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Abstract—In the video coding process, the perceived quality
of a compressed video is evaluated by full-reference quality
evaluation metrics. However, it is difficult to obtain reference
videos with perfect quality. To solve this problem, it is critical
to design no-reference compressed video quality assessment
algorithms, which assists in measuring the quality of experience
on the server side and resource allocation on the network side.
Convolutional Neural Network (CNN) has shown its advantage
in Video Quality Assessment (VQA) with promising successes in
recent years. A large-scale quality database is very important
for learning accurate and powerful compressed video quality
metrics. In this work, a semi-automatic labeling method is
adopted to build a large-scale compressed video quality database,
which allows us to label a large number of compressed videos
with manageable human workload. The resulting Compressed
Video quality database with Semi-Automatic Ratings (CVSAR),
so far the largest of compressed video quality database. We
train a no-reference compressed video quality assessment model
with a 3D CNN for SpatioTemporal Feature Extraction and
Evaluation (STFEE). Experimental results demonstrate that
the proposed method outperforms state-of-the-art metrics and
achieves promising generalization performance in cross-database
tests. The CVSAR database and STFEE model will be made
publicly available to facilitate reproducible research.

Index Terms—Video Quality Assessment, Semi-Auto Rating,
Compressed Video, Deep Network.

I. INTRODUCTION

THE perceptual quality of a compressed video is an
extremely important indicator in video coding. With

the development of the network, the video traffic shows an
explosive growth trend [1]. However, the network bandwidth
is limited. How to transmit video better and faster under
the limited network resources is a very meaningful topic.
The greater the degree of video compression, the faster the
transmission of video resources. Popular video compression
methods are lossy compression, which directly reduces the
perceptual quality of videos [2]. Therefore, a reliable Video
Quality Assessment (VQA) method for compressed videos is
critical as both a performance indicator and a guidance for
further improvement. Peak Signal-to-Noise Ratio (PSNR) [3]
and Structural SIMilarity (SSIM) index [4] are the mainstream

This work was mainly supported by the Natural Science Foundation of
China under Grant 62171134 and Grant 61901119. It was also supported
by the Fujian Provincial Education Department under Grant JAT200024.
(Corresponding author: Yiwen Xu.)

The authors are with the Fujian Key Lab for Intelligent Processing
and Wireless Transmission of Media Information, College of Physics
and Information Engineering, Fuzhou University, Fuzhou, Fujian 350116,
China (e-mails: {lin liqun, n191120078, 061900119, weiling.chen, xu yiwen,
t.zhao}@fzu.edu.cn).

quality assessment methods. However, the characteristics of
human visual characteristics and temporal characteristics be-
tween video frames are not considered, the perceptual quality
of videos cannot be accurately expressed.

Existing VQA methods can be classified into subjective
VQA methods and objective VQA models. Subjective VQA
methods are subjective tests by human observers, which is
the most reliable evaluation method because the user is the
ultimate viewer of videos. However, this method is time-
consuming and impractical. Instead, it is often used in the
construction of various quality evaluation databases to provide
a reliable reference for objective VQA methods. Objective
VQA models are guided by subjective scores and predict the
quality of videos by automatic algorithms. Objective VQA
models are widely used because of their convenience and low
cost.

Numerous objective VQA models have been developed.
According to the availability of original reference videos, ob-
jective VQA models can be divided into three categories: Full-
Reference VQA (FR-VQA), Reduce-Reference VQA (RR-
VQA) and No-Reference VQA (NR-VQA). For FR-VQA,
PSNR and SSIM are the most common full-reference eval-
uation algorithms. In addition, Fu et al. [5] utilized CNN to
obtain the perceptual features of each frame. Then, combined
with a self-attention module, frame-level features were fused
to video-level features, achieving video quality prediction. Li
et al. [6] predicted compressed video quality by measuring
the frame difference between reference and distorted video
frames to measure the relative standard deviation. However, in
practical applications, it is difficult to obtain reference videos
with perfect quality, so the practical value of such evaluation
algorithms is very limited. RR-VQA needs some features of
reference videos to participate in predicting video quality, and
its practical value is also limited. Reference [7] utilized Gaus-
sian scale mixture model to analyze the conditional entropy
of reference image and distorted image, and constructed RR-
VQA method on spatial scale. Although, the advantage of NR-
VQA without any reference information is of great application
value [8]–[10], most of the existing NR-VQA methods have
the limitation of artificially extracting features, and are difficult
to obtain ideal generalization performance.

For the perceived quality prediction of compressed videos,
video codec technology usually takes NR-VQA as the main
evaluation methods, but it is difficult to obtain reference videos
with perfect quality. To solve this problem, it is critical to
design NR-VQA algorithms for compressed videos. Video
encoding often introduce mixed complex artifacts. In addition
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to common spatial artifacts, temporal artifacts are also degrade
user’s perceptual experience. The key challenge in VQA is
how to effectively learn spatiotemporal features of compressed
videos and then map the features to video quality prediction.
Convolutional Neural Network (CNN) has shown its advantage
in VQA with promising successes in recent years [11]–[14].
CNN can jointly learn features and make quality predictors in
an end-to-end manner. Despite its advantages, CNN has not
been well developed in compressed video quality evaluation,
which is limited by the lack of large-scale compressed video
quality evaluation databases. Therefore, there is still room for
improvement in the performance of data-driven compressed
video quality evaluation algorithms.

