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Snipper: A Spatiotemporal Transformer for
Simultaneous Multi-Person 3D Pose Estimation
Tracking and Forecasting on a Video Snippet

Shihao Zou, Yuanlu Xu, Chao Li, Lingni Ma, Li Cheng, and Minh Vo

Abstract—Multi-person pose understanding from RGB videos
involves three complex tasks: pose estimation, tracking and
motion forecasting. Intuitively, accurate multi-person pose esti-
mation facilitates robust tracking, and robust tracking builds
crucial history for correct motion forecasting. Most existing
works either focus on a single task or employ multi-stage
approaches to solving multiple tasks separately, which tends to
make sub-optimal decision at each stage and also fail to exploit
correlations among the three tasks. In this paper, we propose
Snipper, a unified framework to perform multi-person 3D pose
estimation, tracking, and motion forecasting simultaneously in a
single stage. We propose an efficient yet powerful deformable
attention mechanism to aggregate spatiotemporal information
from the video snippet. Building upon this deformable attention,
a video transformer is learned to encode the spatiotemporal
features from the multi-frame snippet and to decode informative
pose features for multi-person pose queries. Finally, these pose
queries are regressed to predict multi-person pose trajectories
and future motions in a single shot. In the experiments, we show
the effectiveness of Snipper on three challenging public datasets
where our generic model rivals specialized state-of-art baselines
for pose estimation, tracking, and forecasting. Code is available
at https://github.com/JimmyZou/Snipper.

Index Terms—Multi-person pose estimation, tracking, motion
prediction

I. INTRODUCTION

Multi-person 3D pose understanding from RGB videos is a
fundamental topic in computer vision, which mainly involves
three complex tasks, namely multi-person pose estimation,
tracking, and motion forecasting. These three tasks are all
desired in a wide range of applications such as human action
recognition and behavior analysis, pedestrian tracking, re-
identification, human-computer interaction, and video surveil-
lance [1]-[4]. As an example of human behavior analysis in
a crowded scene, multi-person pose estimation and tracking
usually provides critical information for the accurate analysis,
and motion forecasting further helps behavior forecasting and
directs region-of-interest in the future for the system.
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Fig. 1. A practical yet challenging example to track human pose and motion
forecasting. The baseline method typically adopts a tracking-by-detection
schema based on single-frame inference, which fails under heavy occlusions.
The proposed method Snipper resolves the ambiguity by processing video
snippets with a single-stage framework instead. With the proposed attention
module, Snipper aggregates spatiotemporal features shared by the three tasks.
On a test set from JTA dataset with 11K 4-frame snippets that present inter-
frame occlusion, Snipper obtains 84.2 3D-PCK and 62.3 MOTA (4-frame
snippet) versus 80.1 3D-PCK and 59.5 MOTA (single-frame).

Earlier works either focus on a single task [2], [5]-[13],
or employ multi-stage approaches to solving multiple tasks
separately [14]-[18]. However, for the challenging scenarios
with heavy occlusions, such as the example in Fig. 1, the
existing methods tend to fail in correct pose estimation and
robust tracking of the occluded persons in a video, and further
lead to inaccurate motion forecasting due to the misleading
history information. This failure can be mainly attributed to
three factors: i) temporal information is not considered in the
single-task methods, especially for single-frame based multi-
person pose estimation [5]-[8], [10]; ii) multi-stage methods
tend to make sub-optimal decisions when addressing the
three tasks step by step, because the reasoning is usually
not conducted in a joint space, such as earlier works [18]—
[21] generally treat pose tracking as separate modules for the
motion forecasting; and iii) the correlations among the three
tasks are not fully exploited. Intuitively, accurately estimated
multi-person poses facilitate robust tracking. Conversely, ro-
bust tracking provides informative region-of-interest context
for the multi-person pose estimation, and it also builds the
crucial history that enables sensible prediction of motion in
the future.

To address the above limitations, we propose Snipper, a uni-
fied framework to simultaneously estimate, track, and forecast
multi-person 3D poses on a video snippet of consecutive RGB
frames. Snipper reasons the three tasks in a joint spcae and
regresses 2.5D multi-person pose trajectories and their future
motions from a snippet in a single stage. This framework
is inspired by the query-based DETR framework [22]-[24]
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for object detection, but with contributions in an efficient yet
powerful spatiotemporal deformable attention module for fine-
grained video understanding tasks.

Specifically, our proposed attention mechanism adopts the
sparse spatial deformable attention [24] to process high-
resolution multi-scale image features for better image-aligned
tasks. However, naive extension to video by regressing a space-
time offset and directly sampling in 3D space is problematic as
the interpolation in time domain is ill-defined without temporal
correspondences. In addition, the image features at the same
spatial position across frames often change due to object or
camera motions. To tackle this problem, we propose to restrict
the temporal offset to pre-defined integer frame index and only
regress spatial offset on those frames to aggregate per-frame
image features in space and time. Unlike the self-attention
in Carion et al. [22], our proposed mechanism is efficient
and also maintains the spatiotemporal relationship of multi-
frame and multi-scale features when aggregating spatiotem-
poral features by deformable attention. Compared with spatial
attention [24], our strategy further considers temporal features.
This efficient yet powerful solution to the aggregation of multi-
frame features is critical to resolve the information missing
due to occlusions or motion blur within the snippet. We
provide detailed discussion of these paradigms in Sec. III-C
and comparison in Sec. IV-D and Fig. 9.

Based on the proposed spatiotemporal deformable attention
module, we devise a deformable transformer for simultaneous
completion of the three tasks. Concretely, given the multi-
frame feature volume extracted by a CNN backbone, the
encoder (Sec. III-D) aggregates spatiotemporal feature via the
attention module to update features of each voxel. Then the
feature volume from the encoder is fed to the transformer
decoder (Sec. III-E) as the memory, from which multi-person
pose queries can accumulate pose trajectory features via the
same attention module. Finally, these queries are regressed to
predict multi-person pose trajectories in the observed frames
and also motions for the future frames. (Sec. III-F) To achieve
tracking in the entire video, we run Snipper on the overlapping
snippets in a video, and associate the pose trajectories based
on the common frame of two consecutive snippets. No further
appearance descriptor is needed.

Our contributions are summarized as follows:

« We propose Snipper, a unified framework for simultane-
ous multi-person 3D pose estimation, tracking, and mo-
tion forecasting from a video snippet. To our knowledge,
the proposed framework is the first one that jointly solves
these three tasks in a single stage.

e We propose an efficient yet powerful spatiotemporal
deformable attention mechanism in the transformer to
aggregate spatiotemporal information from multi-scale
and multi-frame feature volumes. Its effectiveness and
efficiency is discussed in Sec. III-C and validated in
Sec. IV-D, and our proposed spatiotemporal attention
module is also general to other image-aligned video
understanding tasks.

« We validate the proposed framework on three challeng-
ing datasets: JTA [17], CMU-Panoptic Studio [25], and
PoseTrack18 [26]. We show that a generic Snipper model

presents competitive performance on all three tasks of
pose estimation, tracking, and motion forecasting com-
pared with specialized baselines that tackle only one or
two tasks.

II. RELATED WORKS

Multi-person pose estimation from monocular images has
been extensively investigated in the past few years. Existing
methods can be divided into three categories: bottom-up [6]—
[8], [10], [17], [27]-[29], top-down [5], [12], [14], [30]-[35]
and single-stage [11], [36]-[42].

