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Audio-Driven Dubbing for User Generated Contents
via Style-Aware Semi-Parametric Synthesis
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Abstract— Existing automated dubbing methods are usually
designed for Professionally Generated Content (PGC) produc-
tion, which requires massive training data and training time
to learn a person-specific audio-video mapping. In this paper,
we investigate an audio-driven dubbing method that is more
feasible for User Generated Content (UGC) production. There
are two unique challenges to design a method for UGC: 1) the
appearances of speakers are diverse and arbitrary as the method
needs to generalize across users; 2) the available video data of one
speaker are very limited. In order to tackle the above challenges,
we first introduce a new Style Translation Network to integrate
the speaking style of the target and the speaking content of the
source via a cross-modal AdaIN module. It enables our model
to quickly adapt to a new speaker. Then, we further develop
a semi-parametric video renderer, which takes full advantage
of the limited training data of the unseen speaker via a video-
level retrieve-warp-refine pipeline. Finally, we propose a temporal
regularization for the semi-parametric renderer, generating more
continuous videos. Extensive experiments show that our method
generates videos that accurately preserve various speaking styles,
yet with considerably lower amount of training data and training
time in comparison to existing methods. Besides, our method
achieves a faster testing speed than most recent methods.

Index Terms— Talking face generation, video generation, GAN,
thin-plate spline.

I. INTRODUCTION

W ITH the popularity of the User Generated Content
(UGC) [1], [2] (e.g. YouTube and TikTok), dubbing

technologies have come into the sight of ordinary users for
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producing creative and entertaining contents. In this paper,
we propose an automated audio-driven dubbing method for
UGC production based on two requirements: 1) the dubbing
method needs to handle various users; 2) most users are
impatient to record a long video for training a model and wish
to get dubbed videos as fast as possible.

Most existing audio dubbing methods only cope with
one/several speakers, requiring massive training data and long
training time (Fig. 1 (b)). Consequently, these methods are
usually targeted for the Professionally Generated Content
(PGC) [3], [4] production (e.g. films and TV shows) and
rarely used in the UGC setting. Such techniques are currently
inapplicable for UGC production due to the following two
challenges: 1) Speaker Variance. Different speakers have their
unique mouth shapes and textures. We define the time-varying
mouth shapes of a speaker as its unique speaking style, both in
terms of mouth shape and movement timing. Many methods
designed for PGC production either consider only the homoge-
neous generation of one’s video by its own audio [5] or neglect
the speaking style differences between speakers [6]. Compared
with PGC production, to generate high quality talking videos
for any unseen speaker, the dubbing methods designed for
UGC production need to preserve their unique speaking styles.
The main challenge lies in tackling the speaking style of a
given speaker and the speaking content of a given audio at the
same time. 2) Training Resource. A dubbing method designed
for UGC production should quickly adapt to an unseen speaker
with very limited video data. For methods designed for PGC
production, adapting to an unseen speaker is expensive as one
needs to retrain the whole network on massive training data
from the speaker. The main challenge is to generate realistic
and lip synchronized talking videos rapidly after giving a short
video of an unseen speaker.

In this paper, we aim at realizing audio-driven dubbing
for UGC through mitigating the issue of speaker variance
and lowering the consumption of training resources (Fig. 1).
To tackle the aforementioned challenges, we first propose a
cross-modal Adaptive Instance Normalization (AdaIN [7]) in
our Style Translation Network that maps the source audio to
the mouth motion of an unseen target speaker with preserved
speaking style. AdaIN is popular for image style transfer [8]
and we extend it to fuse information from different modalities
(i.e. audio and video). Then, we propose a semi-parametric
framework that helps to bring down the training resources,
including both training data and time. The limited video
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Fig. 1. Audio-driven dubbing in User Generated Content (UGC). Our audio-driven dubbing method tackles two challenges in User Generated Scenarios:
(a) Speaker Variance and (b) Training Resource. Our method generates talking videos with speakers’ unique speaking styles preserved and requires a low
amount of training data and training time, which paves a way for ordinary content creators to edit talking videos in User Generated Scenarios.

data make it hard to train a generator that directly generates
the mouth regions that match the specific speaker. Thus,
we propose a cheaper yet effective video-level Retrieval-based
Video Renderer to take full advantage of the short video data
of the unseen speaker. Such a semi-parametric framework is
unique since it considers video continuity. To achieve this,
we extend the conventional image-level thin-plate spline (TPS)
warping algorithm [9] to a video-level one with our proposed
temporal regularization.

The main contributions of our work are summarized as
follows:

• We present the first audio-driven dubbing framework that
is designed specially to support ordinary video creators
in User Generated Content (UGC) production.

• We propose a cross-modal AdaIN module in our Style
Translation Network that can preserve the speaking style
of a speaker while producing mouth movement that is
consistent with the source audio.

• We develop a video-level Retrieval-based Video Renderer
that can produce dubbed videos for an unseen speaker
with very limited video data and short training time.

• We extend the image-level thin-plate spline interpolation
warp algorithm with a proposed temporal regularization
to improve the video continuity.

II. RELATED WORK

A. Audio-Driven Dubbing

Audio-driven dubbing typically refers to the technique
that associates phonemes or speech features provided by the
input audio with visual visemes of a target actor. Inspired
by recent advances of GAN in face generation [10], [11],
expression generation [12], [13] and audiovisual learning [14],
[15], much progress has been made in audio-driven dubbing.
Taylor et al. [16] propose to generate natural-looking speech
animation with a sliding window predictor that learns a
non-linear mapping from phonetic representations to active
appearance model (AAM [17]) parameters. By making the
learned AAM parameters independent of speakers, the method
generates animation that can be retargeted to any anima-
tion rig. Karras et al. [18] design a method to learn a map-
ping from input waveforms to facial 3D vertex coordinates

