
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Self-Training Vision Language BERTs with a
Unified Conditional Model
Xiaofeng Yang, Fengmao Lv, Fayao Liu, Guosheng Lin

Abstract—Natural language BERTs are trained with language
corpus in a self-supervised manner. Unlike natural language
BERTs, vision language BERTs need paired data to train,
which restricts the scale of VL-BERT pretraining. We propose
a self-training approach that allows training VL-BERTs from
unlabeled image data. The proposed method starts with our
unified conditional model – a vision language BERT model that
can perform zero-shot conditional generation. Given different
conditions, the unified conditional model can generate captions,
dense captions, and even questions. We use the labeled image data
to train a teacher model and use the trained model to generate
pseudo captions on unlabeled image data. We then combine the
labeled data and pseudo labeled data to train a student model.
The process is iterated by putting the student model as a new
teacher. By using the proposed self-training approach and only
300k unlabeled extra data, we are able to get competitive or even
better performances compared to the models of similar model size
trained with 3 million extra image data.

I. INTRODUCTION

Large scale pretraining has become the dominating approach
in various natural language processing tasks. The success of
large scale pretraining is due to a large amount of language
training data available everywhere and the self-training algo-
rithm. Unlike language pretraining, vision language pretraining
requires paired image and language data, which restricts the
scale of vision language BERTs’ pretraining. In this paper, we
propose a self-training approach that allows to pretrain VL-
BERTs using unlabeled image data.

Self-training is usually done by iterating the following three
steps: 1) training with labeled data, 2) generating pseudo labels
for unlabeled data, 3) mixing the labeled data and unlabeled
data with pseudo labels to retrain the network. However, the
self-training of vision language BERTs is nontrivial due to
the following reasons. First, although auto-encoding models
(e.g., BERTs [1], [2]) perform well on the natural language
understanding and image language understanding tasks, they
cannot be directly applied to the generation task without fine-
tuning [3]. In practice, it is difficult to generate pseudo labels
for unlabeled data using pretrained BERTs in the zero-shot
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Original CC caption:

why geographical feature category is the perfect resort for 

Families !

Condition: Coco Caption

a boat floating on top of water next to a pier.

a ship docked next to a dock on a clear day.

an old fashioned boat in a marina near a boat dock.

Condition: Dense caption

boat on water surface.

the letter is in white.

boat docked in harbor.

Condition: Question

the boat is on where?

on which side is the boat?

Fig. 1. An example of generated image descriptions. The original image
is selected from Conceptual Caption. Given different condition flags, our
proposed UCM model is able to generate diverse image descriptions, such
as COCO caption, dense caption, and questions. It’s clear that the generated
contents have different styles. Compared with the originally provided captions,
the generated ones could better describe the picture contents.

setting. Although these models can be finetuned to perform
generation tasks, the zero-shot generation of pseudo labels
is important since it saves the time of extra finetuning and
avoids adding additional bias from the finetuning datasets.
Second, current common practice in vision language BERT
pretraining uses various image descriptions to train, such as
image captions, dense captions and questions. Those image
descriptions have significant differences, making it difficult for
an unconditional model to learn to generate adequate pseudo
captions for unlabeled images. Hence, although self-training
has shown its effectiveness in various tasks [4], [5], how to
use it effectively in training vision language BERTs is not yet
studied.

To this end, we propose the Unified Conditional Model
(UCM) and a set of vision language BERT self-training
methods to tackle the above issues. Compared with previous
methods, our model has the following advantages: First, our
method combines auto-encoding training [1], [2] and auto-
regressive training [6] in a unified framework, which enables
our method to perform well on natural language understanding
tasks and at the same time effectively generate pseudo labels.
Second, we propose a novel conditional training method that
enables our model to conditional generate various types of
captions, including COCO style captions, VG style dense
captions and questions.

Unified Conditional Model (UCM). Compared with tra-
ditional vision language BERTs, our proposed UCM has
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two unique properties. First, the model is able to generate
different contents based on a condition flag input, such as
image captions, dense captions, and questions. Second, the
condition flag can be used as an identifier to help down-stream
finetuning. The proposed UCM shares similar model structures
with existing 2-stream vision language BERT models [2],
[7]. Specifically, it contains one image encoder, two language
encoders with shared weights, and several layers of cross
attention layers. In training, different data types are assigned
to their condition signals. The model is trained with both
bi-directional prediction masks and one-directional predic-
tion masks in parallel. For bi-directional prediction masks,
the model performs conditional masked language modeling
prediction, masked object prediction, image-text matching,
and an auxiliary question answering loss. For one-directional
prediction masks, the model performs one-directional masked
conditional language modeling and masked object prediction
tasks. When the model is used to generate pseudo labels for
unlabeled images, the model will run forward propagation
with one-directional prediction masks only. The condition
signal enables the model to generate diverse descriptions
for pictures. Fig. 1 shows an example of generated image
descriptions using different condition flags. When the model is
used for finetuning image language understanding tasks, only
the bi-directional mask is used. During finetuning, we use the
condition flag as prior knowledge for finetuning. For example,
when finetuning VQA tasks, the input is given an additional
condition flag to show the input is a question. Results show
that the presence of condition flags improves down-stream
finetuning performance.