The performance of deep learning-based VQA models
extremely depends on the quality and quantity of training
datasets. Although there are several video quality databases
of compressed videos have been built, such as LIVE Video
Quality Database (LIVE) [15], LIVE Mobile VQA Database
[16], CSIQ [17], IVP [18] and WaterlooIVC4K Video Quality
Database (WaterlooIVC4K) [19], etc. However, they are not
enough for deep network training in their sample sizes. Among
them, WaterlooIVC4K is the largest database, which contains
only 1200 videos of 20 different video contents. Therefore, it
is imperative to establish a larger compressed video quality
database. To this end, the biggest challenge lies in the huge
workload of mankind. In this work, we observe an exponential
attenuation relationship between the coding parameters of
compressed videos and their subjective quality score. It helps
us to develop a large database that reduces the workload of
manual annotation. Experiments on randomly selected samples
prove the high accuracy of the proposed database. Based on
this database, we construct a perceptual data-driven NR-VQA
model to predict compressed video quality, which is highly
related to subjective score. The major contributions of our
work are summarized as follows:

1) A large-scale quality database of compressed videos is
developed with a novel semi-automatic subjective labeling
method, which greatly reduces the workload of manual la-
beling.

2) A no-reference compressed video quality assessment
with a 3D CNN for SpatioTemporal Feature Extraction and
Evaluation (STFEE) is proposed. It results in an end-to-end
model that jointly learns perceptually spatiotemporal features
of compressed videos and a quality predictor.

3) Superior performance of our method is achieved against
state-of-the-art quality prediction. In addition, our algorithm
can achieve reasonable performance in cross-database verifi-
cation, which shows that our algorithm has good generalization
and robustness.

The rest of this paper is organized as follows. In Section
II, the related work is introduced. In Section III, we elaborate
the details of the method and procedure to build the proposed
large-scale database. In Section IV, we describes the proposed
deep network including network structure, feature extraction
method and model training. In Section V, the relevant exper-
imental results are given. Finally, this paper is concluded in
Section VI.

II. RELATED WORK

Video compression greatly reduces video stream bit rate
and improves transmission efficiency. Despite its high coding
efficiency, the encoded videos often show visually annoying
artifacts, which significantly degrade the visual quality experi-
ence of end users. In order to evaluate the perceptual quality of
compressed videos, numerous perceptual VQA metrics have
been proposed to predict the visual quality of videos with FR-
VQA [3]–[6], RR-VQA [7] and NR-VQA [11]–[14]. Among
them, the application field of FR-VQA metric is limited owing
to its requirement of unimpaired video source. Thus, RR-VQA
and NR-VQA algorithms are preferred.

In addition, database is a crucial element in the field of
compressed video quality evaluation. The performance of
VQA algorithms has a significant dependence on the quality
of databases. Literature [15], [19] contain different levels of
distortion and different compression methods to form different
amounts of video sets. Based on the current popular com-
pressed video quality databases, the existing compressed video
quality evaluation algorithms can be divided into three cate-
gories: single-distortion quality evaluation algorithms, multi-
distortion quality evaluation algorithms and deep learning
quality evaluation algorithms.

Single distortion quality evaluation methods are aimed at
a specific type of distortion, which have low generalization
performance and poor practicability. Choi et al. [20] studied
the relationship between temporal visual masking and subjec-
tive perception quality for local flicker in compressed videos.
Korhonen et al. [21] observed the effect of packet loss and
subjective perception in decoded videos. Multi-distortion qual-
ity evaluation methods are based on Natural Scene Statistic
(NSS) [22]. Mittal et al. [23] standardized the frame differ-
ence and fitted the product of the four directions calculated
by the standardized coefficient with asymmetric generalized
Gaussian distribution. Finally, shape parameters were utilized
to regress the perceived quality fraction of videos. Reddy et al.
[24] calculated 3D Mean Subtractedand Contrast Normalized
coefficients of videos (3D-MSCN). A 3D Gabor filter was de-
signed to fit the asymmetric generalized Gaussian distribution
after 3D-MSCN filtering, and the mapping model of shape
parameters and perceived quality of visual frequency were
trained by Support Vector Regression. In addition, learning-
based methods automatically learn the mapping between video
features and the perceptual quality, which have been growing
steadily [25], [26]. Liu et al. [1] established a large number
of compressed videos to train deep learning network model.
However, the Mean Opinion Score (MOS) of the database was
obtained by full reference SSIMplus [11], which is difficult to
guarantee the high correlation between the MOS and objective
perception. In order to avoid the problem of lack of data, some
scholars utilized transfer learning to evaluate video quality.
Li [12] et al. extracted features from the pre-trained image
classification neural network ResNet50 to obtain perception
characteristics. Chen et al. [13] adopted VGG-16 network to
learn the frame-level features of videos, and then obtained the
Gaussian distributed features through adversarial learning.

