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Differentiable Neural Architecture Search for
Extremely Lightweight Image Super-Resolution

Han Huang, Li Shen, Chaoyang He, Weisheng Dong, and Wei Liu Fellow, IEEE

Abstract—Single Image Super-Resolution (SISR) tasks have
achieved significant performance with deep neural networks.
However, the large number of parameters in CNN-based met-
hods for SISR tasks require heavy computations. Although sev-
eral efficient SISR models have been recently proposed, most are
handcrafted and thus lack flexibility. In this work, we propose a
novel differentiable Neural Architecture Search (NAS) approach
on both the cell-level and network-level to search for lightweight
SISR models. Specifically, the cell-level search space is designed
based on an information distillation mechanism, focusing on the
combinations of lightweight operations and aiming to build a
more lightweight and accurate SR structure. The network-level
search space is designed to consider the feature connections
among the cells and aims to find which information flow benefits
the cell most to boost the performance. Unlike the existing
Reinforcement Learning (RL) or Evolutionary Algorithm (EA)
based NAS methods for SISR tasks, our search pipeline is fully
differentiable, and the lightweight SISR models can be efficiently
searched on both the cell-level and network-level jointly on a
single GPU. Experiments show that our methods can achieve
state-of-the-art performance on the benchmark datasets in terms
of PSNR, SSIM, and model complexity with merely 68G Multi-
Adds for ×2 and 18G Multi-Adds for ×4 SR tasks.

Index Terms—Image Super Resolution, Neural Architecture
Search, Lightweight Model Design.

I. INTRODUCTION

IMAGE super-resolution (SR) is a low-level vision problem
that reconstructs a single low-resolution (LR) image to a

high-resolution (HR) image. This problem is ill-posed since
multiple HR images can degrade to the same LR image. Many
deep-learning-based methods have been proposed to address
this problem [1]–[10] and have achieved great success.

While the SR performance is boosted by the deep learning
approach, the model complexity is also increased. For exam-
ple, RDN [6] had 22M parameters and EDSR [3] reached
up to 43M parameters. It is difficult to deploy these models
to the equipment with low computing power. For real-world
applications, lightweight and efficient SR models have also
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Fig. 1. Performance comparison of existing lightweight methods on Set5
[11] (4×). The size of the dot denotes the Multi-Adds of the method. Our
method achieve state-of-the-art performance with fewer parameters or fewer
Multi-Adds.

been designed in recent years, including handcrafted SR neu-
ral networks [12]–[15] and neural architecture search (NAS)
based SR methods [16]–[19].

Although great improvements have been achieved by ex-
isting lightweight SR methods, they still suffer from several
limitations. First, hand-crafted lightweight SR models like
IMDN [20] and RFDN [21] adopted several 3×3 convolution
layers with large amount of parameters and Multi-Adds. The
building blocks designed by these methods with the same three
3×3 convolution layers can also be suboptimal and lack flex-
ibility for SISR tasks. Second, the network-level architecture
of these methods only considered concatenating the output
features of the blocks at the end of the model while omitting
intermediate information flows among the blocks, which have
been demonstrated to enlarge the reception field [22] and
could be useful for improving SR performance [6], [23]–[25].
However, the network cannot be connected too densely in
order to achieve an efficient lightweight SR model. Therefore,
it’s important to find which connection benefits the cell most
to improve the performance of lightweight SR models while
keeping a slightly low model complexity. Finally, as a dense
prediction task, SR requires to predict the value of each pixel
for HR image, which is sensitive to the tiny changes of the
architectures of the network. Hence it is challenging to design
or search for a suitable network for the SR task. Moreover,
the dimensions of the data and the model of the SR task are
much larger than those of the classification task, which is more
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challenging to search in a differentiable manner. Most Neural
Architecture Search (NAS) based methods for SR tasks were
based on reinforcement learning and evolutionary methods
which are time-consuming and require a large number of
computing resources to search for appropriate models. Further-
more, they failed to achieve better peak signal-to-noise ratio
(PSNR) or structural similarity index measure (SSIM) [26]
results with searched lightweight SR models comparing with
the existing state-of-the-art (SOTA) hand-crafted SR models.