Bottom-up methods detect 2D joints first and estimate 2D or
3D pose with different association approaches such as integer
linear program [27], [29], or Part Affinity Fields [10]. In
addition, Gu et al. [7] formulates 3D pose estimation as a
Perspective-N-Point optimization problem based on detected
multi-person 2D poses via [10] and shows good performance
with high efficiency for 3D pose estimation. Recently, Fabbri
et al. [28] extends 2D heatmaps to 3D compressed volume for
direct 3D joints detection for multi-person 3D pose estimation.
There is also effort [8] using depth map for efficient multi-
person 2D pose estimation with CNN and knowledge distilla-
tion at multiple architecture levels. A most recent work [6]
trains a Hourglass model [43] to predict multi-person 2D
key-points heatmap with peak regularization and employs
greedy key-point association to obtain multi-person 2D poses.
Compared with the bottom-up methods, our unified framework
does not depend on external 2D pose detector or require extra
joints association step. Besides, our work is not limited to
multi-person pose estimation, but achieves three tasks in a
single stage with an end-to-end model.

Top-down methods first detects the person bounding box and
applies single person pose estimation on the cropped region.
A pose proposal generator is employed in [44] followed
by a pose refinement regressor. RootNet [32] infers multi-
person 3D pose by detecting absolute 3D root localization
first and then estimating root-relative single-person 3D pose.
Wei et al. [9] presents a view-invariant hierarchical correction
network on top of an initial estimated single-person 3D pose
to learn the 3D pose refinement under consistent views, and
then uses a view-invariant discriminative network to enforce
high-level constraints over body configurations. HMOR [34]
encodes interaction information of multiple persons as the
ordinal relations of depths and angles hierarchically. The
recent effort [35] applies graph and temporal convolutional
neural networks for multi-person pose estimation in a video.
In general, top-down methods estimate more accurate poses
than bottom up counterpart as the expense of more compute.
Integrating bottom-up and top-down is considered in [33]
to complement each other. Multi-view top-down approaches
are investigated in [12], [14] where human are detected and
integrated from multi-view sources in a 3D volume and
regressed to estimate 3D pose. A most recent effort [5]
proposes knowledge transfer network to learn the 2D-3D
correspondences for multi-person 3D dense pose estimation
because of insufficient and imbalanced 3D labels. Our method
differs from the top-down methods in that we do not need extra
person detector to localize persons.
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Single-stage methods are emerging in recent years for both

pose estimation [11], [36], [37], [40]-[42], [45], [46] and
parametric body mesh estimation [38]. Our framework also
adopts this paradigm for its simplicity, while also considering
multi-person tracking and motion forecasting in our pipeline.
Multi-person pose tracking aims to track multi-person poses
in a video. Recently, [2] provides a survey of multiple pedes-
trian tracking based on the tracking-by-detection framework.
For 2D pose tracking, Girdhar et al. [31] uses top-down
approaches to estimate frame-based multi-person poses and
then links predictions over time using bipartite matching. [16],
[47] employ a similar top-down detection strategy but rely on
flow-based similarity to do pose tracking. Wang et al. [48]
extends HRNet [49] with temporal convolutions and shows
impressive joint pose estimation and tracking. In contrast, Raaj
et al. [50] propose and efficient the bottom-up approach by
extending the spatial affinity fields to spatiotemporal affinity
fields in an RNN model. For 3D pose tracking, two multi-
stage approaches are also proposed in [36], [S1] where per-
frame multi-person 3D pose estimation is followed by a
temporal constraint optimization or fitting step. In contrast,
[14], [17] aggregate temporal information within the model
to estimate the multi-person pose trajectory. The most recent
top-down works [15], [52] achieve tracking by using 3D
representation of people or predicting the future state of the
tracklet, including 3D location, appearance, and pose. Besides,
there are also efforts [53] exploring pose tracking with cross-
view correspondence for occlusion-aware 3D tracking. Dif-
ferent from these multi-stage methods, our unified framework
achieves 3D pose tracking and motion forecasting within a
snippet in a single shot.
Transformer is originally proposed in [54] where self-
attention is used and achieves the state-of-art results on many
sequence-based tasks. DETR [22] and VisTR [23] are recent
inspiring attempts to apply transformer in the end-to-end
object detection and instance segmentation. Besides, multi-
object tracking with Transformer has also been investigated
in [55], [56]. However, due to the high compute require-
ment of the dot-product attention, both DETR and VisTR
can only process low-resolution feature map which limits
their accuracy. Deformable attention mechanism is proposed
in [24] to tackle this issue, showing strong accuracy for
small objects detection. Transformer is recently applied to
single person pose estimation, where self-attention module is
directly applied to the joint or mesh vertex positions [57]-
[59], and also multi-frame image features [39], [60]. The most
recent work [42] has also employed transformer for multi-
person pose estimation, where the query-based self-attention
transformer is used to regress multi-person poses for a single
frame. To the best of our knowledge, our method is the first
to use the deformable attention mechanism for simultaneous
multi-person pose estimation, tracking, and forecasting with a
single-stage paradigm.

III. METHOD

Snipper is a unified framework that simultaneously ad-
dresses three tasks from an RGB video snippet of 7' ob-
served frames: multi-person 3D pose estimation, tracking,

and forecasting for the future 7' frames. It consists of four
components: image features extractor, transformer encoder
(Sec. III-D), decoder (Sec. I1I-E) and pose trajectory matching
for training (Sec. III-F). A novel spatiotemporal deformable
attention (III-C) is employed in both the transformer encoder
and decoder to aggregate informative pose features shared by
the three tasks. To achieve tracking in the entire video, we
associate multi-person pose trajectories based on the common
frame of two consecutive overlapping snippets with more
details presented in the supplementary material. An overview
of our pipeline is shown in Fig. 2.

A. Preliminary

Star pose representation. We represent the 3D human pose
as P = {J,V, 0} where J = {J; : J; € R®}Y/ is the set
of joint locations, V. = {V; : V; € [0,1]}}/ is the joint
visibility, and o € [0, 1] is the person occurrence probability.
Each individual joint position J; is modeled by the offset
Jotset — LAz, Ay, Ad} from the global root J©° = {x,y, d},
ie., J; = JO%4 JoM where (x,y) are the 2D image location
of the joint and d is its depth to the camera center, respectively.
Depth and joint offset normalization. As the absolute root
depth d depends on the camera focal length f., we normalize
the root depth by d = d/f., similar to [35]. In addition, the
magnitude of 2D joint offset (Ax, Ay) is in pixel distance and
thus depends on the depth of the person. That is, a person’s
joint offset will become smaller if it moves far away from
the camera, which tends to make the training in-stable. We
mitigate this issue by normalizing the joint offset with the
inverse of the normalized root depth, i.e., AT = Ax - d and
Aj = Ay-d. More details are described in the supplementary
material. Thus, the magnitude of 2D normalized joint offset
only depends on the pose of the person, which is more con-
sistent across identities. During inference, we assume camera
intrinsic is known with a fixed aspect ratio. Otherwise, we
use a default focal length and pad the image to the predefined
aspect ratio. Finally, a 3D joint position can be converted from
the 2.5D joint representation.

B. Frame-Level Feature Extraction

Given an RGB video snippet of T' frames, CNN is used
to extract per-frame features of size H x W x C. We stack
these 1" frame-level features through time and obtain the multi-
frame feature volume F € RT*HXWxC Note that the multi-
scale pyramid features {F'} extracted by CNN can be easily
applied in the followed Transformer Encoder and Decoder
for fine-grained spatiotemporal feature extraction. Details are
illustrated in Sec. III-C and Fig. 5.

