
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XXX 20XX 1

Deep Attention-guided Graph Clustering
with Dual Self-supervision

Zhihao Peng, Hui Liu, Yuheng Jia, Member, IEEE, Junhui Hou, Senior Member, IEEE

Abstract—Existing deep embedding clustering methods fail to
sufficiently utilize the available off-the-shelf information from
feature embeddings and cluster assignments, limiting their per-
formance. To this end, we propose a novel method, namely
deep attention-guided graph clustering with dual self-supervision
(DAGC). Specifically, DAGC first utilizes a heterogeneity-wise
fusion module to adaptively integrate the features of the auto-
encoder and the graph convolutional network in each layer and
then uses a scale-wise fusion module to dynamically concatenate
the multi-scale features in different layers. Such modules are
capable of learning an informative feature embedding via an
attention-based mechanism. In addition, we design a distribution-
wise fusion module that leverages cluster assignments to acquire
clustering results directly. To better explore the off-the-shelf
information from the cluster assignments, we develop a dual
self-supervision solution consisting of a soft self-supervision
strategy with a Kullback-Leibler divergence loss and a hard
self-supervision strategy with a pseudo supervision loss. Ex-
tensive experiments on nine benchmark datasets validate that
our method consistently outperforms state-of-the-art methods.
Especially, our method improves the ARI by more than 10.29%
over the best baseline. The code will be publicly available at
https://github.com/ZhihaoPENG-CityU/DAGC.

Index Terms—Unsupervised learning, deep embedding cluster-
ing, feature fusion, self-supervision.

I. INTRODUCTION

CLUSTERING is one of the fundamental tasks in data
analysis, which aims to categorize samples into multiple

groups according to their intrinsic similarities, and has been
successfully applied to many real-world applications such
as image processing [1]–[5], face recognition [6]–[8], and
object detection [9]–[11]. Recently, with the booming of
deep learning, numerous researchers have paid attention to
deep embedding clustering analysis, which could effectively
learn a clustering-friendly representation by extracting intrinsic
patterns from the latent embedding space. For example, Hinton
and Salakhutdinov [12] developed a deep auto-encoder (DAE)
framework that first conducts embedding learning and then

This work was supported in part by the Hong Kong UGC under grant
UGC/FDS11/E02/22 and RGC under grants 11219019 and 11202320, in part
by the National Natural Science Foundation of China under Grant 62106044,
in part by the Natural Science Foundation of Jiangsu Province under Grant
BK20210221, in part by the ZhiShan Youth Scholar Program from Southeast
University 2242022R40015. Corresponding author: Hui Liu and Yuheng Jia.

Z. Peng and J. Hou are with the Department of Computer Science, City
University of Hong Kong, Kowloon, Hong Kong 999077 (e-mail: zhihapeng3-
c@my.cityu.edu.hk; jh.hou@cityu.edu.hk)

H. Liu is with the School of Computing & Information Sciences, Caritas
Institute of Higher Education, Hong Kong. E-mail:hliu99-c@my.cityu.edu.hk

Y. Jia is with the School of Computer Science and Engineering, Southeast
University, Nanjing 210096, China, and also with Key Laboratory of Com-
puter Network and Information Integration (Southeast University), Ministry
of Education, China (e-mail: yhjia@seu.edu.cn).

performs K-means [13] to obtain clustering results. Xie et al.
[14] designed a deep embedding clustering method (DEC) to
perform embedding learning and cluster assignment jointly.
Guo et al. [15] improved DEC by introducing a reconstruc-
tion loss to preserve data structure. Although these DAE-
based approaches obtain impressive improvement, they neglect
the underlying topological structure among data, which has
demonstrated its importance in various works [16]–[18].

Recently, a series of works have been proposed to use
graph convolutional networks (GCNs) [19] to exploit the
topological structure information. For instance, Kipf et al.
[20] incorporated GCN into DAE and variational DAE, and
proposed graph auto-encoder (GAE) and variational graph
auto-encoder (VGAE), respectively. Pan et al. [21] designed an
adversarially regularized graph auto-encoder network (ARGA)
to promote GAE. Wang et al. [22] incorporated graph attention
networks [23] into GAE for attributed graph clustering. Bo et
al. [24] fused GCN into DEC to consider the node content
and topological structure information at the same time.

However, these works still suffer from the following draw-
backs. First, they equate the importance of the features ex-
tracted from DAE and GCN, e.g., in [24], the DAE and GCN
features of a typical layer are averaged. Such a simple fusion
strategy is not a good choice since those features contain
different characteristic information. Second, they neglect the
multi-scale information embedded in different layers, which
may lead to inferior clustering results. Third, they output
two probability distributions capable of obtaining the final
clustering results; however, the complex real-world datasets
are usually agnostic and vastly different, so it is difficult to
decide which one should be used to get the final clustering
results. To the best of our knowledge, this is a decision-making
dilemma for those kinds of deep graph clustering methods.
Last but not least, the previous approaches fail to adequately
exploit the available information from the high-confidence
clustering assignments.

To address the above-mentioned drawbacks, we propose a
novel deep embedding clustering method, focusing on ex-
ploiting the available off-the-shelf information from feature
embeddings and cluster assignments. As shown in Figure
1, the proposed method consists of a heterogeneity1-wise
fusion (HWF) module, a scale-wise fusion (SWF) module, a
distribution-wise fusion (DWF) module, a soft self-supervision
(SSS) strategy, and a hard self-supervision (HSS) strategy.
A preliminary version of this work was published in ACM

1Here, ‘heterogeneity’ indicates the discrimination of feature structure, e.g.,
the DAE-based feature structure and the GCN-based feature structure.

Copyright © 20xx IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending
an email to pubs-permissions@ieee.org.

ar
X

iv
:2

11
1.

05
54

8v
3

 [
cs

.C
V

]
 2

6
D

ec
 2

02
2

https://github.com/ZhihaoPENG-CityU/DAGC

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XXX 20XX 2

SSSSSS

Cluster Enhancement

ZZ

HHA X Encoder Encoder Encoder Encoder Decoder Decoder Decoder Decoder

FQ, ZQ, Z

Embedding Enhancement Dual Self-supervision

Input DAE Output

HWF

(GCN)

HWF

(GCN)

HWF

(GCN)

HWF

(GCN)

HWF

(GCN)

HWF

(GCN)

HWF

(GCN)

HWF

(GCN)

SWF

(GCN)

SWF

(GCN) HSSDWFDWF

Fig. 1. The overall flowchart of the proposed method, namely deep attention-guided graph clustering with dual self-supervision (DAGC). It consists of a DAE
module, a heterogeneity-wise fusion (HWF) module, a scale-wise fusion (SWF) module, a distribution-wise fusion (DWF) module, a soft self-supervision
(SSS) strategy, and a hard self-supervision (HSS) strategy. Specifically, HWF and SWF conduct the weight fusion in the sum and concatenation manner,
respectively, where both modules involve a multilayer perceptron module, a normalization operation, and a GCN module. DWF uses a softmax function to
infer a probability distribution. To achieve an end-to-end self-supervision, SSS drives the soft assignments to achieve distributions alignment between Q and
Z distributions, and HSS transfers the cluster assignment to a hard one-hot encoding. The detailed architectures of HWF, SWF, DWF, and SSS are given in
Figures 2, 3, and 4, respectively.

Multimedia 2021 [25], which can be regarded as a special case
of the current version that focuses on embedding enhancement
via the HWF and SWF modules. However, the conference
paper suffers from the decision-making dilemma concerning
two learned probability distributions from DAE and GCN, i.e.,
which one should be selected as the final clustering assignment
result. In summary, the main contributions of this journal paper
are as follows:
• To handle the decision-making dilemma, we propose a

learning-aware fusion module to adaptively fuse the
learned data probability distributions to predict the clus-
tering results.

• In addition, for the two learned distributions, we improve
the soft self-supervision strategy to better preserve the
distribution consistency alignment.

• Moreover, for the aforementioned fused distribution, we
develop a hard self-supervision strategy with a pseudo
supervision loss to employ the high-confidence clustering
assignments to improve clustering performance.

• Extensive experiments on nine benchmark datasets val-
idate that our method consistently outperforms the con-
ference version [25]. For instance, on DBLP, our method
improves the ARI by more than 14.80%. In addition,
the ablation studies and visualizations quantitatively and
qualitatively validate the effectiveness of this method.

We organize the rest of this paper as follows. Section II
briefly reviews the related works. Section III introduces the
proposed network architecture, followed by the experimental
results and analyses in Section IV. Finally, we conclude this
paper in Section V.

Notation: Throughout the paper, scalars are denoted by italic
lower case letters, vectors by bold lower case letters, matrices
by bold upper case ones, and operators by calligraphy ones,
respectively. Let X be the input data, V be the node set, E
be the edge set, and G = (V, E ,X) be the undirected graph.

A ∈ Rn×n denotes the adjacency matrix, D ∈ Rn×n denotes
the degree matrix, and I ∈ Rn×n denotes the identity matrix.
We summarize the main notations in Table I.

TABLE I
MAIN NOTATIONS AND DESCRIPTIONS.