The above great efforts focus on manually extracting fea-
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TABLE I
EXISTING COMPRESSED VIDEO DATABASES

Database Number of
original videos

Type of
compression

Number of
compressed videos

Year of
presentation

LIVE Video Quality Database 10 2 80 2010
LIVE Mobile VQA Database 10 1 40 2012

CSIQ 12 3 108 2012
IVP 10 3 50 2012

WaterlooIVC4K 20 5 1200 2019

tures to predict video quality, which have insufficient general-
ization performance. In addition, although deep learning can
solve this problem, due to the lack of large-scale compressed
video quality evaluation databases, the development of data-
driven compressed video quality evaluation methods is still
not perfect. The content perception features extracted by
several methods of transfer learning [12], [13] are all in the
spatial domain, which are obviously not enough for videos. To
solve the above problems, it is necessary to construct a large
compressed video quality evaluation database and propose
a data-driven method to learn their spatiotemporal features.
In this paper, a large compressed video quality database is
established and a semi-automatic marking method is used
to obtain the perceptual quality score of compressed videos
quickly. On this basis, the STFEE algorithm is proposed.

III. PROPOSED LARGE-SCALE CVSAR

The quality evaluation of compressed videos should accu-
rately reflect the subjective perception of human eyes. There-
fore, a compressed video quality database with subjective
scores is an indispensable factor in the construction of a
compressed video quality evaluation algorithm. In general,
compressed video databases contain different content videos
with different quality levels. In addition, each video with
a reliable subjective quality score is the most critical to
develop VQA algorithms. At present, there are some quality
evaluation databases for compressed videos, such as LIVE
Video Quality database, LIVE Mobile VQA Database, CSIQ,
IVP and WaterlooIVC4K Video Quality Database. The related
information is shown in Table I.

None of the above compressed video databases are sufficient
for training deep neural networks. Databases such as LIVE
and CSIQ contain a limited number of videos to adequately
to train complex networks. Although WaterlooIVC4K contains
1200 videos, it contains only 20 limited video contents. The
contents of the videos are not rich enough, and the model
is prone to overfitting during the training process. Large-scale
databases are desired to develop learning-based VQA methods
for training. In building such a database, the main challenge
is how to rate quality scores for a large number of videos.
The desired subjective tests are time-consuming and costly.
Moreover, the consistency and reliability of subjective ratings
are affected by fatigue effects labeling large-scale datasets.
Zhao et al. [27] constructed a super-resolution image quality
database in a semi-automatic labeling manner, which greatly
reduced the cost of database construction. On the labeling

method, Zhao et al. observed a functional relationship between
the number of samples and image quality. Based on this
functional relationship, the current largest super-resolution
image quality database is quickly constructed. Inspired by this,
we explore the quality variation law of compressed videos and
construct a database based on this law to greatly reduce the
workload of subjective testing.

A. The Quality Variation Law in compressed videos

To train learning-based VQA methods, large-scale databases
are desired, which will inevitably lead to the explosive growth
of subjective testing workload. To solve the problem, a
semi-automatic rating mechanism is proposed by observing
the mapping relationship between compressed video quality
and related compression parameters. Semi-automatic labeling
based on the mapping relationship modeling can ensure the
reliability of labels and reduce the construction cost of large-
scale databases.

The most important parameter of video compression is
the Quantization parameter (Qp). Video perceived quality is
affected by its Qp. Fig.1 shows the same video compressed
by the same compression method with different Qp values.
With the increase of Qp value, the loss of details becomes
more serious, for example, the roof and background become
smoother, thus resulting in lower perceived quality.

Source video  Qp=32, MOS=0.9920  Qp=37, MOS=0.8585  Qp=42, MOS=0.6340  Qp=47, MOS=0.3846

Fig. 1. Videos generated by the same compression method with different Qp
values.

To verify the relationship between Qp value and video
quality, we select different scene videos encoded with dif-
ferent Qp values, and then conduct subjective experiments
to obtain the MOS. Experimental results suggest that for
different content videos using different encoders, the MOS
would decrease with the decrease of Qp as shown in Fig.2(a).
Qp value is actually the serial number of quantization step
(Qstep) in video coding. In order to further verify the quality
variable law of compressed videos, we also observed the
relationship between MOS and Qstep, as shown in Fig.2(b).
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(a) (b)
Fig. 2. Relationship between MOS,Qp and Qstep. (a) Relationship between MOS and Qp, (b) Relationship between MOS and Qstep.

The relationship between MOS and Qp, Qstep approximately
follows an exponential decay, as shown in Eq.(1).

MOS = e−α·Qstep , (1)

where Qstep is quantization step of a compressed video, MOS
is subjective score, and α is a parameter to be estimated. We
normalize the quality of uncompressed videos to 1. Given
a parameter α, the quality scores of compressed videos can
be quickly obtained, thereby reducing the cost of database
construction.