and define a trainable latent code that can be used as
an emotion control parameter. Pham et al. [19] introduce a
long short-term memory recurrent neural network (LSTM-
RNN [20]) approach to achieve facial animation via an
expression blendshape model. Different from these 3D-based
schemes, methods including [21], [22], [23], [24] drive
photo-realistic portraits to generate videos synchronized with
input audios. However, these methods tend to produce ani-
mations of still images or cartoon-looking characters, which
limits their ability in general video dubbing. With the rise of
deep learning, much progress has been made in audio-driven
dubbing Recently, some works focus on the generation of
natural videos for audio dubbing. Suwajanakornet et al. [5]
train a recurrent neural network to achieve state-of-the-art
synthesis results of Obama’s portrait videos. This method
uses up to 14 hours of Obama’s speech videos to learn
his mouth movements from speech audios. However, the
assumptions of sharing identity between the source and the
target as well as the access of long-hour training data hinder its
application in many reality scenarios. Fried et al. [25] propose
a transcript-based method to change the dialogue content while
maintaining a seamless audio-visual flow. Despite the visual
quality, it has to train separate network models for different
targets and takes a relatively long time to search for mouth
areas based on visemes in the provided video. Therefore,
it is quite difficult to apply this method to different speakers.
Yu et al. [26] design a multimodal learning method composed
of two components: mouth landmark prediction and video gen-
eration. The landmark prediction component generates mouth
landmarks from multimodal inputs like audio or text. The
video generation component employs optical flow to model
the temporal dependency of continuous frames and generates
talking videos from predicted landmarks. To generate perfect
video results, this method requires massive training videos
for an unseen speaker (e.g., 1 hour for Donald John Trump).
Song et al. [27] translate source audio into talking videos of
multiple speakers by factorizing each target video frame into
orthogonal parameter spaces including shape, expression and
pose. Thies et al. [6] animates the 3D face model of the target
speaker by speech content extracted by DeepSpeech [28], then
they render facial textures and compose it with the target face
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image. To generate talking videos with natural head motions,
recent methods focus on head pose learning from audios [29],
[30] or videos [31].

B. Visual Dubbing

Due to the distinct gap between the audio domain and the
video domain, it is inherently challenging to generate plausible
portrait videos directly from the input audio. Consequently,
recent methods explore to first learning mouth movement
representation from available videos and then complete gen-
eration or reenactment based on the learned representation.
Garrido et al. [32] transfer facial motion from dubber in blend
shape model, then they render the synthesized face and mouth
interior into the original video. Thies et al. [33] develop an
algorithm named Face2face to animate the facial expressions
of the target video by a source actor. Kim et al. [34] present an
approach to transfer the full 3D head position, head rotation,
face expression, eye gaze, and eye blinking from a source actor
to a target actor. Nagano et al. [35] design paGAN to build
dynamic avatars from a single input image. Kim et al. [36]
propose a visual dubbing method to maintain the distinct
style of target actors when modifying facial expressions. Their
video-driven method translates the facial expression of the
source actor to the style domain of the target actor. The
Style Translation Network in [36] is inspired by the cycle-
consistent loss [37] and the trained network only supports style
translation between two domains. However, these methods all
perform a laborious task of generating and tracking a 3D face
model, which is time-consuming and even difficult for existing
footage.

Another type of approach reenacts facial portraits directly in
the 2D space. Zhou et al. [38] propose an image-based visual
speech animation system. In this system, a low dimensional
continuous curve is used to represent a video sequence and
a map from the curve to the image domain is established.
A video model is trained on dense videos sampled from
the talking video segments for efficient time alignment and
motion smoothing of the final video synthesis. In the final
video synthesis, Poisson blending [39] is applied in stitching
the synthesized mouth-chin area into a background sequence.
Garrido et al. [40] work on automatic face reenactment by
applying a matching & transfer pipeline to transfer inner
face region from source actor to target actor. Geng et al. [41]
present a warp-guided generative model to activate an input
photo with a set of facial landmarks. Wiles et al. [42] intro-
duce a network named X2Face to control a source face
with estimated expression parameters. Qian et al. [43] develop
Additive Focal Variational Auto-encoder that can manipulate
high-resolution face images in a weakly supervised manner.
Although these methods generate decent frames but suffer
from relatively poor temporal continuity. Tu et al. [15] design
a versatile model called as FaceAnime that generates a face
video from a single face image. This method first predicts 3D
face dynamics from a still image by a LSTM model. Then the
“imagine” face dynamics are used to generate an animated face
by the proposed video generation network. As an end-to-end
video-based facial reenactment network, ReenactGAN [44]

transforms the source face’s boundary to the target’s boundary
in a boundary latent space and then generates the reenacted
target face with a decoder. However, the transformer and the
decoder in ReenactGAN are person-specific, which limits the
generalization of the model.

C. Style Translation & AdaIN Layer

In general, style translation aims at transferring the style
between samples in the same modality. In computer vision,
the style can be defined as the overall color tone of images.
For example, Park et al. propose a model [8] to generate
landscape images with referred styles conditioned on semantic
maps. Karras et al. develop a model [45] to generate a face
image with a controllable style defined by the referred face
image and address characteristic artifacts in the improved
work [46]. In voice conversion, the style can be defined as
the unique voice tone of the speaker, and voice conversion is
to modify the voice tone of different speakers while keeping
the speaking content unchanged. Chou et al. propose a voice
conversion model [47] that respectively extracts speaker style
from the target speaker and speaking content from the source
speaker. Then, the voice conversion model fuses them and
generates the audio of the target speaker who speaks the
sentences that appeared in the audio of the source actor.
The above models [8], [45], [47] apply the AdaIN layer to
transfer different “style”. The style information in image style
translation [8], [45] and voice conversion [47] is a kind of
“global information” or low order statistics. We are inspired
that the AdaIN layer might work in transferring the speaking
style embedded in the mouth movement.

III. METHODOLOGY

The proposed audio-driven dubbing method is illustrated in
Fig. 2. To tackle the speaker variance challenge, we design a
cross-modal AdaIN module in the Style Translation Network
to explicitly combine the speaking style of the target speaker
and the speaking content of the source audio (Sec. III-A).
To generate continuous talking videos for unseen speakers with
limited video data, we develop the semi-parametric Retrieval-
based Video Renderer with our proposed Temporal Warp
module to improve the video continuity (Sec. III-B). Finally,
we depict the scheme and details of training our network on
a new speaker (Sec. III-C).

A. Style Translation Network

The synchronization between the source audio and the
generated video is the primary purpose to achieve a dubbing
method. We propose a combination of three modules, i.e.,
Content Encoder, Style Encoder and Cross-Modal AdaIN,
to achieve this goal. Firstly, we design a Content Encoder to
learn the speaking content embeddings that are strongly related
to the speaking sentences. Then, for a given unseen speaker
whose speaking style is unpredictable, we design a Style
Encoder to explicitly learn its speaking style embeddings.
Finally, since we need to drive an unseen speaker with the
audio of another speaker in the UGC production, we propose

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 29,2023 at 02:43:53 UTC from IEEE Xplore.  Restrictions apply. 



1250 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 3, MARCH 2023

Fig. 2. Architecture. Our method contains an audio-visual Style Translation Network and a Retrieval-based Video Renderer. Integrating with the proposed
cross-modal AdaIN layer, the Style Translation Network infers mouth movement from the source audio and preserves the speaking style of the target actor. The
Retrieval-based Video Renderer learns to generate photo-realistic videos from inferred landmarks through a series of modules including Retrieve, Temporal
Warp and Refine.

a cross-modal AdaIN module in the Decoder to combine
the extracted speaking content and style embeddings to get
the inferred landmarks. The inferred landmarks preserve the
speaking style of the target speaker and synchronize with the
source audio.