Notations Descriptions
X ∈ Rn×d The input matrix
X̂ ∈ Rn×d The reconstructed matrix
A ∈ Rn×n The adjacency matrix
D ∈ Rn×n The degree matrix
Zi ∈ Rn×di The GCN feature from the ith layer
Hi ∈ Rn×di The encoder feature from the ith layer
Mi ∈ Rn×2 The HWF weight matrix
Z
′
i ∈ Rn×di The HWF combined feature

U ∈ Rn×(l+1) The SWF weight matrix
H ∈ Rn×dl The DAE extracted feature
Q ∈ Rn×k The distribution obtained from DAE
Z ∈ Rn×k The distribution obtained from SWF
P ∈ Rn×k The auxiliary distribution
V ∈ Rn×2 The DWF weight matrix
F ∈ Rn×k The DWF combined feature
n The number of samples
d The dimension of X
di The dimension of the ith latent feature
l The number of network layers
k The number of clusters
k̂ The number of neighbors for KNN graph
r The threshold value for pseudo supervision
·‖· The concatenation operation

II. RELATED WORK

DAE is a typical deep neural network that allows com-
putational models composed of multiple processing layers to
learn data representations with multiple levels of abstraction.
Recently, benefiting from the powerful representation ability
of DAE, deep embedding clustering has achieved remarkable

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XXX 20XX 3

GCN

Fusion Fusion

Normalization:
softmax-

Normalization:
softmax-

GCN

Fig. 2. Illustration of the architectures of the HWF module (left) and the SWF module (right). The HWF module fuses the GCN feature Zi and the DAE
feature hi to obtain Zi+1 via a weighted sum form, while the SWF module combines the multi-scale weighted features in a feature concatenation manner.
More specifically, we first learn the weights through the attention-based mechanism (the left dashed box in the triple-solid line box) and then integrate the
corresponding features through the weighted fusion (the right dashed box in the triple-solid line box). Here, ⇓ represents the input and output actions.

development [26]–[32]. For example, Hinton and Salakhutdi-
nov [12] used DAE to extract the feature representation of
input data, on which K-means [13] is performed to obtain the
clustering results. [14] jointly conducted embedding learning
and cluster assignment in an iterative optimization manner.
The improved DEC (IDEC) [15] enhanced the clustering
performance by adding a reconstruction loss function into
DEC. A series of works [2], [3], [33] introduced multi-view
information into the DAE framework to further improve em-
bedding learning. However, these DAE-based methods neglect
the underlying topological structure among data, which has
demonstrated its effectiveness for data clustering [16]–[18],
[34], [35], thus limiting their performance.

Graph embedding is a new paradigm for clustering to cap-
ture the topological structure among samples [17], [36]–[41],
and many recent approaches [42]–[46] have explored GCN
to achieve graph embedding. For instance, Kipf and Welling
[20] provided GAE and VGAE methods by incorporating
GCN into DAE and variational DAE frameworks, respectively.
[21] extended GAE by introducing a designed adversarial
regularization. Wang et al. [22] merged GAE and the graph
attention network [23] to build a deep attentional embedding
framework for attributed graph clustering (DAEGC). The
structural deep clustering network (SDCN) [24] fused the node
content and topological structure information to achieve deep
embedding clustering. Peng et al. [25] designed the attention-
driven graph clustering network (AGCN) to merge numerous
features to enhance the embedding learning via an adaptive
mechanism. The deep fusion clustering network (DFCN) [47]
exploited a designed fusion strategy to combine the DAE and
GAE frameworks to merge the node attribute and topological
structure information. He et al. [48] developed an adaptive
graph convolutional clustering (AGCC) model to update the
graph structure and the data representation layer by layer.

Optimizing a deep clustering network is a fundamental yet
challenging task because there are no ground-truth labels as su-
pervision. Previous works [14], [15], [22], [24], [25] minimize
the Kullback-Leibler (KL) divergence to tackle this challenge,
and its effectiveness has been proven. Specifically, it first uses

the Student’s t-distribution [49], [50] as a kernel function to
measure the similarity between the extracted feature hi and
its corresponding centroid vector µj, in which the measured
similarity can be regarded as a probability distribution Q with
its i, j-th element being

qi,j =
(1 + ‖hi − µj‖2/α)−

α+1
2∑

j′ (1 + ‖hi − µj′‖2/α)−
α+1
2

, (1)

where α is set to 1. Then, it implements the KL divergence
minimization between Q and a distribution B with the i, j-th
element bi,j =

q2i,j/
∑
i qi,j∑′

j q
2

i,j′
/
∑
i qi,j′

, i.e.,

minKL(B,Q) =
∑
i

∑
j

bi,jlog
bi,j
qi,j

, (2)

where KL (·, ·) is the Kullback-Leibler divergence function
that measures the distance between two distributions. Such
an auxiliary distribution generation normalizes the high-
confidence probability value as a large value, capable of
learning the high-confidence assignments. However, previous
works fail to sufficiently utilize the available off-the-shelf
information from high-confidence clustering assignments, in-
evitably leading to inferior clustering results.

III. PROPOSED METHOD

Figure 1 illustrates the architecture of the proposed method,
where we will detail the main components in what follows.

A. Heterogeneity-Wise Fusion

We first exploit a DAE module with a series of encoders
and decoders to extract the latent representation by adapting
the reconstruction loss, i.e.,

LR =
∥∥∥X− X̂

∥∥∥2
F
, (3)

where X and X̂ denote the input matrix and the recon-
structed matrix, respectively. Here, H0 = X, Ĥl = X̂,
Hi = φ(We

i Hi−1 + be
i), Ĥi = φ(Wd

i Ĥi−1 + bd
i), where Hi

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XXX 20XX 4

and Ĥi denote the encoder and decoder outputs from the ith
layer, respectively, l denotes the number of encoder/decoder
layers, We

i , be
i , Wd

i , and bd
i denote the network weight and

bias of the ith encoder and decoder layer, respectively, and
φ(·) denotes an activation function, such as Tanh or ReLU
[51]. Particularly, we set H = Hl for convenience. In addition,
we denote the GCN feature learned from the ith layer as
Zi ∈ Rn×di with di being the dimension of the ith layer,
where Z0 = X. Previous works (e.g., SDCN [24]) combine
the heterogeneity-wise representation on the ith layer (Zi and
Hi) via a fixed fusion strategy (i.e., Z

′

i = 0.5Zi + 0.5Hi)
to enhance representation learning. However, such a fusion
strategy is simple but unreasonable since the heterogeneity-
wise representations Zi and Hi owe different characteristic
information. To this end, we propose a learning-aware fusion
strategy to develop an adaptive fusion strategy to dynamically
weight Zi and Hi. Specifically, to learn the corresponding
attention coefficients of Zi and Hi, we first concatenate them
as [Zi‖Hi] ∈ Rn×2di and then build a fully connected layer
parametrized by a weight matrix Wa

i ∈ R2di×2. Afterwards,
we apply the LeakyReLU (LReLU) [52] on the product
between [Zi‖Hi] and Wa

i , and normalize the output of the
LReLU unit via the softmax function and the `2 normalization
(i.e., ‘softmax-`2’ normalization). Formally, we formulate the
prediction of the corresponding attention coefficients as

Mi = [mi,1‖mi,2] = ΥA([Zi‖Hi]W
a
i), (4)

where Mi ∈ Rn×2 is the attention coefficient matrix with en-
tries being greater than 0, mi,1 and mi,2 are the weight vectors
for measuring the importance of Zi and Hi, respectively, and
ΥA(·) = `2 (softmax (LReLU (·))). Thus, we can adaptively
fuse the GCN feature Zi and the DAE feature Hi on the ith
layer as

Z
′

i = (mi,11i)� Zi + (mi,21i)�Hi, (5)

where 1i ∈ R1×di denotes the vector of all ones, and � denotes
the Hadamard product of matrices. Then, we use the resulting
matrix Z

′

i ∈ Rn×di as the input of the (i + 1)th GCN layer to
learn the representation Zi+1, i.e.,

Zi+1 = LReLU(D−
1
2 (A + I)D−

1
2Z
′

iWi), (6)

where Wi denotes the weight matrix from the ith GCN layer,
and D−

1
2 (A+I)D−

1
2 normalizes A by using renormalization

with a self-loop normalized A and the corresponding D.

B. Scale-Wise Fusion

As aforementioned, previous works neglect the off-the-
shelf multi-scale information embedded in different layers,
which is of great importance for embedding learning. To this
end, we propose the SWF module to concatenate the multi-
scale features from different layers via an attention-based
mechanism. The right border of Figure 2 shows the overall
architecture of SWF.

We aggregate the multi-scale features with a concate-
nation manner to dynamically combine various scale fea-
tures with different dimensions. Afterwards, we build a fully
connected layer parametrized by a weight matrix Ws ∈

Q

Normalization:
softmax-

softmax

Fusion

F

F

Z Q

Q

V v v

Z

v v

v Z Qv

F v Z Qv

Fig. 3. The architecture of DWF module. The DWF module dynamically
combines the distributions Z and Q to learn the final probability distribution,
where we can directly obtain the predicted cluster label.

R(
∑l
j=1 dj+dl)×(l+1) to capture the relationship among the

multi-scale features. Formally, we formulate the whole process
as

U = ΥA
(
Ξl+1
j=1ZjW

s
)
, (7)

where Ξl+1
j=1Zj = [Z1‖ · · · ‖Zl‖Zl+1] denotes the concate-

nation operation of multiple elements. We then conduct the
feature fusion as

Z
′

= Ξl+1
j=1 ((uj1j)� Zj) , (8)

where uj is the j-th element of U, i.e., Ξl+1
j=1uj = U. In

addition, we use a Laplacian smoothing operator [53] and the
softmax function to make the fused feature Z

′
as a reasonable

probability distribution, i.e.,

Z = softmax(D−
1
2 (A + I)D−

1
2Z
′
W), (9)

where W denotes the learnable parameters.

C. Distribution-Wise Fusion

As we obtain the feature H from DAE, we can exploit it to
calculate its cluster center embedding µ with K-means. After-
ward, we measure the similarity between the extracted feature
hi and its corresponding centroid vector µj, in which the mea-
sured similarity can be regarded as a probability distribution
Q with its i, j-th element being qi,j =

(1+‖hi−µj‖
2)−1∑

j′ (1+‖hi−µj′ ‖
2)−1 ,

following Eq. (1). Both Z and Q can generate the final
clustering results; however, it is challenging to choose which
one to obtain the final clustering result within different sce-
narios. To the best of our knowledge, this is an unsolved
decision-making dilemma commonly existing in the previous
deep graph clustering methods. To handle this challenge, we
propose the DWF module to fuse the learned data probability
distributions in an attention-driven manner to predict cluster
labels. Figure 3 shows the overall architecture.