Based on the exponential decay relationship, the workload
of our subjective test is greatly reduced. A subset of videos
can be labeled with reduced workload. In addition, the quality
of the remaining videos can be inferred. To examine the
feasibility of this semi-automatic rating, a series of related
experiments are conducted as follows. Firstly, we randomly
select 14 videos of different scenes. Each video is compressed
with Qp {22, 27, 32, 37, 42, 47, 51}, resulting in a total of 98
compressed videos. Secondly, we obtain the subjective scores
using semi-automatic labeling and subjective experiments,
respectively. In the first method, subjects are asked to rate a
set of compressed videos and the remaining videos are labeled
using the exponential decay law of Eq.(1). In the second
method, all subjects are asked to score all test videos to obtain
the MOS values. Thirdly, we compare the correlation of the
MOS values obtained by the above two methods.

Fig.3 reveals the fitting curves of quantization step size and
MOS, where the scatter points represent the MOS value, and
the curve is the experimental result fitted according to Eq.(1).
We observe that the curve basically fits the MOS values.
In addition, the comparison results are presented in Table
II, where Pearson Linear Correlation Coefficient (PLCC),
Spearman Rank-order Correlation Coefficient (SRCC) and
Kendall Rank Correlation Coefficient (KRCC) are utilized as

performance indicators. The fitting curves and the table indi-
cate a higher correlation between the two approaches. Clearly,
semi-automatic rating is feasible for generating our large-scale
video compression quality database with the advantages of low
complexity and high accuracy.

TABLE II
CORRELATION OF SEMI-AUTOMATIC LABELING WITH MOS

Indicators PLCC SRCC KRCC RMSE

Correlation 0.9815 0.9639 0.8542 0.0592

In fact, some scholars have studied the quality change law of
compressed videos. The Q-STAR [28] algorithm built a video
quality prediction model based on the relationship between
video quality and quantization step size, temporal resolution
and spatial resolution, respectively. The three parameters mean
that each group of videos requires three videos to participate in
subjective labeling, which is less cost-effective. The functional
relationship is expressed as:

Q =
1− e−α(

smin
s )

1− e−α
, (2)

where s represents quantization step size. smin is the selected
minimum quantization step size. Q denotes the quality of a
video, and α is the parameter to be estimated.

In additon, Ma et al. [29] explored the relationship between
quantization step size and frame rate to predict the quality of
compressed videos. The functional relationship between the
video quality and the quantization step size is:

Q = ece
−c s

smin , (3)

where c is the parameter to be estimated.
It is worth noting that Eqs.(1)–(3) are only used to reveal the

relationship between the quality of video content and encoding
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(a)

(b)
Fig. 3. Fitting curves. (a) Compressed videos, (b) Fitted curves of Qstep and MOS.

parameters, which can only assist in building a database and
cannot be directly applied in video quality evaluation tasks. In
each encoder, for each video content, one of its MOS value
and quantization step size must be known to determine the
corresponding power exponential decay function, which can
be done by subjective experiments in building the database.
Video quality evaluation requires a fixed model for different
video content and is not applicable. Therefore, a no-reference
compressed video quality assessment method is desired to
design for compressed videos. In order to determine the
function building the database, the above three functions are
adopted to predict the quality of videos, respectively. We
randomly selected 14 videos of different scenes for verification
experiments. Each video utilizes 7 different encoding parame-
ters, and a total of 98 compressed videos are obtained, which
are sufficient to support the reliability of the law. To verify
the feasibility of semi-automatic labeling, we randomly select
a scene video with a compression level as the benchmark
to obtain the parameters to be determined by Eqs.(1)–(3),
respectively. Thus, three quality scores are predicted in a semi-
automatic labeling manner. Finally, the above three functions
are compared, and the correlation coefficient between the
semi-automatic labeling result and the MOS value is shown
in Table III.

TABLE III
CORRELATION OF THE RESULTS OF DIFFERENT FUNCTIONS WITH THE

MOS

PLCC SRCC KRCC
Equation 1 0.9815 0.9639 0.8542
Equation 2 0.9819 0.9549 0.8412
Equation 3 0.9800 0.9515 0.8257

Experimental results indicate that the above three functions

have little correlation difference between the predicted quality
scores and MOS. The performance of Eqs.(2) and (3) is
lower than that of the original literatures. The reason is that
only the quantization step size is considered here, and other
parameters are ignored in order to reduce the cost of database
construction. Although, the three expressions are similar, there
are differences in the specific expressions. Among them,
Eq.(1) has the best performance, and the expression is also
the simplest, so we adopt Eq.(1) to develop compressed video
quality database with semi-automatic ratings.

B. Test video sequences

The first step in building such a large scale database is to
collect a collection of high-quality and content-rich videos
of natural scenes. For video content objects, we counted
the number of related videos for the following 6 scenes:
animals, buildings, humans, sports, plants, and landscapes.
The statistical results are shown in Fig.4. The vertical axis
refers to the scene content, and the horizontal axis represents
the number of videos corresponding to each scene content.
Among them, the videos describing humans are the most, and
there are fewer videos of plants, but they are also close to 10.
Therefore, the video contents of the proposed database are rich
and varied.