To address these problems, we propose a lightweight image
super-resolution method with a fully differentiable neural
architecture search (DLSR) which is composed of cell-level
and network-level search techniques. For cell-level search, we
design a large search space (see Table III-A) that contains more
lightweight convolution operations to increase the probabilities
of finding more lightweight models. As opposed to existing
work [17], [27] that searched for arbitrary combinations and
connections of basic operations or searched for handcrafted
blocks, we search for the operation combinations based on
information distillation structure that provides prior knowledge
of nice lightweight SR structures. Based on the flexibility of
lightweight operation combinations, our search space not only
contains the handcrafted RFDB [21] structure but also explores
for a better cell for efficient SR. To utilize the intermediate
information flow between the cells, we design a network-level
search space that contains all possible connections among the
cells to further boost the performance. As opposed to FALSR
[16] which uses an evolutionary algorithm to search for block
connections with discrete encoding, we first densely connect
the blocks to build a super-net, then utilize the continuous
relaxed architecture parameters to weigh the connections and
optimize the parameters with the stochastic gradient descent
method. During searching, the network automatically identifies
the most important intermediate information flow connections.

In addition, we design a loss function composed of three
parts: L1 loss, Hign Frequency Error Norm (HFEN) loss [28],
and the number of parameters of the operations. HFEN is an
image comparison metric from medical imaging and uses a
Laplacian of Gaussian kernel for edge-detection. Thus, the
HFEN loss can help to minimize the reconstruction error of
high-frequency image details. In addition, we treat the number
of parameters of the operations as a regularization term to
push the searching direction into a more lightweight space.
Experimental results show that our DLSR method surpasses
other SOTA lightweight SR methods in terms of PSNR,
SSIM with fewer parameters and Multi-Adds on benchmark
datasets: Set5 [11], Set14 [29], B100 [30], and Urban100 [31]
in ×2,×3,×4 super-resolution tasks. Moreover, the differ-
entiable NAS strategy we adopted enables the optimization
procedure for bi-level search simultaneously on single GPU.
In the end, our main contributions are summarized as three-
fold:
• We propose a differentiable NAS strategy for searching

a lightweight SR model, which incorporates both cell-
level and network-level search spaces to strengthen the
SR performance. The proposed approach significantly
reduces the searching cost compared to existing RL-based
NAS methods.

• We design a loss function that jointly considers distortion,
high-frequency reconstruction, and lightweight regular-
ization that push the searching direction to explore a
better lightweight SR model.

• We conduct extensive experiments to evaluate the efficacy
of our method, which achieves state-of-the-art perfor-
mance on the benchmark datasets in terms of PSNR,
SSIM, and model complexity.

II. RELATED WORK

A. CNN-based Image Super-Resolution

SR performance has been greatly improved by CNN-based
methods [1]–[6], [8], [10], [32]–[35]. Dong et al. [1] propose
SRCNN which is a shallow three-layer network to map inter-
polated LR images to HR images. Kim et al. [2] propose the
VDSR network, which is composed of 20 layers and global
skip-connection to improve the performance. In addition, Dong
et al. [36] design the transposed convolution layer, and Shi et
al. [37] propose the sub-pixel convolution layer for SR tasks.
Both methods perform the upsampling operation at the end
of the CNN, hence largely save on computation in the feature
extraction phase due to the reduction of spatial dimension. Lim
et al. [3] propose EDSR and MDSR, which remove Batch
Normalization layers in SRResnet [4] and greatly improve
the performance. Zhang et al. [6] propose RDN networks
by introducing dense connections into EDSR residual blocks.
RCAN [5] introduces channel attention to achieve better SR
performance. However, most of these CNN-based methods
contain large parameters and require large amounts of compu-
tation, which limits their real-world applications.

B. Lightweight Image Super-Resolution

Lightweight and efficient CNN for SR tasks has been
widely explored to suit mobile devices with an extremely
small amo-unt of parameters and computation [13], [14], [20],
[21], [38]–[42]. In order to reduce the parameters, Kim et
al. [38] introduce recursive layers combined with residual
schemes in the feature extraction stage. Ahn et al. [13]
propose the CARN-M model which utilizes group convolution
and cascade network architecture that significantly reduces
the parameters. Hui et al. [20], [39] propose an information
distillation mechanism (IDM) that utilizes a channel splitting
strategy to distill and compress local short-path feature infor-
mation. RFDN [21] rethinks the channel splitting strategy and
decouples the convolution layer and channel splitting layer.
Furthermore, they apply the skip-connection on the 3 × 3
convolution that makes up the shallow residual block (SRB),
which significantly improves the SR performance. Pan et al.
[43] propose DualCNN which has two parallel branches and
respectively recovers the structures and details in an end-to-
end manner.

C. SISR with Neural Architecture Search

As NAS techniques have achieved great success in image
classification [27], [44] and other tasks, recent works have
started to adopt NAS to search for efficient SR networks.
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(a) The architecture of cell (b) The architecture of MRB
Fig. 2. The cell-level search space. The cell is composed of 3 mixed residual blocks with an information distillation mechanism and an ESA block. The
‘Conv’ in figure(a) denotes the 1 × 1 convolution layer that cuts the channel number by half. Figure(b) shows the architecture of mixed block, which is
composed of multiple operations weighted by parameter α, residual skip connection, and ReLU layer.