Specifically, we first learn the importance of Z and Q by
an attention-based mechanism, i.e.,

V = [v1‖v2] = ΥA

(
[Z‖Q]Ŵ

)
, (10)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XXX 20XX 5

where V ∈ Rn×2 is the attention coefficient matrix, Ŵ is a
learned weight matrix via a fully connected layer. We then
adaptively leverage Z and Q as

F = (v11)� Z + (v21)�Q, (11)

where 1 ∈ R1×k denotes the vector of all ones. Finally, we
apply the softmax function to normalize F with

F = softmax (F) s.t.

k∑
j=1

fi,j = 1, fi,j > 0, (12)

where fi,j is the element of F. When the network is well-
trained, we can directly infer the predicted cluster label
through F, i.e.,

yi = arg max
j

fi,j s.t. j = 1, · · · , k, (13)

where yi is the predicted label of xi. In this way, the cluster
structure can be represented explicitly in F.

D. Dual Self-supervision

As unsupervised clustering lacks reliable guidance, we
propose a novel dual self-supervision scheme that combines
a soft self-supervision strategy with a Kullback-Leibler (KL)
divergence loss and a hard self-supervision strategy with a
pseudo supervision loss to guide the overall network training,
as illustrated in Figure 4.

1) Soft Self-supervision: Since we take advantage of the
high-confidence assignments to iteratively refine the clusters
by utilizing the soft assignments (i.e., the probability distri-
butions Q and Z), we term this supervision strategy as the
soft self-supervision strategy. Concretely, since Z involves the
graph information through the HWF and SWF modules, we
first derive an auxiliary distribution P via Z by normalizing
per cluster after squaring zi,j, i.e.,

pi,j =
z2i,j/

∑n
i′=1 zi′ ,j∑k

j′=1 z2
i,j′
/
∑n

i′=1

∑k
j′=1 zi′ ,j′

, (14)

where 0 ≤ pi,j ≤ 1 is the element of P. Then, we minimize
the KL divergence not only between a learned distribution and
its auxiliary distribution (i.e., KL (P,Z) and KL (P,Q)), but
also between both two learned distributions (i.e., KL (Z,Q))
to promote a highly consistent distribution alignment to train
our model, i.e.,

LS = λ1∗(KL (P,Z)+KL (P,Q))+λ2 ∗KL (Z,Q)

= λ1

n∑
i

k∑
j

pi,jlog
p2i,j
zi,jqi,j

+λ2

n∑
i

k∑
j

zi,jlog
zi,j
qi,j

,
(15)

where λ1 > 0 and λ2 > 0 are the trade-off parameters.
2) Hard Self-supervision: Although the soft self-

supervision strategy has become a helpful tool for
unsupervised clustering, it preserves the low-confidence
predicted probabilities, limiting the clustering performance.
To further make use of the available off-the-shelf information
from the cluster assignments, we introduce the pseudo
supervision technique [54] and set the pseudo-label ŷi as
ŷi = yi. Considering that the pseudo-labels may contain

After trainingSoft Self-supervision

(SSS)

Hard Self-supervision

(HSS)

1

0

0.8

P
ro

b
a
b

il
it

y

1

0

0.8

P
ro

b
a
b

il
it

y

1 2 3 4 5 1 2 3 4 5
Cluster Cluster

Q

Z

Z
Q

Fig. 4. The illustration of the proposed dual self-supervision solution. It
exploits a soft self-supervision strategy and a hard self-supervision strategy
to effectively train the proposed network in an end-to-end manner. Such
strategies iteratively refine the network training by learning from high-
confidence assignments.

many incorrect labels, we select the high-confidence ones as
supervisory information by a large threshold r, i.e.,

gi,j =

{
1 if fi,j ≥ r,
0 otherwise. (16)

In the experiment, we set r = 0.8. Then, we leverage the high-
confidence pseudo-labels to supervise the network training,
i.e.,

LH = λ3
∑

i

∑
j

gi,j ∗ΥCE(fi,j,ΥOH(ŷi)), (17)

where λ3 > 0 is the trade-off parameter, ΥCE denotes the
cross-entropy [55] loss, and ΥOH transforms ŷi to its one-hot
form. As shown in Figure 4, the pseudo-labels transfer the
cluster assignment to the hard one-hot encoding, we thus name
it as hard self-supervision strategy.

In addition, we have empirically observed that only using
HSS does not perform well in all scenarios. The reason may
be that the distribution probability values are small in some
situations, making a weak self-supervision for guiding network
training with the HSS strategy. To this end, we combine the
SSS and HSS strategies together to drive the network training.
Combining Eqs. (3), (15), and (17), our overall loss function
can be written as

L = min
F

(LR + LS + LH) . (18)

The whole training process is shown in Algorithm 1.

E. Computational Complexity Analysis
For the DAE module, the time complexity is
O(n

∑l
i=2 di−1di). For the GCN module, as the operation

can be computed efficiently using sparse matrix computation,
the time complexity is only O(|E|

∑l
i=2 di−1di) according to

[21]. For Eq. (1), the time complexity is O(nk+n log n) based
on [14]. For HWF, SWF, and DWF modules, the total time
complexity is O(

∑l−1
i=1(di)) + O((

∑l+1
i=1 di)(l + 1)) + O(k).

Thus, the overall computational complexity of Algorithm 1 in
one iteration is about O(n

∑l
i=2 di−1di + |E|

∑l
i=2 di−1di +

(n+ 1)k + n log n+
∑l−1

i=1(di) + (
∑l+1

i=1 di)(l + 1)).

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XXX 20XX 6

Algorithm 1 Training process of our method
Input: Input matrix X; Adjacency matrix A; Cluster number

k; Trade-off parameters λ1, λ2, λ3; Maximum iterations
iMaxIter;

Output: Reconstructed matrix X̂; Clustering result y;
1: Initialization: l = 4, iIter = 1; Z0 = X; H0 = X;
2: Initialize the parameters of the DAE network;
3: while iIter < iMaxIter do
4: Obtain the feature H by Eq. (3);
5: Obtain the feature Z via Eq. (9);
6: Obtain the cluster center embedding µ with K-means

based on the feature H;
7: Calculate the distribution Q via Eq. (1);
8: Calculate the distribution P via Eq. (14);
9: Calculate the distribution F via Eq. (12);

10: Conduct the soft self-supervision via Eq. (15);
11: Conduct the hard self-supervision via Eq. (17);
12: Minimize the overall loss function via Eq. (18);
13: Conduct the back propagation and update parameters in

the proposed network;
14: iIter = iIter + 1;
15: end while
16: Calculate the clustering results y with F by Eq. (13);

TABLE II
DESCRIPTION OF THE ADOPTED DATASETS.

Dataset Type Samples Classes Edges
USPS Image 9298 10 27894

Reuters Text 10000 4 30000
HHAR Record 10299 6 30897
ACM Graph 3025 3 13128

CiteSeer Graph 3327 6 4552
DBLP Graph 4057 4 3528

Amazon Photo Graph 7650 8 119081
PubMed Graph 19717 3 44324

AIDS Graph 31385 38 64780

IV. EXPERIMENTS

We conducted quantitative and qualitative experiments on
nine commonly used benchmark datasets to evaluate the
proposed model. In addition, we performed ablation studies
to investigate the effectiveness of the proposed modules and
the adopted strategies. Moreover, we performed a series of
parameter analyses to verify the robustness of our method.

A. Datasets and Compared Methods

We conducted experiments on one image dataset (USPS
[56]), one text dataset (Reuters [57]), one record dataset
(HHAR [58]), and six graph datasets (ACM2, CiteSeer3,
DBLP4, Amazon Photo, PubMed [59], and AIDS [60]),
which are briefly summarized in Table II.

We compared the proposed method with the classic clus-
tering method K-means [13], three DAE-based embedding
clustering methods [12], [14], [15], and seven GCN-based

2http://dl.acm.org
3http://CiteSeerx.ist.psu.edu/
4https://dblp.uni-trier.de

embedding clustering methods [20]–[25], [47], the details of
which are listed as follows.
• DAE [12] uses deep auto-encoder to learn latent feature

representations and then performs K-means on that fea-
ture to obtain clustering results.

• DEC [14] jointly conducts embedding learning and clus-
ter assignment with an iterative procedure.

• IDEC [15] introduces a reconstruction loss into DEC to
improve the clustering performance.

• GAE [20] and VGAE [20] incorporate DAE and varia-
tional DAE into GCN frameworks, respectively.

• DAEGC [22] achieves a neighbor-wise embedding learn-
ing with an attention-driven strategy and supervises the
network training with a clustering loss.

• ARGA [21] guides embedding learning with a designed
adversarial regularization.

• SDCN [24] fuses DEC and GCN to merge the topological
structure information into deep embedding clustering.

• AGCN [25] focuses on enhancing the embedding learn-
ing.

• DFCN [47] merges the node attribute and topological
structure information based on the DAE and GAE.

• AGCC [48] replaces the graph layer by layer to mine the
latent connected relationship between data.

B. Implementation Details

1) Evaluation metrics: We used four metrics to evaluate
the clustering performance, including Average Rand Index
(ARI), macro F1-score (F1), Accuracy (ACC), and Normalized
Mutual Information (NMI). For each metric, a larger value
implies a better clustering result.

2) Graph construction: As those non-graph datasets (i.e.,
USPS, Reuters, and HHAR) lack the topology graph, we used
a typical graph construction approach to generate their graph
data. Specifically, we first employed the cosine distance to
compute the similarity matrix S, i.e.,

S =
XXT

‖X‖F ‖XT‖F
, (19)

where ‖X‖F =
√∑n

i=1

∑d
j=1 |xi,j |

2 and XT denote the
Frobenius norm and the transpose operation of X, respectively.
Then, we keep the top-k̂ similar neighbors of each sample
to construct an undirected k̂-nearest neighbor (KNN [61])
graph. The constructed KNN graph can depict the topological
structure of a dataset and hence is used as GCN input.

3) Training Procedure: Similar to [14], [15], [24], [25],
we first pre-trained the DAE module with 30 epochs and
the learning rate equal to 0.001. Then, we trained the whole
network with 200 iterations. We set the dimension of the auto-
encoder and the GCN layers to 500 − 500 − 2000 − 10, the
batch size to 256, and the negative input slope of LReLU to
0.2. In addition, we set the learning rates of USPS, HHAR,
ACM, DBLP, and PubMed datasets with 0.001, and Reuters,
CiteSeer, and Amazon Photo datasets with 0.0001. We set
r to 0.8 in this paper, where more detailed experiments
and analyses of the threshold value are given in Section
IV. E. 3). For the method ARGA, we used the parameter

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XXX 20XX 7

TABLE III
CLUSTERING RESULTS (MEAN±STD) WITH TWELVE COMPARED METHODS ON NINE BENCHMARK DATASETS. THE BEST AND SECOND-BEST RESULTS

ARE BOLDED AND UNDERLINED, RESPECTIVELY. ‘OOM’ DENOTES THE OUT OF MEMORY CASE.