Vision Language BERT Self-Training. The self-training
method is used in the pretraining stage to further enlarge
the scale of data that can be used in pretraining. Our self-
training approach follows the self-training pipeline with extra
optimization for vision language BERTs. Generally, the self-
training process is done in three steps. First, we use the labeled
image data to train a teacher model and then use the trained
model to generate pseudo labels on unlabeled image data. We
then combine the labeled data and pseudo labeled data to train
a student model. Finally, the process is iterated by putting
the student model as a new teacher. In our task, the pseudo
labels are generated COCO style image captions and VG style
dense captions by UCM. In order to generate high quality
and diverse pseudo labels, we propose three methods. First,
we randomly mask object regions when generating captions.
This method makes sure the model can focus on different
visual areas when describing the images. Second, we randomly
sample a word from the top-K predictions in each prediction
step, such that even for the same image, the model could
generate various outputs. Finally, we use the condition flag
to control the contents generated. We show both qualitative
and quantitative comparisons in experiments section.

Experimental-wise, besides the commonly used COCO and
VG datasets, we train our model with only 300k extra un-
labeled data from Conceptual Caption [8] by removing the
provided captions. The original Conceptual Caption dataset
provides machine-generated captions. They are noisy [9] and
often used as out-of-domain training data [10]. The model

could out-perform the model trained with the whole three
million extra data in various down-stream finetuning tasks.
Also, we provide comprehensive ablation studies of the train-
ing settings. To summarize our contributions:

• We propose the first Unified Conditional BERT model
that could perform zero-shot conditional image-based
language generation. Traditional bi-directional vision lan-
guage models are unable to be used to generate languages
directly and they are not conditional, such that the users
can’t control the generation styles.

• We propose a self-training method for using unlabeled
images in vision language pretraining. To the best of our
knowledge, this is the first work using self-training in
vision language pretraining.

• With only 300k extra image data, we achieve competitive
or better performances within models with similar model
size trained with 3 million extra data.

II. RELATED WORK

A. Vision Language Pretraining

Traditional vision language methods build stand-alone mod-
els to solve VQA [11]–[16], captioning [17]–[19], naviga-
tion [20] and grounding [21] tasks. The success of large scale
pretraining in NLP [1] motivates the attempts of developing
similar models in vision language. Original pretrained lan-
guage models [1] use a single transformer [22] to encode
language words and positions. In the situations of vision + lan-
guage, there are usually two common choices: the one-stream
methods and two-stream methods. Two-stream methods, for
example ViLBERT [2], LXMERT [7] and 12in1 [23], use
two transformers to encode images and languages separately.
After that, there will usually be a cross-attention transformer
to combine the features from the two branches. One-stream
methods, for example VisualBERT [24], Unicoder-VL [25]
, Uniter [10] and Oscar [26], process vision and language
features with a single transformer encoder. In this case, the
visual and language information share the same attention
weights. Compared with the two-stream methods, the one-
stream methods require more working memories and usually
perform better than two-stream methods. The one-stream
methods usually have a smaller model size. Our work follows
the two-stream network design of LXMERT [7] and extends
the single language encoder of LXMERT [7] to two shared-
weight language encoders that process the one-directional
mask and two-directional mask at the same time. This network
design allows our network to generalize better on generation
tasks.

Although BERT is a form of language model, same as
natural language BERTs [1], [3], the above vision language
BERTs can not be used directly to generate languages. The
most straightforward reason is that BERT learns bidirectional
contexts, while generation is one-directional. VLP [27] pro-
poses to train vision language models with both bi-directional
and one-directional masks, such that the model can be used
for both VQA and image captioning. Compared to previous
work, our model has two unique properties: First, it is able
to perform conditional generation, namely generating specific
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Fig. 2. A detailed illustration of proposed UCM. During training, given image regional features and language embeddings, we process the language embeddings
through the bi-directional language encoder and the one-directional language encoder. The two language encoders share the same weights. The bi-direction and
one-directional branches are conditioned by using a normal mask and a triangular mask. The images are processed by the image encoder. Finally, the cross-
attention layers merge visual features with the outputs from both language encoders. We use a rectangle mask for one-directional prediction in cross-attention
layers, such that only the positions before [MASK] token could see visual features.

contents based on a condition signal. Second, we use the
pretrained model to perform zero-shot language generation,
without extra finetuning.

