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Abstract—In this letter, we propose a novel semi-supervised
subspace clustering method, which is able to simultaneously
augment the initial supervisory information and construct a dis-
criminative affinity matrix. By representing the limited amount
of supervisory information as a pairwise constraint matrix, we
observe that the ideal affinity matrix for clustering shares the
same low-rank structure as the ideal pairwise constraint matrix.
Thus, we stack the two matrices into a 3-D tensor, where a
global low-rank constraint is imposed to promote the affinity
matrix construction and augment the initial pairwise constraints
synchronously. Besides, we use the local geometry structure
of input samples to complement the global low-rank prior to
achieve better affinity matrix learning. The proposed model is
formulated as a Laplacian graph regularized convex low-rank
tensor representation problem, which is further solved with an
alternative iterative algorithm. In addition, we propose to refine
the affinity matrix with the augmented pairwise constraints.
Comprehensive experimental results on eight commonly-used
benchmark datasets demonstrate the superiority of our method
over state-of-the-art methods. The code is publicly available at
https://github.com/GuanxingLu/Subspace-Clustering.

Index Terms—tensor low-rank representation, semi-supervised
learning, subspace clustering, pairwise constraints.

I. INTRODUCTION

High-dimensional data are ubiquitously in many areas like
image processing, DNA microarray technology, etc. The high-
dimensional data can often be well approximated by a set of
linear subspaces, but the subspace membership of a certain
sample is unknown [1], [2]. Subspace clustering aims to
divide the data samples into different subspaces, which is
an important tool to model the high-dimensional data. The
state-of-the-art subspace clustering methods [3], [4] are based
on self-expressiveness, which represent high-dimensional data
by the linear combination of itself, and enforce a subspace-
preserving prior on the self-representation matrix. The rep-
resentation coefficients capture the global geometric relation-
ships of samples and can act as an affinity matrix, and the
subspace segmentation can be obtained by applying spectral
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Fig. 1: Illustration of the proposed method, which adaptively
learns the affinity and enhances the pairwise constraints simul-
taneously by using their identical global low-rank structure.

clustering on the generated affinity matrix. The most well-
known subspace clustering methods include sparse subspace
clustering [3] and low-rank representation [4].

In many real-world applications, some supervisory infor-
mation is available, e.g., the label information of a dataset,
and the relationships between two samples. Generally, those
supervisory information can be represented by two kinds of
pairwise constraints, i.e., must-link constraints and cannot-link
constraints indicating whether two samples belong to the same
category or not. As the supervisory information is widespread
and provides a discriminative description of the samples,
many semi-supervised subspace clustering methods [5]–[13]
were proposed to incorporate them. Based on the type of the
supervisory information, we roughly divide these methods into
three classes. The first kind of methods include the must-link
constraints. For example, [5], [6] incorporated the must-links
as hard constraints, which restricted the samples with a must-
link to have exactly the same representation. The second kind
of methods integrate the cannot-link constraints. For instance,
[7] required the affinity relationship of two samples with a
cannot-link to be 0. Liu et al. [8] first enhanced the initial
cannot-links by a graph Laplacian term, and then inhibited
the affinity of two samples with a cannot-link. The third kind
of methods can incorporate both the must-links and cannot-
links, which generally assume two samples with a must-link
should have a higher affinity, while those with a cannot-link
should have a lower affinity [9]–[13]. However, the above-
mentioned semi-supervised subspace clustering methods ex-
ploit the supervisory information from a local perspective, but
overlook the global structure of the pairwise constraints, which
is also important to semi-supervised affinity matrix learning. In
other words, the previous methods under-use the supervisory
information to some extent.