Datasets Metrics K-means [13] DAE [12] DEC [14] IDEC [15] GAE [20] VGAE [20] DAEGC [22] ARGA [21] SDCN [24] AGCN [25] DFCN [47] AGCC [48] Our
[Science06] [ICML16] [AAAI17] [NIPS16] [NIPS16] [AAAI19] [IJCAI18] [WWW20] [MM21] [AAAI21] [TNNLS22]

Reuters

ARI 46.09±0.02 49.55±0.37 48.44±0.14 51.26±0.21 19.61±0.22 26.18±0.36 31.12±0.18 24.50±0.40 55.36±0.37 60.55±1.78 59.80±0.40 62.98±2.24 63.48±1.10
F1 58.33±0.03 60.96±0.22 64.25±0.22 63.21±0.12 43.53±0.42 57.14±0.17 61.82±0.13 51.10±0.20 65.48±0.08 66.16±0.64 69.60±0.10 67.21±1.61 68.81±1.26

ACC 59.98±0.02 74.90±0.21 73.58±0.13 75.43±0.14 54.40±0.27 60.85±0.23 65.50±0.13 56.20±0.20 77.15±0.21 79.30±1.07 77.70±0.20 81.65±1.52 81.68±0.69
NMI 58.86±0.01 49.69±0.29 47.50±0.34 50.28±0.17 25.92±0.41 25.51±0.22 30.55±0.29 28.70±0.30 50.82±0.21 57.83±1.01 59.90±0.40 59.56±0.94 58.94±1.16

HHAR

ARI 27.95±0.38 60.36±0.88 61.25±0.51 62.83±0.45 42.63±1.63 51.47±0.73 60.38±2.15 44.70±1.00 72.84±0.09 77.07±0.66 76.40±0.10 75.58±1.85 77.38±0.97
F1 41.28±2.43 66.36±0.34 67.29±0.29 68.63±0.33 62.64±0.97 71.55±0.29 76.89±2.18 61.10±0.90 82.58±0.08 88.00±0.53 87.30±0.10 85.79±2.48 87.90±1.11

ACC 54.04±0.01 68.69±0.31 69.39±0.25 71.05±0.36 62.33±1.01 71.30±0.36 76.51±2.19 63.30±0.80 84.26±0.17 88.11±0.43 87.10±0.10 86.54±1.79 87.83±1.01
NMI 41.54±0.51 71.42±0.97 72.91±0.39 74.19±0.39 55.06±1.39 62.95±0.36 69.10±2.28 57.10±1.40 79.90±0.09 82.44±0.62 82.20±0.10 82.21±1.78 85.34±2.11

USPS

ARI 54.55±0.06 58.83±0.05 63.70±0.27 67.86±0.12 50.30±0.55 40.96±0.59 63.33±0.34 51.10±0.60 71.84±0.24 73.61±0.43 75.30±0.20 68.50±3.83 75.54±1.28
F1 64.78±0.03 69.74±0.03 71.82±0.21 74.63±0.10 61.84±0.43 53.63±1.05 72.45±0.49 66.10±1.20 76.98±0.18 77.61±0.38 78.30±0.20 74.86±2.56 79.33±0.74

ACC 66.82±0.04 71.04±0.03 73.31±0.17 76.22±0.12 63.10±0.33 56.19±0.72 73.55±0.40 66.80±0.70 78.08±0.19 80.98±0.28 79.50±0.20 77.14±1.21 81.13±1.89
NMI 62.63±0.05 67.53±0.03 70.58±0.25 75.56±0.06 60.69±0.58 51.08±0.37 71.12±0.24 61.60±0.30 79.51±0.27 79.64±0.32 82.80±0.30 75.93±3.83 82.14±0.15

ACM

ARI 30.60±0.69 54.64±0.16 60.64±1.87 62.16±1.50 59.46±3.10 57.72±0.67 59.35±3.89 62.90±2.10 73.91±0.40 74.20±0.38 74.90±0.40 73.73±0.90 76.72±0.98
F1 67.57±0.74 82.01±0.08 84.51±0.74 85.11±0.48 84.65±1.33 84.17±0.23 87.07±2.79 86.10±1.20 90.42±0.19 90.58±0.17 90.80±0.20 90.39±0.39 91.53±0.42

ACC 67.31±0.71 81.83±0.08 84.33±0.76 85.12±0.52 84.52±1.44 84.13±0.22 86.94±2.83 86.10±1.20 90.45±0.18 90.59±0.15 90.90±0.20 90.38±0.38 91.55±0.40
NMI 32.44±0.46 49.30±0.16 54.54±1.51 56.61±1.16 55.38±1.92 53.20±0.52 56.18±4.15 55.70±1.40 68.31±0.25 68.38±0.45 69.40±0.40 68.34±0.89 71.50±0.80

CiteSeer

ARI 06.97±0.39 29.31±0.14 28.12±0.36 25.70±2.65 33.55±1.18 33.13±0.53 37.78±1.24 33.40±1.50 40.17±0.43 43.79±0.31 45.50±0.30 41.82±2.03 47.98±0.91
F1 31.92±0.27 53.80±0.11 52.62±0.17 61.62±1.39 57.36±0.82 57.70±0.49 62.20±1.32 54.80±0.80 63.62±0.24 62.37±0.21 64.30±0.20 60.47±1.57 62.37±0.52

ACC 38.65±0.65 57.08±0.13 55.89±0.20 60.49±1.42 61.35±0.80 60.97±0.36 64.54±1.39 56.90±0.70 65.96±0.31 68.79±0.23 69.50±0.20 68.08±1.44 72.01±0.53
NMI 11.45±0.38 27.64±0.08 28.34±0.30 27.17±2.40 34.63±0.65 32.69±0.27 36.41±0.86 34.50±0.80 38.71±0.32 41.54±0.30 43.90±0.20 40.86±1.45 45.34±0.70

DBLP

ARI 13.43±3.02 12.21±0.43 23.92±0.39 25.37±0.60 22.02±1.40 17.92±0.07 21.03±0.52 22.70±0.30 39.15±2.01 42.49±0.31 47.00±1.50 44.40±3.79 57.29±1.20
F1 36.08±3.53 52.53±0.36 59.38±0.51 61.33±0.56 61.41±2.23 58.69±0.07 61.75±0.67 61.80±0.90 67.71±1.51 72.80±0.56 75.70±0.80 71.84±2.02 80.79±0.61

ACC 39.32±3.17 51.43±0.35 58.16±0.56 60.31±0.62 61.21±1.22 58.59±0.06 62.05±0.48 61.60±1.00 68.05±1.81 73.26±0.37 76.00±0.80 73.45±2.16 81.26±0.62
NMI 16.94±3.22 25.40±0.16 29.51±0.28 31.17±0.50 30.80±0.91 26.92±0.06 32.49±0.45 26.80±1.00 39.50±1.34 39.68±0.42 43.70±1.00 40.36±2.81 51.99±0.76

Amazon Photo

ARI 05.50±0.44 20.80±0.47 18.59±0.04 19.24±0.07 48.82±4.57 56.24±4.66 59.39±0.02 44.18±4.41 31.21±1.23 41.15±2.78 58.98±0.84 29.96±3.46 60.51±1.58
F1 23.96±0.51 47.87±0.20 46.71±0.12 47.20±0.11 68.08±1.76 70.38±2.98 69.97±0.02 64.30±1.95 50.66±1.49 43.68±5.08 71.58±0.31 39.67±5.22 71.68±2.35

ACC 27.22±0.76 48.25±0.08 47.22±0.08 47.62±0.08 71.57±2.48 74.26±3.63 76.44±0.01 69.28±2.30 53.44±0.81 58.53±1.74 76.88±0.80 51.47±3.04 78.75±1.02
NMI 13.23±1.33 38.76±0.30 37.35±0.05 37.83±0.08 62.13±2.79 66.01±3.40 65.57±0.03 58.36±2.76 44.85±0.83 51.76±3.23 69.21±1.00 39.19±4.07 66.27±1.13

PubMed

ARI 28.10±0.01 23.86±0.67 19.55±0.13 20.58±0.39 20.62±1.39 30.15±1.23 29.84±0.04 24.35±0.17 22.30±2.07 31.39±0.67 30.64±0.11 OOM 35.29±1.02
F1 58.88±0.01 64.01±0.29 61.49±0.10 62.41±0.32 61.37±0.85 67.68±0.89 68.23±0.02 65.69±0.13 65.01±1.21 69.73±0.45 68.10±0.07 OOM 72.78±0.72

ACC 59.83±0.01 63.07±0.31 60.14±0.09 60.70±0.34 62.09±0.81 68.48±0.77 68.73±0.03 65.26±0.12 64.20±1.30 69.67±0.42 68.89±0.07 OOM 73.16±0.69
NMI 31.05±0.02 26.32±0.57 22.44±0.14 23.67±0.29 23.84±3.54 30.61±1.71 28.26±0.03 24.80±0.17 22.87±2.04 30.96±0.99 31.43±0.13 OOM 33.29±1.14

AIDS

ARI 05.37±0.19 05.71±0.66 10.71±3.49 13.39±5.35 03.50±0.79 00.44±0.43 OOM 01.79±0.97 −0.06±0.00 14.03±5.76 00.48±0.00 OOM 21.40±7.12
F1 11.86±1.02 11.91±1.54 13.81±1.60 12.10±1.55 08.40±1.23 09.13±2.74 OOM 06.01±1.41 02.02±0.00 06.14±1.80 05.51±0.01 OOM 21.77±1.10

ACC 17.11±0.63 21.78±5.02 35.12±3.69 47.32±5.76 15.72±0.89 23.04±6.08 OOM 59.27±2.54 62.25±0.00 59.82±3.37 11.28±0.02 OOM 63.84±2.81
NMI 23.42±0.57 24.29±2.49 24.30±2.19 25.37±4.90 12.66±2.64 01.62±0.29 OOM 04.86±2.16 00.16±0.00 09.08±2.28 04.67±0.01 OOM 34.44±2.96

settings given by the original paper [21]. For other methods
under comparison, we directly cited the results in [25]. We
repeated the experiment 10 times to evaluate our method with
the mean values and the corresponding standard deviations
(i.e., mean±std). The training procedure is implemented by
PyTorch on two GPUs (GeForce RTX 2080 Ti and NVIDIA
GeForce RTX 3090).