Fig. 3. The network-level search space. Each cell is connected with all of its prior cells. And each connection is weighted by architecture parameter β. Each
cell’s input feature is composed of weighted features from the prior cells through concatenation and 1 × 1 convolution. The connections from each cell to
the last convolution layer are omitted for clarity.

FALSR [16] utilizes reinforcement learning and evolutionary
methods to search for lightweight SR models, building SR
as a constrained multi-objective optimization problem. Song
et al. [17] propose to search for multiple handcrafted efficient
residual dense blocks to stack the SR model using evolutionary
methods. Guo et al. [45] propose to search for cell struc-
tures and upsampling positions with reinforcement learning.
Recently, TPSR [18] has adopted reinforcement learning to
find an efficient GAN-based SR model, resulting a tiny SR
model that performes well on both perceptual and distortion
metrics. However, most of the prior SR methods with NAS
utilized reinforcement learning or evolutionary methods that
were time-consuming. In this work, we explore the fully
differentiable NAS to search for an efficient, accurate, and
lightweight SR model with a single GPU.

D. Related work in IEEE TCSVT

There are several papers published in the IEEE Transactions
on Circuits and Systems for Video Technology that are most
closely related to our work. CSFM [8] introduces Channel-
wise and spatial attention to capture more informative fea-
tures. However, the large number of parameters of the model
require heavy computations. FilterNet [15] presents the dilated
residual group which adaptively filters the redundant low-
frequency information. EMASRN [14] proposes expectation-
maximization attention mechanism for better balancing per-
formance and applicability. However, these methods are hand-
crafted and thus lack flexibility. We propose a differentiable

NAS strategy for searching a lightweight SR model, which
incorporates both cell-level and network-level search spaces to
strengthen the SR performance. We design a loss function that
jointly considers distortion, high-frequency reconstruction, and
lightweight regularization that push the searching direction to
explore a better lightweight SR model.

III. METHOD

In this section, we introduce our Differentiable NAS method
for Lightweight Super-Resolution model, dubbed DLSR. Be-
low, we first describe the search space of cell-level and
network-level. Then, we discuss the search strategy and loss
function of our proposed DLSR.

A. Search Space

Cell-level search space The cell-level topology structure is
based on residual feature distillation block (RFDB) [21], which
is comprised of three shallow residual blocks (SRB) with
an information distillation mechanism and a contrast-aware
channel attention (CCA) layer [20]. The smallest building
block SRB is composed of a 3 × 3 convolution layer and
a residual connection. However, we argue that the 3 × 3
convolution in RFDB could be suboptimal and would thus
not always be the best choice for lightweight super-resolution.
In order to improve the flexibility of the RFDB and search
for a more lightweight structure, we replace the SRB with
Mixed Residual Block (MRB) in Figure 2. The MRB is
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TABLE I
OPERATIONS AND THEIR COMPLEXITIES IN MIXED LAYER. MUTI-ADDS

ARE CALCULATED IN ×2 SR TASK WITH 50 CHANNELS ON 1280×720
IMAGE. DILATED CONVOLUTION [46] IS JOINT WITH GROUP

CONVOLUTION.

Operation Kernel Size Params (K) Muti-Adds (G)

convolution

1× 1 2.5 0.576
3× 3 22.5 5.184
5× 5 62.5 14.400
7× 7 122.5 28.224

Separable
convolution

3× 3 5.9 1.359
5× 5 7.5 1.728
7× 7 9.9 2.281

Dilated
convolution

3× 3 2.95 0.680
5× 5 3.75 0.864

composed of a mixed layer, a residual connection, and a ReLU
layer, in which the mixed layer is made up of multiple op-
erations including separable convolution, dilated convolution,
and normal convolution. For mixed layer k, we denote the
input feature as xk, and the operation space as O, where
each element represents a candidate function o(·) weighted
by the cell architecture parameters αk

o , as illustrated in Figure
2. We use softmax to perform the continuous relaxation of the
operation space as done in DARTS [27]. Thus, the output of
mixed layer k denoted by fk(xk) is given as:

fk(xk) =
∑
o∈O

exp(αko)∑
o′∈O

exp(αko′)
o(xk). (1)

During searching, the operation with the largest αk
o is reserved

as the genotype of the layer. The structure of each cell is
composed of three MRBs with a feature distillation mechanism
and an enhanced spatial attention (ESA) block as shown in
Figure 2. Hence, the number of possible combinations for each
cell is 9× 9× 9.

