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Boosting Few-shot Fine-grained Recognition with
Background Suppression and Foreground Alignment

Zican Zha, Hao Tang, Yunlian Sun, and Jinhui Tang, Senior Member, IEEE

Abstract—Few-shot fine-grained recognition (FS-FGR) aims
to recognize novel fine-grained categories with the help of
limited available samples. Undoubtedly, this task inherits the
main challenges from both few-shot learning and fine-grained
recognition. First, the lack of labeled samples makes the learned
model easy to overfit. Second, it also suffers from high intra-
class variance and low inter-class differences in the datasets. To
address this challenging task, we propose a two-stage background
suppression and foreground alignment framework, which is
composed of a background activation suppression (BAS) module,
a foreground object alignment (FOA) module, and a local-to-
local (L2L) similarity metric. Specifically, the BAS is introduced
to generate a foreground mask for localization to weaken back-
ground disturbance and enhance dominative foreground objects.
The FOA then reconstructs the feature map of each support
sample according to its correction to the query ones, which
addresses the problem of misalignment between support-query
image pairs. To enable the proposed method to have the ability
to capture subtle differences in confused samples, we present a
novel L2L similarity metric to further measure the local similarity
between a pair of aligned spatial features in the embedding
space. What’s more, considering that background interference
brings poor robustness, we infer the pairwise similarity of feature
maps using both the raw image and the refined image. Extensive
experiments conducted on multiple popular fine-grained bench-
marks demonstrate that our method outperforms the existing
state of the art by a large margin. The source codes are available
at: https://github.com/CSer-Tang-hao/BSFA-FSFG.

Index Terms—Few-shot learning, Fine-grained recognition,
Background suppression, Foreground alignment.

I. INTRODUCTION

FEW-shot learning (FSL) [1]–[5] has received widespread
attention in the computer vision and multimedia fields

because it mimics the ability of humans to learn new concepts
with few available examples. Compared with the traditional
classification paradigm, FSL does not depend on the large scale
of labeled datasets and can be easily applied to many real-
world scenarios where only very sparse training samples are
available. Fine-grained recognition (FGR) [6]–[10], a popular
and challenging problem, aims to recognize images of multiple
sub-categories belonging to a super-category (e.g., birds, dogs,
cars). Considering the manual annotation for fine-grained
images requires domain-specific knowledge, it is labor- and
time-consuming to collect high quality and fully labeled large-
scale datasets [11]–[13], thus FGR is a suitable application
scenario of FSL. In this paper, we will study a more challenging
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Figure 1. Key challenges of FS-FGR task. Here, rows represent different
backgrounds and columns represent different species. Observing horizontally,
different sub-categories have low inter-class variance. Observing longitudinally,
every sub-category has high intra-class variance.
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Figure 2. Performance comparison of five models with and without human-
annotated bounding boxes on CUB-200-2011 [14]: ProtoNet [1], Relation-
Net [15], Baseline [16], Baseline++ [16], CAN [2]. “w/ BB” denotes using
the cropped images as input, where the raw images are pre-processed by
human-annotated bounding boxes in advance.

and practical task, namely few-shot fine-grained recognition
(FS-FGR), which aims to recognize fine-grained objects under
few-shot settings.

Recently, to effectively learn from limited data, researchers
have explored many general FSL algorithms for generic
categories. In general, the main FSL methods can be roughly
divided into two groups, i.e., optimization-based methods [17]–
[20] and metric-learning based methods [1], [15], [21].
Optimization-based methods often adopt the “learning to learn”
paradigm [22] to learn a meta-learner that can generate a
robust model. In this way, the model can easily generalize to
a new unseen task with a few training samples. The model of
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Figure 3. The framework of our proposed method. Note that the red line is the process of the raw stage, and the blue line is the process of the refined stage.
Note that the input of the refined stage is generated by the background activation suppression module based on the input of the raw stage. Both stages have the
same structure and all parameters are shared except for the global classifiers. Each stage consists of a foreground object alignment (FOA) module, a global
classifier, and a similarity comparator based on L2L. In the inference process, we calculate the similarity between the query-support aligned image pair in both
the raw stage and the refined stage, and the similarities of both image pairs are integrated to support the final decision.

metric-learning based methods normally consists of two parts:
a feature embedding module and a comparator. The feature
embedding module maps images to an embedding space. Then
the distance (e.g., Euclidean distance and Cosine distance)
between the support image and the query image is calculated
directly in the embedding space. The comparator recognizes
the query image based on the distance from each support
image. Both methods have greatly promoted the performance
of FSL on general datasets but few of them can obtain ideal
performance on fine-grained datasets because of high intra-class
variance and low inter-class difference.

In order to migrate the model from general datasets to fine-
grained datasets, current FS-FGR models generally attempt
to capture key distinctions, but can easily ignore the negative
effects of background. As shown in Fig. 1, the habitats of birds
are basically in the sky, land, sea, and grass. Although these
birds are from different species, the same background makes
them look very similar and difficult to classify. Therefore,
removing the influence of the background (e.g., by manually
annotating bounding boxes) is significant to boost current few-
shot methods. In order to show the performance boost brought
by manually annotated bounding boxes, we did an experiment
on CUB-200-2011 benchmark [14]. The results are reported
in Fig. 2, which clearly show the significance of removing
background influence. However, achieving better performance
with human-annotated bounding boxes runs counter to the
original aspiration of FSL to free people from burdensome
and boring annotation tasks. Another key point that is easily
overlooked in Fig. 1 is the large variation across viewpoints

of the same fine-grained object. Semantic patterns of fine-
grained objects are mainly determined by visual appearance.
Thus, aligning semantically relevant local regions remains non-
trivial for the FS-FGR task, which could effectively reduce the
negative effects of feature inconsistency caused by the changes
of object pose or viewing angle. Therefore, our goal is to
remove cluttered backgrounds and align semantically relevant
foregrounds when only image-level labels and limited training
images are available.

In this paper, to tackle these problems with only image-
level labels available. We propose a two-stage background
suppression and foreground alignment framework for few-shot
fine-grained recognition, which can be trained in an end-to-
end manner. As shown in Fig. 3, the proposed method mainly
consists of four modules: a feature extractor, a Background
Activation Suppression (BAS) module, a Foreground Object
Alignment (FOA) module, and a Local to Local (L2L) similarity
metric. Firstly, a feature extractor is used to extract the features
for subsequent matching and localization learning. The BAS
aims to generate a foreground mask map for localization based
on the activation maps since the position in the activation
map with a higher value are often where the interesting
parts are located. Specifically, without adding extra trainable
parameters, we only process the feature map to generate
object location coordinates, and the BAS is supervised by
the global classification loss. With the help of the generated
bounding box information, we further obtained the finer scale
of the object image by cropping and zooming in to remove
the cluttered background. Different from the conventional
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method, we incorporate both the original images and the refined
ones obtained by BAS into the model for learning, which
can effectively generate fine-grained tailored representations
for few-shot recognition. Secondly, following DN4 [23], we
use local descriptors to avoid losing spatial information and
subtle features. Thus, to alleviate the misalignment between
the support image and the query image in the embedding
space due to variations in the scale, position, and posture of
the foreground objects in the image, an object-aware FOA
is introduced to transform support features with respect to
query features by calculating a semantic correlation matrix.
Thirdly, we propose an L2L similarity metric to measure
the local similarity between the aligned spatial features of
a given pair of samples. Experiments show that the best results
are obtained by combining the similarity of raw and refined
support-query pairs. Extensive experiments on three common
benchmarks (i.e., CUB-200-2011 [14], StanfordDogs [24], and
StanfordCars [25]) confirm the effectiveness of the proposed
method. Our main contributions can be summarized as follows:
• We empirically reveal two crucial points to significantly

improve the performance of the FS-FGR task, i.e., weak-
ening background disturbance and aligning foreground
response.

• We develop a novel two-stage weakly-supervised frame-
work to address the FS-FGR task in a meta-learning
fashion. The proposed paradigm can be optimized in
an end-to-end manner with only the image-level label
available.