B. Self-Training

Self-training methods [4], [28] first use labeled data to train
a teacher model, then use the teacher model to generate pseudo
labels for unlabeled data and finally use the labeled data and
pseudo labeled data to jointly train a student model. [4]
identifies the importance of add noise in self-training of image
classification tasks. Self-training also improves object detec-
tion and semantic segmentation results compared with pre-
training [5]. In machine translation [29]–[31], self-trainings
show their effectiveness on various datasets.

We provide a set of self-training algorithms and give de-
tailed ablation studies.

III. METHOD

In this section, we describe our method in two folds:
our proposed unified conditional model and the self-training
algorithms. For the unified conditional model subsection, we
first introduce the model overview including model structures
and important tokens. Then we introduce the training tasks and
training losses. For the self-training algorithms subsection, we
introduce the technical details of our proposed self-training
algorithms for vision language models.

A. Unified Conditional Model (UCM)

1) Model Overview: The overall structure of our model
is illustrated in Figure 2. For the base network, we briefly

follow the 2-stream model as used in [7] and extend it to
our unified conditional model. Specifically, the model contains
9 layers of language transformers, 5 layers of object region
transformers, and 5 layers of cross transformers. Given a
sentence description, we tokenize it into WordPiece tokens,
pad them with Classification [CLS] and Separation [SEP]
tokens and randomly mask them with Mask [MASK] tokens.
We add a condition token [CND] after the [CLS] token. The
masked tokens are then passed to an embedding layer. We
process the language embeddings through the bi-directional
language encoder and the one-directional language encoder,
same as previous works [27], [32]. The two language en-
coders share the same weights. The bi-direction and one-
directional branches are distinguished by using an empty mask
(bi-directional mask) and a triangular mask (one-directional
mask) [33]. Given a one-directional mask, the tokens can only
observe the tokens before themselves in the attention modules,
which makes the module more capable of doing generation
tasks. Given a bi-directional mask, the tokens can observe
both the tokens after and before themselves. Experiments in
BERT [1] prove that this design works better on understanding
tasks, for example VQA tasks. The images are processed by
the image encoder. After that, the bi-directional output and
one-directional output are merged with image output through
cross-attention layers [2], [7]. For the cross-attention layer, we
use a rectangle mask for the one-directional prediction branch,
such that only the position before [MASK] could attend to
image features. During inference, our model is identical to
traditional 2-stream vision language BERT models without
any extra computational cost. When doing image-language
understanding tasks, for example finetuning visual question
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answering, the model runs forward propagate using the bi-
directional mask only. When performing image-language gen-
eration tasks, for example generating pseudo labeling for
unannotated images, the model runs forward propagate using
the one-directional mask only.

2) Training Tasks: Conditional Masked Language Mod-
eling (CMLM) The CMLM task is for both bi-directional
prediction and one-directional prediction. Given the image
regional features v = {v1, ..., vK}, the language words w =
{w1, ..., wT } and the condition c, for bi-directional prediction
task, we randomly mask the language words at a ratio of 0.15.
Once the position is masked, for 80%, similar to BERT [1], we
change the position to [MASK] token and for 10% of chance,
we change to position to random word and keep the original
content. The loss of bi-directional CMLM is defined as the
negative log-likelihood of predicting the masked words given
conditions and all other words except the mask words:

LCMLM-Bi(θ) = −E(w,v) logPθ(wm|w/m,v, c) . (1)

For one-directional CMLM task, we randomly mask 1 word
from each sentence. The masked word could also be the period
symbol. The prediction of masked word is based on the words
before the current position:

LCMLM-One(θ) = −E(w,v) logPθ(wm|w<m,v, c) , (2)

where θs in the above two equations represent the model
parameters. Symbol < represent all words before position
m. The Bi-directional CMLM and the one-directional CMLM
share the same model parameters.

Image-Text Matching The matching task is only done for
the bi-directional prediction branch. At 50% possibility, we
assign a fake sentence to the image. The fake sentence is
generated by randomly sampling a caption from other images.
Specifically, we use the final feature at position [CLS] to
represent the summary of current visual and language input.
We use this feature to classify whether the current input text
and image are matched.

Auxiliary Question Answering The QA task is only done
for the bi-directional prediction branch. If the sampled text is
a question, we use the feature at position [CLS] and a QA
header to generate its answer and calculate its loss based on
classification.