1) Content Encoder Ec: The Content Encoder Ec

(Fig. 3 (a)) aims at learning a content embedding that is depen-
dent only on the speaking content. The main challenge here is
to normalize the speaker-specific information. To achieve this
goal, we extract Mel-Frequency Cepstral Coefficients (MFCC)
features from the input audio waveform and process them by
the Phonetic PosteriorGrams (PPG) network [48]. The PPG
network is a Deep Bidirectional Long Short Term Memory
based Recurrent Neural Network (DBLSTM) that produces
PPG from input Mel-Frequency Cepstral Coefficients (MFCC)
features of speech audio. From the input MFCC features, the
PPG network learns a phoneme distribution map where the
phonemes are only defined by words themselves. PPG is a
time-versus-class matrix, which represents the posterior prob-
abilities of each phonetic class for each specific time frame of
one utterance. To further remove speaker information in the
phoneme distribution, we find it beneficial to add an Instance
Normalization (IN [49]) layer without affine transformation
to the Content Encoder Ec. Formally, if the input of the IN
layer is a feature map M that contains NC channels and the
dimension of each channel is L, then Mc (the c-th channel of
the input feature map) is normalized to M ′

c as follows:

M ′
c = Mc − μc

σc
, where c ∈ {1, · · · , NC } (1)

where μc and σc are the mean and standard variation of all
elements of Mc , respectively. We also adopt Conv1d layers
to handle the time-serial relevance of the produced phoneme
distributions, and a ConvBank layer to capture the short-term
and long-term speech information [50].

2) Style Encoder Es: The Style Encoder Es (Fig. 3(b))
focuses on learning the speaker-specific speaking style embed-
ding from the mouth motion, which is represented as a
mouth landmark sequence. The unique speaking style contains
the speaking timing and time-varying mouth shapes. Thus,
we introduce the Conv1d and ConvBank layers to handle
time-serial relevance that contains speaking timing informa-
tion. The time-varying mouth shapes of a speaker are mainly
captured by the global pattern of mouth movements so we
introduce the average pooling layer. Thus, our Style Encoder
can capture the unique speaking style of an unseen speaker.

3) Cross-Modal AdaIN & Decoder D: The Decoder D
(Fig. 3(c)) combines the content and the style embedding
to infer the corresponding landmarks. To effectively fuse the
speaking content (from audio) and style (from video), our
cross-modal AdaIN [7] layer transfers the speaking style via
low-order statistics (i.e., mean and standard variation). Specif-
ically, the Decoder D normalizes the content information
through an IN layer and the outputs are further modulated
by the affine transformed style embedding. We use the same
notations of the previous IN layer for the cross-modal AdaIN
layer here. The cross-modal AdaIN layer performs the follow-
ing operation:

M ′
c = γc

Mc − μc

σc
+ βc, where c ∈ {1, · · · , ND} (2)

where γc and βc for each channel are the affine transformation
parameters of the style embedding produced by the Style
Encoder Es .

The three modules Ec, Es and D are trained jointly using
paired audio clip Ac (as the input source audio) and mouth
landmark sequence Lc (as the supervision target). The input
target style Ls is randomly sampled from all the mouth
landmark sequences of the same speaker. The Style Translation
Network reconstructs the mouth landmark sequence Lc from
speaking content of Ac and speaking style of Ls . The training
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Fig. 3. Style Translation Network for various speakers. The Style
Translation Network consists of Content Encoder Ec , Style Encoder Es and
Decoder D. These components work together to transform the source audio
to landmarks while preserving the unique style of the target speaker via the
cross-modal AdaIN layer.

loss for the Style Translation Network is defined as:
Lstyle = ||D(Ec(Ac), Es(Ls)) − Lc||1 (3)

B. Retrieval-Based Video Renderer

The renderer is specifically devised for generating realistic
and continuous videos even when the training data is limited.
In UGC production, the limited video data make it hard to train
a person-specific generator. Thus, we propose the retrieve-
warp-refine pipeline, in which the existing mouth textures can
be leveraged to facilitate texture generation. We first retrieve
mouth textures and their landmarks by the inferred landmarks.
Then, we propose the Temporal Warp module that warps
retrieved mouth textures to make them match with the inferred
landmarks and decreases the discontinuity between frames.
Finally, we design a Refine module to further improve the
video quality such as mouth interiors and fill the seams brought
by retargeting warped mouths onto target faces.

1) Retrieve: For an unseen speaker, we first build a compact
texture bank for the mouth area from its limited video data.
We slide a fix-width time window (window size N = 6 in
our experiment) on the mouth area and landmark sequence in
the video. Inside the window, we can obtain a mouth image
sequence I i

m and its corresponding mouth landmark sequence
Li

m , and they are paired as (Li
m, I i

m ). The mouth region of each
frame is cropped and resized to the same size. Then, all the
N pairs constitute the texture bank {(Li

m , I i
m)}N

i=1. During the
inference phase, we retrieve the most similar mouth landmark
and image sequence by comparing the difference between Li

m

and L̂c inferred by the Style Translation Network. Specifically,
the most similar results are retrieved as follows:

s = argmini ||Li
m − L̂c||1, where i ∈ {1, · · · , N} (4)

where s represents the index of the retrieved mouth image
landmark sequence pair. Note that we retrieve mouth images
and landmarks in the form of continuous sequences, and
such retrieved results are more continuous than the results
composed of several single frames.

2) Temporal Warp: The Retrieve module returns mouth
landmarks and images that best match the inferred landmarks.
However, inevitable gaps still exist due to the limited size
of the texture bank. To eliminate these gaps, we introduce
the Temporal Warp module to warp the retrieved images to
minimize the differences between the mouth movement of the
retrieved landmarks and the inferred landmarks.