• Three well-designed modules are instantiated in our
framework to achieve the background suppression and
foreground alignment, i.e., background activation suppres-
sion module, foreground object alignment module, and
local-to-local similarity metric.

• We conduct comprehensive experiments on three popular
fine-grained datasets, and our proposed model achieves
state-of-the-art performance. On basis of the empirical
evaluation of these datasets, we also provide insights for
the elegant implementation of our solution.

The remainder of this paper is organized as follows. Sect. II
introduces the related work, including Few-shot Learning, Fine-
grained Recognition, and Few-shot Fine-grained Recognition.
Sect. III gives the definition of the problem, the proposed
framework, and the details of each module. Sect. IV presents
the introduction of the datasets, the experimental results and
analysis in detail, and some visualizations. The paper is
concluded in Sect. V.

II. RELATED WORK

A. Few-shot Learning

Few-shot learning (FSL), which aims to learn a well-
generalized model with only a few samples, has attracted
intensive attention in recent years. As one of the standard
benchmarks in meta-learning, existing work on FSL can be
roughly categorized into three groups according to their innova-
tion: metric-based methods, optimization-based methods, and
augmentation-based methods. Metric-based methods [1], [15],
[21] aim to learn a suitable model that projects all images to a

metric space, and then predicts query images according to their
distances to the labeled support samples. Optimization-based
methods [17], [18], [26] follow the “learning to learn” paradigm
to learn a good initialization for the model or learn how to
update the parameters of the model within a few iterations
for quick adaption. Augmentation-based methods [27]–[29]
aim to learn a generator from base categories and use it
with additional techniques to increase the number of novel
samples or features for data augmentation. In this work, we are
particularly interested in the metric-based methods owing to
their intuitive and effective characteristics, which are favored
by state-of-the-art methods on many tasks.

Metric-based methods mainly focus on two key factors,
i.e., feature extraction [3], [23] and similarity measurement [2],
[30], [31]. The former is responsible for mapping the samples to
an ideal embedding space, where the samples belonging to the
same category are close together and the samples belonging
to different categories are far apart. The latter serves as a
criterion for the nearest neighbor search to perform recognition.
However, most of the existing metric-based FSL methods [3],
[32]–[34] mainly focus on learning a discriminative global
embedding for coarse-grained generic object recognition, which
are less suitable to address the few-shot fine-grained recognition
(FS-FGR) task well. The main reason is that fine-grained
recognition requires to emphasis on distinguished appearance
details of local parts, but global features are incapable of mining
spatially local discriminative parts, especially under the few-
shot scenario. By comparison, the proposed method proposes
a foreground alignment module to emphasize the semantically
correlated parts of the input support-query pair via spatially
aligning dense local features for FS-FGR.

B. Fine-grained Recognition

Fine-grained recognition [35] aims to recognize multi-
ple subordinate categories belonging to the same super-
category (e.g., bird species [14], car models [24] and dog
breeds [25]), which has gained much attraction of the research
community. Compared to the coarse-grained recognition [36]–
[38], fine-grained recognition is a more challenging task, since
fine-grained objects are usually distinguished by local feature
variations or subtle feature differences. Earlier work [39], [40]
mainly relies on part annotations or hand-crafted bounding
boxes to locate discriminative specific parts, which exacer-
bates the cost of prior information or additional annotations.
Benefiting from the remarkable progress of powerful deep
neural networks and large-scale annotated datasets, some
deep learning-based approaches [8], [9], [41] attempt to learn
discriminative features or locate the distinguishable parts in a
weakly supervised manner, where only image-level category
labels are available. These methods can be roughly categorized
into two main groups: feature encoding-based methods [6],
[42], [43] and part localization-based methods [44]–[46]. For
example, Guo et al. [47] introduce a lightweight attention
module to localize critical regions and learn fine-grained feature
representation. More recently, MMAL [9] and AP-CNN [41]
propose to first find strong discriminative regions, and then
re-input the original image or feature maps to the network by
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cropping and resizing them, which further enhance the object
representation’s discrimination. The above novel paradigm also
serves as some inspiration for our proposed method.

Despite the success brought by the above methods, they
still rely on large-scale datasets, which are less practical in
real scenarios, due to the large-scale annotated datasets being
hard to attain in some cases. Compared with previous work,
we study fine-grained recognition under the challenging few-
shot learning setting, namely few-shot fine-grained recognition
(FS-FGR), where only a few labeled samples are provided to
recognize novel fine-grained categories.

C. Few-shot Fine-grained Recognition
Recently, inspired by the rapid development of FSL, there

are some emerging work [48]–[50] that starts to explore the
intractable few-shot fine-grained recognition (FS-FGR) task,
where the goal is to distinguish the novel sub-categories in
a super-category given a limited number of labeled samples.
Wei et al. [48] propose the first solution for FS-FGR by intro-
ducing a bilinear pooling network to encode features and multi-
ple sub-classifiers to predict the label. LRPABN [51] proposes
to learn multiple transformations to match the embedded input
pairs. MattML [20] introduces multi-attention mechanisms to
learn a task-specified classifier initialization, which is helpful
to capture diverse discriminative parts. However, the above
methods tackle the FS-FGR task by learning and matching
diverse and informative global features, which follow the same
perspective as the generic FSL methods. Limited efforts have
been devoted to distinguishing the subtle difference from the
perspective of dense local features. In contrast, CPSN [52]
introduces two coupled branches to compute the similarity
scores between input pairs from patch level to capture subtle
and local differences.

More recently, considering object location differences in the
support and query set cause performance degradation, some
works have introduced feature alignment to solve the FS-FGR
problem, which has achieved very inspiring results. TOAN [53]
proposes a target-oriented matching mechanism to learn explicit
feature transformations to reduce the intra-class variance. Wu et
al. [54] introduce a dual correlation attention mechanism to
explore position-wise relationships of two compared features to
capture their semantic information. Wu et al. [10] propose an
object-aware long-short-range spatial alignment method to align
features between various support and query features. Although
the above cross-correction attention-based workflow seems to
make sense, they are all pretty sophisticated and obscure.

We can see that existing FS-FGR methods usually focus on
how to extract discriminative features and how to strengthen
the relation matching process of input pairs by different
metric functions. However, inherent characteristics (e.g., pose
variations and similar backgrounds) of fine-grained images
are also important factors for the FS-FGR task that are often
ignored by existing FS-FGR methods. In this paper, motivated
by aforementioned work in the FS-FGR community, we argue
that background suppression and foreground alignment are
essential to recognize fine-grained objects, and they have been
demonstrated to be very appropriate for the FS-FGR task and
could significantly improve the performance.

We are aware that recently AGPF [50] proposed an attention-
guided refinement strategy to enhance the dominative object
and conducted a two-stage meta-learning framework to capture
attention-guided pyramidal features. Although AGPF also
adopts a two-stage framework to weaken the background
disturbance, our approach obviously differs from AGPF in
these aspects, at least: (1) Our method encodes each input
into a set of dense local features and introduces a feature
alignment technique for fine-grained objects, which is more
suitable for capturing subtle appearance differences of local
parts than a single informative global feature used in AGPF.
(2) The attention-guided refinement proposed in AGPF utilizes
sophisticated attention mechanisms to locate the dominative
foreground. However, ours only relies on the feature activa-
tion map to predict and disentangle the foreground object
and background noise, which is parameter-free. (3) AGPF
aggregates complementary features discovered from different
scales and stages to form a unified global embedding, but our
method computes the spatial similarity between aligned feature
pairs in two stages to jointly support the final decision. (4)
Compared with AGPF, our results are significantly better and
have significant advantages in efficiency.

III. METHODOLOGY

A. Problem Formulation

In the standard setting of few-shot learning, given a large-
scale labeled dataset with base categories Cbase, the goal is
to learn a standard embedding network that can be easily
adapted to a family of unseen tasks {T }n1 with novel categories
Cnovel, where Cbase∩Cnovel = ∅. Considering a specific image
recognition task T , it usually contains a support set S and
a query set Q where both are sampled from the same novel
categories Cnovel, our goal is to determine the category of
samples in the unlabeled Q according to the labeled S. In this
work, we study a “N -way K-shot” task, where the support
set S contains N categories and each category has K images.
Concretely, N is set to 5 and K is set to 1 or 5 in most previous
studies, and so do we. To have a good generalization on novel
categories Cnovel and avoid the overfitting on base categories
Cbase, we also adopt the episodic training mechanism [21]
widely used in most literature.