To this end, we propose a new semi-supervised subspace
clustering method shown in Fig. 1, which explores the su-
pervisory information from a global manner. Specifically, in
the ideal case, the pairwise constraint matrix is low-rank,
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as if all the pairwise relationships of samples are available,
we could encode the pairwise constraint matrix as a binary
low-rank matrix. Meanwhile, the ideal affinity matrix is also
low-rank, as a sample should only be represented by the
samples from the same class. More importantly, they share
an identical low-rank structure. Based on such an observation,
we stack them into a 3-dimensional tensor, and regulate a
global low-rank constraint to the formed tensor. By seeking
the tensor low-rank representation, we can refine the affinity
matrix with the available pairwise constraints, and at the
same time, augment the initial pairwise constraints with the
learned affinity matrix. Besides, we encode the local geometry
structure of the data samples to complement the global low-
rank prior. The proposed model is formulated as a convex
optimization model, which can be solved efficiently. Finally,
we use the augmented pairwise constraint matrix to further
refine the affinity matrix. Extensive experiments on 8 datasets
w.r.t. 2 metrics demonstrate that our method outperforms the
state-of-the-art semi-supervised subspace clustering methods
to a large extent.

II. PRELIMINARY

In this letter, we denote tensors by boldface Euler script
letters, e.g., A, matrices by boldface capital letters, e.g., A,
vectors by boldface lowercase letters, e.g., a, and scalars by
lowercase letters, e.g., a. ‖ · ‖2,1, ‖ · ‖∞, ‖ · ‖F and ‖ · ‖∗ are
the `2,1 norm, the infinity norm, and the Frobenius norm, and
the nuclear norm (i.e., the sum of the singular values) of a
matrix. X=[x1,x2, ...,xn] ∈ Rd×n is the data matrix, where
xi ∈ Rd×1 specifies the d-dimensional vectorial representation
of the i-th sample, and n is the number of samples. Let
Ωm = {(i, j) | xi and xj belong to the same class} and
Ωc = {(i, j) | xi and xj belong to different classes} stand
for the available must-link set and cannot-link set. We can
encode the pairwise constraints as a matrix B ∈ Rn×n:

Bij =

{
1, if (i, j) ∈ Ωm

−1, if (i, j) ∈ Ωc.
(1)

Subspace clustering aims to segment a set of samples
into a group of subspaces. Particularly, self-expressive-based
subspace clustering methods have attracted great attention,
which learn a self-representation matrix to act as the affinity.
For example, Liu et al. [4] proposed to learn a low-rank affinity
matrix by optimizing

min
Z,E

‖Z‖∗ + λ‖E‖2,1 s.t. X = XZ + E, (2)

where Z ∈ Rn×n is the representation matrix, E ∈ Rd×n

denotes the reconstruction error, and λ > 0 is a hyper-
parameter.

Recently, many semi-supervised subspace clustering meth-
ods were proposed by incorporating the pairwise constraints
[5]–[13]. How to include the supervisory information is the
crux of semi-supervised subspace clustering. Generally, the
existing methods incorporate the pairwise constraints from a
local perspective, i.e., expand (resp. reduce) the value of Zij

if xi and xj has a must-link (resp. cannot-link).

Algorithm 1 Solve Eq. (4) by ADMM

Input: data X, pairwise constraints Ωm,Ωc, hyper-parameters
λ,β.

1: Initialize: C(0) =Y(0)
2 = 0, B(0) =Z(0) = D(0) =E(0) =

Y
(0)
1 =Y

(0)
3 =0, ρ=1.1, µ(0)=1e−3, µmax=1e10.

2: repeat
3: Update C by C(k+1) = S 1

µ(k)
(M(k)+Y(k)

2 /µ(k)), where
S is the tensor singular value thresholding operator [14];

4: Update Z by Z(k+1)=
(
I + X>X

)−1
(X>(X−E(k))+

C(k)(:, :, 2) + (X>Y
(k)
1 − Y(k)

2 (:, :, 2))/µ(k));
5: Update B by B(k+1)=(µ(k)(C(k)(:, :, 2)+D(k))−(Y(k)

2 (:

, :, 2)+Y
(k)
3 ))/(β(L+L>)+2µ(k)I);

6: Update D by

D
(k+1)
ij =


s, if (i, j) ∈ Ωm

− s, if (i, j) ∈ Ωc

B
(k)
ij + Y

(k)
3ij/µ

(k), otherwise;
7: Update E by

e
(k+1)
j =


∥∥∥q(k)

j

∥∥∥
2
−λ/µ(k)∥∥∥q(k)
j

∥∥∥
2

q
(k)
j , if

∥∥∥q(k)
j

∥∥∥
2
≥λ/µ(k)