C. Spatiotemporal Deformable Attention

Spatiotemporal deformable attention module is shown to
produce more informative feature for pose tracking from
the stack of multi-frame feature volume F e RT*HxWxC|
(validated in Sec. IV-D) Such aggregation is crucial to mitigate
the common inter-frame information missing such as self and
partial occlusion.
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Fig. 2. Snipper overview. Taking a snippet of 7" consecutive RGB images as the input, CNN is used to extract per-frame image features, which are stacked
into a multi-frame feature volume. This feature volume is fed into the transformer encoder (Sec. III-D) that employs a novel spatiotemporal deformable
attention (Sec. III-C) to aggregate features. Given the spatiotemporally aggregated feature volume from the encoder, the transformer decoder (Sec. III-E)
aggregates pose features from it via spatiotemporal deformable attention. Those aggregated pose features are used to update pose queries for N people of T’
observed frames and T’ future frames. The updated queries are regressed to estimate each person’s 3D pose tracking over 1"+ T’y frames. We use Hungarian
match to find an optimal permutation of a fix set of predicted 3D pose trajectories to a set of target trajectories to compute the multi-person pose losses for

training. (Sec. III-F).

We summarize our proposed spatiotemporal deformable
attention in Fig. 3. Let ¢ € R® be the query specified
at position p = (zq,Yq,tq), Where x4, y, € [0,1] is the
normalized pixel spatial position and ¢, is the integer frame
index of the query ¢. Then, ¢ is passed through two MLPs
to regress 2D offsets Ap, ,(g) and corresponding attention
weights a; ,(q) normalized by the soft-max function. ¢ is
an integer specifying the temporal frame in a pre-defined set
of neighboring frames S(¢,) = {t, — 1,t4,t, + 1}, and &
indexes the offsets on each temporal frame. Note that we do
not regress time offset but only 2D spatial offsets Ap; ;. on
each frame of S(t,). We execute this process in parallel by
multiple independent heads h and form the final aggregated
feature qfny by passing the concatenated feature from each
head through a linear layer,

hinal = ZWZL[Zat,k(q) -WiF(p+ Apt,k(q))} )
h t,k

where W), and W}, are the parameters of linear layers.
Discussion. There are several alternatives to implement spa-
tiotemporal attention with details displayed in Fig. 4:

o (a) Self-attention. Follow VisTR [23], we flatten multi-
frame features to a 2D matrix of shape THW x C
and applies attention to all THW voxels. This attention
mechanism is costly for high-resolution feature maps and
also breaks the local spatiotemporal relationship for better
image-aligned tasks.

o (b) Naive spatial deformable attention [24]. We reshape
the feature volume F to the shape H x W x C'T', where
the channel size becomes C'T" after concatenating multi-
frame temporal features at the same image position. Then
the spatial deformable attention is applied on the spatial
domain H x W to aggregate spatiotemporal features.
However, this naive extension fails to consider object
or camera motions within a video snippet. With these
motions, image features at the same spatial position
across frames often change, but the temporal features are
still aggregated on the fixed spatial positions.
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Fig. 3. Spatiotemporal deformable attention. Given a volume of stacked
multi-frame features, a learnable query g, specified at the position (x4, yq, tq),
regresses multiple 2D offsets Ap; j to sample features on a set of its
neighboring frames S(t,) and the attention weights c; j, to aggregate features.
The feature volume is mapped to multiple attention heads with distinct linear
layers in parallel, and the accumulated features are concatenated to form the
final spatiotemporally aggregated features.

e (¢) Direct 3D sampling: This approach regresses space-
time offsets and directly samples in the 3D space 1" x
H x W, where the interpolation is performed in both
spatial and temporal domain, i.e., , t € [1,T] is fractional
instead of integer frame index. However, the temporal
interpolation is costly and ill-defined without known cor-
respondences between frames such as optical flow, which
leads to defects in the aggregated temporal features.

o (d) Entire snippet sampling: Another scheme is to sample
on all frames of the input snippet for the query at
(24, Yq, tq), with offsets restricted on each temporal frame
in the snippet.

e (e) Neighboring frame sampling (ours): Our approach
limits the sampling range to be the immediate neigh-
boring frames S(t,). Despite the short temporal connec-
tion at each spatiotemporal deformable attention mod-
ule, the temporal information is still fully accumulated
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Fig. 4. Discussion of different attention mechanisms. (a) Self-attention
flattens multi-frame features to TTHW x C' with attention applied on all
THW voxels. (b) Naive spatial deformable attention concatenates temporal
features to C'T" x H x W with deformable attention applied on spatial space
H x W. (c) Direct 3D sampling regresses space-time offsets and directly
samples in 3D space 17" x H x W, where the interpolation is performed
in both spatial and temporal domain. (d) Entire snippet sampling performs
attention over all the frames within the input snippet. (e) Our proposed
spatiotemporal deformable attention samples on neighboring frames efficiently
without performance reduction.

due to the multiple layers of the attention module in
the transformer encoder. Compared with the approaches
mentioned above, our proposed mechanism requires less
computation, but without any performance reduction.
More results and analysis are presented in Sec. IV-D and
Fig. 9 that validates the effectiveness and efficiency of
our proposed strategy.

Extension to multi-scale features. Our proposed spatiotem-
poral deformable attention mechanism can be naturally ap-
plied to multi-scale multi-frame features extracted by CNN
backbone. The process is summarized in Fig. 5. For the query
vector ¢ at the position p = (4, ¥q,tq), We pass it through
two linear layers to regress the sampling offsets Ap, ;; and
the attention weights a4 j; for all scales in parallel, where [
indexes the feature volume scale. We use the offsets Apy j;
to sample the image features at multiple scales and linearly
combine these sampled features using the weights oy 3 ;. This
process is mathematically expressed as

(final = Z W}/L
h

[Z arki(q) WiF' (p+ Apt,k,z(q))] @
t,k,l

where W}, and W), are the parameters of linear layers.

The sampling at the higher scale focuses more on local
features with relatively shorter field of perception, while at
the lower scale the sampling obtains more global features with
relatively broader field of perception. Unlike the self-attention
where it is costly to attend to the feature volume globally and
unable to extend to multi-scale features, our spatiotemporal
deformable attention is efficient as it sparsely sample the
image feature and approximates global attention by repeating
the sparse sampling for several stages.
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Fig. 5. Multi-scale Spatiotemporal Deformable Attention. Given multi-
scale (two scales as an example) multi-frame feature volumes, a query vector
g, specified at position (x4, yq, tq), regresses multiple 2D offsets Ap; 1 ; to
sample features on a set of neighboring frames S' (tq) in all scales of feature
volume, as well as corresponding attention weights o ;. The sampled
features are aggregated and concatenated together to obtain the multi-scale
aggregated feature as the output.

D. Spatiotemporal Transformer Encoder

The goal of the transformer encoder is to generate spa-

tiotemporally aggregated feature volume from the CNN-
extracted multi-frame features. Fig. 6 (a) describes our trans-
former encoder with single layer of attention. The encoder
consists of multiple layers of attention module where the
refined feature volume is used as the input to the next layer
and iteratively aggregate spatiotemporal features. Details on
multi-layer attention design are given in the supplementary.
Spatiotemporal positional encoding. The position encoding
of the pixel location is essential to the transformer attention
mechanism. Our encoding scheme follows Wang et al. [23]
for a video snippet. Each location (x,y,t) is independently
applied to C//3 sine and cosine functions with different fre-
quencies as in Vaswani et al. [54] to generate encodings.
These encodings are concatenated to form the final C' channel
positional encoding, which are added to the feature volume F
and fed to the transformer encoder.
Joint heatmap supervision. It is commonly observed that
pose estimation is better aligned with the input image if it
is regressed from the joint heatmap or body part segmen-
tation [61]. Inspired by Habibie et al. [62], we enforce the
first Ny channels of each temporal slice in the volume to
be the multi-person joints heatmap, denoted by H,. We find
empirically that this intermediate supervision improves the 3D
pose accuracy (2.9% of 3D-PCK).