B. The Proposed Framework

Given a “N -way K-shot” fine-grained recognition task, we
need to divide it into a support set S = {(xji , y

j
i ) | i =

1 · · ·N, j = 1 · · ·K} and a query set Q = {(xi, yi) | i =
1 · · · |Q|}, and then map all samples in a task into an embedding
space by a feature extractor Θ, i.e., Fi = Θ(xi) ∈ Rc×h×w,
where xi ∈ S ∪Q. Here, c is the number of channels, h and
w denote the size of the feature map. Note that the proposed
method borrows the idea of metric learning and needs to
match each query sample to support prototypes by the nearest
neighbor strategy. Therefore, the ith support prototype Ci can
be formulated as Ci = 1

K

∑K
j=1 Θ(xji ), where xji is a sample

labeled with category i ∈ {1, · · · , N}.
The overview of the proposed method is shown in Fig. 3.

Given one support sample xs ∈ S and one query sample
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Figure 4. Background Activation Suppression (BAS) Module. For the input
feature, BAS first generates a class-agnostic activation map for localization.
The foreground prediction map is then obtained by suppressing the background
activation value.

xq ∈ Q, we first extract the corresponding feature maps Fs and
Fq , respectively. Next, the background activation suppression
module is used to remove the cluttered background based
on the activation value of the feature map and then zoom in
the cropped region to the size of the raw image. x̂s and x̂q
represent the refined support image and the refined query image,
respectively. We extract the refined feature maps F̂s and F̂q

from the same backbone Θ. Here, the feature extractors in the
upper and lower branches are parameter-shared. Subsequent
steps first use the proposed foreground object alignment module
to align two semantic feature pairs (i.e., {Fs, Fq} and {F̂s, F̂q})
spatially, and then compute the total spatial similarity between
two aligned pairs by introducing the proposed “local to local”
similarity metric. Finally, we integrate the similarity scores of
both pairs to classify the novel query set Q.

C. Background Activation Suppression Module

Motivation. As we all know, traditional fine-grained recog-
nition is a challenging problem due to the small inter-category
variations and the large intra-category variations that exist
in the fine-grained dataset. As shown in Fig. 1, the visual
patterns of different sub-categories are similar to some extent,
and the backgrounds in the same sub-categories may be
different but appear slightly similar among different sub-
categories. Therefore, the image background plays a negative
role in the fine-grained recognition task, especially in the few-
shot scenario. Inspired by the weakly-supervised localization
methods [7], [9] for the fine-grained task, the proposed method
attempts to eliminate the negative effect of background by
the BAS module, without additional annotations except for
image-level annotation. BAS directly generates class-agnostic
activation maps to disentangle the foreground object and
background in an image.

For example, given an input query image xq, the corre-
sponding feature map Fq = Θ(xq) ∈ Rc×h×w is generated
by the feature extractor. Note that each channel of a feature
map can be regarded as a pattern detector [55], denoted by
fi (i = 1, · · · , c). If a certain spatial position in the feature
map has high activation for most channels, it is likely to
correspond to an informative region. Therefore, we obtain
the activation map AF ∈ Rh×w by aggregating F along the
channel dimension as AF =

∑c
i=1 fi. Then, we introduce

Threshold
Channel-wise
Aggregation

~
Reverse

×
Spatial-wise

Multiplication
Raw Feature

(Support/Query)

Activation Map Erase Mask

Figure 5. Attentive erasing diagram. In the raw stage, to encourage the network
to minimize the ratio of background activation and overall activation generated
by the entire image, we erase the region of raw feature with activation higher
than a threshold before being fed into the global classifier, which is helpful to
explore the entire extent of the foreground.

an adaptive threshold θAF
for the activation map AF to

determine which position is a part of the object regions, i.e.,
θAF

=
∑w

i=1

∑h
j=1 AF (i,j)

h×w . Finally, we generate a foreground
mask MAF

∈ {0, 1}h×w by comparing each element of AF

with threshold θAF
. Concretely, for a particular position (i, j),

if the activation value of AF (i, j) is larger than the threshold
θAF

, the corresponding MAF
(i, j) is set to 1 otherwise 0.

Formulaically,

MAF
(i, j) =

{
1, if AF (i, j) > θAF

0, otherwise.
(1)

Here, we search the largest connected component of the
generated MAF

to obtain the smallest bounding box for the
foreground prediction. Based on the location coordinates, we
can perform background suppression by cropping interesting
foreground on raw image xq and enlarging it to the same
size as xq for subsequent classification, denoted as x̂q. The
processing steps of the BAS module are illustrated in Fig. 4.

Due to the unbalanced distribution between the foreground
features and background features, fine-grained recognition mod-
els incline to identify patterns from small discriminative object
regions. To address this issue, attentive erasing strategy [56],
[57] as an efficient solution has been widely used in weakly
supervised object localization. However, these methods have
limited potential to derive complete foreground activation maps
of unseen objects. To further improve the completeness of the
foreground prediction map with image-level labels, we propose
to promote the learning of BAS by erasing the prominent
regions of the feature map with activation higher than a
threshold as shown in Fig. 5. Firstly, we generate an activation
map Matt ∈ Rh×w as same as AF in the BAS module by
aggregating raw feature (i.e. Fs or Fq) along the channel
dimension. Then, the spatial distribution could be searched for
the most discriminative part based on Matt, due to the intensity
of each position being proportional to the discriminative power.
To obtain the erase mask Mera ∈ Rh×w, a threshold θMF

is
introduced by setting a ratio γ of maximum intensity of Matt.
Thus, Mera is produced by setting each pixel to 1 if it is larger
than θMF

and 0 if it is smaller, and the size of the erased
region decreases as γ increases. For the erasing threshold, we
set hyper-parameter γ to 85% in our recommended settings.
Finally, the mask Mera is applied to the input feature map
by inversion and spatial-wise multiplication. This attentive
erasing strategy facilitates the generation of a meaningful class-
agnostic activation map to explore the entire foreground object
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Figure 6. Foreground Object Alignment (FOA) Module. The input support-
query image pair is initially misaligned, due to the arbitrary pose and position
variations of foreground between the two fine-grained images. By leveraging
the proposed FOA module, semantic features of the original support image
could be aligned w.r.t the query image.

by indirectly increasing the foreground activation value. This
also encourages the model to learn the less discriminative parts.

D. Foreground Object Alignment Module

Motivation. Although global embedding generated by global
average pooling or global max pooling operations is capable
of capturing discriminative information in general few-shot
learning tasks, it might suppress some local discriminative
characteristics while overemphasizing the irrelevant background
features for the fine-grained object [58], hurting the FG-FSR
performance. As illustrated in Fig. 1, we can see that capturing
the subtle differences in discriminative parts remains non-trivial
to distinguish similar sub-categories. To this end, our proposed
method attempts to exploit dense local features to calculate the
similarity between a given pair of samples, which can further
capture spatial structure information of the foreground for FG-
FSR. In addition, the lower intra-category visual consistency of
fine-grained objects usually causes different similarities in both
global appearance and various local regions. Therefore, an ideal
solution to FS-FGR should not only be sensitive to the subtle
discrepancy among instances from different sub-categories but
also be invariant to the arbitrary poses, scales, and appearances
of the same subcategory. In light of this, our proposed method
goes two steps further to compute the similarity of each support-
query feature pair: (1) aligning semantic features between a
query image and various support images according to their
correlations; (2) modeling the similarity measurement between
each aligned support-query pair as a local-to-local (patch-to-
patch) matching process.