In particular, since the thin-plate spline (TPS) is effective
in modeling the coordinate transformations, we apply TPS
warping [9] on the retrieved mouth images. To make areas
far from landmarks warped with high fidelity, we adopt radial
basis functions in TPS to mainly warp areas around landmarks.
In TPS, an interpolant function is also computed from the
retrieved landmarks and inferred landmarks. Let pi,t and vi,t

denote the i -th landmark coordinates of the retrieved and
the inferred landmarks at time t , with i ∈ {1, · · · , N} and
t ∈ {1, · · · , T }. The mouth image size is H × W . The TPS
interpolant f (x, y, t) minimizes the fitting error E f and the
bending energy Eb as follows:

E f = 1

NT

T∑

t=1

N∑

i=1

|| f (pi,t ) − vi,t ||1 (5)

Eb = 1

W H T

T∑

t=1

∑

x,y

f 2
x x(t) + 2 f 2

xy(t) + f 2
yy(t) (6)

where fxy means the partial derivatives of f (x, y, t) for
variable x , then for variable y. fx x , fyy and ft t repre-
sent second-order partial derivatives of f (x, y, t) for variable
x, y and t , respectively. The bending energy describes how
“bending” the TPS interpolant f (x, y, t) is. The TPS warp
resists too much “bending” of the TPS interpolant since
too much “bending” will cause stretch distortion. Thus, TPS
warp implies a penalty involving the smoothness of the TPS
interpolant f (x, y, t). Here, we briefly explain the form of the
bending energy. At a fixed time t , f (x, y, t) is a matrix. The
second-order partial derivatives of f (x, y, t) for variable x and
y regulate f (x, y, t) to variate monotonously in the 2D plate
space. In contrast to monotonous variation, the f (x, y, t) will
bend. For example, imagine that the left side of f (x, y, t)
moves right and its right side moves left, then the center
part of f (x, y, t) will bend. The second order derivate fx x in
the bending energy will punish this bending. The naïve Thin
Plate Spline (TPS) usually uses the radial basis function to
represent a coordinate mapping from R

2 to R
2. We also apply

the commonly used classical form in TPS warp [9]. Thus, the
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Fig. 4. Temporal Warp. Our Temporal Warp module extends TPS warp [9]
to video level and considers video continuity.

TPS interpolant f (x, y, t) has the form:
f (x, y, t)

= a1,t + ax,t x + ay,t y +
N∑

i=1

wi,t U(||vi,t − (x, y)||1) (7)

where U(r) = r2log r , and a1,t , ax,t , ay,t , wi,t can be solved
by a linear system [9]. The above TPS interpolant will degrade
to f (x, y) for a single image (e.g. T = 1). In our method,
the TPS interpolant f maps the pixel at (x, y) of the t-th
retrieved mouth image to the new position f (x, y, t) of the
warped image.

The naïve TPS solver warps images frame by frame,
neglecting the temporal continuity of the frame sequence.
We reformulate the conventional TPS method by introducing
a new temporal regularization Et that minimizes the second
order derivative of the function f (x, y, t) for time t at a
position (x, y) on the whole plate. The minimization objective
is as follows:

Et = 1

W H

∑

x,y

f 2
t t (x, y) (8)

The temporal regularization Et penalizes potential temporal
jitter at each warping point. The Temporal Warp module
optimizes the weighted sum of E f , Eb and Et .

Ltw = α1 E f + α2 Eb + α3 Et (9)

where α1, α2 and α3 are set empirically. We find that it is
challenging to train a network from scratch to optimize Ltw.
To tackle this problem, we design the Temporal Warp module
as shown in Fig. 4. We train a network to learn the parameters
of the TPS interpolant function based on the solution of the
naïve TPS. Specifically, the network is trained to learn the
residual of the solution of the existing TPS solver. In Fig. 4,
the TPS solver outputs the parameters a1,t , ax,t , ay,t and wi,t

in Eq. (7) solved by the algorithm in [9]. In Fig. 4, the network
outputs residuals for the solved parameters a1,t , ax,t , ay,t

and wi,t . As shown in Fig. 4, our Temporal Warp module
produces a “bending thin sheet”. The bending energy in
Eq. (6) describes how “bending” the “thin sheet” is. The
module minimizes Ltw and outputs a1,t , ax,t , ay,t , wi,t . The
final interpolant is calculated by Eq. (7).

3) Refine: Seams might emerge in the results of retargeting
the warped mouth images to the target face images, as shown
in Fig. 2. We propose the Refine module to eliminate these
seams as well as the minor head pose and illumination
changes between target frames and retrieved mouth regions.
This module also improves details of the generated sequence.
We provide more details as follows. We first retarget the
warped mouth by the mouth center computed from the mouth
landmarks. The face image sequence with warped mouths
Iw is fed to our U-Net based [51] Refine module R to
generate seamless sequence Ir . Let Iw[t], Ir [t] denote the
t-th image in image sequence Iw, Ir respectively, where t ∈
{1, · · · , T }. During the training phase, we randomly sample
mouth landmark and image sequence pair (Lgt , Igt ), where
Lgt is regarded as the set of inferred landmarks and Igt plays
the role of supervision for the Refine module.

We train the Temporal Warp and Refine module jointly.
We introduce the following objective to optimize these
modules.

Lr = β1 Lrec + β2 L f rame + β3 Lseq + β4 Lvgg + β5 Ltv

(10)

where Lrec is a pixel-wise L1 loss between the generated
sequence Ir and the ground truth Igt . Lrec accelerates the
optimization but it overly smooths the generated results. The
idea of GAN [52], [53] is used to improve the realism of
generated images. In particular, to generate photo-realistic face
images and temporally coherent face videos, we introduce an
Image Discriminator [54] and a Video Discriminator [54] in
our method to improve image realism and video continuity,
respectively. The Frame Discriminator D f maximizes L f rame

while the Refine module R minimizes L f rame as follows:

L f rame = 1

T

T∑

t=1

logD f (Igt [t]) − logD f (R(Iw)[t]) (11)

Similarly, the Sequence Discriminator Ds competes with the
Refine module R to improve the continuity of generated videos
by alternatively maximizing and minimizing Lseq as follows:

Lseq = logDs(Igt ) − logDs(R(Iw)) (12)

In addition, we also use the perceptual loss Lvgg [55] to
improve the generated image quality by constraining the image
features at different scales, and using a standard Total Variation
loss Ltv to reduce spiky artifacts brought by Lvgg [55].

After refining the mouth textures by the Refine module,
we use Laplacian blending to compose the refined mouth
texture and the background target face. We first form a
0-1 mask (the black and white mask in Fig. 2) by connecting
the uppermost point and the jawline points of the inferred
landmarks. Then, the mouth texture is selected by the white
area and the face background is selected by the black area. The
refined mouth texture and the face background of the target
video are composed by the Laplacian blending algorithm.