C. Clustering Results

Table III provides the clustering results of the proposed
method and twelve compared methods with four metrics,
where we have the following observations.
• Our method achieves the best clustering results on most

benchmark datasets. For example, in the non-graph
dataset Reuters, our approach improves the ARI, F1,
ACC, and NMI values of SDCN [24] by 8.12%, 3.33%,
4.53%, and 8.12%, respectively. In the graph dataset
DBLP, our approach improves 18.14% over SDCN on
ARI, 13.08% on F1, 13.21% on ACC, and 12.49% on
NMI.

• DAEGC enhances GAE by introducing the neighbor-
wise embedding learning with an attention-based strategy,
benefiting clustering performance improvement. Such a
phenomenon validates the effectiveness of the attention-
based mechanism. Differently, our method extends the
attention-based mechanism to the heterogeneity-wise,
scale-wise, and distribution-wise fusion modules to adap-
tively utilize the multiple off-the-shelf information, which
significantly improves the clustering performance.

• SDCN performs better than the DAE-based (DAE, DEC,
IDEC) and GCN-based (GAE, VGAE, ARGA) embed-
ding clustering methods, demonstrating that combining

DAE and GCN can contribute to clustering performance.
Nevertheless, SDCN (i) equates the importance of the
DAE feature and the GCN feature; (ii) neglects the
multi-scale features; and (iii) fails to utilize available
off-the-shelf information from the clustering assignment.
The proposed method addresses those issues and thus
produces significantly better clustering performance than
SDCN on all the datasets in almost all metrics.

• Our method typically achieves better clustering perfor-
mance than AGCN [25], demonstrating the effectiveness
of the proposed distribution-wise fusion module and the
dual self-supervision solution in guiding the unsupervised
clustering network training. For instance, in Amazon
Photo, our approach improves 19.36% on ARI, 28.00%
on F1, 20.22% on ACC, and 14.51% on NMI.

• Our method provides a significant improvement on DBLP
and PubMed, e.g., in DBLP, our approach improves
10.29% over the second-best one on ARI, 5.09% on
F1, 5.26% on ACC, and 8.29% on NMI. The possible
reason is that DBLP and PubMed belong to datasets with
low feature dimensions (i.e., little information), mean-
ing that sufficiently utilizing the available off-the-shelf
information plays a great important role in improving the
clustering performance.

• Our method does not outperform AGCN in HHAR. The
possible reason is that in HHAR, a series of dissimilar
nodes are connected in the constructed KNN graph,
reducing the graph quality. Although AGCN also uses
the KNN graph, its auxiliary distribution P was inferred
by the output of the conventional auto-encoder. Differ-
ently, the proposed method uses the graph convolutional
network output to derive P for utilizing rich graph
information of Z. Thus, if the graph quality is terrible,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XXX 20XX 8

TABLE IV
RESULTS OF ABLATION STUDIES. 7 AND 3 INDICATE THE COMPONENT IS USED AND UNUSED, RESPECTIVELY. THE BEST RESULTS ARE NOTED IN BOLD.

Datasets SSS HSS DWF SWF HWF ARI F1 ACC NMI

USPS

7 7 7 7 7 71.67±0.44 76.88±0.30 78.08±0.30 79.19±0.44
7 7 7 7 3 71.71±0.87 76.46±0.54 78.98±0.97 78.87±0.36
7 7 7 3 3 70.96±0.24 76.44±0.17 77.70±0.14 78.61±0.22
7 7 3 3 3 71.73±0.71 76.31±0.34 79.63±0.43 78.41±0.29
7 3 3 3 3 71.90±0.99 76.61±0.56 79.74±0.79 78.64±0.46
3 7 3 3 3 74.39±0.13 78.51±0.09 79.11±0.11 82.06±0.16
3 3 3 3 3 75.54±1.28 79.33±0.74 81.13±1.89 82.14±0.15

Reuters

7 7 7 7 7 56.37±4.76 65.03±1.87 78.19±2.02 53.74±3.63
7 7 7 7 3 61.38±0.78 67.22±1.15 80.19±0.53 57.94±0.49
7 7 7 3 3 61.55±0.64 66.54±0.21 80.60±0.47 58.15±0.49
7 7 3 3 3 62.70±1.00 66.90±0.30 80.95±0.46 59.42±0.69
7 3 3 3 3 63.32±0.57 67.21±0.18 81.28±0.32 60.79±0.69
3 7 3 3 3 62.75±2.00 68.74±1.23 81.02±0.81 57.93±1.50
3 3 3 3 3 63.48±1.10 68.81±1.26 81.68±0.69 58.94±1.16

HHAR

7 7 7 7 7 73.17±1.95 82.70±3.97 84.18±2.80 80.03±1.16
7 7 7 7 3 72.45±1.02 83.25±0.81 84.60±0.66 79.08±0.85
7 7 7 3 3 73.24±0.73 83.34±1.69 84.77±1.21 80.10±0.50
7 7 3 3 3 72.84±1.23 83.72±1.10 84.95±0.86 79.22±0.94
7 3 3 3 3 73.24±0.52 83.74±0.68 85.01±0.46 79.99±0.47
3 7 3 3 3 75.91±0.40 86.65±0.70 86.23±0.81 82.61±0.12
3 3 3 3 3 77.38±0.97 87.90±1.11 87.83±1.01 85.34±2.11

ACM

7 7 7 7 7 73.91±0.40 90.42±0.19 90.45±0.18 68.31±0.25
7 7 7 7 3 73.95±0.60 90.48±0.26 90.47±0.24 68.42±0.61
7 7 7 3 3 74.20±0.38 90.58±0.17 90.59±0.15 68.38±0.45
7 7 3 3 3 74.58±0.78 90.72±0.35 90.73±0.33 68.94±0.63
7 3 3 3 3 74.83±0.73 90.85±0.33 90.85±0.31 69.02±0.66
3 7 3 3 3 75.78±0.64 91.18±0.25 91.18±0.26 70.59±0.68
3 3 3 3 3 76.72±0.98 91.53±0.42 91.55±0.40 71.50±0.80

CiteSeer

7 7 7 7 7 40.17±0.43 63.62±0.24 65.96±0.31 38.71±0.32
7 7 7 7 3 40.93±1.78 60.91±0.81 66.38±1.72 39.07±1.52
7 7 7 3 3 43.79±0.31 62.37±0.21 68.79±0.23 41.54±0.30
7 7 3 3 3 43.50±0.47 61.25±0.31 68.54±0.30 41.35±0.58
7 3 3 3 3 43.72±0.60 61.52±0.65 68.46±0.40 41.25±0.41
3 7 3 3 3 47.76±1.28 62.24±0.80 71.86±0.79 45.10±1.05
3 3 3 3 3 47.98±0.91 62.37±0.52 72.01±0.53 45.34±0.70

DBLP

7 7 7 7 7 39.15±2.01 67.71±1.51 68.05±1.81 39.50±1.34
7 7 7 7 3 37.78±1.85 68.69±1.65 69.65±1.43 35.37±1.58
7 7 7 3 3 42.49±0.31 72.80±0.56 73.26±0.37 39.68±0.42
7 7 3 3 3 41.72±0.47 72.68±0.20 72.92±0.21 39.26±0.33
7 3 3 3 3 42.52±0.96 72.81±0.59 73.43±0.50 39.99±0.70
3 7 3 3 3 55.45±0.60 79.83±0.32 80.29±0.33 50.08±0.56
3 3 3 3 3 57.29±1.20 80.79±0.61 81.26±0.62 51.99±0.76

Amazon Photo

7 7 7 7 7 31.21±1.23 50.66±1.49 53.44±0.81 44.85±0.83
7 7 7 7 3 37.86±3.46 35.86±4.00 54.84±1.43 46.51±4.93
7 7 7 3 3 41.15±2.78 43.68±5.08 58.53±1.74 51.76±3.23
7 7 3 3 3 41.14±2.78 43.68±5.08 58.52±1.74 51.77±3.22
7 3 3 3 3 43.50±2.29 46.20±4.18 60.59±1.94 52.23±1.67
3 7 3 3 3 51.81±2.25 66.37±2.64 71.93±2.08 59.09±1.60
3 3 3 3 3 60.51±1.58 71.68±2.35 78.75±1.02 66.27±1.13

PubMed

7 7 7 7 7 22.30±2.07 65.01±1.21 64.20±1.30 22.87±2.04
7 7 7 7 3 27.65±1.16 67.21±0.83 67.31±0.78 27.77±1.85
7 7 7 3 3 31.39±0.67 69.73±0.45 69.67±0.42 30.96±0.99
7 7 3 3 3 30.85±1.10 69.05±0.87 68.67±0.79 32.19±1.29
7 3 3 3 3 33.21±1.94 70.75±1.28 71.35±1.39 31.47±1.75
3 7 3 3 3 32.79±1.57 69.89±1.20 70.56±1.37 31.85±1.36
3 3 3 3 3 35.29±1.02 72.78±0.72 73.16±0.69 33.29±1.14

AIDS

7 7 7 7 7 10.15±3.04 4.76±0.69 58.32±3.33 7.67±0.48
7 7 7 7 3 10.31±3.52 3.92±0.67 62.25±0.01 6.68±1.13
7 7 7 3 3 10.69±3.33 4.33±0.99 62.32±0.21 7.54±1.40
7 7 3 3 3 11.85±3.35 21.19±1.39 62.29±0.11 32.31±0.40
7 3 3 3 3 12.78±2.61 21.65±1.51 62.25±0.00 32.34±0.35
3 7 3 3 3 15.34±5.94 21.37±1.60 62.61±1.15 32.46±1.01
3 3 3 3 3 21.40±7.12 21.77±1.10 63.84±2.81 34.44±2.96

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XXX 20XX 9

(a) Q (b) Z (c) F

Fig. 5. The visual comparison of (a) distribution Q, (b) distribution Z, and
(c) our adaptively fused one.

