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Meta Generative Attack on Person Reidentification
A V Subramanyam, Member, IEEE

Abstract—Adversarial attacks have been recently investigated
in person re-identification. These attacks perform well under
cross dataset or cross model setting. However, the challenges
present in cross-dataset cross-model scenario does not allow these
models to achieve similar accuracy. To this end, we propose our
method with the goal of achieving better transferability against
different models and across datasets. We generate a mask to
obtain better performance across models and use meta learning
to boost the generalizability in the challenging cross-dataset cross-
model setting. Experiments on Market-1501, DukeMTMC-reID
and MSMT-17 demonstrate favorable results compared to other
attacks.

Index Terms—Adversarial attacks, Meta learning, ReID.

I. INTRODUCTION

The tremendous performance of deep learning models has
led to rampant application of these systems in practice. How-
ever, these models can be manipulated by introducing minor
perturbations [1]–[5]. This process is called adversarial attacks.
In case of person re-identification, for a given query input x,
a target model f and a gallery, the attack is defined as,

‖f(x + δ)− f(xg)‖2 > ‖f(x + δ)− f(x̄g)‖2 s.t. ‖δ‖p ≤ ε,
xg 3 topk(x + δ), ID(x) = ID(xg) 6= ID(x̄g)

where xg and x̄g are gallery samples belonging to different
identity and δ is the adversarial perturbation with an lp norm
bound of ε. topk(·) refers to the top k retrieved images for the
given argument.

Adversarial attacks have been extensively investigated under
classification setting [6] and also studied in other domains [7]–
[9] in the recent times. However, to the best of our knowledge,
there are very few works which study these attacks in person
re-identification domain. In the following we briefly discuss
some classical attacks under classification setting. Szegedy et
al. [1] proposed the first work on generation of adversarial
sample for deep neural networks using L-BFGS. Goodfellow
et al. [2] proposed an efficient adversarial sample generation
method using fast gradient sign method (FGSM). Kurakin et
al. [10] proposed an iterative FGSM method. Other prominent
works include [11]–[16].

In person re-id [17]–[20], both white-box and black box at-
tacks have been proposed in [21]–[24]. These attacks use a la-
beled source dataset and show that the attacks are transferable
under cross-dataset or cross-model, or both settings. However,
transferabilty of attacks in the challenging cross-dataset and
cross-model setting is still an issue. In this work, we propose
to use a mask and meta-learning for better transferability of
attacks. We also investigate adversarial attacks in a completely
new setting where the source dataset does not have any labels
and the target model structure or parameters are unknown.
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II. RELATED WORKS

In [25], authors propose white box and black box attacks.
The black box attack only assumes that the victim model is
unknown but the dataset is available. [26] introduces phys-
ically realizable attacks in white box setting by generating
adversarial clothing pattern. [24] proposes a query based
attack wherein the images obtained by querying the victim
model are used to form triplets for triplet loss. [27] proposes
white box attack using self metric attack; wherein the positive
sample is obtained by adding noise to the given input and
obtain negative sample from other images. In [21], authors
propose a meta-learning framework using a labeled source
and extra association dataset. This method generalizes well
in cross-dataset scenario. In [22], Ding et al. proposed to
use a list-wise attack objective function along with model
agnostic regularization for better transferability. A GAN based
framework is proposed in [23]. Here the authors generate
adversarial noise and mask by training the network using
triplet loss.

In this work we use a GAN network to generate adversarial
sample. In order to achieve better transferability of attack
across models, we suppress the pixels that generate large
gradients. Suppressing these gradients allows the network to
focus on other pixels. In this way, the network can focus
on pixels that are not explicitly salient with respect to the
model used for attack. We further use meta learning [28] which
also allows incorporation of an additional dataset to boost the
transferability. We refer this attack as Meta Generative Attack
(MeGA). Our work is closest in spirit to [21], [23], however,
the mask generation and application of meta learning under
GAN framework are quite distinct from these works.