C. Training Details

To train the Style Translation Network, we prepare the
inputs as follows: i) the source audio Ac that provides speaking
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Fig. 5. (a) Other-Drive Results of Talking. Our model generates a style preserved talking video by the audio of another speaker. (b) Other-Drive Results
of Singing. Our model generates a style preserved singing video by the audio of another speaker.

content and ii) the target landmark sequence Ls that provides
the speaking style. The learning target Lc is the landmark
sequence extracted from the video clip corresponding to the
input Ac. The input Ls is randomly sampled from the tex-
ture bank of the speaker, of whom we obtain Ac. To train
the Retrieval-based Video Renderer, we randomly sample
two pairs of landmark and image sequence (Lgt , Igt ) and
(Lre, Ire), where (Lre, Ire) is used as the retrieved result
and Lgt , Igt is used as the target inferred landmarks and
mouth textures. Since (Lre, Ire) is randomly sampled during
training, the trained Temporal Warp module is capable of
handling harder warping and refining problems than those
during testing. In our method, we apply a sliding window of
6 frames to capture all the input and ground truth sequences.

At first, we separately pre-train the Style Transla-
tion Network and Retrieval-based Video Renderer on the
RAVDESS [56] dataset. Then, for any new speaker in hand,
we finetune our whole model on its short video clip. The pre-
training phase decreases the finetuning time of our parametric
Refine module. Recent dubbing methods either generate mouth
texture from scratch [27] or synthesize face videos based on
rendered mouth texture [34], [36]. Thus, these methods benefit
less from the pre-train & finetune strategy. The design of
the retrieve-warp-refine pipeline in our Retrieval-based Video
Renderer reduces the difficulty of transferring our model to
any new speaker. Thus, our method can be finetuned with just
a handful of data of a new speaker efficiently yet producing
high-quality retargeted face videos.

In our network optimization, we set α1 = α2 = α3 = 1 in
Ltw since the three functions play equal role in optimizing
the Temporal Warp module. We balance the influence of loss
functions in Lr with β1 = 10, β2 = 1, β3 = 0.1, β4 = 1 and

β5 = 1. In the experiment, we find that the high weight β1 =
10 of Lrec accelerates the optimization of Lrec . We set a small
weight β3 = 0.1 on Lseq to ensure the temporal continuity
improved by the Temporal Warp module and make the Refine
module focus on optimization for the visual quality of frames.
The loss Lstyle and Lr are minimized by the Adam solver [57]
with an initial learning rate of 10−3 and an exponential decay
rate of 0.5. Also, we use the Adam solver with an exponential
decay rate of 0.5 to minimize the loss Ltw but we empirically
find that the training of the Temporal Warp module only
converges when the learning rate is as small as 10−6. The
latter learning rate is much smaller than the former one, hence,
we firstly train the Temporal Warp module alone, then train the
whole Retrieval-based Video Renderer with parameters of the
Temporal Warp module frozen. To avoid exploding gradients,
we apply the gradient norm clipping operation [58] during the
back-propagation for our network.

IV. EXPERIMENTS

We present the capability of our audio dubbing method for
UGC production in Sec. IV-A. We compare our approach with
recent state-of-the-art methods designed for PGC production
in Sec. IV-B. Then, we compare the training time, training data
requirement and testing speed of our method with recent audio
dubbing methods in Sec. IV-C. We also perform an ablation
study to validate the effects of our proposed components in
Sec. IV-D. Finally, we conduct web-based user studies to
validate the superiority of our method over recent methods
and the effects of the proposed components.

1) Dataset: We evaluate our model on benchmark talking
face dataset RAVDESS [56] and online video clips from
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the Internet. The RAVDESS dataset contains 7, 356 talking
video clips by 12 male and 12 female speakers, where each
speaker sings/speaks the same content in different emotions
twice. We use the data of the first 20 speakers in the
RAVDESS dataset to pretrain our Style Translation Network
and Retrieval-based Video Renderer. For each unseen test-
ing speaker, the video length is no more than 30 seconds
and the information of these videos can be viewed in the
supplementary material. For each result in our paper and
supplementary video, we also list the detailed settings about
training data, testing source audio and testing style video in
the supplementary material.

2) Preprocessing: We re-sample the audio and video so
that the audio sample rate is 44.1k H z and the video fps
is 30. For the audio signal, we calculate the MFCCs
(Mel-Frequency Cepstral Coefficients) feature on the sliding
window of 200ms and remain the first 20-D features. The
final shape of the audio feature is 120 × 40, where 120 is the
time dimension corresponding to consecutive N = 6 video
frames, and 40 is the feature dimension that contains 20-D
MFCCs and 20-D temporal derivatives. For the video signal,
we extract all the frames from portrait videos and detect the
106 facial landmarks by [59]. We coarsely align the human
face images according to the 5 landmarks: the center of the
left eye, the center of the right eye, the nose tip, and the
left and right corners of the mouth. From these 5 landmarks,
we align the face image by the affine transform algorithm to
eliminate the problem of head locations and unfixed heights.
The 20 lip landmarks and 19 jawline landmarks are defined as
the 39 “mouth area” landmarks in our method. We define the
average of 20 lip landmarks as the mouth center (x0, y0) and
crop a 148×148 square mouth area (left-top:(x0−74, y0−74),
right-bottom:(x0 + 74, y0 + 74)) as mouth texture to store in
the Texture Bank.

3) Metrics: We evaluate the quality of the generated talking
videos in the visual quality, lip-sync accuracy and naturalness.
The naturalness of generated videos refers to what degree that
the head motion looks natural and matches the speaking con-
tent. For quantitative metrics, we use FID (Fréchet Inception
Distance [60]) to evaluate the video frame visual quality and
SyncNet Dist. (audio and mouth shape distance calculated by
SyncNet [61]) to evaluate the lip-sync accuracy. We use a
per-pixel distance map and mean photometric error of mouth
area to measure the continuity of generated videos. For video
naturalness, continuity and style-preserving degree that are
hard to measure in objective metrics, we use user studies to
evaluate them. We also conduct A-B compare user studies
to compare our method with recent methods and validate the
effects of our proposed modules.

To quantitatively evaluate how well the Style Encoder
captures speaking styles. We propose a new metric called
Speaking Style Intersection Over Union (SSIOU). First, since
speaking style differences include variation in lip articulation,
we build the distance between the lower and upper lip as
a function of time. Then, for the same speaking content,
the area under the function curve (RUC) is used to describe
the speaking styles of different speakers. Thus, for the same
speaking content, we use the IOU of the RUCs of different

Fig. 6. Hard Case. We present a hard case that the retrieved landmarks are
largely different from the inferred landmarks. Benefiting from the generation
capability of the Refine module, the missing texture inside the mouth is well
generated.

speakers to measure the similarity of their speaking styles.
We call it as Speaking Style Intersection Over Union (SSIOU).

