
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 1

SUES-200: A Multi-height Multi-scene Cross-view
Image Benchmark Across Drone and Satellite

Runzhe Zhu, Ling Yin, Mingze Yang, Fei Wu, Yuncheng Yang, Wenbo Hu

Abstract—Cross-view image matching aims to match images
of the same target scene acquired from different platforms. With
the rapid development of drone technology, cross-view matching
by neural network models has been a widely accepted choice for
drone position or navigation. However, existing public datasets
do not include images obtained by drones at different heights,
and the types of scenes are relatively homogeneous, which yields
issues in assessing a model’s capability to adapt to complex
and changing scenes. In this end, we present a new cross-
view dataset called SUES-200 to address these issues. SUES-200
contains 24120 images acquired by the drone at four different
heights and corresponding satellite view images of the same
target scene. To the best of our knowledge, SUES-200 is the first
public dataset that considers the differences generated in aerial
photography captured by drones flying at different heights. In
addition, we developed an evaluation for efficient training, testing
and evaluation of cross-view matching models, under which we
comprehensively analyze the performance of nine architectures.
Then, we propose a robust baseline model for use with SUES-200.
Experimental results show that SUES-200 can help the model to
learn highly discriminative features of the height of the drone.

Index Terms—Cross-view Image Matching, Drone, Bench-
mark, Image Retrieval, Pipeline, Geo-localization

I. INTRODUCTION

CROSS-VIEW matching [1] is an essential topic in com-
puter vision research. This technique can be applied in

many domains, such as localization, navigation, autonomous
driving, and object detection. Satellite and drone platforms are
the primary sources of images used as input for the matching.
A standard cross-view matching system works as follows.
Given an image to be retrieved in a query dataset from one
view, the matching system finds an image under the exact
location in a large-scale candidate (gallery) dataset of another
view. There are two main tasks:

Task 1: Drone view target localization (Drone → Satellite)
and Task 2: Drone navigation (Satellite→ Drone).

Thus, the key to the effectiveness of the matching techniques
is learning the discriminative features of images that are
invariant under different views.

Previous studies on cross-view matching [2]–[7] mainly
focus on the matching between street view and satellite view,
or between street view and bird-view. For example, the datasets
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Fig. 1. A representative target scene of SUES-200 contains fifty drone view
images from four heights and one satellite view image.

CVUSA [8] and CVACT [9] used panoramic street view and
satellite views of the same target scene to construct a cross-
view image pair for training a deep neural network model. The
quality of matching between street view and satellite images
is limited by the much smaller spatial scale of a street view.
Thus, street view tends to be obscured and interfered with,
resulting in features not properly extracted by models.

With the wide application of drone technology [10]–[12],
more and more researchers have been using drone platforms
to capture target scenes at different spatial and temporal scales.
Traditionally, image matching of drone view and satellite
views is relatively limited in the military field; fixed-wing
drones are conventionally designed to fly at a specific height
and collect images in real-time [13]–[15]. Matching systems
are used to match the images captured by a drone with satellite
images to infer the drone’s location. This autonomous locating
system is not affected by the external environment and has
strong robustness in complex electromagnetic environments.
Recently, rotary-wing drones have been gained wide applica-
tions. How to use such vehicles for positioning in low airspace
has become a hot research issue.

Recently, new progress has been made in cross-view view
matching research. Zheng et al. [16] established the first
drone-based multi-source cross-view matching dataset, namely
University-1652, which contains images from three perspec-
tives, including street view, aerial drones, and satellite. They
also published a baseline for multi-branch CNN networks.
[17]–[21], and matching accuracy was significantly improved
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in a more in-depth study. However, this dataset still involves
a few problems. For example, only synthetic images of drone
views are included, which lack realistic variations in lighting.
Similarly, differences in images captured by drones at different
heights are not distinguished. Moreover, the captured scenes
are of a single type, mostly buildings on campuses. These
problems limit the ability of learning models trained on this
dataset to differentiate different types of scenarios. Further-
more, such models are unable to extract robust features from
images captured at low heights.

To address these problems, we propose a multi-height,
multi-scene dataset including images from both drones and
satellites based on the University-1652 dataset, called SUES-
200. SUES-200 contains a wider variety of scenes, such as
parks, schools, lakes, and public buildings. For each scene,
data collected at four different heights(150m, 200m, 250m,
and 300m). All of the included images were recorded from
onboard drones in flight in real world. SUES-200 contains 200
target scenes, 120 of which are specified for use as a training
set, and 80 scenes of which are designated as a testing set.
Some samples in SUES-200 are shown in Figure 1.

Traditional evaluation metrics for cross-view matching
datasets are Recall@K [22] and AP. However, these measures
are not suitable for the characteristics of our new SUES-200
dataset, because the differences in drone views at different
heights are not taken into account. Moreover, drones encounter
diverse interference when flying outdoors. Therefore, we de-
veloped a new evaluation system that focuses on three aspects
of the model, including 1) robustness at different heights; 2)
robustness to uncertainties; and 3) inference speed; In addition,
we provide a pipeline dedicated to cross-view matching, which
helps to improve the efficiency of training, testing, and model
evaluation.

As an experiment, we train and test feature extractors of
different deep neural network (DNN) architectures on SUES-
200 using the pipeline developed in this work. The model
with the best overall evaluation results is released as the
baseline model of SUES-200. We also evaluate the effects of
multi-angle feature fusion on matching results and compare
the performance of transferred learning models. We perform
ablation studies to evaluate each component of the baseline
model. Our results show that SUES-200 can help neural
models learn high-level features in various scenes captures
from different heights. With increasing height, drone footage
is gradually less affected by the environment and camera pose
and achieves better performance metrics.

We release a ViT-based model as the baseline of SUES-
200. For Drone → Satellite, baseline achieves 59.32, 62.30,
71.35, and 77.17 Recall@1 accuracy at heights of 150m,
200m, 250m, and 300m, respectively. For Satellite → Drone,
baseline achieves 82.50, 85.00, 88.75, and 96.25 Recall@1
accuracy in 150m, 200m, 250m, and 300m, respectively. This
baseline also showed strong robustness to different heights and
uncertainties. ViT is a very general scheme compared to other
CNN-based algorithms, although its computational complexity
is large. The entire dataset, as well as the code for the
evaluation, is available at https://github.com/Reza-Zhu/SUES-
200-Benchmark.