Network-level search space Different from HNAS [45] which
designs the network-level search space to search for the
upsampling positions or HiNAS [47] that is designed to search
for the network width, we design the network-level search
space to search for the shortcut connections among the cells
to explore the intermediate information, as shown in Figure 3.
The whole network is stacked with 6 cells, and each cell is
connected with all of its predecessors. The output features
of its prior cells are concatenated and passed into 1 × 1
convolution layer to aggregate the information. In addition,
each cell’s output feature is connected to the last convolution
layer. The connection between cell i and cell j, which is also
the feature maps of cell i, is denoted xi, weighted by the
network-level architecture parameters β(i,j). We also utilize
softmax function as continuous relaxation for parameters β(i,j)

as Eq. (1). Then, the input of the cell j denoted by Ij is
formulated as:

Ij = g

 exp(β(i,j))∑
i′<j

exp(β(i′,j))
xi

 , (2)

where g(·) denotes the operations of concatenation and 1× 1
convolution. Thus, we build a continuous and dense super-

network search space considering all the intermediate infor-
mation among the cells.

Search complexity Based on the above illustration, the pro-
posed DLSR method includes both the cell-level and network-
level search spaces. Thus, the overall search complexity of our
method is estimated as:

9× 9× 9× 5× 4× 3× 2 = 87480. (3)

It is nontrivial and requires a large amount of computation
cost to explore such a large search space for a lightweight
and accurate super-resolution model via reinforcement learn-
ing [45] or evolutionary algorithm [16], [17] based neural
architecture search approaches. In this work, we solve this
problem via a fully differentiable neural architecture search
approach.

B. Search Strategy

We extend the popular differentiable NAS methods includ-
ing DARTS [27] and its improved version MiLeNas [44]
for the low-level computer vision (SISR) task. These two
methods were originally proposed for the image classification
task which is a high-level computer vision task. Motivated by
MiLeNas, the objective function of our DLSR model is defined
as the following regularized form:

min
θ,α,β

[Ltr(θ
∗(α, β) + λLval(θ

∗(α, β);α, β)], (4)

where Ltr denotes the loss on training dataset and Lval

denotes the loss on validation dataset. The θ denotes the
weights parameters of the network and λ is a non-negative
regularization parameter that balances the importance of the
training loss and validation loss. Because the architecture
parameters α and β are both continuous, we directly apply
Adam [48] to solve problem (4). We define the architecture
parameter A = [α, β], the parameters θ, α, and β are updated
via the following iteration:

θ = θ − ηθ∇θLtr(θ,A); (5)
A = A− ηA(∇ALtr(θ,A) + λ∇ALval(θ,A)). (6)

During the searching process, we preserve the operation that
has the maximal value of the α as the searched operation
of the layer. The connections that have the maximal and the
submaximal value of the β are preserved as the searched input
connections of the cell. Our searching and training procedure
is summarized in Algorithm 1.

C. Loss Function

To achieve lightweight and accurate SR models, the loss
function is composed of three parts, which include L1 loss
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(a) The searched network structure of DLSR (b) The searched cell structure of DLSR

(c) The searched network structure of DLSR-DIV (d) The searched cell structure of DLSR-DIV

Fig. 4. The searched network and cell structures. The connections from each cell to the last convolution layer is omitted for clarity.

as distortion loss, HFEN loss [28] for reconstruction, and
parameters of the operations as a lightweight limitation.

L1 =
1

N

N∑
i=1

∣∣(Hθ(I
LR)− IHR)

∣∣ (7)

LHFEN =
1

N

N∑
i=1

∣∣∣∇Hθ(I
LR

)−∇ IHR
∣∣∣ (8)

LP =
∑
o∈O

po∑
c∈O pc

exp(αo)∑
o′∈O exp(αo′)

. (9)

L(θ) = L1 + µ× LHFEN + γ × LP . (10)

Specifically, L1 loss is popularly used for SR tasks [3], [16],
[21], [49] to minimize the distortion between the reconstructed
SR image and ground truth HR image; LHFEN [50] is a
gradient-domain L1 loss, and each gradient ∇(·) is computed
using High Frequency Error Norm (HFEN) [28] which is an
image comparison metric from medical imaging and uses a
Laplacian of Gaussian kernel for edge-detection with Gaussian
filter pre-smoothed images. LHFEN is adopted to strengthen
the reconstruction of image details such as edges and stripes.
LP is a regularization item based on the parameters of opera-
tions. po denotes the number of parameters of operation o. LP

utilizes the number of the parameters as the weight of architec-
ture parameter α, so as to reduce the α of the operations which
have a large number of parameters and push the algorithm to
search for lightweight operations. The µ and γ are weighting
parameters for balancing the reconstruction performance and
model complexity, respectively. As for retraining the searched
networks, the last term L(θ) in the total loss function (10) is
removed by setting γ = 0.