A. Audio-Driven Dubbing

1) Self-Driven Results: After training our model on the
unseen speaker’s video clip of 30 seconds for 25 minutes,
our model generates photo-realistic and audio-aligned talking
videos as shown in Fig. 7 and the supplementary video. Note
that our audio dubbing method requires a low amount of train-
ing data and training time, which will open a broader range
for UGC applications. In addition, our model can generate the
talking video at 120ms per frame, which is faster than most
dubbing methods designed for PGC production (please refer
to the supplementary material).

2) Other-Driven Results: Previous audio dubbing meth-
ods [6], [27] pay little attention to the speaking style of the
target speaker. Thus, when the source audio does not belong
to the target speaker, the inconsistency between the speaking
styles of generated and true videos might be detected. The
generated talking and singing results are shown in Fig. 5
and the supplementary video. Our method learns the mouth
movement from the source audio and preserves its speaking
style from the video of the target speaker.

3) Hard Case and Analysis: For most cases, the limited data
used to build the texture bank contains mouths of different
distances between the upper lip and the lower lip. Thus, the
given limited video footage is enough to cover the mouth
movements of different visemes. However, landmarks in the
texture bank might be largely different from the inferred
landmarks. For example, the landmarks in the texture bank
only contain closed mouths while the inferred landmarks are
wide-open mouths. We demonstrate the detailed intermediate
results like the retrieved landmark and mouth, inferred land-
mark, warped mouth and refined mouth in Fig. 6 for these
hard cases. From Fig. 6, we can see that the Temporal Warp
module transforms the retrieved mouth textures even if the
texture inside the mouth is missing. Thanks to the generation
capability of the Refine module, the missing texture inside
the mouth is well generated in the final video. As shown in
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Fig. 7. Comparison with Audio/Text driven Dubbing Methods. Compared to Audio2Obama, TBE and NVP, our model generates competitive results with
a smaller training data size. Compared with EverybodyTalk, our model generates high quality videos, especially details like teeth.

Fig. 6, our proposed method can be well generalized to cases
where the inferred landmarks are largely different from the
landmarks in the texture bank.

B. Comparisons With the State-of-the-Art Methods

We conduct extensive experiments to compare our method
with recent audio/text driven dubbing methods, including
Audio2Obama [5], TBE [25], NVP [6] and EverbodyTalk [27].
We also compare our method with visual dubbing methods like
Face2Face [33], DVP [34], and Style-preserving VDub [36].
We recommend viewing the supplementary video for more
details.

1) Comparisons to Audio/Text Driven Dubbing Meth-
ods: We compare the visual quality (FID) and lip-sync
accuracy (SyncNet Dist.) of our results and those of recent
audio/text-driven dubbing methods in Tab. I. Compared with
Audio2Obama, our method achieves very competitive results
in audio-visual alignment and mouth details like teeth and
nasolabial folds. The comparison details can be viewed in
Fig. 7 (a). Note that our method requires 30 seconds of
training data of Obama while Audio2Obama requires up to
14 hours of training data. Then, compared with the retrieval-
based text-driven method TBE, our method also produces

competitive talking videos. From Fig. 7 (b), we can see that our
method generates competitive textures of teeth. In addition, the
viseme search and retiming in TBE might break the speaking
style lying in consecutive mouth frames and it takes more
computing resources (training 42 hours on 1 hour video data).
In addition, we compare our method with NVP in Fig. 7 (c).
Our method achieves competitive results. For a new speaker,
the NVP needs to train more than 30 hours on a 2-3 minutes
video. The training time requirement limits its application
in UGC production. Also, we compare our method with
ATVGnet [62] that generates talking videos from audio and a
still face image in Fig. 7 (d). Our method can produce more
realistic talking videos since our retrieve-warp-refine pipeline
also considers the background in the generated videos. At last,
we compare our method with the recent popular Wav2Lip [63]
in Fig. 7 (e). This method is designed for large-scale datasets
and performs not well in the UGC production as the authors
also claim that fine-tuning Wav2Lip on a few minutes of a
single speaker might not get good results [63]. Thus, our
method performs better than Wav2Lip in the UGC production.

We also compare our method with EverybodyTalk [27] in
Fig. 7 (f). We use our training strategy (pretraining on the
RAVDESS dataset and training on a 30-second talking video
of the new speaker) to train the network of EverybodyTalk.
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Fig. 8. Effect of the Style Translation Network. We compare the (a) talking / (b) singing videos generated by our model without style translation and our
full model. Note that different speakers open their mouths at different scales. Our full model better preserves the speaking style of the target actor, which is
best viewed in the supplementary video.

TABLE I

COMPARISON OF IMAGE QUALITY AND LIP-SYNC ACCURACY. WE

COMPARE OUR METHOD WITH RECENT STATE-OF-THE-ART

AUDIO-DRIVEN DUBBING AND VISUAL DUBBING METHODS IN IMAGE

QUALITY (FID) AND LIP-SYNC ACCURACY (SYNCNET DIST). WE ALSO

LIST THE ABLATION STUDY RESULTS IN THIS TABLE

EverybodyTalk relies on a time-consuming teeth proxy (300ms
per frame) to inpaint teeth texture, which might fail in retriev-
ing matched teeth texture when the training data is very lim-
ited. Thus, the result produced by EverybodyTalk lacks mouth
details like teeth while our method generates audio-visual
aligned video with better mouth details. From Tab. I, we can
see that our method outperforms TBE, NVP, ATVGnet,
Wav2Lip and EverybodyTalk. Our method also achieves very

competitive results compared with Audio2Obama even though
it is trained on 14h video data of Obama while our method
only requires 30s.

2) Comparisons to Visual Dubbing Methods: Visual Dub-
bing methods directly transfer mouth movement from the
source actor to the target actor. However, visual dubbing
methods rely on the capture of face movements from source
videos, which narrows their application range. Our method
tries to solve a more challenging problem: learning mouth
movement directly from the source audio without any visual
cues. Though our audio-driven method lacks visual cues, it still
performs comparably to the state-of-the-art visual dubbing
methods. We present the quantitative comparison results in
Tab. I.

First, we compare to Face2Face [33] in Fig. 9 (a). The
Face2Face [33] transfers facial expressions inferred by 3D
face morphable model [64], [65], [66], retrieves mouth texture
by the facial expression and renders the talking face. Our
method produces competitive results with realistic texture and
mouth movement, suggesting that our Style Translation Net-
work learns accurate mouth movement from the input audio.
Besides, the head motion in our result is more natural than that
of Face2Face. Then, we compare to DVP [34] in Fig. 9 (b).
The DVP method requires time-consuming face rendering
and its Rendering-to-Video Translation Network might fail in
generating complex background. Our method generates better
talking face videos with a smaller training data size, shorter
training time and faster inference speed. As presented in Tab. I,
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Fig. 9. Comparison to Visual Dubbing Methods. The similar lip
movements validate that our Style Translation Network learns accurate lip
movements from input audios. Our Retrieval-based Video Renderer also
generates competitive video details.