The main contributions of this study are summarized as
follows.

• We build a new cross-view matching dataset: SUES-
200, which provides diverse scenes and height views for
each scene. All images are acquired in real environments
of multiple types of scenes, including real-world light,
shadow transformations and disturbances. The datasets,
as well as the code for the evaluation, are available at
https://github.com/Reza-Zhu/SUES-200-Benchmark.

• We propose a new evaluation system based on the
characteristics of SUES-200 to evaluate the robustness
of matching models for different heights, robustness to
uncertainties, and the speed at which inferences are
performed, together with to the classical Recall@K and
AP.

• We establish an efficient pipeline to train and test dif-
ferent matching models and release the baseline model
of SUES-200 according to the comprehensive evaluation
results.

II. RELATED WORK

A. Cross-view Datasets

Previous cross-view datasets mostly focused on images
collected from the same location with different viewpoints
via different platforms such as panoramic cameras, satellites,
drones, and smartphones. For example, the dataset [2] com-
prises publicly available data, containing a total of 78K data
pairs. Each pair consists of two views, including an aerial or
bird’s-eye view, and the other view is the street view. Tian
et al. [4] collected images from several locations in a city
and constructed image pairs with bird’s-eye and street views.
Tian incorporates semantic information to label buildings in
images from different views and contains an object detection
module in its network structure. The experimental results
were evaluated in terms of PR curves and AP. CVUSA [23]
is a standard cross-view dataset, consisting of image pairs
of panoramic street views and satellite views. CVACT [9]
is a larger panoramic dataset with improved satellite image
resolution and more testing sets. Moreover, GPS tags to scenes
are supplemented. Both CVACT and CVUSA use Recall@K
to evaluate matching results. University-1652 was proposed by
Zheng for multi-source cross-view scene matching et al. [16]
as the first geo-localization dataset based on drone footage.
It contains image data triplets with satellite, drone, and street
views for 1652 buildings in 72 universities. University-1652
generally includes one satellite image, fifty-four images cap-
tured by aerial drones, and multiple street view images for
a given location. Due to the expense of real-world flight, the
drone data in this database was obtained by simulated flights in
Google Earth. The drone simulation flight route circles around
the target scene and gradually drops in height. University-
1652 uses Recall@K and AP to evaluate matching results.
Inspired by University-1652, we constructed the SUES-200
dataset to emphasize differences in images acquired by drones
at different heights. In addition, we extended the types of
scenes, all of which were captured in real scenarios.
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Fig. 2. The flight height of the drone when collecting images is 150m, 200m,
250m, and 300m. The flight trajectory is one circle around the target scene

TABLE I
OVERVIEW OF CROSS-VIEW APPROACHES.

Approach Feature Extractor Author
CVUSA VGG16 Workman et al. [23]
CVACT 7-layer CNN Liu et al. [9]
University-1652 ResNet-50 Zheng et al. [16].
LCM ResNet-50 Ding et al. [17]
LPN ResNet-50 Wang et al. [19]
PCL ResNet-50 Tian et al. [20]
MSBA ResNet-50 Zhuang et al. [18]

B. Cross-view Methods

Traditional cross-view matching methods [24]–[26] are
based on hand-crafted feature descriptors such as SIFT [24],
SURF [25], and ORB [27]. However, these feature extraction
methods are not robust and are susceptible to uncertainties
such as lighting and occlusion, especially for drones flying at
heights. False or missing matches typically occur frequently
due to excessive differences between the acquired images
and the satellite view images. Since the publication of the
University-1652 dataset, considerable progress has been made
in the past years in deep learning methods. Liu et al. [17]
proposed LCM, which utilized ResNet [28] as a backbone
network and trained the image retrieval problem as a classi-
fication problem. The LCM improved the Recall@1 and AP
by 5-10 % over the baseline of University-1652. Wang et al.
[19] designed LPN to consider the contextual information of
neighboring regions. The LPN used a square-ring partition
strategy to divide feature maps, which provided good robust-
ness to changes in rotation. LPN achieved good performance
on University-1652, CVACT, and CVUSA. Tian et al. [20]
presented a method that integrated the spatial correspondence
between the satellite views and information on the surrounding
area. This was performed in two steps, first converting the
tilted view of the drone into a vertical view by perspective
transformation and then transforming the image of the drone
view to be closer to the satellite view using a conditional
GAN [29]. The experimental results show that this method
improved accuracy by 5% over LPN on University-1652.
Inspired by the development of attention mechanisms, Zhuang
et al. [18] developed MSBA to eliminate the differences in
images acquired from different viewpoints. MSBA cuts an
image into several parts with different scales. Based on that
division, a self-attention mechanism is used for more effective
feature extraction. They showed that MSBA performed better

AB

Continuous Scenes

Viewpoint B Viewpoint A

Fig. 3. Continuous Scenes display two continuous satellite view images.
Yellow arrows indicate the directions of the drones’ viewpoints. Two corre-
sponding drone view images are shown below, with the area overlapping in
the images marked by the dashed red line.

than LPN in terms of accuracy and inference efficiency. Table
I gives an overview of existing approaches. Importantly, most
approaches adopt the same backbone network and were not
tested for other feature extractors. In contrast, in the present
work, we trained several cross-view matching models and then
tested and evaluated the performance of different backbone
networks such as VGG [30], ResNet [28], and DenseNet [31]
in extracting features at different heights using the pipeline.

III. SUES-200 DATASET

A. Dataset Description

SUES-200 is a cross-view matching dataset with the char-
acteristics of multiple sources, multiple scenes, and panoramic
views. We collected multi-source images of satellite views
and corresponding drone views at 200 locations around the
Shanghai University of Engineering and Science(SUES). We
used 0001, 0002, ... 0200 to distinguish the images obtained in
different scenes, and numbers 1-200 represent specific scenes.
Specifically, to enable the model to learn highly discriminative
features at different heights, we collected drone view images
at 150m, 200m, 250m, and 300m. SUES-200 includes a
broader range of scene types, not limited to campus buildings,
containing parks, schools, lakes, and public buildings. The rich
multi-type scenes enable the models to learn features that can
be adapted to real environments.