ARI F1 ACC NMI40

50

60

70

80

 (
%

)
 k=1

k=3
k=5
k=7
k=9
k=10

(a) USPS

ARI F1 ACC NMI40

50

60

70

80

 (
%

)

(b) Reuters

ARI F1 ACC NMI50

60

70

80

90

 (
%

)

(c) HHAR

Fig. 6. Analyses of the number of neighbors for KNN graph construction.
All the sub-figures share the same legend.

the clustering performance of the proposed method may
be worse than AGCN.

• Our method obtains the best clustering performance on
AIDS with four metrics, where AIDS is a large-scale
long-tailed dataset that one class accounts for 62.34%
number, and the other thirty-seven classes share 37.66%.

D. Ablation Study

We conducted comprehensive ablation studies to validate
the effectiveness of the proposed modules and self-supervision
strategies. Table IV lists the quantitative results, where the first
row of each dataset denotes the baseline that merges the DAE
and GCN features in a half-and-half mechanism (i.e., without
HWF) and uses the last GCN layer feature (i.e., without SWF
and DWF) to conduct the optimization via the reconstruction
loss and self-optimizing embedding loss following [14], [15],
[22], [24], [25] (i.e., without SSS and HSS). The second,
third, and fourth rows denote the baseline that adopts the
proposed module HWF, HWF+SWF, and HWF+SWF+DWF,
respectively. The fifth, sixth, and seventh rows denote the
methods optimized by the introduced hard self-supervision,
the soft self-supervision, and both.

1) Heterogeneity-wise fusion module: By comparing the
first and second rows of each dataset in Table IV, we can ob-
serve that HWF can typically improve clustering performance
in most cases, validating its effectiveness. For example, on
Reuters, it produces a 5.01% performance improvement on
ARI, 2.19% on F1, 2.00% on ACC, and 4.20% on NMI.

2) Scale-wise fusion module: We can examine the effec-
tiveness of SWF by comparing the second and third rows of
each dataset in Table IV, in which the compared results with
four metrics indicate the superiority of the SWF module in
most datasets.

3) Distribution-wise fusion module: By comparing the re-
sults of the third and fourth rows of each dataset in Table IV,
we observe that DWF also improves clustering performance,
benefiting from the adaptive fusion of the information of two
distributions.

To qualitatively validate the significant performance of the
DWF module, we plotted 2D t-distributed stochastic neighbor
embedding (t-SNE) [62] visualizations of the distributions Q,
Z, and F on DBLP in Figure 5, where we can see that our
adaptively aggregated one is better than others, benefiting from
adaptively (due to the DWF module) and effectively (due to
the dual self-supervision solution) merging the information of
two distributions.

4) Hard self-supervision strategy: From the results of the
fourth and fifth rows of each dataset in Table IV, it can be
seen that on the non-graph dataset HHAR and graph dataset
DBLP, there is about 2.00% improvement when involving
HSS, validating its effectiveness.

5) Soft Self-supervision Strategy: We can validate the ef-
fectiveness of SSS by comparing the results of the fourth
and sixth rows of each dataset in Table IV. Specifically, on
DBLP, SSS produces 13.73% improvement on ARI, 7.15%
on F1, 7.37% on ACC, and 10.82% on NMI. Such impressive
improvement is credited to that the SSS strategy refines the
cluster assignment by minimizing a Kullback-Leibler diver-
gence loss to promote consistent distribution alignment among
distributions Q, Z, and P.

6) Dual Self-supervision (DSS): By comparing the results
of the fourth, fifth, sixth, and seventh rows of each dataset in
Table IV, we can observe that DSS, which combines HSS and
SSS, almost produces the best results on all nine benchmark
datasets.

E. Parameters Analysis

1) Analysis of the number of neighbors: As the number of
neighbors k̂ directly decides the KNN graph with respect to
(w.r.t.) the quality of the adjacency matrix, we tested different
k̂ on the non-graph datasets, i.e., USPS, Reuters, and HHAR.
From Figure 6, we can observe that our model is not sensitive
to k̂. In the experiments, we fixed k̂ to 3 to construct the KNN
graph for the non-graph datasets.

2) Analysis of hyperparameters: We investigated the in-
fluence of the hyperparameters, i.e., λ1, λ2, and λ3, on
DBLP. Figure 7 illustrates four metrics results in a 4D figure
manner where the color indicates the fourth direction, i.e., the
corresponding experimental results. From Figure 7, we have
the following observations.
• The parameters setting of λ1 and λ2 is critical to the

proposed model. Specifically, the highest clustering re-
sult occurs when λ1 and λ2 tend to the same value.
This phenomenon reflects the importance of balancing
the regularization term in constraining the distribution
alignment.

• Our model is robust to the hyperparameter λ3, i.e., our
method can obtain the optimal performance in a wide and
common parameter range of λ3.

3) Analysis of the threshold value: We investigated the
effect of the threshold value r on clustering performance.
Figure 8 shows the clustering results with various thresholds
(i.e., 0.5, 0.6, 0.7, 0.8, and 0.9). From Figure 8, we have the
following conclusions.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XXX 20XX 10

0.001

1000

0.1

10

3

100 1000

1000

10010

2

101

1

1
0.1 0.1

0.01 0.01
0.001 0.001

0.2 0.3 0.4 0.5

(a) ARI

0.001

1000

0.1

10

3

100 1000

1000

10010

2

101

1

1
0.1 0.1

0.01 0.01
0.001 0.001

0.55 0.6 0.65 0.7 0.75 0.8

(b) F1

0.001

1000

0.1

10

3

100 1000

1000

10010 10

2

1

1

1
0.1 0.1

0.01 0.01
0.001 0.001

0.55 0.6 0.65 0.7 0.75 0.8

(c) ACC

0.001

1000

0.1

10

3

100 1000

1000

10010 10

2

1

1

1
0.1 0.1

0.01 0.01
0.001 0.001

0.25 0.3 0.35 0.4 0.45 0.5

(d) NMI

Fig. 7. Analysis of different hyperparameters (λ1, λ2, and λ3) with four metrics on DBLP. We illustrate the results w.r.t. these hyperparameters in a 4D
figure manner, where the color indicates the fourth direction, i.e., the corresponding experimental results.

TABLE V
THE EXPERIMENTS ON DBLP WITH THE LEARNED WEIGHTS FROM THE ATTENTION MODULES AND FOUR METRICS RESULTS OF CORRESPONDING

REPRESENTATIONS. THE LARGER WEIGHT VALUES ARE HIGHLIGHTED IN BOLD, AND THE BETTER CLUSTERING RESULTS ARE HIGHLIGHTED IN RED.

Sample m1,1 (Z1) m1,2 (H1) m2,1 (Z2) m2,2 (H2) m3,1 (Z3) m3,2 (H3) u1 (Z1) u2 (Z2) u3 (Z3) u4 (Z4) u5 (Z5) v1 (Z) v2 (Q)
x0 0.6417 0.7669 0.0954 0.9954 0.7091 0.7051 0.3874 0.3896 0.4718 0.3930 0.5666 0.8980 0.4399
x1 0.6166 0.7872 0.0918 0.9958 0.7052 0.7090 0.2780 0.2783 0.2854 0.2824 0.8271 0.8584 0.5131
x2 0.8232 0.5678 0.2532 0.9674 0.7051 0.7091 0.2188 0.2187 0.8826 0.2216 0.2762 0.8585 0.5128
...

...
...

...
...

...
...

...
...

...
...

...
...

...
x4054 0.6254 0.7803 0.0686 0.9976 0.7047 0.7095 0.2503 0.2505 0.2572 0.2544 0.8624 0.8582 0.5134
x4055 0.6238 0.7816 0.0508 0.9987 0.7060 0.7082 0.2733 0.2741 0.2817 0.2782 0.8327 0.8584 0.5129
x4056 0.5919 0.8060 0.0811 0.9967 0.7082 0.7060 0.3903 0.3926 0.5544 0.3956 0.4793 0.8979 0.4402
AVG 0.7182 0.6704 0.1310 0.9854 0.5916 0.7698 0.3162 0.3157 0.5141 0.3200 0.5821 0.8555 0.5138
ARI 0.0836 0.5539 0.3009 0.5500 0.5437 0.5489 0.0836 0.3009 0.5437 0.5453 0.5489 0.5500 0.5489
F1 0.4072 0.7972 0.5781 0.7969 0.7941 0.7964 0.4072 0.5781 0.7941 0.7944 0.7964 0.7969 0.7964

ACC 0.4212 0.8023 0.6120 0.8011 0.7981 0.8006 0.4212 0.6120 0.7981 0.7986 0.8006 0.8011 0.8006
NMI 0.1778 0.4987 0.3023 0.4996 0.4950 0.4988 0.1778 0.3023 0.4950 0.4965 0.4988 0.4995 0.4988

0.9 0.8 0.7 0.6 0.5
72

75

78

81

84

M
et

ri
cs

 (
%

)

ARI
F1
ACC
NMI

(a)

0.9 0.8 0.7 0.6 0.5

30

40

50

60

70

80

90

M
et

ri
cs

 (
%

)

(b)

0.9 0.8 0.7 0.6 0.5

70

75

80

85

90

M
et

ri
cs

 (
%

)

(c)

0.9 0.8 0.7 0.6 0.5

70

75

80

85

90

M
et

ri
cs

 (
%

)

(d)

0.9 0.8 0.7 0.6 0.5
40

50

60

70

M
et

ri
cs

 (
%

)

(e)

0.9 0.8 0.7 0.6 0.5

20

40

60

80

M
et

ri
cs

 (
%

)

(f)

0.9 0.8 0.7 0.6 0.5

55

60

65

70

75

80

M
et

ri
cs

 (
%

)

(g)

0.9 0.8 0.7 0.6 0.5
20

30

40

50

60

70

M
et

ri
cs

 (
%

)

(h)

0.9 0.8 0.7 0.6 0.5
0

20

40

60

M
et

ri
cs

 (
%

)

(i)

Fig. 8. Investigation of the effect of the threshold value for pseudo supervision
on (a) USPS, (b) Reuters, (c) HHAR, (d) ACM, (e) CiteSeer, (f) DBLP, (g)
Amazon Photo, (h) PubMed, and (i) AIDS.