Algorithm 1: Searching and training Algorithm
Input: Training set D

1 Initialize the super-network T with architecture
parameters α and β.

2 Split training set D into Dtrain and Dvalid.
3 Train the super-network T on Dtrain for several steps

to warm up.
4 for t = 1, 2, . . . , T do
5 Sample train batch Bt = {(xi, yi)}batchi=1 from Dtrain

6 Optimize θ on the Bt by Eq. (5)
7 Sample valid batch Bv = {(xi, yi)}batchi=1 from Dvalid

8 Optimize α and β on the Bv by Eq. (6)
9 Save the genotypes of the searched networks

10 Train searched networks from the scratch
11 Pick up the best performing network S

Output: A lightweight SR network S

IV. EXPERIMENTS

A. Datasets

We use high-quality DIV2K [51] and Flickr2K [52] datasets
as training datasets. The DIV2K dataset consists of 800
training images and the Flicker2K dataset consists of 2650
training images. The LR images are obtained by the bicubic
downsampling of HR images. In addition, we use the standard
benchmark datasets, Set5 [11], Set14 [29], B100 [30], and
Urban100 [31] as test datasets.

B. Implementation Details

We merge the DIV2K and Flickr2K datasets together and
denote them as DF2K dataset with a total of 3450 images.
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TABLE II
IMAGE SUPER-RESOLUTION RESULTS WITH SCALE FACTORS OF 2, 3, 4 ON BENCHMARK DATASETS.

Method Scale Params Multi-Adds Set5 Set14 B100 Urban100
(K) (G) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic

×2

- - 33.66/0.9299 30.24/0.8688 29.56/0.8403 26.88/0.8403
DRRN [38] 297 6,796.9 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188
CARN-M [13] 412 91.2 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9194
FALSR-B [16] 326 74.7 37.61/0.9585 33.29/0.9143 31.97/0.8967 31.28/0.9191
ESRN-V [17] 324 73.4 37.85/0.9600 33.42/0.9161 32.10/0.8987 31.79/0.9248
IMDN [20] 694 - 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283
PAN [49] 261 70.5 38.00/0.9605 33.59/0.9181 32.18/0.8997 32.01/0.9273
RFDN [10] 534 123.0 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278
DLSR-DIV 328 69.3 38.05/0.9607 33.67/0.9181 32.21/0.8998 32.22/0.9292
DLSR(Ours) 322 68.1 38.04/0.9606 33.67/0.9183 32.21/0.9002 32.26/0.9297
Bicubic

×3

- - 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349
DRRN [38] 297 6,796.9 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378
CARN-M [13] 412 46.1 33.99/0.9236 30.08/0.8367 28.91/0.8000 27.55/0.8385
ESRN-V [17] 324 36.2 34.23/0.9262 30.27/0.8400 29.03/0.8039 27.95/0.8481
IMDN [20] 703 - 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519
PAN [49] 261 39.0 34.40/0.9271 30.36/0.8423 29.11/0.8050 28.11/0.8511
RFDN [10] 541 55.4 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525
DLSR-DIV 334 31.5 34.47/0.9277 30.41/0.8430 29.12/0.8053 28.25/0.8541
DLSR(Ours) 329 30.9 34.49/0.9279 30.39/0.8428 29.13/0.8061 28.26/0.8548
Bicubic

×4

- - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577
DRRN [38] 297 6,796.9 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638
CARN-M [13] 412 32.5 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694
ESRN-V [17] 324 20.7 31.99/0.8919 28.49/0.7779 27.50/0.7331 25.87/0.7782
IMDN [20] 715 - 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838
PAN [49] 272 28.2 32.13/0.8948 28.61/0.7822 27.59/0.7363 26.11/0.7854
RFDN [10] 550 31.6 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858
DLSR-DIV 343 18.2 32.25/0.8952 28.61/0.7814 27.58/0.7365 26.13/0.7873
DLSR(Ours) 338 17.9 32.33/0.8963 28.68/0.7832 27.61/0.7374 26.19/0.7892

TABLE III
COMPARISON RESULTS WITH TPSR-NOGAN ON BENCHMARK DATASETS.