TABLE II

TRAINING AND RUNTIME PERFORMANCE COMPARISON. WE COMPARE

OUR METHOD WITH RECENT AUDIO-DRIVEN DUBBING METHODS ON

TRAINING DATA SIZE, TRAINING TIME AND TESTING SPEED

our method achieves better FID and SyncNet Dist. thanks to
the retrieval-based pipeline and Style Translation Network.
Finally, we compare to Style-Preserving VDub [36] in Fig. 10.
Our method achieves competitive results. Our audio-driven
method learns accurate mouth movement from audio and
preserves the speaking style of the target actor. In addition,
our method requires a smaller training data size and has a
faster inference speed.

C. Computing Resource and Inference Speed Comparison

We compare our method to recent audio-driven dubbing
methods in training data size, training time and testing speed.
Specifically, we use the same NVIDIA TitanX GPU to eval-
uate the training and testing time for Audio2Obama, TBE,
EverybodyTalk, NVP and our method.

Tab. II lists the training time, training data requirement and
testing speed. Our method requires a low amount of training
data and training time. Benefiting from our training strategy
and retrieve-warp-refine pipeline of the Retrieval-based Video
Renderer, our method only needs to be finetuned on the new
data for 25 minutes to generate talking face videos for a new
speaker. While Audio2Obama, TBE, EverybodyTalk and NVP
have to retrain the speaker-specific rendering network on the
new data, which will take much longer time.

Fig. 10. Comparison to Style-Preserving VDub. Our model learns the
mouth movement from source audio. Moreover, our model also preserves the
speaking style of the target actor, like the Style-Preserving VDub [36] method.
Our method tries to solve an ill-posed problem: learning mouth movement
representation from source audio, while the Style-Preserving VDub [36]
method transfers mouth movement representation from the source video. Even
though, our method still generates competitive results in mouth details and
style preservation.

The testing speed of NVP is faster than our method. Since
NVP takes much more training time (30h v.s. 25min), our
method is better than NVP in User Generated Content (UGC)
production illustrated as follows: For an unseen speaker,
NVP [6] requires training more than 30 hours and its inference
speed is about 9ms per frame (Sec. Inference in [6]). Our
method needs to train for 25 minutes and the inference speed
is about 120ms per frame. Here we assume that NVP and
our method take the same time to generate talking videos of
x frames. Thus:

30 × 3600 × 1000 + 9 × x = 25 × 60 × 1000 + 120 × x

(13)

where the left and right sides are the time consumed by NVP
and our method, respectively. The solution is x ≈ 959459.
If the video fps is 25, then the video length of x frames is
10.7 hours. Thus, our method takes less time than NVP for
generating talking videos if the generated video length is less
than 10.7 hours. In consideration of time consumption, our
method is a much better choice for UGC production.

D. Ablation Study

1) Effect of the Style Translation Network: To validate that
the Style Translation Network preserves the speaking style
of the target speaker. We train a new model that modifies
the Style Translation Network. Specifically, we remove the
Style Encoder and the cross-modal AdaIN [7] module in
the Decoder. Then, the Style Translation Network degrades
into an Audio-to-landmark Mapping Network that no style
information is considered. The visual results are presented in
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TABLE III

QUANTITATIVE COMPARISON OF STYLE TRANSLATION NETWORK.

WE COMPARE THE SPEAKING STYLE SIMILARITY BY SSIOU

WITH/WITHOUT THE STYLE TRANSLATION NETWORK OF 4 SPEAKERS

TABLE IV

QUANTITATIVE COMPARISON OF TPS AND TEMPORAL WARP

MODULE. WE COMPARE OUR TEMPORAL WARP MODULE

WITH TPS WARP ON E f , Eb AND Et

Fig. 8 and the supplementary video. The 3rd row in Fig. 8
presents that the Audio-to-landmark Mapping Network simply
retains the speaking style of the source actor. Our Style
Translation Network can preserve the unique speaking style
as shown in the 4th row in Fig. 8. It also supports the
transfer of singing style between actors (supplementary video).
We quantitatively compare visual quality and lip-sync accuracy
in Tab. I and conduct a user study in Sec. IV-E to validate the
effect of the Style Translation Network.

To further demonstrate the effect of the Style Translation
Network, especially the ability of the Style Encoder in cap-
turing the speaking styles, we compare SSIOU of different
speakers before and after applying the Style Translation Net-
work. First, we use 4 testing speakers (2 males and 2 females)
from the RAVDESS dataset and group their video clips by
the speaking content. Then, for the same speaking content,
we calculate the SSIOU between the generated video and the
ground truth video with/without the proposed Style Translation
Network. We present the mean SSIOU results in Tab. III. Com-
pared to our method without the Style Translation Network,
our full method can better preserve the speaking style captured
from the input landmarks.

2) Effect of the Temporal Warp and Refine Module: We
extend the image-level TPS warp algorithm to our video-level
Temporal Warp module to improve the continuity of the gen-
erated video. The quantitative comparison between TPS and
our Temporal Warp module is presented in Tab. IV, in which
our Temporal Warp module lower not only Et , but also E f .
The decrease of E f can be explained that our video-level
Temporal Warp module considers more global information,
which helps the image-level warping. The qualitative com-
parison is presented in Fig. 11 and the supplementary video,
where the Refine module inpaints the seams and improves
visual quality. The mouth areas of the four videos are from
direct retrieve (no warp), warping the retrieved mouth by TPS,
refining the warping result by TPS, and refining the warping
results by Temporal Warp module, respectively. In the last
two rows of Fig. 11, we demonstrate the generated mouth
area per-pixel distance map in the bottom-right corner, and
the mean photometric error is shown above the error map.
The averaged mean photometric error in the testing set of

Fig. 11. Qualitative Comparison of TPS and Temporal Warp Module.
Our Temporal Warp module generates talking videos with better temporal
continuity than the TPS warp, best viewed in the supplementary video.
Compared with TPS Warp, our Temporal Warp module performs better in
per-pixel distance map and mean photometric error of generated mouth area.
Thus, the Temporal Warp module promotes significant temporal stability (best
viewed in the supplementary video). “No Warp” means directly using the
retrieved mouth images.

the RAVDESS dataset is decreased from 9.93 to 6.60 after
replacing the TPS Warp with the proposed Temporal Warp
module. In Fig. 11 and supplementary video, the accuracy
of lip synchronization and the video temporal continuity are
gradually improved.