Specifically, before locally comparing a support feature
Fs ∈ Rc×h×w and query feature Fq ∈ Rc×h×w, we first
need to address the issue of semantic misalignment, due to
intra-class variance (e.g., object posture and position variation)
and cluttered background. In detail, we first reshape a pair of
spatial features from Rc×h×w to Rhw×c, i.e., Fs = {si}h×wi=1

and Fq = {qi}h×wi=1 , where si and qi ∈ Rc×1×1 represent the
ith deep local descriptor in Fs and Fq , respectively. Then, we
use the reshaped Fs and Fq to compute a semantic correlation
matrix as|q ∈ Rhw×hw, which is calculated by the cosine
similarity as as|q(i, j) =

qT
i sj

‖qi‖·‖sj‖ . Furthermore, a normalized
operation softmax(·) is applied to as|q row-by-row, so that the
sum of each row in the normalized as|q is 1. The resulting

= cos(  ,  )

Similarity Map

Aligned Support Feature

  Query Feature

𝑭𝒒

𝑭𝒔|𝒒

Figure 7. Local to Local (L2L) Similarity Metric. We compute one similarity
map by measuring the cosine similarity element-wisely between the two aligned
feature maps of compared images.

semantic correlation matrix is formulated as follows:

âs|q = softmax(as|q) =
exp

(
as|q(i, j)

)∑h×w
m=1 exp

(
as|q(i,m)

) . (2)

As shown in Fig. 6, we employ the FOA module to compute
the semantic correlation matrix âs|q, which is used to align
the support feature Fs with respect to query feature Fq.
Formulaically, the aligned feature Fs|q can be computed by an
alignment function A(·, ·) as:

Fs|q = A(Fs, Fq) = âs|q · Fs. (3)

Considering that the semantic features aligned by the FOA
module are no longer affected by the position deviation, we
further propose a patch-level similarity metric, indicated by
L2L(·, ·), which reformulates similarity measurement as a local-
to-local matching process. As shown in Fig. 7, given a pair
of aligned semantic features {Fs|q, Fq} ∈ Rhw×c, the L2L
metric can be formulated as a general function of Fs|q and Fq:

L2L(Fs|q, Fq) =

h∑
i=1

w∑
j=1

cos(F i,j
s|q , F

i.j
q ), (4)

where F i,j ∈ Rc is a deep descriptor of position (i, j) in the
semantic feature F and cos(·, ·) denotes the cosine similarity
function.

E. Overall Loss Function

During the training phase, given a “N -way K-shot” fine-
grained recognition task T , each sample xi in T has two
types of labels: yg ∈ {1, 2, · · · , G} and yl ∈ {1, 2, · · · , N},
where G is the overall number of base categories. Firstly, to
learn a class-agnostic activation map for achieving foreground
prediction and background suppression, we use cross-entropy
loss as the classification loss to explicitly explore rich inter-
class relationships by learning features related to the whole
base category space. As shown in Fig. 3, there are two
independent global classifiers in our proposed framework to
classify features of the raw image xi and the refined image
x̂i to its corresponding base category yg. The corresponding
global classification loss Lraw

global and Lrefined
global are formulated

as follows:

Lraw
global = −

∑
(xi,yg)∈T

yg log((softmax(W1GAP(Θ(xi))))),

Lrefined
global = −

∑
(x̂i,yg)∈T

yg log((softmax(W2GAP(Θ(x̂i))))).
(5)
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Here, W1, W2 are the weight parameters of the global
classifiers, GAP(·) denotes the global average pooling, yg is
the true base category label for xraw and xrefined. Finally, the
global classification loss Lglobal can be formulated as follow:

Lglobal = αLraw
global + βLrefined

global , (6)

where α and β are two weighting factors. Note that the global
classification branch is only a part of the whole framework
and will be activated in the training phase to constrain the
generation of class-agnostic activation maps.

Our goal is to identify each query sample with a few labeled
samples in the support set. We compute the similarity between
the query and each support prototype and then the matching
process is guided by the nearest-neighbor strategy. For task T
with N categories, given a prototype set {Cj}Nj=1 constructed
from raw support images, the local-level few-shot loss between
the feature Fi of raw query image xi ∈ Q (i.e., Fi = Θ(xi))
and the corresponding prototype Cj can be represented by

Lraw
L2L = −

∑|Q|
i=1 log

exp(−L2L(A(Cj ,Fi),Fi)).∑N
j′=1

exp(−L2L(A(Cj′ ,Fi),Fi))
. (7)

Similar to Lglobal in Eq. 5, we replace the raw query image
xi in Eq. 7 with the refined query image x̂i to obtain Lrefined

L2L

as follow:

Lrefined
L2L = −

∑|Q|
i=1 log

exp(−L2L(A(Ĉj ,F̂i),F̂i)).∑N
j′=1

exp(−L2L(A(Ĉj′ ,F̂i),F̂i))
, (8)

where F̂i indicates the feature of refined query image x̂i
generated by BAS, and Ĉj′ is the corresponding prototype
computed by refined support images. Therefore, the final local-
level few-shot loss Llocal can be represented as follow:

Llocal = αLraw
L2L + βLrefined

L2L , (9)

where α and β are two weighting factors as same as hyper-
parameters in Eq. 6 to control the contributions of two stages.
Here, two scale factors α and β are both set to 0.5 for all
experiments, while optimizing them can further improve the
performance.

In summary, the cooperative loss is formulated as follows:

Ltotal = Lglobal + λLlocal, (10)

where λ is a weighting factor. In the inference phase, only the
branch of local-level few-shot loss Llocal is used to compute
the similarity to recognize the query samples.

IV. EXPERIMENTS

A. Datasets

We conduct experiments on three widely used benchmarks
for FG-FSR, including CUB-200-2011 [14], Stanford Dogs [24],
and Stanford Cars [25]. We follow the same evaluation protocol
as the previous work [10], [23], [50], and all the input images
are resized to 84× 84.
• CUB-200-2011 contains 200 species of birds with 11, 788

images in total [14]. Following the evaluation protocol
of [10], we randomly split the dataset into 100 base
categories for training, 50 categories for validation, and
50 novel categories for evaluation.

• Stanford Dogs contains 20, 580 images from 120 sub-
classes of dogs in total [24]. Following the evaluation
protocol of [23], we randomly split the dataset into 70
base categories for training, 20 categories for validation,
and 30 novel categories for evaluation.

• Stanford Cars contains 16, 185 images spanning 196 car
models in total [25]. Following the evaluation protocol
of [23], we randomly split the dataset into 130 base
categories for training, 17 categories for validation, and
49 novel categories for evaluation.

Furthermore, considering that prior work [30], [32], [59],
[60] on CUB-200-2011 pre-processes images with human-
annotated bounding box as the input, we also conduct experi-
ments under this setting for a fair comparison.

B. Implementation Details

To have a fair and broad comparison with the previous
work [10], [30], [49], [53], we adopt the widely-used backbone
(i.e., ResNet-12) as the feature extractor. ResNet-12 consists
of 4 consecutive basic blocks and the number of filters is
set to 64-128-256-512. To achieve more accurate background
suppression and foreground alignment, we remove the last
pooling layer of ResNet-12, thus the size of the output feature
map is 512×11×11. Without bells and whistles, no additional
parameters are introduced in our model except two fully
connected (FC) layers are used as global classifiers.

During the training stage, standard data augmentation
strategies are adopted, e.g., random cropping and random
horizontal flipping. For all experiments, we utilize SGD with
an initial learning rate of 0.1 as the optimizer to train our
model on the Titan RTX GPU for 90 epochs. The learning rate
decays to 0.06 in the 60th epoch and then times 0.2 every 10
epochs. The λ in the overall loss is experimentally set to 0.1.
Significantly, our proposed framework is trained from scratch
in an end-to-end manner, and there is no need to pre-train the
feature extractor on other datasets. During the testing stage,
evaluation is performed under standard ‘5-way 1-shot’ and
‘5-way 5-shot’ settings, we test 2, 000 episodes and report the
mean accuracy with 95% confidence intervals as the final result.
Our experiments are implemented in PyTorch.