Method Scale Params Multi-Adds Set5 Set14 B100 Urban100
(K) (G) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

TPSR-NOGAN ×2 60 14.0 37.38/0.9583 33.00/0.9123 31.75/0.8942 30.61/0.9119
DLSR-S(Ours) ×2 56 12.4 37.71/0.9595 33.33/0.9150 31.96/0.8973 31.26/0.9196
TPSR-NOGAN ×4 61 3.6 31.10/0.8779 27.95/0.7663 27.15/0.7214 24.97/0.7456
DLSR-S(Ours) ×4 62 3.4 31.75/0.8885 28.31/0.7745 27.38/0.7298 25.47/0.7663

TABLE IV
EFFICIENCY COMPARISON ON DIV2K VALIDATION SET FOR X4

UPSCALING

Method Val Time Params FLOPs Mem
PSNR (ms) (M) (G) (M)

RFDN [10] 29.04 98.66 0.433 27.10 788.13
IMDN [20] 29.13 102.12 0.894 58.53 468.29
FMEN-S [53] 29.00 85.85 0.341 22.28 306.74
BSRN-S [54] 29.01 95.47 0.156 9.50 730.09
DLSR(Ours) 29.05 101.38 0.339 20.41 853.65

During the searching stage, we split the dataset to 3000 images
as training dataset Dtrain and the remaining 450 images as
validation dataset Dvalid. We augment the datasets by random
rotations of 90◦, 180◦, 270◦, and horizontal flips. The high-
resolution (HR) patch size is set as 64 and the minibatch size is
set as 64. We optimize the θ, α and β parameters with ADAM
optimizer [48] with 2 × 105 iterations. For parameter θ, the
learning rate is set to 3×10−4, the momentum parameter and
exponential moving average parameter are set as (0.9,0.999)

and the weight decay is set to 10−8. For parameters α and
β, the learning rate is set to 3 × 10−4, the momentum
parameter and exponential moving average parameter are set
as (0.5,0.999) and the weight decay is set to 10−8. The warm-
up process takes 2×104 steps that only parameter θ is updated.
The learning rates of the warm-up process and searching
process are both set to 3×10−4. We save the genotypes of the
searched models at about 5×104 step, 105 step, and 1.5×105

step when the distribution of the architecture parameters turn
stable during searching. The number of channels is set to 48
and the number of cells is set to 6. The hyper-parameter λ is
set as 1.0, µ is set as 0.2, and γ is set as 0.2.

For retraining the searched networks, we use the whole
DF2K dataset with the same data augmentation as the search-
ing stage. For ×2,×3,×4 super-resolution, HR patch size is
set as 128, 192, and 256, respectively. We train our searched
DLSR model with ADAM optimizer [48] with the same
settings as the optimization of the parameter θ during the
searching stage. We train the model in 2 × 106 steps and set
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(a) HR (b) Bicubic (c) CARN-M (d) FALSR-B (e) PAN (f) Ours
Fig. 5. Visual comparisons among SOTA lightweight models in ×2 image super-resolution. The test image patches are from Set14 and Urban100. Note that
the results of FALSR-B are based on our test with the pre-trained model which is released by the authors. The results of CARN-M and PAN are directly taken
from the authors’ release. Our method has better reconstruction performance on image details, such as thin stripes on the clothes and edges of windows.

(a) HR (b) Bicubic (c) CARN-M (d) RFDN (e) PAN (f) Ours
Fig. 6. Visual comparisons among SOTA lightweight models in ×4 image super-resolution. The test image patches are from Set14 and Urban100. Note that
the results of RFDN are based on our test with the pre-trained model which is officially released by the authors. Our method shows better reconstruction
performance and less deformation on image details such as texts and stripes.

the minibatch size as 32. The learning rate is initialized with
3 × 10−4 and halved every 4 × 105 steps. The weights of
both ×3,×4 super-resolution models are warmed up by the
weight of the pre-trained ×2 SR model. We perform ×2 SR
for searching the neural network architectures and apply the
searched models to ×2,×3,×4 SR tasks. Both the searching
and training stages are performed on a single NVIDIA Tesla
V100 GPU. All the experiments are conducted in PyTorch 1.2
and Python 3.7.

C. Searched Results

The searched network structure and cell structure are shown
in Figure 4. For clarity, we omit the connections between each
block and the end of the model in the figure. The searched
cell is made up of a 1×1 convolution layer, 7×7 separable

convolution layer, 5 × 5 separable convolution layer, ESA
block, and residual connections with information distillation
mechanism. Since the parameters and FLOPS of the 1× 1
convolution, 5×5 separable convolution, and 7×7 separable
convolution are all fewer than the original 3×3 convolution,
we obtain a much smaller (nearly half the original size) model
compared with vanilla RFDN [21].

D. Comparison with State-of-the-art Methods

We compare the DLSR model with state-of-the-art
lightweight SR methods on two commonly-used metrics: peak
signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) [26] on the Y channel of the transformed
YCbCr space. We also present the number of the parameters
and number of the operations (Multi-Adds) to show the model
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TABLE V
COMPARISON RESULTS BETWEEN THE MODEL WITH/WITHOUT NETWORK-LEVEL CONNECTIONS DLSR/DLSR-B.