TABLE VI
COMPARISONS OF THE CLUSTERING RESULTS, NETWORK PARAMETERS,

AND SPENDING TIME OF COMPARED METHODS ON DBLP. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD.

Metrics SDCN AGCN AGCC Our boost ↑
ARI (%) 39.15±2.01 42.49±0.31 44.40±3.79 57.29±1.20 ↑ 12.89
F1 (%) 67.71±1.51 72.80±0.56 71.84±2.02 80.79±0.61 ↑ 07.99
ACC (%) 68.05±1.81 73.26±0.37 73.45±2.16 81.26±0.62 ↑ 07.81
NMI (%) 39.50±1.34 39.68±0.42 40.36±2.81 51.99±0.76 ↑ 11.63
Parameters (M) 4.31742 4.35658 11.86304 4.35659
Time (s) 253.3905 273.1204 5420.5255 310.6794

(a) (b) (c) (d)

Fig. 9. Comparison of the visualization of the learned representations on
DBLP by (a) SDCN [24], (b) AGCN [25], (c) DFCN [[47], and (d) Ours,
where different colors represent different clusters.

• A small threshold value unavoidably degrades the clus-
tering performance compared with the ones using a large
threshold value. For example, when we set r to 0.5 or
0.6, all four metrics results on DBLP have degraded
performance. Apparently, a small threshold value can
easily generate a lot of incorrect pseudo-labels.

• A large threshold value is capable of leading to high clus-
tering performance. However, setting r to a tremendous
value like 0.9 cannot improve clustering performance.
The reason is that with a larger threshold, the number of
selected supervised labels will reduce, resulting in weak
label propagation. Thus, we set r to 0.8 in this paper.

4) Analysis of the learned attention-aware weights: We
added the results of the learned weight on DBLP to verify the
effectiveness of the designed attention mechanism in Table V,
where xj indicates the j-th sample; mi,1 and mi,2 indicate
the HWF learned weights of Zi and Hi in the i-th layer,
respectively; u1, u2, u3, u4, and u5 indicate the SWF learned
weights; v1 and v2 indicate the DWF learned weights of
Z and Q, respectively; AVG indicates the average value of
the weight results. The clustering results of Z and Q are
inferred through their column indexes of the maximum in each
row, and those results of other features are obtained with K-

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XXX 20XX 11

means, where the higher clustering performance, the better
the feature representation. We can see that the representation
corresponding to a large weight value typically performs better
clustering results than the one corresponding to a small weight
value, substantiating the effectiveness of the designed attention
mechanism in the weighted fusion.

F. Time and Space Complexity Analysis

We repeated the experiment 10 times to compare the mean
values, the standard deviations (i.e., mean±std), the parameters
number, and the running time of the proposed method with the
baselines [24], [25], [47] on DBLP in Table VI. Specifically,
the experiments are implemented with Python 3.6.12 and
Pytorch-1.9.0+cu102 on an NVIDIA GeForce RTX 2080 Ti
and an i7-8700K CPU. M and s are the abbreviations of
the million and second, respectively. From Table VI, we
can observe that our method obtains a significant clustering
improvement at the cost of acceptable resource consumption.

G. Visual Comparison

To qualitatively evaluate the effectiveness of the proposed
method, we plotted 2D t-SNE visualizations of baselines [24],
[25], [47] and the proposed method on DBLP in Figure 9,
where we can find that the feature representation obtained by
our method shows the best separability for different clusters,
i.e., samples from the same class naturally gather together and
the gap between different groups is the most obvious one. This
phenomenon substantiates that our method produces the most
clustering-oriented representation compared with state-of-the-
art methods.

V. CONCLUSION

We have presented a novel deep embedding cluster-
ing method that simultaneously enhances embedding learn-
ing and cluster assignment. Specifically, we first designed
heterogeneity-wise and scale-wise fusion modules to learn
an informative representation adaptively. Then, we utilized a
distribution-wise fusion module to achieve cluster enhance-
ment via an attention-based mechanism. Finally, we proposed
a soft self-supervision strategy with a Kullback-Leibler di-
vergence loss and a hard self-supervision strategy with a
pseudo supervision loss to utilize the available off-the-shelf
information from the cluster assignments. The quantitative
and qualitative experiments and analyses demonstrate that our
method consistently outperforms state-of-the-art approaches.
We also provided comprehensive ablation studies to validate
the effectiveness and advantage of our network.

REFERENCES

[1] R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component
analysis (gpca),” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 12, pp. 1945–1959, 2005.

[2] Q. Wang, J. Cheng, Q. Gao, G. Zhao, and L. Jiao, “Deep multi-view
subspace clustering with unified and discriminative learning,” IEEE
Transactions on Multimedia, vol. 23, pp. 3483–3493, 2020.

[3] Z. Dang, C. Deng, X. Yang, and H. Huang, “Multi-scale fusion subspace
clustering using similarity constraint,” in CVPR, 2020, pp. 6658–6667.

[4] X. Wang, S. Fan, K. Kuang, C. Shi, J. Liu, and B. Wang, “Decorrelated
clustering with data selection bias,” in IJCAI, 2021, pp. 2177–2183.

[5] Y. Jia, H. Liu, J. Hou, and Q. Zhang, “Clustering ensemble meets low-
rank tensor approximation,” in AAAI, vol. 35, no. 9, 2021, pp. 7970–
7978.

[6] S. Yang, W. Deng, M. Wang, J. Du, and J. Hu, “Orthogonality
loss: learning discriminative representations for face recognition,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 31,
no. 6, pp. 2301–2314, 2020.

[7] Y. Jia, J. Hou, and S. Kwong, “Constrained clustering with dissimilarity
propagation-guided graph-laplacian pca,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–13, 2020.

[8] Y. Wu, L. Du, and H. Hu, “Parallel multi-path age distinguish network
for cross-age face recognition,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 31, no. 9, pp. 3482–3492, 2020.

[9] Z. Peng, W. Zhang, N. Han, X. Fang, P. Kang, and L. Teng, “Active
transfer learning,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 30, no. 4, pp. 1022–1036, 2019.

[10] Y. Jia, H. Liu, J. Hou, S. Kwong, and Q. Zhang, “Multi-view spectral
clustering tailored tensor low-rank representation,” IEEE Transactions
on Circuits and Systems for Video Technology, 2021.

[11] Z. Peng, Y. Jia, H. Liu, J. Hou, and Q. Zhang, “Maximum entropy sub-
space clustering network,” IEEE Transactions on Circuits and Systems
for Video Technology, 2021.

[12] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[13] J. MacQueen et al., “Some methods for classification and analysis
of multivariate observations,” in Proceedings of The Fifth Berkeley
Symposium on Mathematical Statistics and Probability, vol. 1. Oakland,
CA, USA: Berkeley, 1967, pp. 281–297.

[14] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in ICML. New York, NY, USA: PMLR, 2016, pp.
478–487.

[15] X. Guo, L. Gao, X. Liu, and J. Yin, “Improved deep embedded clustering
with local structure preservation,” in IJCAI. Melbourne, Australia:
AAAI Press, 2017, pp. 1753–1759.

[16] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger,
“Simplifying graph convolutional networks,” in ICML. PMLR, 2019,
pp. 6861–6871.

[17] D. Kim and A. Oh, “How to find your friendly neighborhood: Graph
attention design with self-supervision,” in ICLR. Vienna, Austria: ICLR,
2021, pp. 1–14.

[18] L. Wu, P. Cui, J. Pei, and L. Zhao, Graph Neural Networks: Foundations,
Frontiers, and Applications. Singapore: Springer Singapore, 2022.

[19] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” ICLR, 2017.

[20] ——, “Variational graph auto-encoders,” in NIPS workshop. Centre
Convencions Internacional Barcelona, Barcelona SPAIN: NIPS, 2016,
pp. 1–3.

[21] S. Pan, R. Hu, S.-f. Fung, G. Long, J. Jiang, and C. Zhang, “Learning
graph embedding with adversarial training methods,” IEEE Transactions
on Cybernetics, vol. 50, no. 6, pp. 2475–2487, 2019.

[22] C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang, “Attributed
graph clustering: A deep attentional embedding approach,” in IJCAI.
Macao, China: AAAI Press, 2019, pp. 3670–3676.

[23] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in ICLR. Vancouver Convention
Center, Vancouver, BC, Canada: ICLR, 2018, pp. 1–12.

[24] D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui, “Structural
deep clustering network,” in WWW. Taipei Taiwan: Association for
Computing Machinery, New York, NY, United States, 2020, pp. 1400–
1410.

[25] Z. Peng, H. Liu, Y. Jia, and J. Hou, “Attention-driven graph clustering
network,” in ACM MM, 2021, pp. 935–943.

[26] X. Dong, L. Liu, L. Zhu, Z. Cheng, and H. Zhang, “Unsupervised
deep k-means hashing for efficient image retrieval and clustering,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 31,
no. 8, pp. 3266–3277, 2020.

[27] J. Huang, S. Gong, and X. Zhu, “Deep semantic clustering by partition
confidence maximisation,” in CVPR, 2020, pp. 8849–8858.

[28] Z. Wang, Y. Zou, and Z. Zhang, “Cluster attention contrast for video
anomaly detection,” in ACM MM. Seattle, United States: ACM, 2020,
pp. 2463–2471.

[29] K. Han, A. Vedaldi, and A. Zisserman, “Learning to discover novel
visual categories via deep transfer clustering,” in ICCV. Seoul, Korea:
IEEE, 2019, pp. 8401–8409.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XXX 20XX 12

[30] Y. Ou, Z. Chen, and F. Wu, “Multimodal local-global attention network
for affective video content analysis,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 31, no. 5, pp. 1901–1914, 2020.