To further examine the representative of these video se-
quences, we also calculate their Spatial Information (SI)
and Temporal Information (TI) values. The SI and TI were
defined in ITU-T P. 910 [30] to depict the maximal spatial
gradient intensity and maximal temporal discontinuity of video
contents, respectively. As shown in Fig.5, the horizontal axis
represents SI, and the vertical axis is TI, where the maximum
value of TI is close to 100, which has relatively violent motion
information; the maximum value of SI exceeds 200, indicating
that the video has very rich detailed information. Therefore,
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Quantity
0 10 20 30 40

Fig. 4. Video Content Object Statistics.

the selected sequences cover a vast region of SI and TI values,
which are sufficiently representative and meet the requirements
of the database construction.

Fig. 5. The distributions of SI and TI.

C. Video compression method

The above video sequences are with the resolutions
1920×1080 and 1280×720, where four Qp values of 32, 37,
42 and 47 are utilized. The encoding process adopts VVC
, AVS3 and HLVC [31] encoders and their corresponding
configuration files. It can be seen from Fig.2 that the difference
in video quality between Qp below 32 and Qp above 47 is not
significant. Therefore, the Qp for VVC encoding is chosen
to be the middle four, i.e., Qp={32, 37, 42, 47}. According
to the quantization steps corresponding to the Qp, the Qp
values chosen for AVS3 compression are roughly the same
as those for VVC, i.e., Qp={39, 45, 51, 57}, as shown in
Fig.6. The quality level of HLVC is mainly controlled by the
hyperparameter lambda, here we adopt the four lambda ={256,
512, 1024, 2048} in the original text.

The encoding process utilizes official encoders and their
corresponding configuration files provided by VVC and AVS3,
as well as official codes published by HLVC. There are
130×3×4=1560 videos in total.

Fig. 6. Encoding information of the CVSAR database.

D. Semi-automatic Labeling

Our testing procedure follows the ITU-R BT.500 [32] doc-
ument with two phases. In the pre-training phase, all subjects
are told about our testing procedures and trained to score
videos of different quality levels. In the formal-testing phase,
all subjects are asked to watch and rate 390 videos with
a workload of 1.5 hours. The test sequences are presented
in random order, which are displayed on a 4K screen. 23
subjects participated in the subjective experiment, including 12
males and 11 females-aged between 20 to 25. Then, we utilize
the semi-automatic rating approach to calculate the subjective
quality scores of the remaining 1170 videos by Eq.(1). By
contrast, a full subjective test of all videos takes 4.5 hours
per subject. Therefore, the semi-automatic rating significantly
reduces the workload of subjective test but generates the
inferred MOS (iMOS) values that are highly correlated to
human ratings.

E. Formation of the CVSAR Database

Based on the above methods, we construct a so far the
largest of compressed video quality database CVSAR. CVSAR
contains rich video content, covering various scenes such as
animals, buildings, humans, sports, plants and landscapes, as
shown in Table IV, a total of 130 different high-quality videos
with resolutions of 1280×720 and 1920×1080.

TABLE IV
VIDEO CONTENT DISTRIBUTION OF THE CVSAR DATABASE

Video content Number of
original videos

Number of
compressed videos

Animal 13 156
Architecture 24 288

Human 34 408
Motion 21 252
Plant 9 108

Scenery 29 348

In total, there are 1560 compressed videos in the CVSAR
database with different contents, resolutions, encoders and
Qps, which are presented in Table V.

IV. PROPOSED STFEE MODEL

We propose an end-to-end no-reference quality assessment
method for compressed videos. The proposed model, namely
STFEE, is a 3D CNN to predict the perceptual quality of
compressed videos. The network architecture is illustrated in
Fig.7. Firstly, the input video sequence is equally divided
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TABLE V
OVERVIEW OF THE CVSAR DATABASE

Database information Specific settings

Encoder VVC, AVS3, HLVC
Resolution 1280×720,1920×1080

Qp of VVC {32, 37, 42, 47}
Qp of AVS3 {39, 45, 51, 57}

Lambda of HLVC {256, 512, 1024, 2048}
Number of videos 960 videos with 720p, 600 videos with 1080p

into several sub-sequences of the same size, and each sub-
sequence is divided into multiple small cubes of the same size
in a non-overlapping manner. Then, the video sub-sequences
are fed into our 3D CNN to extract spatiotemporal features,
which are utilized as the input of the transformer regression
network. Finally, the regression network performs long-term
memory-dependent learning on the spatiotemporal features of
sub-sequences in different time periods and extracts the global
features of the corresponding videos. The global features are
regressed onto the quality score of compressed videos by
fully connected layers. In the following subsections, video pre-
processing, spatiotemporal features extracting, spatiotemporal
features regressing and model training will be discussed in
detail.