C. Comparison With State-of-the-Art Methods

1) Results on general fine-grained datasets: Tab. I shows
the performance evaluations on three aforementioned fine-
grained benchmark datasets. We demonstrate ten represen-
tative methods that have reported evaluation results on the
corresponding datasets, including six typical FSL methods
(i.e., ProtoNet [1], RelationNet [15], DN4 [23], Baseline [16],
Baseline++ [16], and CAN [2]) and four specialized FS-FGR
methods (i.e., TOAN [53], BSNet [49], OLSA [10], and
AGPF [50]). For a fair comparison with the above methods,
we display the results of our proposed method based on the
ResNet-12 backbone. Compared with the above typical FSL and
FS-FGR methods, our proposed method achieves the highest
performance under both ‘5-way 1-shot’ and ‘5-way 5-shot’
settings on the most benchmark datasets. The observations can
be summarized as follows:
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Table I
THE ACCURACY (%) OF 5-WAY 1-SHOT AND 5-SHOT TASKS ON THREE POPULAR BENCHMARKS. WE REPORT THE MEAN ACCURACY WITH 95%

CONFIDENCE INTERVALS ON 2000 TEST EPISODES. THE BEST RESULTS ARE SHOWN IN BOLD. * DENOTES THE RESULTS OBTAINED FROM THE ORIGINAL
PAPER. WE REPRODUCE THE OTHER RESULTS UNDER THE SAME EXPERIMENTAL SETTINGS ACCORDING TO THE OPEN SOURCE CODE.

Method CUB-200-2011 Stanford Dogs Stanford Cars
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

ProtoNet [1] 63.44 ± 0.56 83.17 ± 0.35 41.61 ± 0.50 76.78 ± 0.36 45.01 ± 0.49 87.19 ± 0.31

RelationNet [15] 70.92 ± 0.54 84.90 ± 0.35 61.21 ± 0.51 80.27 ± 0.37 78.04 ± 0.53 90.03 ± 0.30

DN4 [23] 64.95 ± 0.99 83.18 ± 0.62 49.70 ± 0.85 71.59 ± 0.68 75.79 ± 0.84 94.14 ± 0.35

Baseline [16] 66.52 ± 0.50 83.31 ± 0.34 59.19 ± 0.48 78.21 ± 0.34 69.48 ± 0.46 87.81 ± 0.27

Baseline++ [16] 71.85 ± 0.55 82.14 ± 0.62 58.53 ± 0.51 73.12 ± 0.38 76.79 ± 0.53 87.18 ± 0.32

CAN [2] 76.98 ± 0.48 87.77 ± 0.30 64.73 ± 0.52 77.93 ± 0.35 86.90 ± 0.42 93.93 ± 0.22

TOAN∗ [53] 66.10 ± 0.86 82.27 ± 0.60 49.77 ± 0.86 69.29 ± 0.70 75.28 ± 0.72 87.45 ± 0.48

BSNet∗ [49] 73.48 ± 0.92 83.84 ± 0.59 61.95 ± 0.97 79.62 ± 0.63 71.07 ± 1.03 88.38 ± 0.62

OLSA∗ [10] 77.77 ± 0.44 89.87 ± 0.24 64.15 ± 0.49 78.28 ± 0.32 77.03 ± 0.46 88.85 ± 0.46

AGPF [50] 78.73 ± 0.84 89.77 ± 0.47 72.34 ± 0.86 84.02 ± 0.57 85.34 ± 0.74 94.79 ± 0.35

Ours 82.27 ± 0.46 90.76 ± 0.26 69.58 ± 0.50 82.59 ± 0.33 88.93 ± 0.38 95.20 ± 0.20

Table II
THE ACCURACY (%) OF 5-WAY 1-SHOT AND 5-SHOT TASKS ON THE

CROPPED CUB-200-2011, WHERE ALL IMAGES ARE PRE-PROCESSED WITH
THE PROVIDED HUMAN-ANNOTATED BOUNDING BOXES. WE REPORT THE

MEAN ACCURACY WITH 95% CONFIDENCE INTERVALS ON 2000 TEST
EPISODES. NOTE THAT “BB.” DENOTES WHETHER TO LEVERAGE THE

PROVIDED HUMAN-ANNOTATED BOUNDING BOXES TO CROP THE IMAGES. ◦
DENOTES THE RESULTS ARE REPORTED BY [30]. * DENOTES THE RESULTS

OBTAINED FROM THE ORIGINAL PAPER.

Method BB. Backbone CUB-200-2011
5-way 1-shot 5-way 5-shot

MatchingNet◦ [21] 3 ResNet-12 71.87 ± 0.85 85.08 ± 0.57

ProtoNet [1] 3 ResNet-12 76.21 ± 0.48 89.70 ± 0.27

RelationNet [15] 3 ResNet-12 75.81 ± 0.53 88.63 ± 0.29

Baseline [16] 3 ResNet-12 70.93 ± 0.49 88.57 ± 0.28

Baseline++ [16] 3 ResNet-12 75.17 ± 0.49 85.58 ± 0.34

DeepEMD∗ [30] 3 ResNet-12 75.65 ± 0.83 88.69 ± 0.50

RENet∗ [32] 3 ResNet-12 79.49 ± 0.44 91.11 ± 0.24

DMN4∗ [59] 3 ResNet-12 82.95 ± 0.75 90.46 ± 0.46

FRN [60] 3 ResNet-12 82.12 ± 0.85 92.49 ± 0.43

Ours 7 ResNet-12 82.27 ± 0.46 90.76 ± 0.26

Ours 3 ResNet-12 86.00 ± 0.41 92.53 ± 0.23

• On the CUB-200-2011 dataset, our proposed method
achieves stable and excellent performance and surpasses
all existing methods by a large margin in terms of ‘5-
way 1-shot’ setting. It’s clear that our method exceeds
six typical FSL methods (i.e. [1], [2], [15], [16], [23])
significantly. Compared with the global feature based FS-
FGR method TOAN [53], our proposed method achieves
16.17% and 8.49% performance improvement under 1-
shot and 5-shot settings, respectively. In addition, the
current state-of-the-art accuracy of 1-shot is achieved by
AGPF [50] with 78.73%, which shares the same insights
with our method. Our method outperforms AGPF by
3.54% with an accuracy of 82.27%.

• On the Stanford Dogs dataset, our method overall exceeds
all typical FSL methods significantly in terms of 1-shot
and 5-shot settings. But compared with AGPF [50], our
method is lower than it by 2.76% and 1.43% under 1-
shot and 5-shot settings, respectively. Note that the AGPF
model currently gets the highest performance, which

mainly benefits from additional structures used to construct
the feature pyramid and attention pyramid. In contrast,
the operations of background suppression and foreground
alignment in our method are parameter-free, which has
significant advantages in efficiency.

• On the Stanford Cars dataset, our method again out-
performs all other compared methods with the best
performance of 88.93% for 1-shot and 95.20% for 5-shot.
Compared to the leading results obtained by AGPF [50]
and CAN [2], the relative performance gains are 2.03%
and 0.41% for 1-shot and 5-shot, respectively. It’s worth
noting that cars are rigid objects and the corresponding
intra-category variances are not as significant as birds and
dogs. Our methods can reach the best performance of
95.20% under 5-shot setting, which further confirms the
significance of our method for FG-FSR.

2) Results on CUB-200-2011 with bounding boxes:
Recently, some state-of-the-art FSL methods (e.g. DeepEMD
[30], RENet [32], DMN4 [59], etc) also demonstrate their
generalization ability on the fine-grained dataset, where the
images from CUB-200-2011 are pre-processed by human-
annotated bounding boxes. In this section, we also carry out
extra experiments to compare our method with these state-
of-the-art methods under the same benchmark (i.e., cropped
CUB-200-2011) for a fair comparison. The cropped CUB-
200-2011 is less challenging because object images cropped
by human-annotated bounding boxes have a finer scale and
less background, which is helpful to study the fine-grained
characteristics for recognition. As shown in Tab. II, our method
overall exceeds all compared methods in terms of 1-shot
and 5-shot setting and establishes a novel state-of-the-art.
Significantly, it can be observed that:
• Compared with the current state-of-the-art methods trained

on the cropped CUB-200-2011, our method trained on
the uncropped CUB-200-2011 (i.e., w/o BB.) can achieve
competitive performance. It is well-known that RENet [32]
and DMN4 [59] are the two latest methods in the FSL
community. Our method achieves excellent results in the
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Table III
COMPARISON RESULTS ON BACKBONES WITH/WITHOUT TWO-STAGE LOCAL FEATURE-BASED SIMILARITY METRIC. LOCAL: REMOVING GAP AND USING

LOCAL FEATURES. RAW : EMPLOYING FEATURES FROM RAW IMAGES. REFINED : EMPLOYING FEATURES FROM REFINED IMAGES.