Satellite-view images are obtained from AutoNavi Map and
Bing Maps. A single satellite image is included for each
location. The schematic diagram of the drone flight is shown in
Figure 2. The drone flight path was set to a curve in different
heights to capture multi-angle information of target scenes. We
sampled 50 frames uniformly from the flight video recorded by
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TABLE II
COMPARISON BETWEEN SUES-200 AND OTHER CROSS-VIEW DATASETS.

Datesets SUES-200 University-1652 [16] CVUSA [23] Tian et al [4].

Platform Drone, Satellite Drone, Ground, Satellite Ground, Satellite Ground, 45° Aerial
Target Diversity Building User User
Height difference TRUE FALSE FALSE FALSE
Training 120 * 51 701 * 71.64 35.5k * 2 15.7k * 2
Images/Location 50 + 1 51 + 16.64 + 1 1 + 1 1 + 1
Evaluation Recall@K & AP & Robustness & Inference Speed Recall@K & AP Recall@K PR&AP

TABLE III
STATISTICS OF SUES-200 TRAINING AND TEST SETS, INCLUDING THE
IMAGE NUMBER AND THE SCENE NUMBER OF TRAINING SET, TESTING

SET.

Training Dataset
Views Locations Images at Each Height Total

Drone 120 6000 24000
Satellite 120 120

Testing Dataset
Views Locations Images at Each Height Total

Drone query 80 4000 16000
Satellite query 80 80
Drone gallery 200 10000 40000
Satellite gallery 200 200

the drone. Overall, every location includes one satellite view
image and 50 drone view images.

In addition, multiple satellite images are consecutively se-
lected in the same area by SUES-200. When the drone flies
in one of the locations, the image includes information about
nearby locations. As shown in Figure 3, there is some overlap
between drone maps of different scenarios. It is desirable that
the cross-view matching models could pay attention to the
main feature in the scene without the effect of overlapping
regions.

In order to prevent information loss due to image resolu-
tion, drone images in SUES-200 use the original resolution
of 1080 × 1080 and satellite images use the resolution of
512× 512. The dataset includes 200 locations with 50 drone
images and 1 corresponding satellite image for each location.
SUES-200 is divided into training and testing sets, with 120
locations designated for training and 80 locations as testing
data. To accomplish the two tasks mentioned in the introduc-
tion, the testing data include the query drone dataset, query
satellite dataset, gallery drone dataset, and gallery satellite
dataset. Among these, the gallery dataset contains the testing
data and adds the training data as confusion data to increase
the difficulty of matching.

In the testing phase, we consider Task 1 and Task 2 as image
retrieval tasks. Taking Drone → Satellite as an example, the
query is a drone image, the gallery is satellite image. The
model first extracts features from the images in the gallery
set and stores them locally. Then, a single query image is fed
into the model to extract features and calculate the distance
between the query feature and gallery images. The image pair
with the shortest distance between the drone view image and
the satellite view image is considered the matching result.
Some statistics on the datasets are shown in Table II and Table
III.

Satellite-view

Drone-view

150m 200m

250m 300m

Fig. 4. As the height rises, the images captured from the perspective of the
drone become increasingly similar to the satellite view.

Finally, we summarize the new characteristics of the SUES-
200 dataset.

1) Multi-height: SUES-200 contains data collected at dif-
ferent heights: 150m, 200m, 250m, and 300m, and can
evaluate model metrics at different heights. To the best
of our knowledge, SUES-200 is the first cross-view
dataset to include images recorded by cameras on drone
vehicles flying at different heights.

2) Multi-scene: SUES-200 contains data from different
types of scenes. This can help models extract invari-
ant features in more scenes and expand the scope of
scene applications for drone-based cross-view matching
techniques.

3) Continuous-scenes: Some of the included target scenes
were collected in the same area. The drone image is
thus affected by the surrounding scene; for example,
information from another scene may be recorded. This
poses a challenge to the ability of trained models to
differentiate between scenes, but this is also realistic for
practical application environments.

B. Evaluation Protocol

In this subsection, we introduce the evaluation system of
SUES-200. In response to the existing real-world problems,
in addition to the traditional Recall@K [3], [9], [32] and AP
[4], [33] evaluation metrics, we propose a method to measure
model robustness at different heights, as well as a method to
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measure the robustness of trained models to uncertainties and
a method to evaluate inference speed.

Recall@K and AP. SUES-200 contains 200 target scenes,
including 120 scenes for training and 80 scenes for testing.
Among these, 120 scenes from the training set are also
included in the gallery as distractors. There is no overlap
between the training and testing data. Recall@K (R@K)
represents the probability that a correct match appears in the
top-k ranked retrieval results. Recall@1 is very sensitive to
the position of the first true-matched image appearing in the
ranking of the matching result. A higher recall score shows a
better performance of the network. The AP is the area under
the precision-recall(PR) curve, which considers the position of
all true-matched images in the evaluation. Recall@K is defined
as follows.

Recall@K =

{
1, if ordertrue < K + 1

0, otherwise
(1)

AP is formulated as follows:

AP =
1

m

m∑
h=1

ph−1 + ph
2

,where p0 = 1 (2)

ph =
Th + 1

Th + Fh
(3)

where m is the number of true-matched images for a query,
Th and Fh are the numbers of true-matched images and false-
matched images before the (i + 1)-th true-matched image in
the matching.

Robustness at different heights. SUES-200 differentiates
the images acquired by drones at different heights, as shown
in Figure 4. Measuring the robustness of the model at different
heights is also an important evaluation index. The drone
images appear most similar to satellite view images at 300m.
As the height decreases, the drone’s field of view gradually
narrows. The size of the target scene becomes larger, and
more detailed information is presented. These factors make it
increasingly difficult for the model to distinguish the variations
across scenarios. To evaluate the model’s robustness to height,
we set the Recall@1 at 300m as the baseline. Then, the
Recall@1 at other heights is divided by the baseline to evaluate
the reduction in accuracy with height, which is calculated as
follows.