A. Video preprocessing

Visual saliency is an inherent attribute of Human Visual Sys-
tem (HVS) and is also a key factor affecting video perceptual
quality [33]. The advantages of introducing visual saliency
into video quality assessment are primarily reflected in two
aspects: first, it allocates constrained hardware resources to
more significant regions; second, video quality analysis con-
sidering visual saliency is more consistent with human visual
perception. Therefore, we select improved HED [34] as our
video saliency model based on comprehensive comparison and
analysis of popular video saliency models. The saliency model
has strong applicability and its high accuracy.

Based on the saliency model, video preprocessing process
is shown in Fig.7. First, the subsequences of videos are cut
every half second, and each subsequence is a continuous 16
frames. Then, salient regions are extracted by using a saliency
detection algorithm. Finally, video segmentation is performed
based on the minimum circumscribed rectangle. The size of
video blocks is set to 224×224. Small cubes are cut along
the timeline. The dimension of each cube is 224×224×3×16,
where 3 and 16 are the number of channels and consecutive
frames, respectively.

B. Spatiotemporal feature extraction

3D convolution kernel can effectively extract video spa-
tiotemporal features. Therefore, we select I3D [35] as our
video feature extraction model based on comprehensive com-
parison and analysis of popular 3D convolutional networks.
Based on the I3D network, the spatiotemporal features of each
small cube are extracted. The features of sub-sequences are
obtained by pooling the spatiotemporal features of all its small

cubes. Since the 5×5×5 convolution kernel of I3D network
causes a large amount of computation, we utilize a 1×1×1
convolution kernel for dimensionality reduction. Furthermore,
attention mechanism is able to optimize feature extraction dur-
ing network training. In order to enhance the learning ability
of the network, an attention mechanism is introduced into the
convolutional layers of the last two Inception Modules. On
the basis of comprehensive consideration of feature extraction
and computational complexity, a channel attention module
is introduced into the convolutional layers of the last two
Inception Modules of the network structure.

Based on our improved I3D network, each small cube will
obtain a 1×1024 dimensional feature ,which is as follows:

Fseq = Pool(Fi), i ∈ 1, 2, ..., Ncube,

F = I3D(cube),
(4)

where cube represents a small cube. I3D() denotes feature
extraction operation. F is spatiotemporal feature of each small
cube. Pool{} refers to a pooling operation, which pools the
spatiotemporal features of all small cubes in a subsequence
into subsequence-level spatiotemporal features, namely Fseq.
Ncube refers to the number of small cubes divided by each
subsequence.

In the same sub-sequence, the feature vectors of several
small cubes are combined into a feature map F with dimension
N×1024, where N indicates that there are N small cubes in
the subsequence. The pooling operation is performed on the
feature map F to obtain spatiotemporal features of the sub-
sequences.

Feature Pooling:
Favg = AvgPool(F ); shape = (1; 1024);

Fmax = MaxPool(F ); shape = (1; 1024);

Fseq = (Favg;Fmax); shape = (1; 2048);

(5)

Among them, Favg and Fmax are the results of performing
mean pooling and maximum pooling according to the first
dimension of the feature map F, respectively. Then, these
two feature vectors are directly concatenated into a more
representative feature vector Fseq. For a 5-second video, 16
frames of video segments are intercepted every half second
to obtain 10 sub-sequences, thus generating 10 spatiotempo-
ral features Fseq, which constitute the global spatiotemporal
feature GlobalF of videos, with a dimension of 10×2048.

C. Model Learning

For an input compressed video, the proposed STFEE net-
work M is utilized to predict the perceptual quality Qpred of
compressed videos:

Qpred =M(V, θ), (6)

where θ indicates all parameters of this network.
Denote the ground truth quality of the input as QClabel .The

training goal of network M is to find the optimal parameter
setting, so as to minimize the overall quality prediction loss
between QCpred and QClabel of all video cubes in the training
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Fig. 7. Proposed STFEE Framework.

dataset. We apply the MSE as loss function in the training
process, which is widely used in various regression tasks.

Losscube =
1

N

N∑
i=1

‖QCpred(i)−QClabel(i)‖2, (7)

where QCpred(i) and QClabel(i) refer to the predicted quality
and MOS value of the i-th cube, respectively. N represents the
number of input cubes. The SGD algorithm is utilized with a
learning rate of 0.001.

The spatiotemporal features of each video subsequence are
obtained according to Eq.(5). Further, the global spatiotem-
poral feature GlobalF of the entire video can be obtained.
In order to learn its long-term dependency information, it
is used as the input of the Transformer Encoder. Then, the
overall quality score of the video is predicted through the fully
connected layer regression. The loss function is:

Loss =
1

K

K∑
i=1

‖Qpred(i)−Qlabel(i)‖1, (8)

where Qpred(i) and Qlabel(i) denote the predicted quality and
ground truth of the i-th video, respectively. K is the number of
input videos. The Adam algorithm is utilized with a learning
rate of 0.001.

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed STFEE
model is evaluated and compared with typical video quality
metrics on four datasets. In addition, we analyze the effect
of block sizes on the performance of spatiotemporal features.
Finally, the cross-database test is also performed to further
verify the generalization performance of the algorithm.

A. Experimental setups

We train the STFEE model on the proposed CVSAR
database. To verify the generality of the proposed method, we
also select three publicly available databases, LIVE, CSIQ,
WaterlooIVC4K, for cross-database validations.