Masked Object and Attributes Modeling (MOAM) The
MOAM task is for both bi-directional prediction branch and
one-directional prediction branch. The object features are
always bidirectional visible for both branches. We randomly
mask the visual regions at a ratio of 0.15. Once the region
is masked, for 80%, we change the feature to zero and for
10% of chance, we change the feature to a random feature
sampled from the dataset or keep the original feature. The
loss of MOAM is defined as the negative log-likelihood of
predicting the masked regions’ class and attributes given all
words except the masked position:

LMOAM(θ) = −E(v,w) logPθ(vm|v/m,w) . (3)

Train UCM with 

MSCOCO, Visual 

Genome

Generate Pseudo-

captions on Conceptual 

Caption

Condition  FlagMaskingSampling

Train new UCM with 

Coco + VG + CC

Augmentations

Fig. 3. The self-training algorithm. Our self-training approach is done by
first training a UCM model with the labeled annotations and then iterating
two steps: generating pseudo labeling on unlabeled data and retraining with
mixed data. When generating pseudo labels, randomly sampling of language
words, randomly masking image regions and condition flag are used as data
augmentations.

Here, the ground-truth regional classes and attribute classes
are hard labels generated by Faster-RCNN [11] prediction. The
MOAM losses from the two prediction branches are averaged
when calculating gradients.

Masked Feature Regression (MFR) For each masked
region, besides predicting the labels and attributes of that
region, we also perform masked feature regression to recover
its original visual feature:

LMFR(θ) = ‖vm − v̂m‖22 , (4)

where v̂ are the groundtruth regional features.

B. Self-Training Algorithms for Vision Language BERTs

In this section, we talk about the self-training algorithm.
Figure 3 illustrates the training process of our algorithm. We
first train a UCM model with the human labeled data from
COCO and VG datasets. Then we repeat two steps: generating
pseudo labeling on Conceptual Caption unlabeled data and
retraining the UCM model with mixed data from COCO, VG
and Conceptual Caption.

Train UCM with labeled data. We first train UCM
using captioning annotations in MSCOCO, dense captioning
annotations in Visual Genome and questions in VQA [34] and
GQA dataset [35]. The trained UCM is able to generate the
above three different styles of content.

Annotate unlabeled data with trained UCM. We then use
the trained UCM to generate pseudo labels on images from
Conceptual Captions dataset. Conceptual Caption dataset pro-
vides one caption for each image by default, while the default
captions are machine-generated, not of good quality [9] and
are often used as out-of-domain training data [10]. Therefore,
we remove the original captions and use the data as unlabeled
image data. To boost the performance of self-training, the
generated captions need to be diverse. We introduce 3 methods
to generate diverse image captions for each image. First, we
perform image-level augmentations. We randomly mask object
regions when generating captions. Empirically, each image
regional feature is masked with a ratio of 0.5. This method
makes sure the model can focus on different visual areas when
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generating outputs. Second, we perform augmentations when
sampling language words. We randomly sample a word from
the top-K predictions in each prediction step, such that even
for the same image input, the model could generate different
captioning outputs. We choose K = 5 based on the common
design choice of Image Captioning [11]. This is especially
useful when generating dense captions. The result shows that
the generated dense captions usually focus on one object
region. Given one fixed image, the generated dense captions
will always be the same without sampling. Compared with
beam-search method, the top-K sampling method is faster but
may potentially generate noisier captions. In experiments, we
observe the performance differences between the two methods
are negligible according to finetuning accuracy. One possible
reason is that the generated captions are only used as pseudo
labels and pseudo labels are noisy labels by default. Some
works [4] even purposely add noise to the generation process
of pseudo labels. Therefore, we use top-K sampling method
to speed up the generation process. We discard the generated
questions because they usually contain less information than
the captions. Finally, we use the condition flag to control the
contents generated. For each image, we generate 5 captions
with MSCOCO flag and 10 captions with VG Dense caption
flag. The condition flag conditions the style of the generated
contents.

Train new model by mixing labeled and unlabeled data.
After pseudo labels are generated for unlabeled images, we
mix the pseudo labeled data and original labeled data to train
a new model. Unlike self-training methods in image classifica-
tion [4], which train new models from scratch, we propose to
initialize the model with the last pretrained weight. The design
choice is based on 2 considerations. First, vision language
BERT pretraining takes a long time. Loading pretrained weight
can help to reduce the training time of new models. Second, for
image classification tasks, if we directly use soft classification
labels to describe the unlabeled image and load previously
trained weights, the loss will be zero on pseudo labeled
data because the labels are exactly from the model itself.
Compared with soft classification labels, generated captions
are generated from sampling and do not directly describe the
output distribution of previous models. This property reduces
the risk that loading the previous model will result in zero
loss on pseudo labeled data. This design choice also shares
the same spirit as previous self-training works [36], [37],
where the teacher models’ weights are derived from the student
models.