E. Spatiotemporal Transformer Decoder

A person pose query ¢ € RC in the decoder is a feature
vector or embedding corresponding to a single person’s pose at
a specific time. Given a fixed number of N (74 T ) learnable
person pose queries, the decoder updates these queries by ac-
cumulating pose features from the spatiotemporally aggregated
feature volume F'. These pose queries are used to regresses [V
people’s 3D pose trajectories in a single shot. Each person’s
trajectory consists of 1" observed poses and Ty future poses.
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Fig. 6. Architecture of transformer encoder and decoder with spatiotemporal deformable attention. (a) In the encoder, for the voxel at position (z, y, t)
of multi-frame feature volume F, its voxel feature acts as the query in the attention module to aggregate spatiotemporal features from the feature volume. This
process covers every voxel in the volume to create a spatiotemporally aggregated feature volume. (b) In the decoder, a learnable person pose query g; € RC
at time ¢ first regresses a reference position (z,y, d), and then conducts spatiotemporal deformable attention at the position (z,y,t) of the spatiotemporally
aggregated feature volume to aggregate useful pose features. The updated person pose query passes through three MLPs to predict the refinement over
reference position (Az, Ay, Ad), joint offsets JO* with joint visibility V, and the person occurrence probability o at time ¢. The refined reference position
is regarded as person root joint and together with joint offsets and occurrence probability, the person’s 3D pose P at time ¢ can be constructed.

Temporal positional encoding. Since the pose queries of
each person are agnostic about the chronological order and
need to predict a pose trajectory, we add 1"+ T learnable
temporal positional encoding to each query to make it aware
of its order before feeding to the transformer decoder. We
empirically observe that this helps estimate more accurate 3D
pose trajectory in supplementary.

Pose querying. The process is illustrated in Fig. 6 (b). Given
a person pose query g at time ¢, we first regress a reference
position (x,y,d) and then conduct spatiotemporal deformable
attention at the position (x,y,t) of F. After updating person
pose query, it is passed through 3 parallel MLPs to estimate
the refinement over the reference position, person occurrence
probability at time ¢, and joint offsets with joint visibility.
The refined reference position is regarded as the root joint of
the person, and we can construct the 3D pose P; at time
t together with the predicted joint offsets and occurrence
probability. Similarly, the decoder stacks multiple layers of
attention module to iteratively update pose query with detailed
design described in the supplementary.

FE. Trajectory Matching Loss

Snipper predicts a fixed number of N people trajectories

within the snippet in a single shot, where each trajectory can
be represented as I'; = {PEZ)}ZETf . To supervise Snipper,
we use Hungarian algorithm [63] to find the optimal matches
between the predicted and target pose trajectories, and form
the pose trajectory loss for back propagation.
Hungarian matching cost. Let T = {[;}Y, and T' =
{f‘i}i]‘il be the predicted and target pose trajectory sets,
respectively. We use Hungarian algorithm to find an optimal
permutation ¢ of I'" with the lowest bipartite matching cost,

M
6 = arg min ZCDCC(FUH [%) 4 Lug(To,, T) + Lois(To,, T,

7 i=1

3

where Loce(T'y,,T;) is the negative average probability of
occurrence,

Loce(To,,T;) = RICE #0) . o)
l 2016 #0)

where 65/1) # () means the i-th target person occurs at time ¢,
Lij(Ts, s f‘i) measures the average L1 distance between the
predicted and visible target pose trajectory,
_ S S VA (B = D

S e Vi
and Lyis(Ty,, f‘l) is the average L2 distance between the
predicted and target joint visibility,

Lus(D Ty = 2220 Vit~ Vil (©6)

¢ N;(T +Ty)

In the above cost definition, we simplify the notations with  _,
as the iteration over all the time steps {1,...,7+7},and ),
as the iteration over all the joints {1, ..., N} respectively. We
follow Carion et al. [22] and adopt the detection probability
instead of the log-probabilities in LOCC(I‘ai,f‘i). We observe
better matching behavior between the predicted and target pose
trajectories especially for earlier epochs with this strategy.
Training loss. Given the optimal permutation &, the matched
predictions are used to compute both person occurrence and
3D pose losses, and the remaining predictions are only used to
compute person occurrence loss. We define the total training
loss as

; C)

£traj (Fﬂi y f‘z)

; &)

M
Lirain = Z (EQCC(I‘&” fz) + Lij(Ts,, fz) + Lyis(Ts,, fz)
i=1
+ £offscl(]-—‘&i ) f‘z) + £smomh (I‘éi 5 f‘z)) + ﬁhcatmap(H7 I:I)y
)
where L] . is the negative log-likelihood for person occurrence

prediction,

Lo, Ty = = 1(6" #0) -logo{®. (8
t
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Etraj(I‘gi,IA‘i) and Lvis(l"&i,f‘i) are defined in Eq. 5 and 6
with the permutation replaced with the optimal one &; for the
computation of training loss.

For the following losses, we drop the superscript &; and ¢ for
Joffset and  joffset for simplicity. Loffset(l"m,f‘,;) measures the
average L1 distance between the predicted and target visible
joint offsets for the supervision of a single person’s pose,

- ok 2 Ve - (TR = TP
['offset(]-—‘&iy Fi) = = -
Zk Zf, Vk,t

Lsmooth Tz, f‘z) is the average L2 smoothness of joint offsets
between frames within a video snippet,

o (T By = ST IR =
smooth\4 &4, L ¢ N]'(T+Tf — 1) )

9

(10)

and Lpeamap 18 the average L2 distance of joints heatmaps,

‘Cheatmap = %;HHi 71:175”3 (11)

Note that while Eq. 5 already captures Eq. 9 to some
extents, Eq. 5 couples the root and the offsets, and thus hurts
learning. We empirically observe that adding Eq. 9 leads to
faster convergence. As the camera motion at each frame is
unknown and our predicted root joint is relative to the camera
coordinate, Lqmooth factors out the root motion and ensures
smooth joints motion.

We apply intermediate pose supervision by computing the
losses in Eq. 7, except for the heatmap loss, for each layer of
the decoder to guide the learning. Besides, we normalize these
losses by the number of target trajectories within a batch such
that its magnitude is approximately the same across batches.

IV. EXPERIMENTS

We evaluate on three datasets: JTA [17], CMU-Panoptic [25]
and Posetrack2018 [26].
Evaluation Metrics. Our method involves three tasks, multi-
person pose estimation, tracking and motion forecasting. For
3D pose estimation, MPJPE is used to evaluate 3D pose
accuracy in mm, and MPJPE™ means MPIPE after root joint
alignment between predicted and target pose. To compare
with [11], we report 3D-PCK, where a joint is considered as
correct if the distance from the corresponding ground truth
joint is less than 150mm. To compare with [28], [33] on
JTA dataset, we also report F1 @thr € {0.4,0.8,1.2} meters,
where a joint is considered as correct if the joint position
error is less than thr. To compare with [10], [17], [47], [48],
[50], [64], we report the AP defined in [26] on JTA and
Posetrack datasets. For tracking, we follow [14], [26] to report
MOTA metrics defined either on 3D or 2D pose. For motion
forecasting, we report MPJPE™! for 3D pose estimation and
3D path error of root joint, following [18], in Tab. II.
Implementation. We use ResNet50 as the backbone to extract
multi-scale features from each image and stack them into a
feature volume F! in chronological order, where [ = {3,4,5}
indexes the convolution stage of feature map. The multi-scale
feature volumes are transformed by a 1 x 1 convolution to
be C' = 384 channels. In Snipper, 6 transformer encoder and

decoder layers are used with 8 heads in each deformable at-
tention module at the center frame and are halved every frame
away from that frame. The head is initialized to have identical
attention weights with initial offsets uniformly distributed in
angle directions from starting 0 degree. We train Snipper on
8 V100 GPUs with batch size of 16 on JTA [17] at 6FPS,
CMU-Panoptic [25] at 3FPS Posetrack2018 [26] at 7.5 FPS,
and COCO, where we apply 2D transformation to make it
become a video snippet, jointly. We use 14 joints format in
MPII [65] common across all datasets.