CVSAR contains 1560 compressed videos, which are split
into 80:20 training/testing sets according to the contents. In
addition, we utilize 5-fold cross-validation to evaluate the

performance of STFEE. The performance shown in Table VII
is the average performance across all test sets.

LIVE is a video quality evaluation database containing
150 distorted videos. It contains 10 reference videos with a
resolution of 680×432. Four types of distortions are presented
with video data. Among them, the distortion of compression
is generated by H.264 and MPEG-2 encoder, resulting 80 out-
puts. This subset is utilized here to evaluate the performance
of STFEE.

CSIQ is a collection of 216 distorted videos. It contains
12 reference videos. Three types of distortions are presented
with video data, which are H.264, HEVC and MJPEG. Each
compression corresponds to 3 levels, resulting 108 outputs.

WaterlooIVC4K is created from 20 reference videos with
a resolution of 3840×2160. All videos are collected from
Youtube Creative Commons videos. Each source video is
encoded by five encoders: HEVC, H.264, VP9, AV1 and
AVS2. Each source video is encoded in three resolutions:
960×540, 1920×1080, 840×2160. Each setting has four
distortion levels, where the encoder control parameters are
determined to ensure good perceptual separation. Finally, a
total of 1200 encoded videos are produced.

There is no uniform score range and type in these databases.
The setups of CVSAR are chosen as our standard in these
experiments. Subjective scores of the other three databases
are normalized to the range of [0,1].

B. Performance Comparison

(1) Performance comparison on different databases
To verify the performance of the proposed STFEE, it is

evaluated on the CVSAR, LIVE, CSIQ and WaterlooIVC4KV
databases. The method of STFEE is also compared with typ-
ical video quality metrics including PSNR, SSIM, MS-SSIM
[36], 3D-PSD [37], SpEED-VQA [7], NIQE [38], VIIDEO
[23], TLVQM [39], VSFA [12], MDTVSFA [40], GSTVQA
[13] and Shen’s algorithm [41] to show its performance. We
obtain the source codes of these metrics from the author’s pub-
lic websites. In addition, we utilize the PLCC and SRCC as the
performance indicators. The results summarized in Table VI,
where the best and the second-best results are shown in bold
and underlined, respectively. Experimental results have indi-
cated the superior performance of our proposed STFEE. FR-
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TABLE VI
PERFORMANCE COMPARISON OF STFEE METHODS

Methods CVSAR LIVE CSIQ WaterlooIVC4K

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

PSNR 0.2964 0.3471 0.5122 0.4790 0.5442 0.5651 0.3049 0.3097
SSIM 0.4606 0.5673 0.5405 0.5863 0.5318 0.6002 0.4290 0.4022
MS-SSIM 0.4734 0.6991 0.5912 0.6485 0.6119 0.7347 0.5938 0.5316
SpEED-VQA 0.3630 0.6252 0.6404 0.7681 0.7371 0.7413 0.5328 0.4739
NIQE 0.4358 0.4205 0.2917 0.1178 0.4428 0.4282 0.1182 0.2467
VIIDEO 0.2617 0.1829 0.6380 0.6057 0.3087 0.1234 0.0094 0.0107
3D-PSD 0.7008 0.7042 0.1737 0.1633 0.6321 0.5525 0.5922 0.5106
TLVQM 0.6923 0.6845 0.3795 0.3673 0.6239 0.6178 0.7586 0.7627
VSFA 0.7746 0.7687 0.4126 0.6102 0.6752 0.7324 0.4963 0.5056
MDTVSFA 0.7781 0.7619 0.4136 0.5404 0.5519 0.5820 0.8937 0.8927
GSTVQA 0.7795 0.7444 0.7150 0.7237 0.5725 0.5806 0.4567 0.4391
Shen’s algorithm 0.7813 0.7932 0.7182 0.6463 0.6790 0.7369 0.4101 0.3496

STFEE 0.9203 0.9098 0.7352 0.7451 0.7883 0.7682 0.8813 0.8775

VQA method focuses on comparing the differences between
reference videos and compressed videos. In video encoding
process, PSNR and SSIM metrics are often utilized to measure
the quality of compressed videos. However, the correlation
between these two algorithms and subjective perceived quality
is relatively low. The reason is that, first of all, these two
indicators are essentially image quality evaluations, and do
not consider video motion characteristics in temporal domain.
Moreover, these two indicators simply calculate the difference
between image pixels and structures, without considering hu-
man perceptual characteristics. Therefore, they perform poorly
in video quality evaluation. MS-SSIM is an improved SSIM
method, but its performance is still not good enough. From
Table VI, the following observations can be drawn:

Firstly, STFEE obtains the highest PLCC and SRCC on
the CVSAR database. VSFA, MDTVSFA, GSTVQA and
Shen’s algorithm [41] are also based on deep learning, which
shows that they have better performance than manual feature
extraction.