III. METHODOLOGY

In this work we address both white-box and black-box
attacks. We need that the attack is transferable across models
and datasets. Thus if we obtain the attack sample using a given
model f , the attack is inherently tied to f [16]. In order that
attack does not over-learn, we apply a mask that can focus
on regions that are not highly salient for discrimination. This
way the network can focus on less salient but discriminative
regions thereby increasing the generalizability of attack to
other models. On the other hand, meta learning has been
efficiently used in adversarial attacks [21], [29], [30] to obtain
better transferability across datasets. However meta learning
has not been explored with generative learning for attacks in
case of PRID. We adapt the MAML meta learning framework
[28] in our proposed method. While the black box attack
works assume the presence of a labeled source dataset, we
additionally present a more challenging setting wherein no
labels are available during attack.
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Fig. 1. Model architecture. Mask M is generated using model f and is used
to mask the input x. GAN is trained using a meta learning framework with
an adversarial triplet loss and GAN loss.

Our proposed model is illustrated in Figure 1. In case
of white-box setting, the generator G is trained using the
generator loss, adversarial triplet loss and meta learning loss
while the discriminator D is trained with the classical binary
cross-entropy discriminator loss. The mask is obtained via
self-supervised triplet loss. The network learns to generate
adversarial image. While the GAN loss itself focuses on
generating real samples, the adversarial triplet loss guides the
network to generate samples that will be closer to negative
samples and farther away from positive samples.

A. GAN training
Given a clean sample x, we use the generator G to create

the adversarial sample xadv . The overall GAN loss is given by,
LGAN = Ex logD(x) +Ex log(1−D(Π(G(x)))). Here Π(.)
denotes the projection into l∞ ball of ε-radius within x and
xadv = Π(G(x)). In order to generate adversarial samples, a
deep mis-ranking loss is used [23],

Ladv−trip(xa
adv,x

n
adv,x

p
adv) = max(‖xa

adv − xn
adv‖2 (1)

− ‖xa
adv − xp

adv‖2 +m, 0)

where m is the margin. xa
adv is the adversarial sample obtained

from anchor sample xa. Similarly, xp
adv and xn

adv are the
adversarial samples obtained from respective positive and neg-
ative samples xp and xn. This loss tries to push the negatives
closer to each other and pulls the positives farther away. Thus
the network learns to generate convincing adversarial samples.

B. Mask Generation
Attack obtained using the given model f leads to poor

generelization to other networks. In order to have a better
tranferability, we first compute the gradients with respect to
self-supervised triplet loss Ladv−trip(x,xn,xp), where xp is
obtained by augmentation of x and xn is the sample in
the batch which lies at a maximum Euclidean distance from
x. Here, the large gradients are primarily responsible for
loss convergence. Since this way of achieving convergence
is clearly coupled with f , we mask the large gradients.
Thus, the convergence is not entirely dependent on the large
gradients and focuses on other smaller ones which can also
potentially posses discriminative nature. Thus the overfitting
can be reduced by using the mask. To obtain the mask, we
compute,

gradadv−triplet = ∇xLadv−trip(x,xn,xp) (2)

Note that, we use the real samples in Eq. 2. The mask is
given by M = sigmoid(|gradadv−triplet|), where |·| denotes
absolute value. We mask x before feeding as an input to the
generator G. The masked input is given as x = x� (1−M),
where � denotes Hadamard product.

Masking techniques have also been explored in [31], [32]
where the idea is to learn the model such that it does not
overfit to the training distribution. Our masking technique is
motivated from the idea that an adversarial example should
be transferbale across different reid models. Our technique is
distinct and can be applied to an individual sample. Whereas,
masking technique in [31], [32] seeks agreement among the
gradients obtained from all the samples of a batch. This
technique in [31], [32] also suffers from the drawback of
tuning hyperparameter. Further, the masking technique of [31]
is boolean while ours is continuous.

C. Meta Learning
Meta optimization technique allows to learn from multiple

datasets for different tasks while generalizing well on a given
task. One of the popular meta learning approaches, MAML
[28], applies two update steps. The first update happens in
an inner loop with a meta-train set while the second update
happens in outer loop with a meta-test set. In our case,
we perform the inner loop update on the discriminator and
generator parameters using the meta-train set and the outer
loop update is performed on the parameters of generator using
a meta-test set.

Algorithm 1: Training for MeGA
input : Datasets T and A, model f
output: Generator network G parameters θg

while not converge do
for samples in T do

/* Obtain the mask */
M ← σ(|∇xLadv−trip(x,xn,xp)|)
/* Meta train update using T */
θd ← arg maxθd

Ex logD(x) + Ex log(1−
D(Π(G(x))))
θg ←
arg minθg

LTG + λLTadv−trip(xa
adv,x

n
adv,x

p
adv)

δ = x−Π(G(x))
/* Meta test loss using A */
Sample triplets from meta-test set A and
compute L = LAadv−trip(xa − δ,xn,xp)

/* Meta test update */
θg ← arg minθg

λL

More formally, given a network D parametrized by θd and
G parametrized by θg , we perform the meta-training phase to
obtain the parameters θd and θg . The update steps are given
in Algorithm 1. We also obtain the adversarial perturbation as,
δ = x−Π(G(x)).

