES WITH MORE ENCODER LAYERS.

layers GFLOPS  params Inference time MAE MSE
0 86.5G 19.4M 2.9 56.7  93.7
2 97.4G 25.6M 3.6 56.6  89.7
4 102.2G  30.3M 4.0 54.3 878
6 107.1G ~ 35.0M 4.4 53.9 87.2
8 111.9G  39.8M 4.9 52.4  86.3
TABLE IV
PERFORMANCES OF LOSS FUNCTIONS USING DIFFERENT BACKBONES ON UCF-QNRF DATASET. OUR PROPOSED METHOD OUTPERFORMS OTHER LOSS
FUNCTIONS.
Methods VGGI19 CSRNet MCNN
MAE MSE MAE MSE MAE MSE
L2 98.7 176.1 110.6  190.1 186.4  283.6
BL [61] 88.8 154.8 107.5 184.3 190.6  272.3
NoiseCC [30] 85.8 150.6  96.5 163.3 177.4  259.0
DM-Count [98] 85.6 148.3 103.6 180.6 176.1  263.3
AL-PAPM (OURS) 81.2 141.9 95.6 162.7 1575 243.3
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Fig. 8. Visualization of the quantitative experiment. The prediction of

CTASNet is a combined prediction of CNN and Transformer. The CNN
and the Transformer branches are responsible for less dense and more dense
regions, respectively.

Transformer branch is responsible for more dense regions.

2) Effect of the number of Transformer Encoder Layer: We
evaluate the importance of global feature-level self-attention
by changing the number of Transformer encoder layers. Table
IIT reports a detail comparison. Comparing layer 0 and layer

2, we could observe that, without Transformer encoder layers,
there is a significant MSE drop by 4.0 points. Moreover, the
performance gradually improves with more Transformer en-
coder layers. Thus we conjecture that the Transformer encoder
which uses global scene reasoning is useful to perceive the
different regional densities in the whole image. As shown in
Table III, the layer of 8 achieves the best results. However,
compared with the layer of 4, the layer of 8 brings an increase
of 31.4% in parameters and 22.5% in inference time. By
adding the layer from 4 to 8, the improvement of MSE is 1.7%
on ShanghaiTech A. Taking into account model complexity
and counting accuracy, we adopt 4 Transformer Encoder layers
in our proposed CTASNet.

In Figure 9, we visualize the prediction results of different
Transformer encoder layers. By comparing the results of
encoder layer 0 and other encoder layers, it could be observed
that the predictions with the Transformer encoder layer have
significantly different response intensities in different density
regions. This verifies that the Transformer encoder using
global scene reasoning is effective to perceive the different
regional densities in the dense regions.

3) Effect of Bandwidth o: We next investigate the effect
of bandwidth ¢ in our proposed Correntropy based OT Loss,
which is designed for tolerating the annotation noise. The
specific Correntropy based OT Loss is computed by:

~y def. . def.

/ = C,T) = § C;;T;.; 17
or(2,2) Tefgl(le7i)< , T) - W Ei,g a7
2 2
o= lai =47 lai — byl (18)
1y - 2 2

Ko (ai, bj) exp (—[|a; — b;(|2/202)

In this experiment, we tune bandwidth o from 4, 8, 16, 32
to co. Especially, when p = oo, the Correntropy based cost
function presented in Equation (18) converts to the classical
Ly cost function C;; = |la; — ij2. The detail results are
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Fig. 10. The curves of testing results for different bandwidths on Shang-
haiTech A.

presented in Figure 10, o = 16 outperforms other bandwidth
values. Therefore, we choose o = 16, for all experiments on
all datasets.

4) Effect of the position embedding: To investigate the
effect of the position embedding, we conduct an ablation study
on ShanghaiTech A dataset. To be specific, following [24],
we use sine and cosine functions of different frequencies to
achieve positional encoding. Details are presented in Table
V. Comparing the results of TEB and ‘TEB + position
encoding’, we could observe that adding position encoding
to TEB can improve the counting performance. While for
CTASNet, embedding the positional information would reduce
the counting accuracy. The reason may be that CTASNet
contains convolution for final estimation, enabling the model
can implicitly encode absolute positional information. Adding
extra positional information would bring information redun-
dancy. Thus, we do not introduce extra positional encoding in
the Transformer of CTASNet.