Secondly, compared to the CVSAR database, the LIVE
database has only one resolution of 768×432. The proposed
STFEE is still competitive, where the PLCC still remains the
highest. As a natural scene statistics method, NIQE is still not
suitable for LIVE database. Neither 3DPSD nor TLVQM can
show ideal performance on the LIVE database.

Thirdly, STFEE still exhibits the best performance on the
CSIQ database. As a reduced-reference quality evaluation al-
gorithm, SpEED-VQA has excellent performance and is more
suitable for the LIVE and CSIQ databases. VSFA and Shen’s
algorithm [41] also have good generalization performance on
the CSIQ database.

Finally, WaterlooIVC4K has more videos and higher reso-
lution than the LIVE and CSIQ databases. Except TLVQM
and MDTVSFA, the performance of several other quality
evaluation algorithms has decreased. The proposed STFEE still
exhibits superior performance.

To further verify the generalization performance of the
proposed algorithm with other deep learning algorithms more
intuitively, we plot the PLCC values of the VSFA, MDTVSFA,
GSTVQA and STFEE algorithms on the four databases into

a radar chart, as shown in Fig.8.

Fig. 8. PLCC Radar Chart: (a)VSFA, (b)MDTVSFA, (c)GSTVQA,
(d)STFEE.

In Fig.8, each radar chart corresponds to an algorithm,
and there are 4 coordinate axes, each of which represents a
database. Fig.8(a) shows that the VSFA algorithm performs
poorly on the LIVE and WaterlooIVC4K databases. Fig.8(b)
illustrates that the MDTVSFA algorithm performs well on the
WaterlooIVC4K database, but performs poorly on the LIVE
and CSIQ databases. Fig.8(c) implies that GSTVQA does
not perform well on the WaterlooIVC4K database. Fig.8(d)
proves that the proposed algorithm achieves superior per-
formance on all four databases and has good generalization
performance. In addition, Fig.8 also indicates that the large-
scale database CVSAR can provide stable data support for
deep learning methods, and the four algorithms all have good
performance on the CVSAR database. Although the Water-
looIVC4K database also contains thousands of videos, it only
contains 20 different scenarios. The CVSAR database includes
130 video contents and has good generalization performance.
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TABLE VII
STFEE PERFORMANCE ON DIFFERENT DATABASES

training library
test library

LIVE CSIQ WaterlooIVC4K CVSAR

LIVE
PLCC - 0.6707 0.4577 0.6037
SRCC - 0.7080 0.4014 0.6500

CSIQ
PLCC 0.4758 - 0.4260 0.5827
SRCC 0.4671 - 0.3428 0.5865

WaterlooIVC4K
PLCC 0.4346 0.6868 - 0.7734
SRCC 0.4449 0.7042 - 0.7525

CVSAR
PLCC 0.3473 0.7051 0.6556 -
SRCC 0.4459 0.7241 0.6071 -

(2) Video block size selection
In order to verify the effect of video block size on video

spatiotemporal feature extraction, we perform the following
experiments, as shown in Table VIII.

TABLE VIII
NETWORK PERFORMANCE OF DIFFERENT VIDEO BLOCK SIZES

size PLCC SRCC KRCC

64×64 0.4285 0.4124 0.2823
128×128 0.6038 0.5806 0.4087
224×224 0.7391 0.7322 0.5387
256×256 0.6842 0.6707 0.4819

Experimental results indicate that when the size of video
cubes is 224×224, its network performance is the best. The
resolution of 256×256 reduces the learning ability of the
network, and requires higher computing power of hardwares.
Therefore, we choose 224×224 as the size of small cubes,
which enables the network to learn more effective spatiotem-
poral features.

(3) Validation across datasets
To further verify the generalization performance of the pro-

posed STFEE, cross-dataset validation is performed. We utilize
LIVE, CSIQ, WaterlooIVC4K and our proposed CVSAR
database as training sets to obtain network models. Then,
the other three datasets are used as test sets to test their
performance, as shown in Table VII.

The above experimental results show that the proposed
STFEE has good generalization ability on different databases.
Among them, the performance differences on different
databases are mainly due to different database scales and
different compression methods. The LIVE and CSIQ databases
contain a small number of compressed videos, so the models
trained on these two databases are not expressive enough.
And for the larger waterlooIVC4K and CVSAR datasets, the
performance of the algorithm is relatively better. The above
experiments also suggest that the size of the dataset is a key
factor affecting the network performance.

VI. CONCLUSIONS
In this work, we exploit the exponentially decaying re-

lationship between quantization step size and compressed
video quality, and propose a semi-automatic rating method
that greatly reduces the labeling workload while maintaining
high labeling accuracy. Utilizing this approach, we build the
CVSAR database, which is currently the largest database for
compressed videos and has the richest scene content. Then, we
develop an end-to-end STFEE model for compressed videos,
which adopts a 3D convolutional network for feature extraction
and follows by a transformer for quality regression. By training
on the CVSAR database, the STFEE model outperforms
the state-of-the-art VQA algorithms. Cross-database validation
also reveals the generalization ability of our STFEE model. We
will make the proposed database and quality model publicly
available to facilitate reproducible research.
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