0, otherwise;

8: Update Y1, Y2, Y3, and µ by

Y
(k+1)
1 = Y

(k)
1 + µ(k)

(
X−XZ(k+1) −E(k+1)

)
Y(k+1)
2 (:,:,1)=Y(k)

2 (:,:,1)+µ(k)
(
Z(k+1)−C(k+1)(:,:,1)

)
Y(k+1)
2 (:,:,2)=Y(k)

2 (:,:,2)+µ(k)
(
B(k+1)−C(k+1)(:,:,2)

)
Y

(k+1)
3 = Y

(k)
3 + µ(k)

(
B(k+1) −D(k+1)

)
µ(k+1) = min

(
ρµ(k);µmax

)
;

9: until convergence

III. PROPOSED METHOD

A. Model Formulation

As aforementioned, existing semi-supervised subspace clus-
tering methods usually impose the pairwise constraints on the
affinity matrix in a simple element-wise manner, which under-
uses the supervisory information to some extent. As studied in
previous works [4], [8], the ideal affinity matrix Z is low-rank
as a sample should be only reconstructed by the samples within
the same class. Meanwhile, the ideal pairwise constraint matrix
B is also low-rank, as it records the pairwise relationship
among samples. Moreover, we observe that their low-rank
structures should be identical. Accordingly, if we stack them
to form a 3-D tensor C ∈ Rn×n×2, i.e., C(:, :, 1) = Z, and
C(:, :, 2) = B, the formed tensor C should be low-rank ideally.
Therefore, we use a global tensor low-rank norm to exploit this
prior and preliminarily formulate the problem as

min
C,E,B,Z

‖C‖~ + λ‖E‖2,1

s.t. X = XZ + E, C(:, :, 1) = Z, C(:, :, 2) = B,

Bij = s, (i, j) ∈ Ωm,Bij = −s, (i, j) ∈ Ωc.

(3)
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Fig. 2: Comparisons of the accuracy of all methods under various supervisory information. All subfigures share the same legend.
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Fig. 3: Comparisons of the NMI of all methods under various supervisory information. All subfigures share the same legend.

TABLE I: Detailed Comparisions of Accuracy and NMI under 30% Initial Labels.

Accuracy ORL YaleB COIL20 Isolet MNIST Alphabet BF0502 Notting-Hill Average
LRR 0.7405 0.6974 0.6706 0.6699 0.5399 0.4631 0.4717 0.5756 0.6036

DPLRR 0.8292 0.6894 0.8978 0.8540 0.7442 0.7309 0.5516 0.9928 0.7862
SSLRR 0.7600 0.7089 0.7159 0.7848 0.6538 0.5294 0.6100 0.7383 0.6876
L-RPCA 0.6568 0.3619 0.8470 0.6225 0.5662 0.5776 0.4674 0.3899 0.5612
CP-SSC 0.7408 0.6922 0.8494 0.7375 0.5361 0.5679 0.4733 0.5592 0.6445
SC-LRR 0.7535 0.9416 0.8696 0.8339 0.8377 0.6974 0.7259 0.9982 0.8322
CLRR 0.8160 0.7853 0.8217 0.8787 0.7030 0.6837 0.7964 0.9308 0.8020

Proposed Method 0.8965 0.9742 0.9761 0.9344 0.8747 0.8355 0.8697 0.9934 0.9193
NMI ORL YaleB COIL20 Isolet MNIST Alphabet BF0502 Notting-Hill Average
LRR 0.8611 0.7309 0.7742 0.7677 0.4949 0.5748 0.3675 0.3689 0.6175

DPLRR 0.8861 0.7205 0.9258 0.8853 0.7400 0.7477 0.5388 0.9748 0.8024
SSLRR 0.8746 0.7409 0.7986 0.8337 0.6373 0.6070 0.4810 0.5949 0.6960
L-RPCA 0.8038 0.3914 0.9271 0.7834 0.5805 0.6590 0.4329 0.2294 0.6009
CP-SSC 0.8705 0.7224 0.9583 0.8127 0.5516 0.6459 0.4453 0.4733 0.6850
SC-LRR 0.8924 0.9197 0.9048 0.8362 0.7803 0.7316 0.7068 0.9931 0.8456
CLRR 0.9028 0.7895 0.8568 0.8892 0.6727 0.7091 0.6970 0.8293 0.7933

Proposed Method 0.9337 0.9548 0.9716 0.9218 0.7825 0.8107 0.7693 0.9771 0.8902

In Eq. (3), we adopt the nuclear norm ‖·‖~ defined on tensor-
SVD [14] to seek the low-rank representation, and other kinds
of tensor low-rank norms are also applicable, e.g., [15]. We
introduce a scalar s to constrain the maximum and minimum
values of B, promoting that B has a similar scale to Z.