Iterating the previous steps. Following the common
practice of self-training, we iterate the “Annotate unlabeled
data with trained UCM” and “Train new model by mixing
labeled and unlabeled data” steps a few times to get better
performance. A detailed ablation study is shown in Section
IV.

IV. EXPERIMENTS

In this section, we describe the pretraining details, ablation
experiments, visualizations, and experimental results on down-
stream datasets.

TABLE I
TOTAL NUMBER OF PRETRAINING IMAGE-LANGUAGE PAIRS

COCO VG VQA GQA CC
Total # of pairs 533k 5.06m 444k 1m -
Used # of pairs 533k 1m 444k 1m 4m

A. Data Input

We first use pretrained Faster R-CNN [11], [38] to extract
regional visual features. The spatial information of each re-
gional object is represented by its relative position, height,
and weight. The spatial embedding is then calculated with
an embedding layer. The final representation of each object
is represented by adding the spatial embedding and visual
features. For languages, we follow BERT [1] and tokenize the
input sentences into WordPiece tokens. After tokenizing, We
pad them with [CLS] and [SEP] tokens. Unlike original BERT,
here we use [CLS] token to denote both start of sentence
and classification position and we use [SEP] to denote end of
sentence. Finally, we add the condition flag [CND] after [CLS]
token. The condition flag [CND] represents a set of certain
flags. In this work, the [CND] flag has three types: COCO
type caption [39], visual genome [40] type dense caption and
questions.

B. Pretrain Details

Pretraining Datasets. Our pretraining dataset contains la-
beled data and unlabeled image data. For labeled data, we
follow the same setting as in [7]. The labeled data is collected
from MSCOCO [39], Visual Genome [40], VQA [34] and
GQA datasets [35], which contain around 180k images in total.
Although the VG dataset contains more than 5 million image-
text pairs, most of them are dense captions and some of them
are repeated entries. In experiments, we remove the repeated
dense captions, and sample 10 dense captions for each image.
For unlabeled images, we use the first 300k images from
Conceptual Caption dataset and remove the original captions.
Within the 300k unlabeled images, we further filter the data
by object detection results. We remove the images with the
top 36 objects’ average confidence below 0.3. Thus only 280k
unlabeled images are left and we use them in self-training.
The total numbers of pretraining images are illustrated in
Table I. Compared with LXMERT [7] who uses 9 million
image language pairs, we use a total amount of 7 million pairs.

Self Training Setting. In experiments, we iterate the self-
training process 2 times. When training UCM, we use the same
parameter settings. We use AdamW optimizer with learning
rate 5e-5 and batch size 256. Each time we train the model
for 10 epochs. We use warm-up for the first 10% of iterations.
We also use fp16 mix precision to speed up training.

C. Finetuning Settings

We present our finetuning settings for VQAv2 [34],
GQA [35], NLVR2 [42] and COCO Caption [39].
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TABLE II
COMPARISON WITH OTHER VISION-LANGUAGE PRE-TRAINING MODELS ON VQAV2, GQA, NLVR2 AND COCO CAPTION. OUR MODEL COULD

ACHIEVE COMPETITIVE OR BETTER PERFORMANCE AMONG ALL MODELS GIVEN FEWER TRAINING IMAGES. EVALUATION METRICS: FOR VQA, GQA,
NLVR2, RESULTS ARE PRESENTED BASED ON THE ACCURACY. FOR COCO CAPTION, WE FOLLOW THE COMMON STANDARDS TO COMPARE THE BLEU

(B@4), METEOR (R), CIDER (C) AND SPICE (S) SCORES.

Tasks ViLBert [2] LXMERT [7] UNITER-base [10] ERNIE-VIL-base [41] VLP [27] UCM (Ours)

Pretrain Images 3m 180k 4.2m 4.2m 3m 480k

VQA test-dev 70.55 72.42 72.70 72.62 70.5 72.9
test-std 70.92 72.5 72.91 72.85 70.7 72.9

GQA test-dev - 60.00 - - - 61.3
test-std - 60.30 - - - 61.5

NLVR2 dev - 74.9 75.85 (77.18) - - 75.6
test-P - 74.5 75.80 (77.85) - - 75.5

COCO Caption

B@4 - - - - 36.5 37.4
M - - - - 28.4 28.8
C - - - - 117.7 119.4
S - - - - 21.3 21.2

COCO Caption
(CIDEr Optimization)

B@4 - - - - 39.5 39.0
M - - - - 29.3 28.8
C - - - - 129.3 130.1
S - - - - 23.2 22.7

1) VQAv2: VQAv2 dataset [34] is to answer questions
given an image. The answering process is usually format-
ted as a classification task within all possible answers. In
our experiments, the VQA questions are appended with the
question condition flag before input to the model. We use the
final features at position [CLS] to answer the question. We
add a two-layer MLP to the final output of [CLS] and use
the feature to perform classification. In ablation experiments,
we only use default provided data. In the final experiments,
following [10], we use extra QA data from Visual Genome
for data augmentation.