RDRn = 1− R@1n
R@1300m

(4)

RDRn represents the recall degradation rate (RDR) of the
model at a given height n. The RDR of the model between
300m to 150m directly reflects the robustness of the height of
the model. Finally, we denote the overall robustness protocol
of the height as:

RDR150m = 1− R@1150m
R@1300m

(5)

The larger the RDR150m, the less robust the model is to
height, and vice versa.

Origin Flip Block

Fog Rain Snow

Fig. 5. We list five uncertainties including flip, block, fog, rain, and snow.

Robustness to uncertainties. In practice, the images cap-
tured by drone vehicles are often disturbed by various un-
certainties, such as the target being obscured or offset and
various weather factors. To evaluate the performance of the
model under those uncertainties, we simulated these effects
by applying augmentation to the drone images in the query
set. We considered five types of factors, including flip, block,
fog, snow, and rain, in Figure 5. We denote the original AP
of the model as APorigin, and the disturbed AP at a certain
height as APi. The n = 4 indicates four times this height. We
calculate the average rate of degradation of precision (RDP)
for a given model at four heights to indicate its robustness.
The equation is shown as follows.

RDP =

n=4∑
i=1

1−APi/APorigin

4
(6)

Inference Speed.In the actual application process, the in-
ference speed of the model is a significant concern. Therefore,
we refer to the formula mode of [18] to evaluate the inference
speed. [18] proposed a ”real-time” method to evaluate the
inference time of a single query. However, we considered that
this approach is not sufficiently comprehensive to evaluate the
overall performance because its definition of ”real-time” only
focuses on the inference time of the query image. Therefore,
we present inference speed to assess the combined inference
time of the query and gallery images. We chose a base
model with relatively fast inference performance and take its
inference time as the benchmark speed. The benchmark is
set as 1.00, and other inference speeds are then denoted as
1.00× T (0 < T < +∞).

IV. METHOD

A. Pipeline

We established a pipeline to solve the cross-view match-
ing problem. This approach provides a standardized method
to efficiently train, test, and evaluate different models. As
shown in Figure 6, in this pipeline, the input is the cross-
view matching dataset, and the output is the values of each
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Dataset

Training 
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Testing 
Dataset

Model 

Model 

Evaluating Matching 
Result
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VGG,ResNet,Dense,...

Learning 

Task1:Drone-Satellite

Feature 
Matching 

Feature 
Matching 

Task2:Satellite-Drone

Table

Training

Test Evaluation

Fig. 6. The pipeline reads images from the dataset and sends them to the currently selected model for training. After training, the model with the best
parameters is selected and sent to Task 1 or Task 2 for testing, and the evaluation module evaluates the test results to form an evaluation table.

evaluation index, in which the model is a deep neural net-
work constructed by the user. The network is divided into a
backbone network and a classification network part. Selecting
different feature extractors in the “Model List” replaces the
backbone network part in the corresponding network structure,
and the user can also customize its network structure. Details
of the network structure of deep neural networks are provided
in the next section. The images in the testing set are input
to the model, which extracts features and completes Task 1:
Drone → Satellite, and Task 2: Satellite → Drone, and the
obtained feature matching results are finally passed to the
evaluation unit to obtain the evaluation table.

B. Network Architecture and Loss Function

The drone and satellite images included in SUES-200 orig-
inate from different sources, but there are still some similari-
ties. Our deep learning network extracts robust and invariant
features separately and maps them to a high-dimensional
space for the following matching task. After referring to
previous studies, we constructed a two-branch deep neural
network(DNN) architecture. One branch extracts feature from
satellite view images, and the other branch extracts features
from drone view images. To test the performance of different
DNN structures on different source image feature extractors,
we apply network structures that extract features in two
branches of backbone networks that are replaceable. Subse-
quently, we add a shared weight fully connected(FC) layer to
unify the feature dimensions. In the training process, we add
an MLP block, including a drop-out layer, an FC layer, and a
softmax layer, at the end of the branch to treat the processing
as a classification task. Each target location is treated as a class
to train the entire network. In the testing process, the feature
map is unified by FC1, and then the distance between each

feature is calculated by distance measurement algorithms. The
architecture of the network is shown in Figure 7.

In recent years, different DNN structures have been ex-
tensively developed. ResNet [28] is widely used as a CNN-
based backbone network [17]–[20] for feature extraction in
the field of cross-view matching due to its clever design
structure and excellent performance. With further research on
ResNet and the emergence of attention mechanism, ResNet
has been further improved to produce extended variants such
as SE-ResNet [34], ResNeSt [35], CMAB-ResNet [36], and
these models have achieved excellent performance on image
classification datasets such as ImageNet [37]. In addition to
ResNet, other structured CNNs are also a topic of considerable
research interest in recent years, including DenseNet [31], Effi-
cientNet [38], Inception [39]. Moreover, ViT [40] architecture
has achieved great success in various computer vision tasks.
Is there a more proper feature extractor than ResNet in cross-
view matching? In our experiment, we tested the improved
CNN-based and other structures on SUES-200 and evaluated
these models according to the evaluation system.

For the loss function, since the model training process is
considered a multi-classification task, we adopted a cross-
entropy as the loss function, . Cross entropy is mainly used
to determine how close the actual output is to the expected
output, i.e., the smaller the cross entropy between the network
output and the labels, the better the classification ability of
the network. zij(y) is the logarithm of ground-truth y, and
p̂(y|xi

j) is the probability of the predicted outcome of the
model equal to ground-truth y. The mathematical formula is
given as follows.

p̂(y|xi
j) =

exp(zij(y))∑C
c=1 exp(z

i
j(c))

(7)
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Fig. 7. Basic network architectures for cross-view matching. We apply two-branch network structures with cross-entropy loss to train the model. The feature
map is extracted by the backbone network and pooling layer. Then, a shared weight FC layer(FC1) unifies the feature dimension. Next, the feature map is
fed into the classifier network for training. In addition, the cosine distance is used to calculate the similarity between the query and candidate images in the
gallery for testing.

Loss =
∑
i,j

−log(p̂(y|xi
j)) (8)

In the two-branch DNN, both outputs of the model need to
be compared with the label to obtain two loss values. Let the
loss of drone view be Ld, and the loss of satellite view be Ls,
and these two loss values are added to get Ltotal. We optimize
the whole network through Ltotal.