Model LOCAL RAW REFINED
CUB-200-2011 Stanford Dogs Stanford Cars

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

B0 X 77.44 ± 0.50 86.82 ± 0.32 65.80 ± 0.51 79.66 ± 0.36 85.20 ± 0.44 92.87 ± 0.24

B1 X X 78.75 ± 0.49 88.96 ± 0.28 67.18 ± 0.50 81.27 ± 0.34 85.87 ± 0.43 93.85 ± 0.24

B2 X X 78.35 ± 0.50 87.62 ± 0.30 64.56 ± 0.51 78.24 ± 0.35 84.04 ± 0.45 92.50 ± 0.25

B3 X X X 80.69 ± 0.48 90.21 ± 0.27 68.89 ± 0.49 82.06 ± 0.33 87.65 ± 0.40 94.85 ± 0.21

Table IV
CONTRIBUTION OF EACH INDIVIDUAL COMPONENT IN OUR METHOD. BAS: BACKGROUND ACTIVATION SUPPRESSION. L2L: LOCAL TO LOCAL SIMILARITY

METRIC. FOA: FOREGROUND OBJECT ALIGNMENT. AE: ATTENTIVE ERASING.

Model BAS L2L FOA AE
CUB-200-2011 Stanford Dogs Stanford Cars

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

C0 X 78.18 ± 0.50 87.28 ± 0.31 66.85 ± 0.52 79.68 ± 0.36 86.03 ± 0.42 92.81 ± 0.25

C1 X X 80.69 ± 0.48 90.21 ± 0.27 68.89 ± 0.49 82.06 ± 0.33 87.65 ± 0.40 94.85 ± 0.21

C2 X X X 81.71 ± 0.47 90.49 ± 0.27 69.09 ± 0.50 82.25 ± 0.33 88.93 ± 0.39 95.00 ± 0.20

C3 X X X X 82.27 ± 0.46 90.76 ± 0.26 69.58 ± 0.50 82.59 ± 0.33 88.93 ± 0.38 95.20 ± 0.20
C4 X X X 79.75 ± 0.48 89.44 ± 0.28 67.80 ± 0.51 81.59 ± 0.33 88.19 ± 0.39 94.37 ± 0.22

case of not using the cropped dataset, even 2.78% higher
than RENet [32] under 1-shot setting and 0.30% higher
than DMN4 [59] under 5-shot setting. In fact, cropping
object images with human-annotated bounding boxes is
equivalent to perfectly removing background noises. This
proves the great contribution of background suppression
to improve the performance of FS-FGR, which also proves
the advantages of our method.

• When introducing an additional bounding box to pre-
process the CUB-200-2011, our method surpasses all
existing methods by a large margin, especially under
the 1-shot setting. What’s more, compared with the
results obtained from the uncropped dataset, our method
(i.e., w/ BB.) improves 3.73% and 1.77% in terms of
1-shot and 5-shot setting, respectively. For the cropped
CUB-200-2011, the performance of our method is further
improved significantly without the interference of cluttered
background. In this case, the excellent performance mainly
benefits from two aspects: (1) BAS can further enable
the model to crop out the key region of the image with
the most discrimination and less redundancy; (2) The
foreground alignment operation of FOA can enable the
model to learn fine-grained features of different parts with
different importance degree. Note that the FRN [60] model
currently gets the state-of-the-art performance for FS-FGR.
Our method, however, still surpasses FRN by 3.88% under
the 1-shot setting, which further demonstrates that the
proposed method has a significant superiority under the
1-shot setting.

D. Ablation Studies

In this section, we conduct ablation studies to investigate
the effectiveness of each individual component of our method.
The following experiments are all conducted on the three
fine-grained datasets with ResNet-12 as the backbone if not
particularly mentioned. We first build a group of baseline
models as follows:

• B0: Global features for FS-FGR refers to employing
backbone to extract global features from raw images,
which are directly used to compute the cosine distances
between the query images and support prototypes. This
aims to test the basic performance of our full model
by removing BAS, FOA, and L2L. Here, we also retain
an auxiliary global classifier to learn in the whole base
category space.

• B1: Raw Local features for FS-FGR refers to employing
the backbone to extract local features only from raw
images, which are used to compute the similarity between
the query images and support prototypes. This aims to
test the superiority of raw local features by adding L2L
on the basis of B0.

• B2: Refined Local features for FS-FGR refers to
employing the backbone to extract local features only from
refined images, which are used to compute the similarity
between the query images and support prototypes. This
aims to test the superiority of refined local features by
adding L2L and BAS on the basis of B0.

• B3: Dual Local features for FS-FGR refers to employ-
ing backbone to extract local features from raw images
and refined images, where both of them are used to
compute the similarity between the query images and
support prototypes. This aims to test the superiority of
our two-stage workflow by adding L2L and BAS on the
basis of B0.

The comparison results among the above baselines are shown
in Table III. In this part, we first investigate the significance of
the local feature-based similarity metric for FS-FGR. Obviously,
B1-B3 (using local features) outperform B0 (using global
features) and lead to consistent performance gains on three
datasets. This validates that using local features to compute
image-to-image similarity can avoid losing subtle information.
With the proposed L2L, we have observed that the performance
of B2 is a little lower than B1. That is to say, the baseline
model using only the refined image obtained by BAS is inferior
to the model using the raw image on each benchmark. The
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Table V
THE ACCURACY (%) OF 5-WAY 1-SHOT AND 5-SHOT TASKS ON

CUB-200-2011 WITH VARIOUS BACKBONES (i.e., CONV-64 AND
RESNET-18). THE RESULTS ARE OBTAINED FROM THE ORIGINAL PAPER.

WE REPORT THE MEAN ACCURACY WITH 95% CONFIDENCE INTERVALS ON
2000 TEST EPISODES. THE BEST RESULTS ARE SHOWN IN BOLD.

Method Backbone CUB-200-2011
5-way 1-shot 5-way 5-shot

DN4 [23] Conv-64 53.15 ± 0.84 81.90 ± 0.60
MattML [20] Conv-64 66.29 ± 0.56 80.34 ± 0.30

BSNet [49] Conv-64 65.89 ± 1.00 80.99 ± 0.63

TOAN [53] Conv-64 65.34 ± 0.75 80.43 ± 0.60

Ours Conv-64 65.48 ± 0.51 76.02 ± 0.41

ProtoNet [1] ResNet-18 72.99 ± 0.88 86.64 ± 0.51

Neg-Margin [61] ResNet-18 72.66 ± 0.85 89.40 ± 0.43

Centroid [62] ResNet-18 74.22 ± 1.09 88.65 ± 0.55

RAP-Neg-Margin [63] ResNet-18 75.37 ± 0.81 90.61 ± 0.39

Ours ResNet-18 84.19 ± 0.43 92.46 ± 0.23

Table VI
COMPARISON OF THE EFFICIENCY OF SOME PUBLICLY AVAILABLE LOCAL

FEATURE BASED FEW-SHOT LEARNING METHODS. SMALLER PARAMS. AND
SMALLER FLOPS INDICATE BETTER EFFICIENCY.

Method Backbone Model Complexity
Params. (M) FLOPs (G)

DN4 [23] ResNet-12 12.42 67.39
CAN [2] ResNet-12 8.04 12.75
DeepEMD [30] ResNet-12 12.42 35.23
RENet [32] ResNet-12 12.63 35.70
DMN4 [59] ResNet-12 12.42 35.23
FRN [60] ResNet-12 12.42 35.18
AGPF [50] ResNet-12 8.77 51.53

Ours (1-stage) ResNet-12 8.04 16.88
Ours (2-stage) ResNet-12 8.04 33.76

underlying reason could be that the low resolution (i.e., 84×84)
of the input image results in inaccurate localization of the
completed region for the foreground as shown in Fig. 9. In
fact, although BAS can highlight foreground objects, it also
leads to some suppression results on some parts of objects,
due to the imbalanced feature distribution between foreground
and background. However, B3 integrated with local features
from both the raw images and refined images achieves the best
performance, this verifies the necessity and effectiveness of
background suppression for FS-FGR. In addition, a substantial
improvement achieved by B3 reveals that our method equipped
with BAS considers both the raw image and refined image to
alleviate the problem of insufficient samples and makes the
model robust to varieties of object scales.