TABLE V
EFFECT OF THE POSITION EMBEDDING. FOLLOWING [24], WE ADD SINE
AND COSINE POSITIONAL ENCODING INTO TRANSFORMER ESTIMATION
BRANCH (TEB) AND CTASNET. WE ADOPT THE PROPOSED
CORRENTROPY BASED OPTIMAL TRANSPORT LOSS (COT) FOR TEB AND

CTASNET.
Components ShanghaiTech A
MAE MSE
TEB 61.2 95.4
TEB + position encoding 57.7 91.7
CTASNet 54.3 878
CTASNet + position encoding  56.6 88.7

5) Comparison with different loss functions: In Table IV,
we compare our proposed loss function with different loss
functions using different backbone networks. The pixel-wise
L2 loss function measures the pixel difference between the
predicted density map and the “ground-truth” density map.
The Bayesian loss (BL) [61] uses a point-wise loss function
between the ground-truth point annotations and the aggregated
dot prediction generated from the predicted density map. The
NoiseCC model [30] the annotation noise using a random
variable with Gaussian distribution and derives a probability
density Gaussian approximation as a loss function. DM-Count
[98] uses balanced OT with an L2 cost function, to match the
shape of the two distributions.

Our proposed loss function achieves the best results among
all loss functions. Our loss function performs better than 1.2
loss since we directly adopt point annotation for supervision,
instead of designing hand-craft intermediate presentation as a
learning target. Compared to BL and DM-Count (both using
point annotation for supervision), our loss function achieves
better performances in all network architectures. Our loss
function can tolerate the annotation noise. While these two loss
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TABLE VI

COMPARISON OF THE PARAMETERS (M), FLOPS (G), INFERENCE SPEED (S / 100 IMAGES) AND RESULTS ON THE PARTA DATASET [

]. NOTE: THE

PARAMETERS AND FLOPS ARE COMPUTED WITH THE INPUT SIZE OF 512x512 ON A SINGLE NVIDIA 3090 GPU. THE INFERENCE TIME IS THE
AVERAGE TIME OF 100 RUNS ON TESTING A 1024x768 SAMPLE. “FS” REPRESENTS THAT THE MODEL IS TRAINED FROM SCRATCH.

Method Backbone Parameters(M)  FLOPs(G) Inference speed(s) =~ RMSE In PartA
MCNN [62] ES 0.13 7.05 0.008 173.2
PCC-Net [51] FS 0.51 43.87 0.013 124.0
CSRNet [92] VGG16 16.26 108.34 0.038 115.0

CAN [93] VGG16 18.10 114.83 0.047 100.0

SCAR [2] VGGl16 16.29 108.44 0.047 110.0
SFANet [5] VGG16 15.92 93.27 0.043 99.3
M-SFANet [5] VGG16 22.88 115.14 0.058 94.5

SFCN [97] ResNetl01  38.60 162.03 0.096 104.5
CTASNet(ours) VGGI16 30.30 102.22 0.040 87.8

functions ignore the noise problem existing in the annotation REFERENCES

labeling process. Thus, our proposed loss function achieves
the lowest MAE and MSE among all loss functions.

D. Complexity analysis

To evaluate the complexity of our method, we have con-
ducted an ablation study on ShanghaiTech A dataset in Table
VI. To exclude interference from other factors, we experi-
mented on the same experimental environment and reported
the results in ShanghaiTech A benchmark [62]. The parameters
and FLOPs are computed with the input size of 512x512 on a
single NVIDIA 3090 GPU. The inference time is the average
time of 100 runs on testing a 1024x768 image sample.

As shown in Table VI, our model does not have an ad-
vantage in model parameters and inference speed. However,
our model has achieved better performance in crowd counting.
Moreover, our model could also achieve real-time crowd
counting at a speed of 0.048 seconds per picture. It does not
affect the application of our method in reality.

V. CONCLUSION

In this paper, a CNN and Transformer Adaptive Selection
Network (CTASNet) has been proposed for the crowd counting
problem. It is motivated by the complementary performance
of CNN and Transformer based counting methods under
situations with varying crowd densities. An Adaptive Selection
Module is proposed to make the network automatically adopt
different counting modes for different density regions. Also,
to reduce the influences of annotation noise, we introduce
a Correntropy based Optimal Transport loss (COT loss). We
evaluate the CTASNet with proposed COT loss on four chal-
lenging crowd counting benchmarks, most of which consist
of high variation in crowd densities. The experimental results
confirm that our method obtains state-of-the-art performance
on these datasets.
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