Ours (7=1) and Ours (7=4) denote the evaluation of model
trained on a snippet of 1 and 4 frames. For fair comparison in
each dataset, we train and test our model on the corresponding
dataset only following prior work. To achieve multi-person
tracking over the whole video, for two consecutive snippets
(T=4) consisting of frames {t, ..., t+3} and {t+3, ..., t+6}, the
association of 3D pose tracking is based on the common frame
t+3 with the nearest 3D pose matching measured in Euclidean
distance. The process is shown in Fig. 8. For snippet (7=1),
whole-video tracking is achieved by Hungarian matching on
poses of two consecutive frames. For motion forecasting, 7,=2
is used based on T=4 observed frames. Ours (t=4+1) and
Ours (¢t=4+2) denote the evaluation on predicted pose of the 1st
and 2nd future frame. The inference time is 76ms and 266ms
in average for a single snippet of 1 and 4 frames on JTA
dataset on a single V100 GPU, and the number of parameters
is 40M and 43M respectively.

A. JTA Evaluation

For JTA dataset, we resize the input image to the resolution
540 x 960 and downsample the video to 6 FPS. Since there is
no prior work evaluating all the three tasks on JTA dataset, we
present the results from our method in Tab. I and compare with
the state-of-art methods on multi-person 3D pose estimation,
tracking and motion forecasting. For pose estimation, compar-
ing with the single-stage PanadaNet [11], our method estimates
0.2% and 2.5% better 3D-PCK for Ours (7=1) and Ours (7=4),
respectively. Compared with [28], [33], Ours (7=4) shows
around 10% and 3% of F1@0.4m increase. For tracking,
Ours (7=4) is around 4% more accurate in MOTA than
THOPA [17]. For motion forecasting, Ours (T=4) can predict
competitive future motion that outperforms methods that do
prediction on the hidden future images [10], [17], [30], even
with a single-stage architecture (e.g. , 66.5, 64.5 of F1@0.4m
and 83.8, 82.8 of 3D-PCK for the 2 future frames). In Tab. II,
we compare our method with HMP [18], the only work to
forecast 3D pose from RGB images, on motion forecasting
of next 2 frames. Our method estimates comparable pose
forecasting as HMP but outperforms it when noise is added to
the history pose in HMP, highlighting the benefit of solving the
pose estimation, tracking and forecasting in a joint framework.
These accuracy improvement is rooted in the effectiveness of
the spatiotemporal deformable attention.

The evaluation of motion forecasting on JTA dataset is
presented in Tab. II. No forecasting means to keep the last
observed pose for evaluation without motion prediction. For
fair comparison, we retrain HMP [18] to take only 4 frames
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TABLE I
QUANTITATIVE EVALUATIONS OF 3D POSE TRACKING ON JTA DATASET. WE COMPARE WITH THREE BOTTOM-UP (BU) METHODS [10], [17], [28], A
SINGLE-STAGE (SS) METHOD [11], AND A HYBRID OF BOTTOM-UP AND TOP-DOWN (TD) METHOD [33]. OURS (T=1) AND OURS (T'=4) ARE THE
EVALUATIONS OF MODEL TRAINED ON A SNIPPET OF 1 AND 4 FRAMES. OURS (t=4+1) AND OURS (¢t=4+2) ARE THE EVALUATIONS OF MOTION
FORECASTING FOR THE 1ST AND 2ND FUTURE FRAME BASED ON THE OBSERVED SNIPPET OF 4 FRAMES. SNIPPER OUTPERFORMS PRIOR WORKS ON
BOTH TASKS. UNDERLINE MEANS THE SECOND BEST RESULTS.

Method Pose Estimation Tracking
AP F1@0.4m FI1@0.8m FIQ1.2m 3D-PCK MOTA
OpenPose(2019) [10] BU 50.1 - - - - -
THOPA(2019) [17] BU 59.3 - - - - 59.3
LoCOn(2020) [28] BU - 50.8 64.8 70.4 - -
PandaNet(2020) [11] SS - - - - 83.2 -
Cheng et al.(2021) [33] | BU+TD - 57.2 68.5 72.9 - -
Ours (t=4+1) SS 66.5 56.2 67.9 73.1 83.8 -
Ours (t=4+2) SS 64.5 53.2 65.9 71.2 82.8 -
Ours (T=1) SS 65.3 59.7 70.7 75.7 83.4 61.4
Ours (T=4) SS 70.5 60.3 71.5 76.4 85.7 63.2
TABLE II TABLE III

QUANTITATIVE EVALUATIONS OF MOTION FORECASTING ON JTA
DATASET. OUR METHOD SHOWS COMPARABLE ACCURACY WITH
NOISE-FREE HMP BUT NOTICEABLY OUTPERFORMS IT WHEN ADDING
NOISE TO THE HISTORY POSE OR USING THE ESTIMATED POSES

Method 3D Path Error (mm) MPIPE™ (mm)
Forecasting Time 166ms 333ms 166ms 333ms
No forecasting 3535 409.1 123.5 139.1
HMP! [18] 90.3 112.6 35.4 39.5
HMP? [18] 94.5 121.8 48.5 61.4
HMP (Hourglass [43]) 95.2 1233 46.8 60.6
Ours 923 117.7 379 43.0

as input and forecast the next 2 frames. The evaluation is
done for the deterministic mode of HMP. We use the ground
truth history 2D pose in HMP' but added Gaussian noise
N(0,3) pixels to the ground truth history 2D pose for HMP?.
HMP (Hourglass), means HMP is trained with 2D poses
estimated by Hourglass [43]. Our method jointly estimates
the poses in the observed frames and forecasts its motion,
which shows comparable accuracy with noise-free HMP but
noticeably outperforms it when adding noise to the history
pose or using the estimated poses.

B. CMU-Panoptic Evaluation

For multi-person pose estimation or tracking, there are
mainly 2 protocols of data split used in prior works [11],
[14]. Protocol 1 follows [14] where 3 views HD cameras
(3,13,23) and all the haggling videos of version 1.2 are used.
The training and testing video split follows [14], [66], and the
evaluation metrics follow [12], [14]. Protocol 2 follows [11],
[28] where 4 scenarios (Haggling, Mafia, Ultimatum, Pizza)
are selected. The testing set is composed of HD videos of
camera 16 and 30, and the training set includes videos of other
28 cameras. The evaluation metrics follow [11], [28]. Since the
speed motion of this dataset is slower than JTA dataset, we
downsample to 3 FPS to avoid too much redundancy during
training and use the image resolution 540 x 960 as the input.
We also provide test results of 6 FPS with the model trained
on 3 FPS, denoted by Ours (7=4, 6 FPS).