As mentioned above, BAS, L2L, and FOA are three key
components of our proposed method. Thus, we also conduct
the ablation experiments to analyze the contribution of each
component by setting four baselines, as follows:
• C0: Background suppression for FS-FGR refers to

employing BAS on the backbone to extract global features
from raw images and refind images. Both of images are
used to compute the cosine distances between the query
images and support prototypes. This aims to test the
superiority of background suppression by adding BAS
based on B0.
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Figure 8. Performance with respect to different values of λ on CUB-200-2011
under 5-way 1-shot setting. The blue line shows the results of ResNet-12, and
the red line shows the results of Conv-64.

• C1: Local to local similarity metric for FS-FGR refers
to employing the backbone to extract local features from
raw and refined images. Both images are used to compute
the similarity between the query images and support
prototypes. This aims to test the superiority of the local
feature-based similarity metric by adding L2L based on
C0.

• C2: Foreground alignment for FS-FGR refers to em-
ploying the backbone to first extract local features from
raw images and refined images and then align them. Both
images are used to compute the similarity between the
query images and support prototypes. This aims to test
the superiority of aligned local features by adding FOA
based on C1.

• C3: Attentive erasing for FS-FGR refers to erasing the
region with activation higher than a threshold to further
improve the completeness of foreground based on BAS.
This aims to test the superiority of erasing strategy in our
method by adding attentive erasing to the basis of C2.

• C4: Foreground alignment w/o background suppres-
sion for FS-FGR refers to only employing backbone to
extract local features from raw images and then align them
to compute the similarity between the query images and
support prototypes. This aims to verify the complementar-
ity of background suppression and foreground alignment
by removing BAS based on C3.

Table IV lists the comparison results of the ablation study
when using our proposed modules. We have the following obser-
vations. First, the addition of BAS solely can only contribute
to limited improvement in performance when using global
features to compute similarity (i.e., C0 vs. B0). Second, when
introducing local features to measure the distances between
the query images and support prototypes, L2L significantly
improves the localization accuracy under 1-shot and 5-shot
settings (i.e., C1 vs. C0). Third, a substantial improvement of
performance on each dataset is gained by integrating FOA
to align support features and query features (i.e., C2 vs.
C1). This verifies the necessity of considering variations in
the object’s pose and position for the FS-FGR task. Finally,
erasing the regions with activation higher than a threshold
during the training phase alleviates the problem of the model
focusing on the most discriminative regions (i.e., C3 vs.
C2). The aforementioned experiments and comparisons have
demonstrated that the addition of FOA based on BAS can
significantly improve the performance of FS-FGR. Moreover,
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Table VII
THE ACCURACY (%) COMPARISON OF 5-WAY 1-SHOT AND 5-SHOT TASKS

ON CUB-200-2011 BY ADJUSTING TWO WEIGHTING FACTORS IN THE LOSS
FUNCTIONS. WE REPORT THE MEAN ACCURACY WITH 95% CONFIDENCE

INTERVALS ON 2000 TEST EPISODES.

α β Backbone CUB-200-2011
5-way 1-shot 5-way 5-shot

0.1 0.9 Conv-64 61.79 ± 0.55 76.39 ± 0.41

0.3 0.7 Conv-64 63.84 ± 0.54 75.73 ± 0.42

0.5 0.5 Conv-64 65.48 ± 0.51 76.02 ± 0.41
0.7 0.3 Conv-64 62.97 ± 0.53 75.95 ± 0.43

0.9 0.1 Conv-64 62.02 ± 0.53 75.62 ± 0.43

0.1 0.9 ResNet-12 81.06 ± 0.48 89.68 ± 0.28

0.3 0.7 ResNet-12 81.73 ± 0.46 90.34 ± 0.26

0.5 0.5 ResNet-12 82.27 ± 0.46 90.76 ± 0.26
0.7 0.3 ResNet-12 80.76 ± 0.48 90.16 ± 0.27

0.9 0.1 ResNet-12 79.81 ± 0.48 89.07 ± 0.28

we further demonstrate that BAS and FOA are complementary
to each other in improving performance by removing BAS
from the full model (i.e., C4 vs. C3). Meanwhile, we observe
that C4 outperforms B1 by a large margin, demonstrating
the superiority of our feature alignment in the absence of
background suppression.

E. Model Complexity Analysis

To comprehensively assess the performance, we compare
the efficiency of our method with some publicly available
local feature based few-shot learning methods. The results
of model parameters (Params.) and floating-point operations
(FLOPs) are reported in Table VI. From the aforementioned
experiments and comparisons in Table I and Table II, although
the proposed method adopts a two-stage framework that would
double the amount of computation and storage, we can see
that our method still achieves better FS-FGR performance with
competitive computational efficiency. Our proposed background
activation suppression operation can be theoretically conducted
on any position of the network by generating a class-agnostic
activation map for localization. With the consideration of both
accuracy and efficiency, we consequently choose the high-
level features from the last layer of the feature extraction. In
summary, without bells and whistles, the efficiency of the
proposed two-stage method can benefit from three aspects:
(1) the background suppression and foreground alignment
operations are only directly conducted on the feature maps
without introducing additional parameters; (2) the raw stage and
the refined stage are based on the same network with shared
parameters, which limits the increase of the number of model
parameters; (3) the background suppression and foreground
alignment are conducted on high-level features with minimum
resolutions.

F. Backbones Analysis

In the previous experiments, we used ResNet-12 as the
backbone to extract local features and compute similarities. To
further investigate the effectiveness of the proposed method,
we switch to another two embedding backbones from shallow
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Figure 9. Visualization of background activation suppression under 5-way
1-shot setting on CUB-200-2011 dataset, including some success and failure
cases. For better comparison, the ground-truth bounding box provided by the
original dataset is marked in each raw image.

to deep, namely Conv-64 and ResNet-18, which are commonly
used in the FSL community. Compared to ResNet-18, Conv-64
is shallower with only four layers. Each convolution layer is
designed with 3×3 convolution of 64 filters, followed by batch
normalization, a RELU activation function, and a 2× 2 max-
pooling. To keep consistent with the previous experimental
settings, and to preserve the spatial resolution of features, we
remove the last max-pooling layer of Conv-64. Thus, the size of
the output feature maps becomes 64×10×10. The top half of
Table V shows that our method achieves stable and competitive
performance under 1-shot setting when using Conv-64. Our
method, however, performs worse than some recent methods
under the 5-shot setting. The underlying reason could be that
Conv-64 is too shallow and the poor feature expression ability
can not approximate the spatial distribution of the foreground
efficiently, which results in the model not being able to generate
good foreground object coordinates for background suppression
as shown in Fig. 11. Thus, sub-optimal refined images cannot
promote the performance of our method and even bring
some negative effects. The existing state-of-the-art FS-FGR
models also embed additional complex structures in the basic
feature extractor, where redundant parameters can significantly
promote the performance of shallow backbones. Compared
with them, our model has no redundant structure and parameter
except the two global classifiers. Significantly, the operations
of background suppression and foreground alignment in our
method are parameter-free, which has significant advantages in
efficiency. As shown in the bottom half of Table V, when using
a deeper backbone (i.e., ResNet-18, the standard unchanged
architecture used in [64]) as feature extractor, our method
overall exceeds all compared methods and further establishes
a novel state-of-the-art. Compared with ResNet-12, ResNet-
18 achieves a significant improvement of 1.92% under a 5-
way 1-shot setting and 1.70% under a 5-way 5-shot setting,
respectively. The reason may be that the deeper feature extractor
can significantly improve the accuracy of background activation
suppression and enhance the semantic correlation of foreground
object alignment.