2) GQA: Similar to VQAv2, for GQA dataset [35], we
format the problem as a classification task and use the output
feature at position [CLS] to answer the questions. Same as
VQA, the GQA questions are appended with the question con-
dition flag before input to the model. In ablation experiments,
we only use GQA balanced dataset for training. To further
help the model adapt to GQA style of questions, in the final
experiment, we follow other works [26] to pretrain the model
using GQA full set first and then finetune on GQA balanced
dataset.

3) NLVR2: The natural language for visual reasoning for
real dataset [42] is to answer if the description is correct
given two images. The UCM model processes 1 image and
1 language by default. Therefore, we separate the two images
into two question and image pairs and process each pair using
our proposed model. After getting the [CLS] features for both
of the pairs, we simply concatenate the 2 features and use the
concatenated feature to perform a binary classification. We
noted that in [10], a different finetuning process is proposed.
For a fair comparison, we compare the results with the same
finetuning setting. In NLVR2 experiments, no condition flag is
assigned to the sentence as the NLVR2 data does not belong
to any type of the pretrained conditions.

4) COCO Caption: We also finetune our model on gen-
eration tasks i.g. COCO caption [39] on Karpathy’s split.

During finetuning, we use one-directional mask only to train
the model. During the generation process, the start token is set
to [CLS] and [CND] of COCO captioning type. We first use
cross-entropy loss to train the captioning model and then apply
CIDEr optimization [43] to further improve performance.

D. Ablation Experiments

1) Step by Step Ablation Studies: In this section, we provide
step by step ablation studies of our proposed system. The
ablation experiments are done on VQAv2, GQA, NLVR2 test-
dev set. The results are shown in Table III. We start by training
a baseline model with the same network architecture by
only using bi-directional pretraining masks and bi-directional
training tasks. We then add 300k images and their original
annotations from Conceptual Caption to training data. Results
show that simply adding 300k extra image data pairs is
unable to improve down-stream finetuning performance much.
Moreover, we also try to use LXMERT [7] to generate pseudo
labels. As pointed out in previous sections and Fig 4, the
generation quality of LXMERT is not good. Therefore, we
observe a huge performance drop when using pseudo labels
generated by LXMERT. Furthermore, we perform experiments
using UCM with both labeled data and pseudo data generated
by the generative model VLP without self-training. Compared
with the results only using labeled data, we observe that there
is almost no performance improvement. One reason is that
the generative model VLP can only generate COCO style
captions, therefore the diversity of training data is still limited.
Compared with our self-training results, we observe that the
self-training method can improve the performance further.
After that, we train our proposed UCM model with labeled
data only and finetune using the question flag. The result
shows simply using UCM and condition flag could improve
down-stream finetuning performance. Also, we do one more
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From Pretrained VLBert:           

A a grasping

The grasping grasping ..

That that a a

Condition: Coco Caption

the living room has one couch in it.

there is a living room with a couch and chair.

a living room filled with furniture and 

a large window.

Condition: Dense caption

A white lamp shade

A white curtain

the couch is grey

No Condition:

A white curtain

The curtain is white

The window is open

From Pretrained VLBert:           

The a grasping

That that a a

The man a 

Condition: Coco Caption

A group of people having a party.

A group of people dancing in a wedding.

A man and a woman holding hands and dancing.

Condition: Dense caption

A person standing up.

Woman in white dress smiling.

A man is wearing a tie.

No Condition:

A woman in white

The light is on

The man is sitting

Fig. 4. An example of generated image descriptions with or without the condition signal. Generation results from a traditional VL-BERT model are not
good. For the unified model variations, if the model is not conditional, the generated results are biased to dense captioning style and tend to generate short
sentences. Our proposed UCM model could learn a conditional generation language model given different conditional flags.

TABLE III
ABLATION EXPERIMENTS OF OUR PROPOSED METHOD ON VQAV2, GQA AND NLVR2.