Ltotal = Ls + Ld, (9)

the query images in the test set are from a drone view
and a satellite view. We feed the query images to the model
with fixed parameters, remove the classification network from
the training layer, and use the backbone network to output
the feature vectors directly. The feature vector of the drone-
view image is represented as fd, and the feature vector of the
satellite view is defined as fs. Our test aim is to find the most
similar set of feature vectors by cosine distance to measure
the similarity between fd and fs. fdi and fsi are parts of the
feature vector, and a smaller cosine distance means that the
set of features is less similar. A larger cosine distance implies
that this pair of feature maps are more similar to each other.

The formula is given as follows.

Cosine =
fdfs

||fd|| × ||fs||
=

n∑
i=1

fdifsi√
n∑

i=1

(f2
di)

√
n∑

i=1

(f2
si)

(10)

V. EXPERIMENT

In this section, we first describe the experimental setup and
details, followed by a comprehensive evaluation of multiple
feature extractors through the pipeline. The impact of multiple
queries on the matching performance is explored. In addition,
we test the performance of the transfer learning model on
SUES-200. Finally, we implement some classical cross-view
matching models on SUES-200.

A. Implementation Details

Different feature extractors are used in our backbone net-
work, and all of them are loaded with ImageNet’s pre-trained
weights to speed up the convergence of the model. However,
the amount of work required to tune so many models to the
optimum is considerable. For training, we applied the grid
search method to search for the best learning rate, dropout
rate, and weight decay hyperparameter values. The image
size is resized to (384, 384) before feeding to the network,
and only the basic image augmentation methods are used,
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Fig. 8. The Recall@K accuracy curve and AP value curve at 150m, 200m, 250m, and 300m. (a): Recall@1 curve of Drone → Satellite. (b):Recall@1
curve of Satellite → Drone. (c):AP curve of Drone → Satellite. (d):AP curve of Satellite → Drone.
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Fig. 9. The robustness of different backbone networks at different Heights. The height of the bars in the bar chart represents the total recall accuracy
loss over the height from 300m to 150m. Each of the three colors indicates the loss of accuracy in the respective height interval. (a):Drone → Satellite.
(b):Satellite → Drone.

including random cropping and random horizontal flipping.
The optimizer of the neural network is SGD (momentum=0.9),
and the initial learning rates of the backbone network and
the classification network are set to 0.1 times and 1 time of
the learning rate. The learning rate decay is MultiStepLR,
and the parameters of the classification network are initial-
ized with Kaiming Initialization [41].In the testing stage, we
apply imgaug [42] to simulate the unfavorable elements for
drone view images. Our model was constructed using the
PyTorch framework, and all experiments were conducted on
an NVIDIA RTX TiTAN GPU.

B. Evaluation of Different Extractors

We aim to determine whether SUES-200 can help a model
learn highly discriminative features, and whether the pipeline
could perform the tasks of training, testing, and evaluation ef-
ficiently. In this section, we describe experiments conducted to
comprehensively evaluate feature extractors of different DNN
architectures and use the model with the best experimental
results as the baseline model of SUES-200.

Recall and AP. Using the pipeline, we quickly train the
models on the SUES-200 for testing and evaluation. As shown
in Figure 8, we compare the feature extraction capability
of different backbone networks by Recall@K and AP. In
the drone-view target localization task (Drone → Satellite),
ViT achieves 59.57%, 62.30%, 71.35%, 77.15% Recall@1
in four heights, respectively. In the drone navigation task
(Satellite → Drone), ViT achieves 82.50%, 85.00%, 88.75%,
96.25% Recall@1 in four heights, respectively. The perfor-
mance surpasses the results of other common feature extractors
such as ResNet. ViT shows considerable potential for cross-
view matching as a general framework. The results also show
that as the height of the drone increases, the images captured
are less affected by the surrounding environment and the
camera field view. The images camera acquired by the camera
are more similar to satellite images, and the Recall@K and AP
of the model are improved.

Robustness at different heights. Because the height of
the drone affects the accuracy of the matching system, we
evaluate the robustness of the model to different heights in
positioning or navigation tasks using Equations (4)-(5). As
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Fig. 10. Heatmaps of the robustness of different backbone networks under unfavorable factors. (a):Drone → Satellite. Darker red indicates that the model
was less affected and showed better robustness. (b):Satellite → Drone. Darker blue indicates that the model was less affected and showed better robustness.

TABLE IV
THE NUMBER OF PARAMETERS OF ALL MODELS AND THEIR INFERENCE SPEEDS WITH BENCHMARK

Backbone Params(M) Drone → Satellite Satellite → Drone

VGG16-bn 272.86 1.18 1.17
ResNet-50 49.24 1.00 1.00

SE-ResNet-50 54.30 1.02 1.02
ResNeSt-50 53.09 1.02 1.00

CBAM-ResNet-50 59.30 1.04 1.02
DenseNet-201 35.73 1.05 1.02

EfficientNetv1-b4 37.06 1.01 1.00
Inceptionv4 83.98 1.03 1.01

ViT-base 172.20 2.45 2.48

may be observed from Figure 9, the accuracy of ViT decreased
by only 23.13% and 14.28% of accuracy on two tasks from
300m to 150m, respectively. This shows strong robustness
when the size of the target scene changes. We argue that
the self-attention mechanism of Transformer architecture helps
ViT ignore the redundant information at low heights.

Robustness to uncertainties. Drones commonly face many
negative factors in the outdoor environment. We simulate these
situations with image augmentation techniques. Equation (4) is
used to evaluate the influence of those factors. Figure 10 shows
the ability of different models to cope with uncertainties. The
vertical axis shows that ViT and SE-ResNet exhibit better
resistance to uncertainties than other models. The horizontal
axis shows that snow was the most difficult factor to overcome.
Extracting invariant features from images in wintertime scenes
is very challenging; no model is able to reach even the original
50% AP value under this condition.

Inference speed. In the inference phase, inference speed is a
vital evaluation metric, and it also directly determines whether
the model can be put into practical application. Therefore,
we evaluate the inference speed of different models under
two tasks, as may be observed from Table IV. We take
the inference time of ResNet as the baseline time: 1.00.