Empirically, s is set to the largest element of the learned
affinity by LRR. By solving Eq. (3), the affinity matrix Z and
pairwise constraint matrix B are jointly optimized according
to the nuclear norm on C, i.e., the supervisory information is
transferred to Z, and at the same time, the learned affinity
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TABLE II: Ablation Study.

Percentage Accuracy ORL YaleB COIL20 Isolet MNIST Alphabet BF0502 Notting-Hill Average

10

SSLRR 0.7223 0.6965 0.6874 0.6107 0.5121 0.4278 0.4150 0.5747 0.5808
CLRR 0.7193 0.7032 0.6309 0.7424 0.5435 0.5120 0.5165 0.6728 0.6301
Eq. (3) 0.7298 0.7838 0.6744 0.8599 0.5224 0.5022 0.5786 0.8079 0.6824
Eq. (4) 0.7298 0.7838 0.8708 0.8424 0.7659 0.6640 0.5779 0.9573 0.7740
Eq. (5) 0.7523 0.8696 0.9171 0.8665 0.7879 0.6862 0.5915 0.9576 0.8036

20

SSLRR 0.7390 0.6998 0.6966 0.6651 0.5308 0.4672 0.4750 0.6363 0.6137
CLRR 0.7808 0.7130 0.6971 0.8176 0.6401 0.6064 0.6863 0.8598 0.7251
Eq. (3) 0.7860 0.9194 0.8101 0.9012 0.6661 0.6443 0.7554 0.9378 0.8025
Eq. (4) 0.7860 0.9194 0.9364 0.9065 0.8366 0.7511 0.8077 0.9817 0.8657
Eq. (5) 0.8325 0.9548 0.9569 0.9078 0.8439 0.7772 0.8223 0.9831 0.8848

30

SSLRR 0.7600 0.7089 0.7159 0.7848 0.6538 0.5294 0.6100 0.7383 0.6876
CLRR 0.8160 0.7853 0.8217 0.8787 0.7030 0.6837 0.7964 0.9308 0.8020
Eq. (3) 0.8893 0.9664 0.9096 0.9222 0.8370 0.7671 0.8083 0.9661 0.8832
Eq. (4) 0.8893 0.9664 0.9710 0.9300 0.8745 0.8244 0.8631 0.9917 0.9138
Eq. (5) 0.8965 0.9742 0.9761 0.9344 0.8747 0.8355 0.8697 0.9934 0.9193

matrix can also augment the initial pairwise constraints from
a global perspective.

Besides, if two samples (xi and xj) are close to each other
in the feature space, we can expect they have a similar pairwise
relationship, i.e., B(:, i) is close to B(:, j). To encode this
prior, we first construct a kNN graph W ∈Rn×n to capture
the local geometric structure of samples, and use the local
Laplacian regularization Tr(BLB>) to replenish the global
low-rank term, where L=D−W is the Laplacian matrix with
Dii=

∑
j Wij [16]. Therefore, our model is finally formulated

as
min
C,E,B,Z

‖C‖~ + λ‖E‖2,1 + β Tr(BLB>)

s.t. X = XZ + E, C(:, :, 1) = Z, C(:, :, 2) = B,

Bij = s, (i, j) ∈ Ωm,Bij = −s, (i, j) ∈ Ωc.