The Refine module, formed as an UNet-based GAN, can
generate missing pixels in the final video. As shown in Fig. 6,
the Refine module generates the missing texture inside the
mouth caused by stretching the closed lips. As shown in
Fig. 11, the Refine module generates the texture inside seams
between the warped mouth and the background face. Thus,
supervised by the Frame Discriminator and the Sequence
Discriminator, the Refine module helps to generate realistic
and continuous video frames. We quantitatively compare the
visual quality and lip-sync accuracy in Tab. I and conduct a
user study in Sec. IV-E to validate the temporal continuity
improvement brought by our Temporal Warp module and
Refine module.

3) Effect of Randomly Sampled Target Landmarks: In the
Style Translation Network, the target landmarks extracted from
the target video are used to extract speaking style information
by our proposed Style Encoder module. In practice, we ran-
domly sample the mouth landmarks of the target speaker for
the Style Encoder to learn robust speaking style embeddings.
We also try to simplify this step to replace the randomly
sampled mouth landmarks as a fixed landmark sequence or
even the landmark of a single frame. We present the result
in Tab. I. We compare our full method with our method
that replaces the randomly sampled target landmark with a
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fixed landmark sequence in the row “Fixed sequence/Ours”.
We compare our full method with our method that replaces
the randomly sampled target landmark with the landmark of
a single frame in the row “Single frame/Ours”. From the
comparison results, we can see that our full method performs
better than our method that uses a fixed landmark sequence
and our method with the landmark of a single frame. Since
speaking style is a dynamic feature that should be realized
from a consecutive video, our method with the landmark of a
single frame does not perform well. In addition, from a fixed
landmark sequence, it is hard to learn a robust speaking style.
Thus, our full method that randomly samples target landmarks
can learn better speaking style features. We also conduct a
user study to validate that our full method performs better in
preserving speaking styles of target speakers in Sec. IV-E.

E. User Study

To quantitatively evaluate the effects of our proposed
modules (Style Translation Network, Temporal Warp module
and Refine module) and the superiority of our method over
recent state-of-the-art methods, we conduct a web-based user
study with 100 participants. Specifically, we collect generated
videos of unseen speakers to evaluate the effect of the Style
Translation Network, the Temporal Warp module, the Refine
module, and compare our method to recent state-of-art audio-
driven dubbing methods.

1) User Study on Style Translation Network: In each test-
ing case, we present four videos to each participant. The
four videos include two true videos that provide the source
audio and the target speaking style, and two fake videos
are generated by the Audio-to-landmark Mapping Network
and the Style Translation Network. At first, the two true
videos are shown to the participant. Then, we present the two
generated videos and ask the participant which generated video
better preserves the speaking style. Our user study contains
4 speaking and 4 singing videos of 4 speakers, and the number
of testing cases is 4 × (4 + 4) = 32. The user study result is
shown in Tab. V. The Style Translation Network is considered
as better preserve the speaking style of the target actor in 78%
of all cases.

2) User Study on Temporal Warp Network and Refine Mod-
ule: We collect 32 pairs of generated videos where each video
pair is generated by TPS + Refine or Temporal Warp + Refine
from the same input data. The 32 pairs are from 4 speakers
and each speaker provides 4 speaking and 4 singing clips.
We present the pair to each participant and ask which video
is more continuous. The study result is shown in Tab. V
and our proposed modules are regarded as effective in most
cases. Our Temporal Warp module is considered as more
continuous in 65% of all cases. Similarly, we also collect
32 pairs of generated videos where each video pair is generated
by Temporal Warp or Temporal Warp + Refine from the same
input data. We present the pair to each participant and ask
which video is better in visual quality. Our Refine module is
considered to improve the video quality in 65% of all cases.

3) User Study on Randomly Sampled Target Landmarks:
We collect two sets of generated videos. In the first set,

TABLE V

USER STUDY: ABLATION STUDY. WE CONDUCT WEB-BASED USER

STUDIES ON THE EFFECT OF THE STYLE TRANSLATION NETWORK

AND THE TEMPORAL WARP MODULE

TABLE VI

USER STUDY: COMPARISON. WE CONDUCT A WEB-BASED USER

STUDY TO COMPARE OUR METHOD AND RECENT AUDIO/TEXT BASED

METHODS. WITH SIGNIFICANTLY SHORTER TRAINING TIME AND LESS

TRAINING DATA, OUR METHOD STILL ACHIEVES

COMPETITIVE VIDEO RESULTS

we compare our full method with our method that replaces
the randomly sampled target landmark with the landmark of
a single frame. In each testing case, we present four videos
to each participant, including two true videos that provide the
source audio and the target speaking style, and two videos
generated by our full method and our method that uses the
landmark of a single frame. In the second set, we compare
our full method with our method that replaces randomly
sampled target landmarks with the fixed landmark sequence.
The testing case is similar to that of the first set. We collect
the user study results in Tab. V, from which we can see that
randomly sampled target landmarks performs better than the
two simplified methods. Compared to the single frame, our
full method is considered as better in preserving the speaking
style in 72% of all cases. Compared to the fixed sequence, our
full method is considered as better in preserving the speaking
style in 66% of all cases.

4) User Study on Comparing to State-of-the-Art
Methods: Recent audio-driven dubbing methods also support
audio-driven dubbing. We conduct a user study to compare our
method with Audio2Obama, TBE, NVP, ATVGnet, Wav2Lip
and EverybodyTalk. To compare with ATVGnet, Wav2Lip and
EverybodyTalk, we apply the same training strategy, training
dataset and training time to re-train them. We also collect
32 pairs of generated videos from our method and ATVGnet,
Wav2Lip and EverybodyTalk. To compare with these methods,
we collect their released results as our testing set. We ask each
participant to evaluate which generated video is better in video
quality, lip-sync accuracy and naturalness after watching the
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video pair. Similarly, we also compare our method with recent
visual dubbing methods including Face2Face and DVP. The
user study result is shown in Tab. VI. Though our method
only requires very limited training data, the generated results
are still competitive with the results produced by these recent
methods designed for PGC production.

V. CONCLUSION

We have proposed the first audio-driven dubbing framework
that is designed specially to support ordinary video creators
in User Generated Content (UGC) production. In particular,
we have firstly explored an effective way to preserve speaking
styles in audio-driven dubbing through the cross-modal AdaIN
module and the Style Translation Network. We have also
shown the possibility of driving an unseen face with its
limited video data via the proposed semi-parametric Retrieval-
based Video Renderer. Our method paves a way for ordinary
content creators to edit talking videos in user generated content
production. We hope our work will inspire more research in
this field.
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