We find that ViT spent the most time on inference, and
Task1 and Task2 were 2.45 and 2.48 times the base time,
respectively. Although it has fewer parameters than VGG, the
computational complexity of ViT is higher.

C. Multiple Queries

We consider whether multi-angle feature fusion im-
proves the efficiency of matching. In previous matching ex-
periments, a single drone-view image was used as a query for
Drone → Satellite. Each scene in the SUES-200 dataset pro-
vides a full 360-degree view of the drone view image, which
provides complete and comprehensive information about the
target scene. Therefore, if a single query cannot describe the
target scene, we can introduce multiple angles of drone view
images as queries. as may be observed from Table V, we set
the multiple-query image to 50, 25, 10, 5, 1. The experimental
results show that the multiple queries contain more images,
and the Recall@K and AP of the matching are enhanced
accordingly. When the average features of 50 images are used
as queries, the accuracy of Recall@1 is generally improved
by 15%, compared with the single query.
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TABLE V
THE MATCHING ACCURACY (%) OF MULTIPLE QUERIES BASED ON THE BASELINE. 50,25,10,5,1 DENOTE MULTIPLE-QUERY IMAGE SETTING

Drone → Satellite

Query 150m 200m 250m 300m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

50 75.00 78.99 75.00 78.50 78.75 82.27 85.00 87.41
25 71.25 75.81 73.13 77.00 76.25 80.10 85.63 87.58
10 67.75 72.68 69.00 73.50 76.25 79.95 84,25 86.57
5 65.37 70.49 68.25 72.72 75.50 79.22 82.00 84.75
1 59.32 64.93 62.30 67.24 71.35 75.49 77.17 80.67

TABLE VI
TEST RESULTS OF TRANSFER LEARNING MODELS AND PRE-TRAINED WEIGHTS ON SUES-200.

Drone → Satellite

Training Set 150m 200m 250m 300m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

ImageNet 13.20 17.83 16.70 22.15 13.55 17.96 14.27 18.84
University-1652 54.90 61.11 63.55 68.82 68.53 73.20 72.00 76.29
SUES-200(from scratch) 14.43 19.03 18.25 23.25 21.22 26.36 24.30 29.96
SUES-200(ImageNet pre-trained) 59.32 64.93 62.30 67.24 71.35 75.49 77.17 80.67
SUES-200(U1652 pre-trained) 71.67 75.55 75.57 78.97 79.97 82.50 81.42 84.11

Satellite → Drone

Training Set 150m 200m 250m 300m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

ImageNet 16.25 9.85 7.50 6.38 18.75 11.96 26.25 16.00
University-1652 61.25 48.08 75.00 60.24 77.50 66.51 75.00 70.29
SUES-200(from scratch) 17.50 11.62 30.00 18.56 35.00 22.13 47.50 29.46
SUES-200(ImageNet pre-trained) 82.50 58.95 85.00 62.56 88.75 69.96 96.25 84.16
SUES-200(U1652 pre-trained) 85.00 71.36 86.25 75.96 88.75 79.54 92.50 84.89

D. Transfer Learning

We consider whether previous datasets can help a model
learn features at different heights, and whether pre-trained
weights exhibit an impact on training process. We test
whether the models obtained from training on the ImageNet
dataset, as well as the University-1652 dataset, can extract
discriminative features at different heights. We train a model
from scratch on SUES-200 with ImageNet and University-
1652 as pre-trained weights. The backbone networks in the
above models are ViT. As shown in Table VI, the University-
1652-based transfer learning model achieves surprising results
compared to ImageNet, which validates that University-1652
can be applied to real scenes. But University-1652’s ability at
different heights is still limited because the dataset does not
distinguish the effects of different heights. Further, we find
that the model trained from scratch is much less capable of
extracting features than the model trained based on ImageNet.
Another interesting finding is that the initial training process
of the model based on the pre-trained weights of University-
1652 performed better than the one based on ImageNet, which
also shows that the initialization weights of the model are
significantly important.

E. Other Baseline Models on SUES-200

We evaluate the performance of the classical cross-
view matching model on the SUES-200 dataset. Some
previous works [17], [19] have designed deep neural networks
that achieved excellent performance on different cross-view
matching datasets. We select LCM [17] and LPN [19] and
migrate their backbone network designs into our pipeline for

training. The experimental results are shown in Table VII. Due
to the feature partitioning strategy presented by the LPN for
extracting semantic information, the strategy is able to extract
global features of the image instead of focusing on the center
of the image alone. LPN achieves competitive performance on
SUES-200, especially in Task 1.

VI. ABLATION STUDY

A. Effect of Feature Dimensions

We also consider how different feature dimensions affect
the model. The dimensionality of features extracted from
the drone and satellite images in the SUES-200 dataset was
512, as shown in Figure 7, FC1. Therefore, in the ablation
learning phase, we reset the feature dimension to 256 and
1024, keeping all other conditions constant. As shown in Table
VIII, when we set the dimension to 256, the Recall@1 and
AP accuracy both decreased. When we set the dimension to
1024, the performance is better than with 512 dimensions in
some metrics. However, 512 is still the overall optimal size
and we thus use this dimensionality in the baseline model.

B. Effects of sharing weights

We consider whether sharing weights could help the
model learn better features. With increasing height, drone
and satellite images become more and more similar. Hence,
the question arises as to whether the model learning efficiency
of the model can be improved by sharing the weights of the
backbone. We test the effects of sharing model weights on the
final test results in the baseline model. Figure 11 shows that
the evaluation metrics of both tasks show significant decreases
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TABLE VII
TEST PERFORMANCES OF LCM AND LPN ON SUES-200

Drone → Satellite

Methods 150m 200m 250m 300m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

SUES-200 baseline 59.32 64.93 62.30 67.24 71.35 75.49 77.17 80.67
LCM [17] 43.42 49.65 49.42 55.91 54.47 60.31 60.43 65.78
LPN(block=4) [19] 61.58 67.23 70.85 75.96 80.38 83.80 81.47 84.53

Satellite → Drone

Methods 150m 200m 250m 300m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

SUES-200 baseline 82.50 58.95 85.00 62.56 88.75 69.96 96.25 84.16
LCM [17] 57.50 38.11 68.75 49.19 72.50 47.94 75.00 59.36
LPN(block=4) [19] 83.75 66.78 88.75 75.01 92.50 81.34 92.50 85.72

TABLE VIII
ABLATION STUDY OF DIFFERENT FEATURE DIMENSIONS ON THE SUES-200 DATASET.