We then apply the meta-testing update using the additional
meta-test dataset A. In Algorithm 1, LTG = Ex log(1 −
D(Π(G(x)))). We discriminate the datasets using superscripts
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T for meta-train set and A for meta-test set. LAadv−trip draws
its samples x from A. At the inference stage, we only use G
to generate the adversarial sample.

D. Training in absence of labels
Deep mis-ranking loss can be used [23] when the labels are

available for T . In this scenario, we present the case where
no labels are available. In the absence of labels and inspired
by unsupervised contrastive loss [33], we generate a positive
sample xp

adv by applying augmentation to the given sample
xa
adv . The negative sample xn

adv is generated using batch hard
negative sample strategy, that is we consider all samples except
the augmented version of xa

adv as negative samples and choose
the one which is closest to xa

adv . We then use Eq. 1 to obtain
the adversarial triplet loss.

IV. EXPERIMENTAL RESULTS

A. Implementation Details
We implemented the proposed method in Pytorch frame-

work. The GAN architecture is similar to that of the GAN used
in [34], [35]. We use the models from Model Zoo [36] - OSNet
[17], MLFN [18], HACNN [37], ResNet-50 and ResNet-50-
FC512. We also use AlignedReID [38], [39], LightMBN [40],
and PCB [41], [42]. We use an Adam optimizer with a learning
rate = 10−5, β1 = 0.5 and β2 = 0.999 and train the model
for 40 epochs. We set m = 1, λ = 0.01, and ε = 16. In order
to stabilize GAN training, we apply label flipping with 5%
flipped labels. We first present the ablation for mask and meta
learning.

B. Effect of mask M

We find that when we use mask for Resnet50 and test for
different models like MLFN [18] and HACNN [37], there is
a substantial gain in the performance as shown in Table I. In
terms of R-1 accuracy, introduction of mask gives a boost of
42.10% and 4.8% for MLFN and HACNN respectively. This
indicates that mask provides better transferability. Further,
when we evaluate on Resnet50 itself, there is a minor change
in performance which could be because mask is learnt using
Resnet50 itself.

TABLE I
TRAINED ON MARKET-1501 [43]. SETTING MARKET-1501→

MARKET-1501. l INDICATES MARKET-1501 LABELS ARE USED FOR
TRAINING. M INDICATES THE INCORPORATION OF MASK. ’BEFORE’

INDICATES ACCURACY ON CLEAN SAMPLES.

Model Resnet50 MLFN HACNN
mAP R-1 mAP R-1 mAP R-1

Before 70.4 87.9 74.3 90.1 75.6 90.9
l 0.66 0.41 3.95 3.23 32.57 42.01

l + AND 0.56 0.35 5.39 4.55 35.13 44.20
l + SAND 0.51 0.33 6.01 4.89 37.50 45.11
l +M 0.69 0.50 2.80 1.87 31.73 39.99

C. Effect of meta learning
We demonstrate the effect of meta learning in Table II. In the

case of cross-dataset (Resnet50) as well as cross-dataset cross-
model (MLFN) setting, we observe that introduction of meta
learning gives a significant performance boost. In terms of R-1

accuracy, there is a boost of 69.87% and 69.29% respectively
for Resnet50 and MLFN. We further observe that Resnet50
does not have a good transferability towards HACNN. This
could be due to two reasons. First, Resnet50 is a basic model
compared to other superior PRID models. Second, HACNN is
built on Inception units [44].

TABLE II
TRAINED ON MARKET-1501 USING MSMT-17 [45] AS META TEST SET.

SETTING MARKET-1501→ DUKEMTMC-REID [46]. A INDICATES
INCORPORATION OF META LEARNING.