[31] X. Wang, Z. Chen, J. Tang, B. Luo, Y. Wang, Y. Tian, and F. Wu,
“Dynamic attention guided multi-trajectory analysis for single object
tracking,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 31, no. 12, pp. 4895–4908, 2021.

[32] Y. Liu, W. Tu, S. Zhou, X. Liu, L. Song, X. Yang, and E. Zhu, “Deep
graph clustering via dual correlation reduction,” in AAAI, 2022.

[33] Y. Hu, Z. Song, B. Wang, J. Gao, Y. Sun, and B. Yin, “Akm 3 c: Adaptive
k-multiple-means for multi-view clustering,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 31, no. 11, pp. 4214–
4226, 2021.

[34] Z. Zhang, J. Wang, J. Ye, and F. Wu, “Rethinking graph convolutional
networks in knowledge graph completion,” in WWW, 2022, pp. 798–807.

[35] H. He, J. Wang, Z. Zhang, and F. Wu, “Compressing deep graph neural
networks via adversarial knowledge distillation,” in ACM SIGKDD,
2022.

[36] X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, and J. Pei, “Am-gcn: Adaptive
multi-channel graph convolutional networks,” in ACM SIGKDD. Virtual
Conference: ACM, 2020, pp. 1243–1253.

[37] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Transactions on Knowledge and Data Engineering, 2020.

[38] B. Chen, Z. Zhang, Y. Li, G. Lu, and D. Zhang, “Multi-label chest x-
ray image classification via semantic similarity graph embedding,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 32,
no. 4, pp. 2455–2468, 2021.

[39] J. He, T. Zhang, Y. Zheng, M. Xu, Y. Zhang, and F. Wu, “Consistency
graph modeling for semantic correspondence,” IEEE Transactions on
Image Processing, vol. 30, pp. 4932–4946, 2021.

[40] J. Wang, Z. Zhang, Z. Shi, J. Cai, S. Ji, and F. Wu, “Duality-induced
regularizer for semantic matching knowledge graph embeddings,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

[41] L. Hu, Z. Dai, L. Tian, and W. Zhang, “Class-oriented self-learning
graph embedding for image compact representation,” IEEE Transactions
on Circuits and Systems for Video Technology, 2022.

[42] A. Markovitz, G. Sharir, I. Friedman, L. Zelnik-Manor, and S. Avidan,
“Graph embedded pose clustering for anomaly detection,” in CVPR,
2020, pp. 10 539–10 547.

[43] J. Park, M. Lee, H. J. Chang, K. Lee, and J. Y. Choi, “Symmetric
graph convolutional autoencoder for unsupervised graph representation
learning,” in ICCV. Seoul, Korea: IEEE, 2019, pp. 6519–6528.

[44] P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” Knowledge-Based Systems, vol. 151, pp.
78–94, 2018.

[45] G. Li, M. Muller, A. Thabet, and B. Ghanem, “Deepgcns: Can gcns go
as deep as cnns?” in ICCV, 2019, pp. 9267–9276.

[46] Q. Huang, H. He, A. Singh, S.-N. Lim, and A. Benson, “Combining label
propagation and simple models out-performs graph neural networks,” in
ICLR. Vienna, Austria: ICLR, 2021, pp. 1–19.

[47] W. Tu, S. Zhou, X. Liu, X. Guo, Z. Cai, E. Zhu, and J. Cheng, “Deep
fusion clustering network,” in AAAI, vol. 35, no. 11, 2021, pp. 9978–
9987.

[48] X. He, B. Wang, Y. Hu, J. Gao, Y. Sun, and B. Yin, “Parallelly adaptive
graph convolutional clustering model,” IEEE Transactions on Neural
Networks and Learning Systems, 2022.

[49] F. Helmert, “Die genauigkeit der formel von peters zur berechnung des
wahrscheinlichen beobachtungsfehlers director beobachtungen gleicher
genauigkeit,” Astronomische Nachrichten, vol. 88, p. 113, 1876.

[50] Student, “The probable error of a mean,” Biometrika, vol. 6, no. 1, pp.
1–25, 1908.

[51] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in AISTATS. Fort Lauderdale, FL, USA: PMLR, 2011, pp.
315–323.

[52] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in ICML, vol. 30. Atlanta,
USA: Citeseer, 2013, p. 3.

[53] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in AAAI, vol. 32. Hilton New

Orleans Riverside, New Orleans, Louisiana, USA: AAAI Press, 2018,
pp. 1–8.

[54] D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks,” in Workshop on challenges
in representation learning, ICML, vol. 3, no. 2, 2013, p. 896.

[55] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial
on the cross-entropy method,” Annals of Operations Research, vol. 134,
no. 1, pp. 19–67, 2005.

[56] J. J. Hull, “A database for handwritten text recognition research,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 16,
no. 5, pp. 550–554, 1994.

[57] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “Rcv1: A new benchmark
collection for text categorization research,” Journal of Machine Learning
Research, vol. 5, no. Apr, pp. 361–397, 2004.

[58] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard,
A. Dey, T. Sonne, and M. M. Jensen, “Smart devices are different:
Assessing and mitigatingmobile sensing heterogeneities for activity
recognition,” in SenSys. New York, NY, United States: ACM, 2015,
pp. 127–140.

[59] S. Wan, Y. Zhan, L. Liu, B. Yu, S. Pan, and C. Gong, “Contrastive graph
poisson networks: Semi-supervised learning with extremely limited
labels,” NIPS, vol. 34, 2021.

[60] K. Riesen and H. Bunke, “Iam graph database repository for graph based
pattern recognition and machine learning,” in Joint IAPR International
Workshops on Statistical Techniques in Pattern Recognition (SPR) and
Structural and Syntactic Pattern Recognition (SSPR). Springer, 2008,
pp. 287–297.

[61] N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175–185, 1992.

[62] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

Zhihao Peng received the B.S. and M.S. degrees in
computer science and technology from Guangdong
University of Technology, Guangzhou, China, in
2016 and 2019, respectively. He is currently pur-
suing the Ph.D. degree in department of computer
science from City University of Hong Kong, SAR,
China. His current research interests include spectral
clustering, subspace learning, and domain adaptation
in image/text/graph processing with unsupervised
learning.

Yuheng Jia received the B.S. degree in automation
and the M.S. degree in control theory and engineer-
ing from Zhengzhou University, Zhengzhou, China,
in 2012 and 2015, respectively, and the Ph.D. degree
in computer science from the City University of
Hong Kong, SAR, China, in 2019.

He is currently an associate professor with the
School of Computer Science and Engineering,
Southeast University, China. His research interests
include machine learning, Bayesian method, spectral
clustering and low-rank modeling.

Hui Liu received the B.Sc. degree in communication
engineering from Central South University, Chang-
sha, China, the M.Eng. degree in computer science
from Nanyang Technological University, Singapore,
and the Ph.D. degree from the Department of Com-
puter Science, City University of Hong Kong, Hong
Kong. From 2014 to 2017, she was a Research
Associate at the Maritime Institute, Nanyang Tech-
nological University. She is currently an Assistant
Professor with the School of Computing Informa-
tion Sciences, Caritas Institute of Higher Education,

Hong Kong. Her research interests include image processing and machine
learning.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XXX 20XX 13

Junhui Hou (Senior Member) is an Assistant Pro-
fessor with the Department of Computer Science,
City University of Hong Kong. He received the
B.Eng. degree in information engineering (Talented
Students Program) from the South China University
of Technology, Guangzhou, China, in 2009, the
M.Eng. degree in signal and information processing
from Northwestern Polytechnical University, Xian,
China, in 2012, and the Ph.D. degree in elec-
trical and electronic engineering from the School
of Electrical and Electronic Engineering, Nanyang

Technological University, Singapore, in 2016. His research interests fall into
the general areas of multimedia signal processing, such as image/video/3D

geometry data representation, processing and analysis, graph-based cluster-
ing/classification, and data compression.

He received the Chinese Government Award for Outstanding Students Study
Abroad from China Scholarship Council in 2015 and the Early Career Award
(3/381) from the Hong Kong Research Grants Council in 2018. He is an
elected member of IEEE MSA-TC, IEEE VSPC-TC, and IEEE MMSP-TC. He
is currently an Associate Editor for IEEE Transactions on Image Processing,
IEEE Transactions on Circuits and Systems for Video Technology, Signal
Processing: Image Communication, and The Visual Computer. He also served
as the Guest Editor for the IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing and Journal of Visual Communication
and Image Representation, and as an Area Chair of ACM MM’19-22, IEEE
ICME’20, VCIP’20-22, ICIP’22, MMSP’22, and WACV’21.

	I Introduction
	II Related Work
	III Proposed Method
	III-A Heterogeneity-Wise Fusion
	III-B Scale-Wise Fusion
	III-C Distribution-Wise Fusion
	III-D Dual Self-supervision
	III-D1 Soft Self-supervision
	III-D2 Hard Self-supervision

	III-E Computational Complexity Analysis

	IV Experiments
	IV-A Datasets and Compared Methods
	IV-B Implementation Details
	IV-B1 Evaluation metrics
	IV-B2 Graph construction
	IV-B3 Training Procedure

	IV-C Clustering Results
	IV-D Ablation Study
	IV-D1 Heterogeneity-wise fusion module
	IV-D2 Scale-wise fusion module
	IV-D3 Distribution-wise fusion module
	IV-D4 Hard self-supervision strategy
	IV-D5 Soft Self-supervision Strategy
	IV-D6 Dual Self-supervision (DSS)

	IV-E Parameters Analysis
	IV-E1 Analysis of the number of neighbors
	IV-E2 Analysis of hyperparameters
	IV-E3 Analysis of the threshold value
	IV-E4 Analysis of the learned attention-aware weights

	IV-F Time and Space Complexity Analysis
	IV-G Visual Comparison

	V Conclusion
	References
	Biographies
	Zhihao Peng
	Yuheng Jia
	Hui Liu
	Junhui Hou