Drone → Satellite

Feature Dimension 150m 200m 250m 300m Height RobustnessRecall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

256 48.15 54.95 57.80 63.14 65.13 70.26 70.15 75.03 31.36%
512 59.32 64.93 62.30 67.24 71.35 75.49 77.17 80.67 23.13%
1024 51.13 56.71 64.35 69.09 72.25 76.34 76.63 80.24 33.28%

Satellite → Drone

Feature Dimension 150m 200m 250m 300m Height RobustnessRecall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

256 63.75 48.86 77.50 60.81 83.75 69.23 86.25 71.54 26.09%
512 82.50 58.95 85.00 62.56 88.75 69.96 96.25 84.16 14.29%
1024 72.50 52.75 83.75 67.52 88.75 76.77 90.00 76.46 19.44%

1 5 0 2 0 0 2 5 0 3 0 0

4 0

6 0

8 0

3 9 . 8 3

5 5 . 9

6 5 . 9 5 7 3 . 1 2

5 9 . 5 7
6 7 . 2 4

7 1 . 3 5
7 7 . 1 5

Re
cal

l@
1(%

)

H e i g h t ( m )

�S h a r i n g  W e i g h t s
�N o  S h a r i n g  W e i g h t s

(a)

1 5 0 2 0 0 2 5 0 3 0 0

4 0

6 0

8 0

1 0 0

5 6 . 2 5

7 3 . 7 5
8 3 . 7 5

9 3 . 7 5
8 2 . 5 8 5 8 8 . 7 5

9 6 . 2 5

H e i g h t ( m )

Re
cal

l@
1(%

)

�S h a r i n g  W e i g h t s
�N o  S h a r i n g  W e i g h t s

(b)
Fig. 11. The accuracy of Recall@1 without sharing weights is always higher than that of Recall@1 with sharing weights, but the gap decreases as the height
rises. (a) Drone → Satellite (b)Satellite → Drone

when the sharing weights are available. Still, the difference
values between the shared and unshared weights decreased
with height. Images collected with increasing height are more
similar to satellite images. One possible explanation is that
sharing weights can help the model extract more efficient
features in similar image pairs.

C. Effects of different loss function

We also consider whether other loss functions would
affect the learning performance of the model. The most
common loss functions in previous studies of matching re-

trieval tasks are contrastive loss [43] and triplet loss [44], and
these loss functions achieve good performance in other works,
such as ReID. To verify the feasibility of these loss functions
on our baseline, we strictly hold the backbone network and
other parameters constant during the experiments. From Table
IX, it may be observed that each of these three loss functions
shows advantages and disadvantages in terms of Recall@K
and AP. However, when evaluating robustness to height, the
accuracy of cross-entropy loss fall the least accuracy from
300m to 150m.
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TABLE IX
ABLATION STUDY OF DIFFERENT LOSS TERMS

Drone → Satellite

Loss 150m 200m 250m 300m Height RobustnessRecall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

CrossEntropy [43] 59.32 64.93 62.30 67.24 71.35 75.49 77.17 80.67 23.13%
Contrastive [44] 54.03 59.85 59.82 63.12 67.28 71.58 71.60 75.79 24.53%
Triplet(margin=0.3) 51.34 57.36 63.57 68.49 68.62 73.13 71.72 75.69 28.41%

Satellite → Drone

Loss 150m 200m 250m 300m RobustnessRecall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

CrossEntropy [43] 82.50 58.95 85.00 62.56 88.75 69.96 96.25 84.16 14.29%
Contrastive [44] 75.00 58.06 81.25 60.31 86.25 70.97 91.25 73.14 17.81%
Triplet(margin=0.3) 75.00 56.95 81.25 59.52 85.00 68.09 87.50 77.08 14.29%

TABLE X
ABLATION STUDY OF DISTANCE MEASUREMENT ALGORITHMS ON SUES-200

Drone → Satellite

Distance 150m 200m 250m 300m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

Euclidean 59.70 65.24 62.17 67.13 71.30 75.46 77.28 80.75
Manhattan 57.30 62.98 61.83 66.78 69.10 73.61 75.52 79.38
Cosine 59.32 64.93 62.30 67.24 71.35 75.49 77.17 80.67

Satellite → Drone

Distance 150m 200m 250m 300m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

Euclidean 81.25 58.93 85.00 62.55 90.00 69.98 95.00 84.14
Manhattan 76.25 56.80 85.00 59.69 88.75 68.29 92.50 81.98
Cosine 82.50 58.95 85.00 62.56 88.75 69.96 96.25 84.16

D. Effects of Distance Measurement Algorithm

We consider whether different distance measurement
algorithms affect the matching results. In cross-view match-
ing, several measurement algorithms exist, such as euclidean
distance, manhattan distance, and cosine distance. We apply
cosine distance in our baseline model due to its good per-
formance in image retrieval tasks [45], [46]. How do other
distance measurement algorithms perform on SUES-200? As
shown in Table X, Manhattan distance has the worst perfor-
mance compared with other distance measurement algorithms.
Euclidean distance achieves comparable results to the cosine
distance.

E. Effects of Distractors in Gallery

We also consider whether distractors affect the matching
process. In the test stage, we add training data to the gallery
set as distractors. To compare the performance of the model
without distractors, we remove training data from the gallery
set. It can be seen in Table XI, the model’s performance
improves significantly under the gallery set without distractors.
The absence of distractors made it easier for the model to find
the correct match. Therefore, we believe a gallery set with
more data allows for a more comprehensive evaluation of the
model.