QUANTITATIVE EVALUATIONS ON CMU-PANOPTIC OF PROTOCOL 1. OUR
METHOD SHOWS COMPETITIVE OR HIGHER ACCURACY THAN THREE
TOP-DOWN APPROACHES [12], [14], [53], AND GIVES COMPETITIVE

ACCURACY OF MOTION FORECASTING. UNDERLINE MEANS THE SECOND

BEST RESULTS.

Method Backbone MPJPE MPJPE™! MOTA
VoxelPose(2020) [12] TD ResNet50 66.9 51.1 -
TesseTrack(2021) [14] TD HRNet 18.9 - 76.0
VoxelTrack(2022) [53] TD DLA-34 66.4 - -

Ours (t=4+1) SS ResNet50 49.0 40.8 -
Ours (t=4+2) SS ResNet50 50.7 41.3 -
Ours (T=4, 6 FPS) SS ResNet50 45.1 373 80.9

Ours (T=1) SS ResNet50 48.4 37.5 78.1
Ours (T=4) SS ResNet50 44.3 371 81.7
TABLE IV

QUANTITATIVE EVALUATIONS ON CMU-PANOPTIC OF PROTOCOL 2. OUR
SINGLE-STAGE (SS) METHOD OUTPERFORMS TWO BOTTOM-UP [28], [29]
AND THREE SINGLE-STAGE METHODS [11], [40], [41], [46] AND GIVES
COMPETITIVE ACCURACY OF MOTION FORECASTING.

MPIPE
Method Hag Maf, Uk Pz Avg | [+ | MOTA
MubyNet(2018) [20] | BU | 72.4 788 668 943 72.1| - -
LoCO(2020) [28] BU| 45 95 58 79 69 |892| -
PandaNet(2020) [11] | SS | 40.6 37.6 313 558 427 | - -
Benzine et al.(2021) [46] | SS | 70.1 66.6 55.6 784 685 - -
Jin et al.(2022) [40] | SS | 637 585 523 69.1 609 | - -
Wang et al.(2022) [41] | SS | 533 512 49.1 615 538 | - -
Ours (1=4+1) SS [ 414 388 416 449 403 887 -
Ours (t=4+2) SS | 43.0 409 429 474 424|855 -
Ours (T=4, 6 FPS) | SS | 37.3 37.1 390 42.6 382 |90.0 | 93.0
Ours (7=1) SS [ 376 385 397 450 394 | 894 | 92.9
Ours (T—4) SS | 368 369 386 425 37.9 | 90.1| 934

The results of protocol 1 are shown in Tab. III. Our method
outperforms VoxelPose [12]: 22.6mm (+33%) on MPJPE
and 14mm (+27%) on relative MPJPE. As for its following
work VoxelTrack [53], we also exceeds 22.1mm on MPJPE.
Compare with TesseTrack [14], Ours (7=4) shows higher
pose tracking accuracy (81.7 vs 76.0 of MOTA), but lower
accuracy on MPJPE, which might be because TesseTrack uses
HRNet as the backbone (around 100M parameters) while ours
only uses ResNet50 (43M parameters). For protocol 2, we
show comparison with six recent works [11], [28], [29], [40],
[41], [46] in Tab. IV. Snipper performs better on F1 scores
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TABLE V
QUANTITATIVE EVALUATIONS (AP) OF POSE ESTIMATION ON
POSETRACK2018 VAL SET.

TABLE VII
QUANTITATIVE RESULTS OF ABLATION STUDY ON JTA DATASET.

_ i Method 3D Pose Estimation Tracking
Method Head Sho Elb Wri Hip Kne Ank Avg AP F1@0.4m FIQ0.8m FIQ@QI.2m 3D-PCK| MOTA
DetTrack(2020) [48] | TD | 849 87.4 84.8 79.2 77.6 79.7 753 81.5 Self attention 532 420 55.0 62.4 71.0 49.9
PT_CPN++(2018) [64] | TD | 82.4 88.8 86.2 79.4 72.0 80.6 76.2 80.9 Spatial deform. att. |69.0 538 69.3 75.3 84.4 62.3
com U e beabawio @i ) @) o ws )
~ ~ _ ~ B ntire snippe . 59. . . . .
STél:ESZ(g?il[)SO] ];[SJ 3635 856 7135 2471; =1 750 252 ;gg Ours (single scale) 545 431 56.8 64.1 73.4 50.2
: : : : : : : : Ours (2D bbx tracking) [66.5  58.1 69.0 718 81.9 54.6
Ours (T=4) SS | 86.7 859 71.6 68.6 783 725 63.6 753 Ours (2D pose tracking) | 67.1 59.5 69.3 73.4 83.3 55.9
Ours (w/o smooth loss) |69.1  59.7 70.7 75.9 86.1 62.4
Ours (1 FPS) 685 5838 69.1 34 84.0 62.1
TABLE VI Ours (30 FPS) 692 592 70.5 752 84.2 62.7
QUANTITATIVE EVALUATIONS (MOTA) OF TRACKING ON Ours 705 603 715 764 85.7 632
POSETRACK2018 VAL SET.
Method Head Sho Elb Wri Hip Kne Ank Avg L. . . . .
DelTrack(2020) [48] [ TD| 74.2 764 71.2 6.1 645 65.8 619 687  terms of training time v.s. performance is shown in Fig. 9
PT_CPN++(2018) [64] |TD| 68.8 73.5 65.6 61.2 54.9 64.6 56.7 64.0  to illustrate the effectiveness and efficiency of our proposed
Rajasegaran et al.2021) L13)) TDJ - - - - = - - 338 ention module. More ablation studies are provided in the
Rajasegaran et al.(2022) [52] |TD| - - - - - - - 589 . p
TML++(2019) [47] BU| 760 769 66.1 564 65.1 61.6 52.4 657  supplementary.
STAF(2019) [50] BU| - - - - - - - 609 gQelfaattention [23]. Our method outperforms self-attention
Ours (T=1) SS | 82.0 82.0 58.8 53.8 72.3 61.1 40.2 64.2 . . . . .
Ours (7—1) SS | 82.1 823 59.0 53.7 727 61.7 41.7 647  (more than 20% in all metrics), which is due to two main

and MPJPE in all six sequences except for the Ultimatum
sequence, where PandaNet [11] achieves 7.3mm lower than
ours. For tracking, Snipper achieves over 90% MOTA. For
motion prediction, ours (¢(=7T+1) and ours (¢=T+2) in both
protocol 1 and 2 have competitive results on MPJPE, only
about 3 and S5Smm of worse than ours (7=4) with the observed
motion (see Tab. IV).

C. Posetrack2018 Evaluation

We use Posetrack2018 [26] to validate that our method is
flexible to 2D pose tracking task by simply skipping joint
depth prediction. Since the provided annotations of Pose-
Track2018 dataset is in 7.5 FPS, we downsample the input
video to 7.5 FPS accordingly in both training and testing.
We report our results on the validation set following prior
works [47], [48], [50]. Tab. V and VI present the results
of Snipper on 2D pose estimation (AP) and pose tracking
(MOTA). When comparing with bottom-up approaches, our
method exceeds STAF [50] for about 4% in AP and MOTA,
and also shows competitive results with TML++ [47]. For the
most recent top-down methods [48], our method is around 6%
AP and 4% MOTA worse, which could attribute to the fact that
our method jointly performs multi-person detection and pose
tracking, while [48] relies on a specialized person detector to
obtain the multi-person detection. When comparing with the
most recent works [15], [52], our method still achieves around
8.9% and 5.8% MOTA better, which is largely credited to the
inclusion of pose estimation that helps robust tracking.