Method Scale Set5 Set14 B100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

DLSR-B ×2 38.04/0.9606 33.63/0.9177 32.20/0.9000 32.20/0.9293
DLSR ×2 38.04/0.9606 33.67/0.9183 32.21/0.9002 32.26/0.9297
DLSR-B ×4 32.27/0.8959 28.67/0.7832 27.60/0.7372 26.16/0.7885
DLSR ×4 32.33/0.8963 28.68/0.7832 27.61/0.7374 26.19/0.7892

TABLE VI
COMPARISON RESULTS WITH DIFFERENT LOSS FUNCTION CONFIGURATIONS ON BENCHMARK DATASETS.

Method Scale Params Multi-Adds Set5 Set14 B100 Urban100
(K) (G) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

DLSR-L1 ×2 323 68.1 38.04/0.9606 33.69/0.9185 32.20/0.9002 32.27/0.9297
DLSR-HFEN ×2 365 77.8 38.02/0.9605 33.78/0.9200 32.21/0.9003 32.34/0.9305
DLSR ×2 322 68.1 38.04/0.9606 33.67/0.9183 32.21/0.9002 32.26/0.9297

complexity. Multi-Adds is calculated on 720p (1280 × 720)
HR images. The ×2,×3,×4 SR results are shown in Table
II, and the best results are highlighted. The DLSR-DIV
denotes that the model is trained only with DIV2K dataset
for fair comparisons. The network and cell structures of
DLSR-DIV are shown in Figure 4 (c) and (d) The visual
performance of ×2,×4 super-resolution are shown in Figures
5 and 6. Compared with DRRN [38], our method only takes
1% Multi-Adds, while achieving 1dB PSNR improvement
on the Urban100 dataset in ×2,×3 SR tasks, 0.7dB PSNR
improvement on the Set5 dataset in ×4 SR task, as well as
0.3-0.7dB PSNR improvement on other tasks, respectively.
Our method surpasses other NAS based methods like FALSR-
B [16] and ESRN-V [17] by a large margin with 0.2-0.4dB
PSNR improvement with fewer parameters and Multi-Adds in
most of the SR tasks (Table II). As shown in Table VII, the
search cost of our method is significantly less than NAS-based
SR methods. FALSR-B [16] takes less than 3 days on 8 GPUs
to execute their pipeline once. ESRN-V [17] takes around
one day on 8 GPUs to execute their evolution procedure. Our
method only takes around 2 days on one GPU.

Compared with hand-crafted light-weight models like
IMDN [20] and RFDN [21], the DLSR method only takes
about half the amount of parameters while still outperforming
them. Compared with PAN [49], which is the most lightweight
deep SR model in AIM2020 Efficient Super Resolution, our
method is still able to outperform it with fewer Multi-Adds.

The Efficiency Comparison results in terms of inference
time, parameters, FLOPs, and Memory are listed in IV. The
experiments are with PyTorch 1.10.0, CUDA Toolkit 11.6,
and cuDNN 8.3.0.2, on an NVIDIA 3080 GPU. In addition
to the baseline methods like IMDN and RFDN, the winners
of the NTIRE 2022 Challenge on Efficient Super Resolution
are also included. Please note that our method is not specially
optimized for the challenge. Our method achieves better PSNR
results with comparable parameters and FLOPs. Since it is
unfriendly for GPU to calculate separable convolution, the
running time of our method is relatively larger. Because our
method introduces the connections of the network-level, the
memory usage is larger for preserving the output features.

TABLE VII
SEARCHING COST OF NAS BASED SR METHODS

NAS based SR method GPU days
FALSR [16] 24
ESRN [17] 8

DLSR(ours) 2

The visual comparison results show that our method
achieves better performance in reconstructing image details
such as tiny stripes and the edges of the text. In Figure 5,
our DLSR method reconstructs the right direction of the thin
stripes on the clothes with high visual quality and successfully
reconstructs the edge of the window, while other methods
cannot. In Figure 6, our method reconstructs the round edge
of the text ’O’ and other stripe-like image details without
distortion. In summary, the quantitative and visual results both
demonstrate that our models outperform the state-of-the-art SR
models on multiple datasets and scales with fewer parameters
and Multi-Adds.

In addition, to compare our method with the Tiny Per-
ceptual Super Resolution (TPSR) model [18], which is a
super lightweight SR model with 60K parameters, we cut
the channel number of our DLSR model to 18 and denote
the smaller model as DLSR-S. The ×2,×4 SR comparison
result is shown in Table III. As our method is not based on
the generative adversarial networks (GAN), we compare it
with the baseline model of the TPSR method called TPSR-
NOGAN. The result indicates that even with fewer Multi-
Adds, our DLSR-S model can still surpass the TPSR-NOGAN
with a large margin of PSNR and SSIM.