F. Effects of adding the losses

We consider whether adding the losses would affect
model. To verify the effect of adding the losses from two
branches, we divide the network into two parts in the training
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Fig. 12. The structure of the model for calculating the loss separately

stage. As shown in Figure 12, we train two SE-ResNet50
models at 150m height. Their loss functions are no longer
added together, and their models were optimized indepen-
dently. Experimental results are shown in Table XII; the
performance of both tasks considerably declined. Why do the
results exceed our expectations? How is the current network
model different from the previous one? The key is the first FC
layer (See FC1 in Figure 7), which shares weights with two
branches in the original network. If we also share FC layer
weights when testing the current network, the experimental
results are presented in Table XII. we initialize FC1 and FC2
with the weight of either view in the current network (Figure
12), the result is another huge improvement compared to the
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TABLE XI
ABLATION STUDY OF DISTRACTORS ON SUES-200

Drone → Satellite

Gallery set 150m 200m 250m 300m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

No Distractors 72.03 76.12 73.18 77.10 80.48 83.31 83.17 85.90
Distractors 59.32 64.93 62.30 67.24 71.35 75.49 77.17 80.67

Satellite → Drone

Gallery set 150m 200m 250m 300m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

No Distractors 88.75 71.65 90.00 70.93 91.25 76.83 95.00 88.29
Distractors 82.50 58.95 85.00 62.56 88.75 69.96 96.25 84.16

TABLE XII
EFFECT OF ADDING THE LOSSES

Drone → Satellite
FC layer weight Recall@1 Recall@5 Recall@10 AP

Adding losses jointly optimize 56.01 80.12 91.18 62.20
Separated losses independently optimize 4.65 12.00 20.65 7.62
Satellite init 52.97 78.72 89.10 58.87
Drone init 49.20 76.40 87.55 55.42

Satellite → Drone
FC layer weight Recall@1 Recall@5 Recall@10 AP

Adding losses jointly optimize 75.00 86.12 89.58 55.51
Separated losses independently optimize 5.00 7.50 8.75 6.17
Satellite init 62.50 70.00 71.25 53.87
Drone init 50.00 57.50 63.50 44.57

TABLE XIII
EFFECT OF DIFFERENT ENSEMBLE STRATEGIES

Drone → Satellite

Method 150m 200m 250m 300m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

Average 66.25 71.61 77.50 80.84 80.00 83.84 82.50 85.49
Max pooling 58.74 65.19 72.50 76.19 66.25 72.37 77.50 80.92
Voting 55.00 62.46 71.25 75.15 76.25 79.95 84,25 86.57

former one.
Finally, we summarize the potential advantages of adding

losses. Firstly, we believe the two branches constrain each
other to jointly optimize the FC Layer, resulting in the FC layer
being able to extract features available to both views. Secondly,
a complete network system is more suitable for adjusting the
hyperparameters in the training stage.

G. Effects of different ensemble strategies

We also consider whether different ensemble strategies
would affect the multiple queries. Apart from the numerical
average, we also try other ensemble strategies. We employ max
pooling and voting to fuse features. Max pooling is a common
fusion method. We present it to extract the most remarkable
part of the feature maps. The voting method is to select the
one with the most occurrences among the predicted labels as
the prediction. We apply SE-ResNet-50 as the backbone to
evaluate those strategies. The number of query images is 50.
It can be seen in Table XIII, we observe that the numerical
average arrives better performance than Max pooling and
voting on both tasks. We also notice that as the height rises
and more predictions become correct, the performance of the
voting method also rises.

VII. VISUALIZATION

Figure 13 shows the visualization results of the baseline
model under Rank 5 at different heights and two tasks. It
may be observed that ViT (baseline) was able to retrieve the
correct result in some very similar scenes. Furthermore, we
also visualize the heat maps generated by different models on
SUES-200. Figure 14 compares the results of ResNet, Dense,
and ViT on the drone view and satellite view. We observe that
CNN-based models focused attention on the main target. ViT
was also able to notice other things in the background around
the target scene. It even had the capability to accurately depict
the shape of the target.

VIII. DISCUSSION

In this study, we find that height exhibited a significant
effect on cross-view matching. At the heights of 150m and
200m, the drone footage was more influenced by the sur-
rounding environment and the camera pose. The size of the
target scene size leads to drone images being very different
from the satellite view images. Hence, accuracy at low heights
is relatively low. However, with increasing height, the drone
is less influenced by redundant information. The accuracy of
matching gradually increases. At the same time, we consider
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that the bottleneck of previous research on cross-view match-
ing studies lies in the lack of a suitable feature extractor. As
shown in Table I, most methods are based on the same feature
extractor, ResNet.

To test the performance of these feature extractors in a
complete way, we also evaluate their performance in the
other three aspects through the pipeline. The results show
that the ViT-based model has better robustness at different
heights and uncertainties. However, it is very challenging for
most approaches to extract invariant features in wintertime.
Furthermore, the inference speed of the ViT-based model still
needs to be improved. Another limitation is that SUES-200
still suffers from a small number of samples and limited
viewpoints of the same location.

IX. CONCLUSION

In this study, we have investigated the problem of image
matching across drone and satellite views at different heights.
We have proposed a multi-height, multi-scene benchmark
called SUES-200, which contains images collected from aerial
drones and satellite images for 200 locations. We have also

presented three metrics with a pipeline to comprehensively
evaluate the model’s ability. 1) robustness at different heights;
2) robustness to uncertainties; 3) inference speed; The results
of our experiments have shown that the accuracy and precision
of matching increase as the drone’s height increases. After
evaluating different feature extractors, we provide the model
with the best overall performance as the baseline model of
SUES-200. For Drone → Satellite, baseline achieves 59.32,
62.30, 71.35, and 77.17 Recall@1 accuracy at heights of
150m, 200m, 250m, and 300m, respectively. For Satellite →
Drone, baseline achieves 82.50, 85.00, 88.75, and 96.25 Re-
call@1 accuracy in 150m, 200m, 250m, and 300m, respec-
tively. We also observe that appropriate pre-trained weights
and multiple queries can benefit the model to achieve even
better performance, which provides an approach to improve
matching efficiency further.

In the future, the main issue to be considered is how to
filter out the invalid redundant information at low heights.
We also plan to develop a network to adapt to different
flight conditions, when the cross-view matching system faces
uncertainties. Moreover, the development of a lightweight
Transformer architecture for cross-view matching would also
be very beneficial to the application of this technology. The
data of SUES-200 will also be extended in future research.
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