D. Ablation Study

We present several key ablation studies (discussed in
Sec. III-C) on JTA dataset to highlight effectiveness and
efficiency of our proposed spatiotemporal deformable attention
and the correlation between pose estimation and tracking
in Tab. VII. The comparison of five attention strategies in

factors: (1) destruction of spatiotemporal local context within
multi-frame features and (2) prohibitive compute for high-
resolution multi-scale image features needed to estimate pose
of small people.

Naive spatial deformable attention [24]. This strategy
performs slightly worse than ours, especially for accurate
pose estimation (53.8 vs 60.3 of F1@0.4m) as it neglects
scene/camera/object motions through time, where the temporal
features at the same image position are not corresponding.
Direct 3D sampling. This strategy also outperforms self-
attention, showing that deformable attention in 3D space is an
essential technique to encode spatiotemporal information from
multi-frame features. However, it is still worse than ours by
a large margin, mainly because the interpolation in temporal
domain is ill-defined without known correspondences between
frames such as optical flow, which leads to the aggregated
features incorrect in time.

Entire snippet sampling. Our mechanism requires less com-
putation cost and takes only 50% training time of model with
attention over the entire snippet, but gives similar performance,
which showcases the efficiency of our approach.

Ours (2D pose tracking) and Ours (bbx tracking) means
the association between snippets is based on 2D pose or
2D bounding box instead of 3D pose, which reduces 7.3%
on MOTA and 2% on 3D-PCK for 2D pose and 8.6% and
3.4% for 2D bounding box. Compared to 2D pose, 3D pose
alleviates the issues of occlusion between people on an image
since depth information is considered, which demonstrates that
effective pose estimation facilitates tracking.

Ours (w/o smooth loss) denotes the model trained without
joint smoothness 1oss Lgnoom in Eq. 7 for a snippet of 4
frames as the input. The pose scores are lower than our full
model, illustrating that contextual information for tracking also
helps improve pose estimation. However, this model without
the smoothness loss still performs better than our model
but with I-frame input, indicating the effectiveness of the
spatiotemporal attention model.

Ours (1 FPS) and Ours (30 FPS) denote the model trained
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Trajectory (camera
view)

motion forecasting
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(3D pose tracking and motion forecasting)
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Fig. 7. Qualitative results on JTA, CMU Panoptic and Posetrack2018 datasets. We show 3D pose tracking and motion forecasting results on JTA and
CMU Panoptic datasets, and 2D pose tracking results on Posetrack dataset. Dashed 3D poses are the forecasting motion based on the last observed snippet.

snippet 1
frame {..., t+2, t+3}

3D pose top-down view
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occlusion in 2D
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snippet 2 ===

frame {t+3, t+4, ...}

Fig. 8. Association between Two Consecutive Snippets. To achieve multi-
person tracking over the whole video, for two consecutive snippets (7'=4)
consisting of frames {¢,...,t+3} and {¢+3,...,t4-6}, the association of 3D pose
tracking is based on the common frame ¢+43. The 3D pose association helps
overcome the occlusion on 2D images.

with video snippets at 1 FPS and 30 FPS respectively. The pose
tracking performances are slightly worse than using 6 FPS,
which can be the factor that very high frame rate introduces too
much redundancy and easily results in overfitting during train-
ing while very low frame rate introduces too much discrepancy
and results in missing clues for tracking and forecasting.
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76 1
A Self-attention

74 ® Naive spatial deformable attention
Direct 3D sampling
Entire snippet sampling

Neighboring frame sampling (ours)

724
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Training time (hours)

Fig. 9. Comparison of five attention strategies in terms of training time
v.s. performance (3D-PCK). We show the effectiveness and efficiency of our
proposed spatiotemporal attention module. Training setting is identical for all
five cases.

E. Discussion

Correlations among three tasks. Pose estimation and track-
ing are correlated with each other. The accurate 3D poses facil-
itate tracking, whereas robust tracking provides the informative
temporal clues for pose estimation within the snippet. This is
validated by comparing the consistent better pose estimation
and tracking performance of Ours (7=4) than Ours (7=1) or
multi-stage methods [12], [28], [34], [52] on the three datasets
in Tab. I, III, IV, V and VL

On the other hand, pose tracking builds the crucial history
for motion forecasting demonstrated by the better forecast
motion of Ours than no forecasting in Tab. II. Though in
this paper, we cannot demonstrate that motion forecasting in
turn helps pose tracking, We include the important task of
motion forecasting in our unified framework for another two
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Fig. 10. Visualization of deformable attention in the transformer decoder and heatmaps of root joint. (best viewed in color) The sampling positions

of the deformable attention for each person’s pose query are displayed in the same color and

“wy

X" means the predicted root joint position. We show that the

sampling positions of deformable attention usually cover the whole body of each person for effective and efficient pose feature accumulation.

fast camera motion between neighboring frames

Fig. 11. Failure case. Our method using video snippet at 7.5 FPS as input for
inference could suffer from fast camera motion due to the large discrepancies
between neighboring frames. In this special case, when we use video snippet at
30 FPS for inference, the model gives much better results due to the preserved
correlation between frames in the input video, despite of fast camera motions.

purposes: efficiency and robustness. For efficiency, the en-
coded spatiotemporal features within the video snippet capture
crucial history for motion forecasting. Thus we can address
the three tasks in a single stage with our unified framework
for efficiency, i.e. running one network vs. many networks.
TesseTrack [14] (~100M params) addresses only pose track-
ing, while our method (only 43M params) addresses all three
tasks. For robustness, existing work on motion forecasting
uses off-the-shelf pose estimators, such as HMP [18], for the
history pose estimation. But the pose estimators could fail
unpredictably and thus cause forecasting to fail. Solving them
jointly can be robust to pose tracking errors. We validate that
our unified framework helps motion forecasting in Tab. II,
where our method shows better performance than the multi-
stage method HMP (Hourglass [43]).

Generalization ability. To validate the generalization ability
of our method, we train our model on a hybrid of datasets,
MuCo [67], COCO [68], Posetrack2018 [26] and JTA [17].
Then we test our model to predict 3D pose tracking on
the unseen MuPoTS [67] and Posetrack val set (no 3D
pose annotations). The qualitative results are included in the
supplementary video, where the predicted 3D pose is smooth
and the tracking is consistent across the entire videos, even in
occlusion cases.

Attention visualization. We visualize the attention maps of
the last layer in the transformer decoder in Fig. 10, where
the sampling positions for each person’s pose queries are
presented by the same color and “x” means the root joint
position. Our proposed spatiotemporal deformable attention
samples around each person’s whole body and later aggregates
these sampled features together to update pose queries. Com-
pared with self-attention, our proposed deformable attention
typically preserves better spatial and temporal relationships
for correct pose regression, and compared with the naive
spatial deformable attention, our method considers the motion
changes between frames as is indicated by the root joint
positions ”x”” of each person in the video snippet in Fig. 10.