Method VQAv2 GQA NLVR2
Baseline 72.4 60.0 74.9
Baseline + Conceptual Caption 300k 72.4 59.9 75.3
UCM with only labeled data 72.6 60.3 74.8
UCM with LXMERT Pseudo Caption 68.7 57.3 70.1
UCM with VLP Pseudo Caption 72.6 60.0 74.5
UCM w/o condition flag 72.4 59.8 74.8
UCM + self training step 1 72.8 60.6 75.6
UCM + self training step 2 72.7 60.5 75.6

TABLE IV
ADDITIONAL ABLATION EXPERIMENTS ON COCO CAPTION

Model COCO Caption COCO Caption
(CIDEr Optimization)

B@4 M C S B@4 M C S
Baseline 34.9 27.1 109.4 19.9 34.0 26.8 117.7 19.6

UCM with only labeled data 36.9 28.5 117.8 21.2 38.1 28.5 129.9 22.5
UCM + self training step 1 37.4 28.8 119.4 21.2 39.0 28.8 130.1 22.7

experiment by removing the condition flag during finetuning.
The results drop a little bit if the condition flag is not used.

We then move to ablation studies of self-training algorithm.
We iterate the self-training process by 1 iteration and 2
iterations. We found that based on down-stream finetuning per-
formance, 1 iteration is good enough. Performing 2 iterations
is unable to improve performance much.

2) Ablation Experiments on Generation Tasks: The ablation
experiments on generation tasks are shown in Table IV.
The generation process is to predict the next word given
the words before and can be formatted as applying a one-
directional mask on the sentence tokens. The baseline model
gives low performance on COCO captioning task because the
model is only trained with bi-directional tasks and is not
suitable for generation. We also witness slow convergence

speed and training instability. Compared with the baseline
model, the UCM model trained with only labeled data can
outperform the baseline by a large margin due to the existence
of one-directional mask during pretraining. The model also
converges faster during experiments. Our UCM model can be
finetuned within 40 GPU hours with Nvidia-2080ti GPUs on
COCO Caption task. However, the baseline model requires 3
times more finetuning GPU hours. Following the results in
previous section, we use self-training step 1 model as the best
model. The self-training process also proves its effectiveness
in captioning experiments. Compared with the model trained
with only labeled data, the self-training model achieves higher
accuracy with or without CIDEr optimization.

3) Conditional vs Unconditional: The experiments in the
last section show the effectiveness of the conditional model in
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Fig. 5. Visualization of the attention map at condition tokens. The darkness of connections represents the attention weight. The darker the color, the
higher attention is assigned. Top: Attention masks at bi-directional branch. Bottom: Attention masks at one-directional branch. Left: An example of a dense
caption sentence. Right: An example of a question sentence. Based on the visualization results, we can have three conclusions: 1. [CND] mainly affects the
one-directional branch. 2. [CND] affects more in deeper layers. 3. [CND] has similar effects on questions and non-questions.

finetuning downstream tasks. In this section, we further study
how the condition flag affects the generation performance.
Results are shown in Figure 4. To study this problem, we start
by using an online available pretrained vision language BERT
model [7] to generate captions. Following [3], we format
the generation problem as a sampling problem from Markov
Random Field and try to generate languages based on this
setting. We found that the generation results are extremely bad
using a bi-directional pretrained model. The results are simply
repeating several high-frequency words. We then proceed to
train a UCM model without using the condition components.
We found that the generation results bias to dense captioning
styles. This is probably because the training data has much
more dense captions than COCO style captions. Finally, we
present the results of our UCM model. To further validate the
results, we calculate the average generated sentence length. A
model trained without condition flag generates sentences with
an average length of 4.8 words. Our proposed UCM model can
generate diverse image descriptions given different condition
flags. When given a condition flag dense caption, the model
generates sentences with an average length of 4.7 words. Given
a condition flag COCO style caption, our model can generate
long sentences with an average length of 10.2 words.

E. Comparison with other methods

We compare our best UCM model (Self-Training Step1)
on VQAv2, GQA, NLVR2 and COCO Caption with other
methods. The results are summarised in Table II. We compare
our model with similar-sized models (based on BERT base).
Our model could achieve competitive or better performance
among all models given fewer training images. The VLP
model achieves margin advantages compared with our method
in COCO Caption (CIDEr Optimization) based on 3 evaluation
metrics. The reason is that the model is only pretrained
with COCO style captions and VQA datasets, and no other
noisy pseudo captions are included in the pretraining. When
the model is used on understanding tasks like VQA, our
method prevails with large margins. It proves that our model
generalizes better on both generation tasks and understanding
tasks.

F. Visualization

In this section, we give visualizations of the attention map
of special tokens and show how the data is generated.

1) Understanding the condition token: We visualize the
attention map at condition tokens. As shown in Figure 5, we
plot the attention weight attending to [CND] position. We plot
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Original CC caption:

bathroom : simple bathroom designs grey 

Condition: Coco Caption

a bathroom with two sinks a tub and a mirror with lights and a 

tub.

a bathroom with a sink and a toilet.

a white sink in a bathroom next to a table.

a clean bathroom with a mirror and sink.