Model Resnet50 MLFN HACNN
mAP R-1 mAP R-1 mAP R-1

Before 58.9 78.3 63.2 81.1 63.2 80.1
l 17.96 24.86 18.25 24.10 42.75 58.48

l +A 5.80 7.49 6.15 7.4 43.12 58.97

D. Adversarial attack performance
We first present the results for cross-model attack in Table

III. We use AlignedReID model, Market-1501 [43] as training
set and MSMT-17 [45] as meta test set. The results are
reported for Market-1501 and DukeMTMC-reID [46]. In case
of Market-1501, it is clearly evident that the proposed method
is able to achieve a strong transferability. We can see that
incorporation of meta test set leads to less than halving the
mAP and R-1 results compared to case when only labels are
used. For instance, mAP and R-1 of AlignedReID goes down
from 7.00% and 6.38% to 3.51% and 2.82% respectively.
This is consistently observed for all three models. Further,
the combined usage of mask and meta learning (l+ M +A),
denoted as MeGA, achieves best results in cross-model case
of PCB and HACNN. The respective R-1 improvements are
10.00% and 9.10%. Thus our method is extremely effective in
generating adversarial samples.

TABLE III
ALIGNEDREID TRAINED ON MARKET-1501 WITH MSMT-17 AS META
TEST SET. M IS MARKET-1501 AND D IS DUKEMTMC-REID. MEGA

DENOTES l +M+A.

Model AlignedReID PCB HACNN
mAP R-1 mAP R-1 mAP R-1

M → M Before 77.56 91.18 78.54 92.87 75.6 90.9
l 7.00 6.38 16.46 29.69 16.39 20.16

l + M 6.62 5.93 15.96 28.94 16.01 19.47
l +A 3.51 2.82 8.07 13.86 5.44 5.28
MeGA 5.50 5.07 7.39 12.47 4.85 4.80

M → D l 16.04 21.14 13.35 15.66 15.94 21.85
l +M 16.23 21.72 13.70 15.97 16.43 22.17
l +A 4.69 5.70 11.10 12.88 5.40 6.55
MeGA 7.70 9.47 11.81 14.04 4.73 5.40

In case of Market-1501 to DukeMTMC-reID, we observe
that simply applying the meta learning (l + A) generalizes
very well. In case of AlignedReID, mAP and R-1 of 4.60%
and 5.70% respectively, are significantly lower compared to
results obtained via l or l+M settings. The combined setting
of mask and meta learning yields better results for HACNN
compared to AlignedReID and PCB. This may be because of
the fact that learning of mask is still tied to training set and
thus may result in overfitting.

In Table IV we discuss the results for cross-dataset and
cross-model case against more models. Here also we can see
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that both AlignedReID and PCB lead to strong attacks against
other models in a different dataset.

In Table V, we present the results for MSMT-17. Here, the
model is trained using AlignedReID and PCB using Market-
1501 and DukeMTMC-reID as meta test set. When trained and
tested using AlignedReID, the R-1 accuracy drops from 67.6%
on clean samples to 17.69%. On the other hand when trained
using PCB and tested on AlignedReID, the performance drops
to 16.70%. This shows that our attack is very effective in large
scale datasets such as MSMT-17.

TABLE V
TRAINED ON MARKET-1501 USING DUKEMTMC-REID AS META TEST

SET. SETTING MARKET-1501→ MSMT-17.

Model AlignedReID
mAP R-1 R-10

MeGA (AlignedReID) 9.37 17.69 33.42
MeGA (PCB) 8.82 16.70 31.98

Fig. 2. Left column: Red and blue box show the given image from Market-
1501 and its mask (1 −M ) respectively. Right column: Attacked (top) and
clean (bottom) images from MSMT-17

E. Comparison with SOTA models
In Table VI we present the comparison with TCIAA [23],

UAP [47] and Meta-attack [21]. We observe that our method
outperforms TCIAA by a huge margin. We can also see that
when mis-ranking loss is naively applied in case of TCIAA†

[21], the model’ performance degrades. Our attack has better
performance compared to both TCIAA and Meta-attack.

TABLE VI
ALIGNEDREID TRAINED ON MARKET WITH MSMT-17 AS META TEST

SET. SETTING MARKET-1501→ DUKEMTMC-REID. † USES PERSONX
[48] AS EXTRA DATASET.∗ USES PERSONX FOR META LEARNING.