Failure case and limitations. Our method could suffer frame
fast camera motion as shown in Fig. 11, where there are
quite large discrepancies between neighboring frames at 7.5
FPS. In this special case, the problem can be alleviated
when we use video snippet at 30 FPS as the input due to
the preserved correlation between frames. Another limitation
lies in the spatiotemporal positional encoding that does not
consider the correspondence between frames, especially the
camera motion exists between frames. Future work could
explore explicitly use the camera poses such as ray-based
position encoding and the low-resolution optical flow to guide
the feature aggregation.
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V. CONCLUSION

We present Snipper, a unified spatiotemporal Transformer
for simultaneous multi-person 3D pose estimation, tracking
and motion forecasting on a video snippet. We propose an
efficient yet powerful spatiotemporal deformable attention
module to aggregate spatiotemporal information across the
snippet. We demonstrate the effectiveness of Snipper on three
challenging public datasets where a generic Snipper model
rivals specialized state-of-art baselines trained for 3D pose
estimation, tracking, and forecasting.
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Supplementary Material
Snipper: A Spatiotemporal Transformer for
Simultaneous Multi-Person 3D Pose Estimation
Tracking and Forecasting on a Video Snippet

Shihao Zou, Yuanlu Xu, Chao Li, Lingni Ma, Li Cheng, and Minh Vo

I. ENCODER WITH MULTI-LAYER ATTENTION

Our transformer encoder stacks multiple layers of attention
module. The input is multi-scale multi-frame image features
extracted by CNN. In each layer, all the voxels in all-scale
feature volumes act as the query to aggregate multi-scale
spatiotemporal features. The updated feature volumes are used
as the input to the next layer of attention module iteratively.
The process is summarized in Fig. 1.

II. DECODER WITH MULTI-LAYER ATTENTION

Our transformer decoder stacks multiple layers of attention
module. The input is N (7" + T) person pose queries, which
are used to regress N people’s 3D pose trajectories for T’
observed frames and Ty future frames. In each attention layer,
these pose queries accumulate pose features and reconstruct
3D poses iteratively. In the 1-st layer, assuming a person pose
query at time ¢ is 7, we use it to regress a reference position
(x',y',d") and feed it into the attention module as the query
to aggregate pose features at the sampling position (z!,y!,t)
in multi-scale feature volumes. The output is the updated
person pose query g; for the 1-st layer, which regresses
the joint offsets and occurrence probability to construct 3D
pose in the 1-st layer P}, as well as position refinement
(Azl, Ay', Ad',) to update the reference position in the
next layer. For the n-th layer, the attention module takes
the updated person pose query from the last layer g¢;'~ 1
and aggregates pose features at the position (z",y,”d") =
(" T Agn Ly Ay @ 4 Ad L), Similarly, the
updated pose query for the n-st layer is regressed to construct
the 3D pose P} in the n-th layer. The process is summarized
in Fig. 2.

III. DEPTH AND JOINT OFFSET NORMALIZATION

We assume the camera intrinsic is (f., ¢z, ¢,) where f, is
the focal length and (¢, ¢,) is the center of image. According
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Fig. 1. Multi-layer Transformer Encoder. In the 1-st layer of attention,
consider the voxel at position (X, y, t) of scale 1 feature volume as an example,
we use this voxel feature as the query in the attention module to aggregate
features from multi-scale feature volumes, and obtain the spatiotemporally
aggregated feature to replace the old voxel feature at position (x, y, t) of scale
1 feature volume. The same process is executed for all the voxels in all-scale
feature volumes. The updated multi-scale feature volumes are then fed to the
next layer of attention module iteratively.

to the pinhole camera model, we have x = % feteyandy =
Y. fetcy, where (X, Y, d) is the 3D position and (,y) is the
projected 2D position on the image. We can avoid predicting
the focal length by normalizing the depth d with f, i.e., d=
d/ fe.

The joint offset (Ax, Ay) is represented in the image pixel
distance, which will become smaller if the person moves
far away from the camera. According to the pinhole camera
model, we have Ax = ATX - fe and Ay = % - fe, which
shows that the magnitude of the 2D offset in pixel distance is
proportional to f./d. Therefore, we propose to normalize the
joint offsets With the normalized depth, i.e., AZ = Ax- d and
Ay = Ay - d. Then, (AZ,Ag) has the identical magnitude
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Fig. 2. Multi-layer Transformer Decoder. In the 1-st layer, a person pose
query q,? specified at time ¢ regresses a reference position (z!,y',d") to
form the sampling position (x!,y',t) in the multi-scale feature volumes.
Then it acts as the query in the attention module to obtain the updated person
pose query qt1 in the 1-st layer. This updated query is used to regress to the
joint offsets V', probability of person occurrence o' and position refinement
(Az', Ayl, Ad'). On the one hand, the reference position (z,y,d) is
regarded as the person root joint position, and together with the joint offsets,
the 3D pose in the 1-st layer Pt1 can be constructed. On the other hand,
the position refinement is used to update the reference position in the next
layer of attention, (x2,y2,d?) = (z! + Azl,y' + Ayl,d! + Ad'). For
the n-th layer, the query to the attention module becomes the updated person
pose query from the last layer ¢;' ~1, and the reference position is updated
via (xn7yn7dn) — (xnfl + Axnfl’ynfl + Aynfl’dnfl + Adnfl)
and form the new sampling position (z™,y™,t). After obtaining the updated
pose query, the 3D pose in the n-th layer P} can be constructed.

TABLE I
QUANTITATIVE RESULTS OF ABLATION STUDY ON JTA DATASET.

Method 3D Pose Estimation Tracking
AP F1@0.4m FI1@Q0.8m FIQI.2m 3D-PCK MOTA

No temp. enc. 67.3 56.5 68.3 73.7 84.9 55.0
Trajectory query| 69.3 58.6 71.1 76.3 85.0 62.9
Wi/o offset norm| 69.1 57.1 70.8 75.2 78.5 62.4
Encoder layers 4| 67.1 58.0 69.3 74.4 85.3 60.6
Encoder layers 2| 61.8 522 63.6 69.1 81.7 534
W/o0 heatmap 68.8 57.4 70.1 74.8 82.6 61.6
Ours 70.5 60.3 71.5 76.4 85.7 63.2

to the offset (AX, AY') in 3D space. Thus, the magnitude of
2D normalized joint offset only depends on the pose of the
person, which is more consistent across identities.

IV. ABLATION STUDY

We present more ablation studies on JTA dataset to highlight

the effectiveness of some key components in our method in
Tab. L.
No temporal encoding is proposed to make the pose queries
aware of the chronological order within a trajectory. Without
temporal encoding, the pose tracking accuracy decreases by
over 8% on MOTA, which may attribute to more frequent
person ID switching without adding trajectory temporal en-
coding.

Trajectory query. In Snipper, there are N (T + T) queries
with each query focusing on the pose of each queried person at
each time. To illustrate the effectiveness of N (7'+7T) queries
strategy, we compare it with the strategy of /N queries where
each query focuses on the trajectory of each queried person.
We can see from Tab. I that N queries strategy produces
worse accuracy of pose tracking (69.3 vs. 70.5 for AP and
62.9 vs. 63.2 for MOTA) since there is bottle-neck between
the dimension of query embedding (each embedding is of size
384) and pose trajectory (each T" = 4 trajectory is of size 240
with 15 3D joints and visibility), especially for large 7'

W/o offsets normalization. For 3D pose estimation, we
propose to normalize 2D joint offsets by the depth to overcome
the issue of scale on 2D image. The accuracy reduction,
especially 3D-PCK (-7.2%), illustrates the effectiveness of our
proposed normalization strategy.

Number of layers of encoder. The transformer encoder is
the key component to encode spatiotemporal features of the
input snippet. The number of layers in the encoder is able
to illustrate the effectiveness of spatiotemporal deformable
attention to encode this feature, as is shown in Tab. 1.
Heatmap supervision This corresponds to supervising the
first IV ; channels of each temporal slice in the volume to be the
multi-person joints heatmap, as described in In-310 in the main
text. As can be seen in Tab. I, this intermediate supervision
improves the 3D pose accuracy (2.9% of 3D-PCK).