TABLE VIII
VALIDATION OF THE EFFECTIVENESS OF CELL-LEVEL SEARCH SPACE.

Method Scale Params FLOPs Set5 Set14 B100 Urban100
(K) (G) PSNR PSNR PSNR PSNR

RFDN ×2 534 123.0 38.05 33.68 32.16 32.12
DLSR-B ×2 322 68.1 38.04 33.63 32.20 32.20

RFDN ×4 550 31.6 32.24 28.61 27.57 26.11
DLSR-B ×4 338 17.9 32.27 28.67 27.60 26.16

E. Ablation Studies

The effectiveness of cell-level search. The cell-level search
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(a) HR (b) DLSR-L1 (c) DLSR-HFEN (d) DLSR
Fig. 7. Visual comparisons among the models trained with different loss configurations in ×2 image super-resolution. DLSR-L1 model is searched and
retrained only with L1 loss. DLSR-HFEN model is searched and retrained with L1 loss and HFEN loss. DLSR model is searched and retrained with L1 loss,
HFEN loss, and parameter regularization.

in our method is based on information distillation structure
which is adopted in hand-crafted RFDB [22] structure. While
RFDB only contains the same three 3×3 convolution layers,
our method aims to search for the combinations of lightweig-
ht operations. So, the comparison results between RFDN
and DLSR-B (only considering the cell-level search, without
network-level search) validate the effectiveness of cell-level
search, shown in Table VIII.

The effectiveness of network-level connections. To com-
pare with DLSR, we design our method to search for a baseline
model only on the cell-level search space. After searching
and retraining, we name this model DLSR-B. Coincidentally,
the DLSR-B has the same numbers of parameters and Multi-
Adds as DLSR. The comparison result is illustrated in Table
V. The result shows that the network-level connections can
improve the performance of DLSR-B. Thus, the search space
of network-level connections which we propose is innovative
and meaningful.
The effectiveness of the loss function. The loss function is
comprised of three parts: the L1 loss, the HFEN loss, and
the parameter loss. We conduct the experiments on three dif-
ferent models: DLSR-L1, DLSR-HFEN, DLSR. The DLSR-
L1 model is searched and retrained only with L1 loss. The
DLSR-HFEN model is searched and retrained with L1 loss and
HFEN loss. The DLSR model is searched and retrained on all
three parts of the loss. The comparison result is illustrated in
Table VI and Figure 7. The result shows that the DLSR-HFEN
achieves better results than DLSR-L1 with a larger number of
parameters and Multi-Adds. Although DLSR achieves similar
numerical results comparing with DLSR-L1, the visual results
of DLSR are much better than DLSR-L1. In a word, the DLSR
model achieves a better trade-off between the SR performance
and the model complexity, and the HFEN loss can contribute
to a better visual effect with sharper image details.
The search stability and the confidence interval. To prove
of the effectiveness of our proposed DLSR method, we repeat
the searching experiment 6 times on ×2 SR task and get 6
best-performing sub-networks. The 95% confidence intervals
of the results are shown in Table X. The results show that our
proposed DLSR method is stable and effective.

Experimental findings We list some models searched with
different random seeds at initialization. The quantitative results
are shown in Table IX. The cell-level genotypes denote the

searched results of MRBs. For simplicity, the network-level
structures are not displayed which are also different among
the networks.

The results show that when the initialization changes, the
searched structures change significantly with different types of
convolutional layers, resulting in different performance. As the
loss function is design to punish the convolutional layers with
large parameters, the conv5x5/conv7x7 hardly ever appear.
The structure with dilated convolutional layers is seldom
searched and the performance is not the best. Separatable
convolutional layers appear most frequently and achieve better
trade-off between lightweight structures and super-resolution
performance. Moreover, we find that the networks which
have the operation “separate convolution 5×5” achieve better
results. At the network-level searching, the information flow
directly from the prior cell seems to be the most important,
and the features from the second cell are the most frequently
adopted. These findings may be instructive for lightweight
network design.

V. CONCLUSIONS

In this work, we propose a novel Differentiable neural archi-
tecture search approach to search for extremely Lightweight
single image Super-Resolution models on both the cell-level
and the network-level, dubbed DLSR. In addition, we de-
sign a novel loss function that considers distortion, high-
frequency reconstruction, and lightweight regularization that
jointly pushes the searching direction to explore a better
lightweight SR model. Experimental results show that our
DLSR method can surpass both the hand-crafted and NAS-
based SOTA lightweight SR methods in terms of PSNR and
SSIM with fewer parameters and Multi-Adds.
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