Model Aligned reid
mAP R-1 R-10

Before 67.81 80.50 93.18
TCIAA [23] 14.2 17.7 32.6

MeGA∗ (Ours) 11.34 12.81 24.11
MeGA (Ours) 7.70 9.47 19.16

PCB
Before 69.94 84.47 -

TCIAA [23] 31.2 45.4 -
TCIAA† [23] 38.0 51.4 -

UAP [47] 29.0 41.9 -
Meta-attack∗ (ε = 8) [21] 26.9 39.9

MeGA∗ (ε = 8) (Ours) 22.91 31.70 -
MeGA (ε = 8) (Ours) 18.01 21.85 44.29

F. Subjective Evaluation
We show the example images obtained by our algorithm in

Figure 2 and top-5 retrieved results in Figure 3 for the OSNet
model. We can see that in the case of clean samples the top-
3 retrieved images match the query ID, however, none of the
retrieved images match query ID in the presence of our attack.

Fig. 3. Query image marked in blue border. Top 5 retrieved mages from
OSNet for Market-1501 (top). Green colored boxes are correct match and red
ones are incorrect. Retrieved images after attacking query sample (bottom).

G. Attack using unlabelled source
In this section we discuss the attack when source dataset
T is unlabeled and neither the victim model nor the dataset
used for training victim model are available. This is a very
challenging scenario as supervised models cannot be used
for attack. Towards this, we use unsupervised trained models
on Market-1501 and MSMT-17 from [49]. In Table VII, we
present results for training using MSMT-17 and testing on
Market. We observe that IBNR50 obtains a mAP and R-1
accuracy of 40.7% and 52.34% when both labels and mask
are not used. When mask is incorporated there is a substantial
boost of 3.82% in mAP and 4.81% in R-1 accuracy in case of
OSNet. These gains are even higher for MLFN and HACNN.

In case of Market-1501 to MSMT-17 in Table VIII, we
see that the attack using only mask performs reasonably well
compared to that of attacks using label or both label and mask.
Due to the comparatively small size of Market-1501, even the
attacks using labels are not very efficient.

TABLE VII
MSMT-17→ MARKET-1501. R50 DENOTES RESNET50.

Model OSNet MLFN HACNN
mAP R-1 mAP R-1 mAP R-1

Before 82.6 94.2 74.3 90.1 75.6 90. 9
l (R50) 30.50 39.45 26.37 38.03 31.15 39.34

l +M (R50) 24.50 33.07 21.76 32.18 18.81 23.66
M (R50) 36.5 47.56 34.92 52.61 31.15 39.34
IBN R50 40.7 52.34 40.62 61.46 35.44 44.84

M (IBN R50) 36.88 47.53 35.01 52.79 30.98 38.98

TABLE VIII
MARKET-1501→ MSMT-17.

Model OSNet MLFN HACNN
mAP R-1 mAP R-1 mAP R-1

Before 43.8 74.9 37.2 66.4 37.2 64.7
l (R50) 31.78 60.43 25.17 49.33 28.9 54.91

l +M (R50) 29.04 56.11 22.02 43.57 28.26 53.53
M (R50) 35.16 66.28 29.16 56.65 29.69 57.81

V. CONCLUSION

We present a generative adversarial attack method using
mask and meta-learning techniques. The mask allows better
transferability across different networks, whereas, meta learn-
ing allows better generalizability. We present elaborate results
under various settings. Our ablation also shows the importance
of mask and meta-learning. Elaborate experiments on Market-
1501, MSMT-17 and DukeMTMC-reID shows the efficacy of
the proposed method.
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TABLE IV
ALIGNEDREID AND PCB TRAINED ON MARKET WITH MSMT-17 AS META TEST SET. SETTING MARKET-1501→ DUKEMTMC-REID.

Model OSNet LightMBN ResNet50 MLFN ResNet50FC512 HACNN
mAP R-1 R-10 mAP R-1 R-10 mAP R-1 R-10 mAP R-1 R-10 mAP R-1 R-10 mAP R-1 R-10

Before 70.2 87.0 - 73.4 87.9 - 58.9 78.3 - 63.2 81.1 - 64.0 81.0 - 63.2 80.1 -
AlignedReID 15.31 22.30 35.00 16.24 24.13 39.65 5.17 6.64 13.77 12.28 16.38 29.39 6.97 9.69 19.38 4.77 5.61 11.98

PCB 12.27 14.45 27.49 12.88 15.70 28.54 7.14 8.55 20.01 11.95 16.54 30.92 9.45 11.46 23.90 3.97 4.66 10.00
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