(4)

After solving Eq. (4), we first normalize each column of Z
to [0, 1], and normalize B by B ← B/s. Then, we use the
augmented pairwise constraint matrix B to repair Z, i.e.,

Zij ←

{
1− (1−Bij) (1− Zij) , if Bij ≥ 0

(1 + Bij)Zij , if Bij < 0.
(5)

When Bij is larger than 0, xi and xj are likely to belong to the
same class, Eq. (5) will increase the corresponding element of
Z. Similarly, when Bij is less than 0, Zij will be depressed.
Therefore, Eq. (5) further enhances the affinity matrix by the
augmented pairwise constraints. Finally, we apply spectral
clustering [17] on W = (|Z|+ |Z>|)/2 to get the subspace
segmentation.

B. Optimization Algorithm

As Eq. (4) contains multiple variables and constraints,
we solve it by alternating direction method of multipliers
(ADMM) [18]. Algorithm 1 summarizes the whole pseudo
code. Due to the page limitation, the detailed derivation
process can be found in the supplementary file.

The computational complexity of Algorithm 1 is dominated
by steps 3-5. Specifically, the step 3 solves the t-SVD of an
n×n×2 tensor with the complexity ofO(2n2 log 2+2n3) [14].
The steps 4-5 involve matrix inverse and matrix multiplication
operations with the complexity of O(n3). Note that in step
4, the to be inversed matrix

(
I + X>X

)
is unchanged, which

only needs to be calculated once in advanced. In summary, the
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Fig. 4: Visual comparison of the affinity matrices learned by
different methods on MNIST. The learned affinity matrices
were normalized to [0,1]. Zoom in the figure for a better view.

(a) (b) (c)

Fig. 5: Influence of the hyper-parameters on clustering perfor-
mance.

overall computational complexity of Algorithm 1 is O(n3) in
one iteration.

IV. EXPERIMENTS

In this section, we evaluated the proposed model on 8
commonly-used benchmark datasets, including ORL, YaleB,
COIL20, Isolet, MNIST, Alphabet, BF0502 and Notting-Hill1.
Those datasets cover face images, object images, digit images,
spoken letters, and videos. To generate the weakly-supervisory
information, following [7], we inferred the pairwise constraints
from the randomly selected labels.

We compared our method with LRR [4] and six state-of-the-
art semi-supervised subspace clustering methods, including
DPLRR [8], SSLRR [7], L-RPCA [19], CP-SSC [20], SC-
LRR [9] and CLRR [5]. We performed standard spectral

1ORL, YaleB, COIL20, Isolet and MNIST can be found in http://www.
cad.zju.edu.cn/home/dengcai/Data/data.html, BF0502 in https://www.robots.
ox.ac.uk/∼vgg/data/nface/index.html, Notting-Hill in https://sites.google.com/
site/baoyuanwu2015/.

http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
https://www.robots.ox.ac.uk/~vgg/data/nface/index.html
https://www.robots.ox.ac.uk/~vgg/data/nface/index.html
https://sites.google.com/site/baoyuanwu2015/
https://sites.google.com/site/baoyuanwu2015/
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Fig. 6: Convergence behavior comparisons of different methods on eight datasets. The longitudinal axis is normalized.

ORL YaleB COIL20 Isolet MNIST Alphabet BF0502 Notting-Hill
10

0

10
1

10
2

10
3

10
4

R
u
n
n
in

g
 T

im
e
 (

s
e
c
)

Proposed Method

LRR

DPLRR

SSLRR

L-RPCA

CP-SSC

SC-LRR

CLRR

Fig. 7: Running time comparisons of different methods on
eight datasets.

clustering in [17] on all the methods to generate the clustering
result. We adopted the clustering accuracy and normalized
mutual information (NMI) to measure their performance. For
both metrics, the larger, the better. For fair comparisons,
we carefully tuned the hyper-parameters of the compared
methods through exhaustive grid search to achieve the best
result. To comprehensively evaluate the different methods,
for each dataset, we randomly selected various percentages
of initial labels ({5%, 10%, 15%, 20%, 25%, 30%}) to infer
the pairwise constraints. We used the same label information
for all the compared methods in every case. To reduce the
influence of the random selection, we repeated the experiments
10 times with the randomly selected labels each time, and
reported the average performance.

A. Comparison of Clustering Accuracy

Figs. 2-3 compare the clustering accuracy and NMI of
different methods under various numbers of pairwise con-

straints, and Table I shows the clustering performance of
different methods with 30% initial labels of each datasets as
the supervisory information. From those figures and table, we
can draw the following conclusions.