G. Sensitivity Analysis

As shown in Section III-E, there is a hyper-parameter λ in
the final loss function to control the contribution of Llocal. We



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023 12

R
aw

 S
ta

ge
R

ef
in

ed
 S

ta
ge

(a) CUB-200-2011 (b) Stanford Dogs (c) Stanford Cars 

Figure 10. Visualization results of heatmaps in the raw stage and refined
stage. We can observe that the fine-grained visual cues of the attended regions
from the refined stage are more clear and discriminative to the corresponding
categories, and are easier to be recognized than those in the raw stage (zooming
in is recommended for better visualization).
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Figure 11. Visualization comparison of background activation suppression
with different backbones on CUB-200-2011 dataset. It can be found that a
more compact activation map, complete mask, and accurate refined image can
be generated when using deeper ResNet-12 as a feature extractor.

conduct a comparative experiment on CUB-200-2011 under
5-way 1-shot setting to study the effect of this factor across
different backbones. From Fig. 8, when achieving the best
performance, we have observed that the value of λ on Conv-64
is relatively larger compared to the ResNet-12. The results show
the fact that the local loss accounts for a larger proportion of the
total loss for the shallower network and delays the appearance
of performance saturation points. This is because, during the
training phase, the shallow feature extractor has a weak feature
expression ability and is unable to explore the inter-category
relationship for FS-FGR. In all our experiments, we set the
value of λ to 0.1 for the deeper network (i.e., ResNet-12 and
ResNet-18), and 0.4 for the shallow network (i.e., Conv-64)
to achieve the final results.

There are two weighting factors α and β in global loss
(i.e. Eq. 6) and local loss (i.e. Eq. 9) to control the contributions
of raw image and refined image. The sensitivity analyses
of two parameters according to α + β = 1 are performed
on the CUB-200-2011 dataset and the results are presented
in Table VII. We can observe a significant gap in the 1-
shot performance between different settings of the weights.
Meanwhile, although different backbones have different feature
expression abilities and foreground predictions, the highest
mean value of performance is achieved when the weights of
the two factors both equal to 0.5. The underlying reason could
be that the raw stage and the refined stage are complementary
to each other in improving the performance, which is also
proved in Fig. 12. Thus, we simply select equal weights for
the two weighting factors in the training and inference stage.
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Figure 12. The t-SNE visualization of feature distribution in different stages
on CUB-200-2011. We randomly select five classes (one for each color) with
30 query images in each class (one for each point). (a) Raw Stage: features
are from only the raw stage. (b) Refined Stage: features are from only the
refined stage. (c) Raw + Refined Stages: features are from both stages.

H. Visualization Analysis

In this section, we first visualize the results of back-
ground suppression on the CUB-200-2011. As presented in
Fig. 9(a)−(d), the proposed BAS module can cover the object
region more completely and effectively remove the cluttered
background, which enables the model to see more clearly with
only image-level annotations. But as shown in Fig. 9(e)−(g),
we also find that the proposed BAS module performs poorer
effectiveness for localizing smaller objects, especially the small
object that is far away from the center of the image.

We gracefully argue that taking an amplified attended region
without distraction from the background as input in the refine
stage can distill more discriminative fine-grained characteristics
in low-data scenarios. The insight behind it is that “see closer,
see better” because the background noises can distract attention
from the subtle differences. To verify this idea, we visualize
the feature heatmaps of the two stages in Figure 10, it is clear
that our model focuses on more discriminative visual cues
in the refined stage, which confirms the significance of our
two-stage paradigm for FS-FGR.

In Fig. 12, we visualize the feature distribution in the
embedding space by t-SNE [65] on CUB-200-2011 under 5-way
1-shot setting, where 30 query images are randomly sampled
from each category. It can be seen that the features obtained
from our full model with both raw and refined stages have
more compact and separable clusters than the other two models
using only the raw stage or refined stage, which indicates
that our method has good adaptability to the object’s scale.
Furthermore, the visualization of the model using only raw
images is better than the one using only refined images. This
further substantiates the correlation analysis in Section IV-D
and indicates that the raw stage and the refined stage are
complementary to each other in improving performance.

Lastly, we investigate the effects of the attentive erasing
strategy in foreground localization and background suppression.
Fig. 13 provides the visual results on CUB-200-2011, which
proves the advantages of the proposed attentive erasing strat-
egy. We observe that the proposed attentive erasing strategy
facilitates the generation of foreground maps by indirectly
increasing the foreground activation value, and the masked
prediction map achieves better coverage of the localization
results on the foreground object.
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Figure 13. Visualization of the influence of attentive erasing strategy for
foreground localization and background suppression.

I. Discussion

In this paper, we explore a two-stage weakly-supervised
framework by introducing two parameter-free adjustments:
background suppression and foreground alignment. Here, we
also conduct some analyses to intuitively demonstrate the
effectiveness and limitation of the proposed method.

To deal with the cluttered background, we propose a BAS
module to disentangle the foreground object and background
distraction in an image. As shown in Table VIII, ‘Ours(w/ BAS)’
achieves significant and consistent improvement on both 1-
shot and 5-shot tasks when compared to ‘Ours(w/o BAS)’.
But as seen in Fig. 9, we note that our BAS is inconsistent
for localizing objects of different sizes, especially poorer
localization for small objects in the corner. Although the
refined image generated by BAS covers the entire area of
the foreground, it also contains some low-activated background
regions when compared to the foreground region cropped by
the ground-truth bounding box.

Going further, we attempt to achieve better localization of the
foreground object by using BAS twice, i.e., Ours(w/ BAS×2),
which is devised to maximize the ratio of foreground activation
and overall activation. It is a pity that the performance does not
achieve further improvement as expected, which also indicates
that the proposed BAS is insufficient to resist background
distractions in some cases. The underlying reason could be
that the limitation of feature map resolution causes imprecise
localization, especially since the distribution between the
foreground and background is unbalanced.

Lastly, we keep the raw image unchanged and replace the
refined image with the image cropped by the ground-truth
bounding box. As shown in Table VIII, ‘Ours(w/ BB.)’ can
be seen as an oracle and the upper bound of our method. Not
surprisingly, ‘Ours(w/ BB.)’ surpasses all existing methods by
a large margin, which further demonstrates the potential of our
proposed two-stage framework. Thus, how to overcome the
limitation of the BAS module to achieve similar results with
the ground-truth bounding box will be researched in future
work.

V. CONCLUSION

In this paper, we show that background suppression and
foreground alignment matter for few-shot fine-grained recogni-
tion (FS-FGR). Thus, we propose a novel two-stage weakly-
supervised framework for FS-FGR, where the background

Table VIII
THE ACCURACY (%) OF 5-WAY 1-SHOT AND 5-SHOT TASKS ON

CUB-200-2011 WITH VARIOUS SETTINGS.

Method Backbone CUB-200-2011
5-way 1-shot 5-way 5-shot

Ours(w/o BAS) ResNet-12 79.75 ± 0.48 89.44 ± 0.28

Ours(w/ BAS) ResNet-12 82.27 ± 0.46 90.76 ± 0.26

Ours(w/ BAS×2) ResNet-12 81.62 ± 0.47 90.48 ± 0.27

Ours(w/ BB.) ResNet-12 86.29 ± 0.42 93.23 ± 0.22

suppression and foreground alignment are jointly learned in
an end-to-end manner. In particular, a background activation
suppression module is introduced in the raw stage to weaken
background disturbance and enhance dominative foreground
objects for the refined stage. In each stage, a foreground object
alignment module is proposed to align the foreground object
of support features concerning query features for addressing
the problem of spatial misalignment. Finally, a local-to-local
similarity metric is introduced to enable the model to capture
subtle differences of confused sample pairs on two stages
for the final decision. Extensive experiments on three fine-
grained benchmarks demonstrate that our proposed model can
be trained in an end-to-end manner with only the image-level
label, and achieve state-of-the-art performance. What calls for
special attention is that this is the first research to reveal the
impact of background suppression and foreground alignment,
and the first attempt to integrate both aspects into a standard
pipeline for FS-FGR task. In addition, some designs in our
designed generic framework include some heuristics, which
could be further studied in detail.
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