Condition: Dense caption

1. a tile in a wall.

2. a white bath mat.

3. a window on the wall.

Condition: Question

the sink is on what?

Where is the sink?

on which side of the photo is the towel?

on which side is the soap dish?

Original CC caption:

some new friends from the class . 

Condition: Coco Caption

five women pose for a picture in a room.

a group of women standing around each other with remotes.

a group of young women holding hands and smiling.

a group of women posing for a photo with a microphone.

Condition: Dense caption

1. a person standing up.

2. girl is wearing a necklace.

3. woman wearing pink pants.

4. woman in red shirt smiling and posing.

Condition: Question

The women are doing what?

On which side of the photo is the girl in red?

Is the girl smiling?

Original CC caption:

boulevard in the downtown of the city 

Condition: Coco Caption

a lady walking past a tree with an umbrella.

a person holding an umbrella on a city street.

a couple of men standing next to each other.

Condition: Dense caption

1. a window on the building.

2. a woman holding an umbrella.

3. the umbrella handle is white.

4. window of the building in distance.

Condition: Question

Where is the woman?

The woman is holding what?

The tree is on which side of the photo?

Original CC caption:

building and clouds against blue sky seen from a city

Condition: Coco Caption

a city street with a skyscraper and trees.

a city street with tall buildings and traffic

a tall building with two stories and a street light.

Condition: Dense caption

1. window on the building.

2. a building is on the left side

3. the building is brick.

4. the tree is green.

Condition: Question

The building is on which side?

Where is the tree?

1

2

2

1
2

4

2,4

4

1

2 3

3

1

Fig. 6. How the captions are generated given different visual masks (e.g. when some visual regions are masked out). For each generated dense caption, the
masked feature region is plotted. Visualization results show that by masking some parts of the image regions, the UCM model could successfully focus on
different image areas.

both the bi-directional branch and the one-directional branch
and both a dense captioning style caption and a question. The
darker the color, the higher the attention weight. Based on the
weights, we could have the following conclusions:

[CND] mainly affects the one-directional branch. We
compare the bi-directional weights and one-directional weights
(top vs bottom). Although the [CND] flag is used for both
branches, the one-directional branch learns to assign higher
weights. One reason is that the generation process is more
sensitive to the condition flag than the language understanding
process. As illustrated in previous sections, our method can
generate sentences of different lengths given different condi-
tion flags. For the understanding tasks, intuitively the model
should focus more on the sentences as a whole.

[CND] affects deeper layers more. Compared with shal-
lower layers (language attention layer 9), the deeper layers
tend to assign higher weights to [CND] position. This is be-
cause the deeper layers are more directly related to producing
results, thus they rely more on the [CND] flag to control the
generation style.

[CND] has similar effects on questions and non-
questions. We compare the visualization of captions and ques-
tions (left vs right). No obvious difference can be observed.
This implies that the condition flags work in similar ways for
caption style sentences and question style sentences.

2) Visualization of generation process: In Figure 6, we
show how different visual masks affect the language gen-

eration. We could have a more obvious observation when
generating dense captions. Therefore, for each generated dense
caption, we show which feature region is masked. Visualiza-
tion results show that by masking some parts of the image
regions, the UCM model could successfully focus on different
image areas and finally produce diverse dense captioning
results. For example, in the first image, when nothing is
masked out. The model focuses on the window. When part of
the window is masked out, the model will focus on the bath
mat and the tile. For COCO style captions, our model also
benefits from applying visual masks. Although COCO style
captions summarize the whole image, applying visual masks
helps the model to look at different areas.

V. CONCLUSION AND FUTURE WORKS

The requirement of paired training data restricts the scale
of VL-BERT pretraining. We propose a self-training approach
that allows to train VL-BERTs from unlabeled image data.
First, we propose UCM – a vision language BERT that can
perform conditional generate directly. Given different condi-
tion flags, the unified conditional model can generate dense
caption, caption, and even questions. Then we introduce a set
of self-training methods for vision language BERT pretraining,
including how to generate diverse image descriptions and the
self-training pipeline. We also visualize the generation process
and the effectiveness of the condition flag.
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For performance, by using the proposed self-training ap-
proach and only 300k unlabeled extra data, we are able to get
competitive performance within all models with similar model
size trained with 3 million extra image data.

Future Works. The use of the conditional model is not
restricted to self-training. Future works can be done by explor-
ing more use-cases of the proposed UCM. For example, given
an image, our method could be used to generate kid stories,
generate advertisement and generate copyright documents with
a single pretrained model.

Further extension of training scales could also be explored.
Our proposed methods enable training vision language BERTs
with unlimited data. One may perform a larger scale of pre-
training with more data collected from the Internet.
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