1) With more pairwise constraints, all the semi-supervised
subspace clustering methods generally perform better,
which indicates the effectiveness of including supervi-
sory information in subspace clustering.

2) The proposed method outperforms the other methods
significantly. For example our method improves the
accuracy value from 0.61 to 0.78 on MNIST and the
NMI value from 0.72 to 0.89 on YaleB when compared
with the best companions. According to Table I, the
proposed method improves the average clustering ac-
curacy of the best compared methods from 0.83 to 0.92.
Moreover, the proposed method almost always achieves
the best clustering performance with varied supervisory
information.

3) The compared methods may be sensitive to different
datasets (e.g., SC-LRR achieves the second-best perfor-
mance on YaleB and MNIST, but performs relatively bad
on ORL and COIL20), and sensitive to diverse clustering
metrics (e.g., CP-SSC performs well in NMI but poorly
in clustering accuracy). On the contrary, the proposed
method is robust to distinct datasets and metrics.

Besides, we visualized the affinity matrices learned by
different methods on MNIST in Fig. 4, where it can be seen
that our method produces more dense and correct connections,
leading to the most salient block diagonal affinity. This is
owing to the used global tensor low-rank regularization, and
further explains the good clustering results reported in Figs.
2-3 and Table I.

B. Hyper-Parameter Analysis

Fig. 5 illustrates how the two hyper-parameters λ and β
affect the performance of our method on COIL20, MNIST and
Alphabet. It can be seen that the proposed model is relatively
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robust to hyper-parameters around the optimal. To be specific,
we recommend to set λ=0.01 and β=10.

C. Convergence Speed

Fig. 6 shows the convergence behaviors of all the compared
algorithms on all the datasets. Note that the convergence
criteria of all the methods are the same, i.e., the residual error
of a variable in two successive steps is less than 1e−3. We
can conclude that L-PRCA usually converges fastest among
all the methods. While the proposed algorithm also converges
fast compared with other methods like SSLRR and DPLRR.
Moreover, the proposed algorithm gets converged within 130
iterations on all the eight datasets.

Fig. 7 compares the average running time of all eight
methods on each dataset. Note that we implemented all the
methods with MATLAB on a Windows desktop with a 2.90
GHz Intel(R) i5-10400F CPU and 16.0 GB memory. We can
observe that the proposed method takes an average time of
95.97s each run on all the eight datasets. It is slightly higher
than LRR, but significantly lower than SSLRR. We also need
to point out that the proposed method performs much better
than the compared methods in clustering performance.

D. Ablation Study

We investigated the effectiveness of the priors/processes
involved in our model by comparing the clustering accuracy of
Eqs. (3)-(5). The compared methods include two well-known
element-wise semi-supervised subspace clustering methods
SSLRR and CLRR. As Table II shows, the results of Eq. (3)
outperform SSLRR and CLRR significantly on all the datasets,
which demonstrates the advantage of the global tensor low-
rank prior over the element-wisely fusion strategy. Besides,
Eqs. (4) and (5) improve the performance of the proposed
model successively, which indicates that both the graph regu-
larization and the post-refinement processing contribute to our
model.

V. CONCLUSION

We have proposed a novel semi-supervised subspace clus-
tering model. We first stacked the affinity matrix and pair-
wise constraint matrix to form a tensor, and then imposed a
tensor low-rank prior on it to learn the affinity matrix and
augment the pairwise constraints simultaneously. In addition
to the global tensor low-rank term, we added a Laplacian
regularization term to model the underlying local geometric
structure. Furthermore, the learned affinity matrix was refined
by the augmented pairwise constraints. The proposed model
was formulated as a convex problem, and solved by ADMM.
The experimental results demonstrated that our model out-
performs other semi-supervised subspace clustering methods
significantly.

In the future, we will investigate how to incorporate our
work with the existing semi-supervised learning neural net-
works [21]–[24]. For example, we can use the proposed
pairwise constraint enhancement as a loss function to train the
neural networks in an end-to-end manner. Moreover, we will
improve our method by solving the noisy pairwise constraints
problem.
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