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Abstract—In previous deep-learning-based methods, semantic
segmentation has been regarded as a static or dynamic per-pixel
classification task, i.e., classify each pixel representation to a
specific category. However, these methods only focus on learning
better pixel representations or classification kernels while ignor-
ing the structural information of objects, which is critical to
human decision-making mechanism. In this paper, we present a
new paradigm for semantic segmentation, named structure-aware
extraction. Specifically, it generates the segmentation results
via the interactions between a set of learned structure tokens
and the image feature, which aims to progressively extract
the structural information of each category from the feature.
Extensive experiments show that our StructToken outperforms
the state-of-the-art on three widely-used benchmarks, including
ADE20K, Cityscapes, and COCO-Stuff-10K.

Index Terms—Semantic Segmentation, Transformer.

I. INTRODUCTION

W Ith the development of self-driving technology [16],
human-computer interaction [18], and augmented re-

ality [1], semantic segmentation has attracted more and more
attention.

Since the deep-learning era, semantic segmentation has been
mainly formulated as a per-pixel classification task, that is,
classifying each pixel to a specific category via a learned
classifier (such as a 1×1 convolution). According to the
property of classifier, previous works can be categorized as
two paradigms: static per-pixel classification and dynamic per-
pixel classification. As shown in Figure 1a, for the static
per-pixel classification paradigm, the classifier is fixed after
the training process. The methods following this paradigm
mainly focused on how to learn better representation for
each pixel through context modeling [7], [28], [45], [49],
[53] or automatic architecture design [11], [41], [47]. As
the static classifier learned from the dataset can be regarded
as a comprehensive representation of each class, which may
not be consistent with the representation of each object in
every image, some recent works [9], [10], [38] proposed to
dynamically learn a classifier for different inputs according to
their own contents. As shown in Figure 1b, the initial kernel is
updated by the image feature, resulting in a dynamic classifier
more adaptive to the current input.

In these two paradigms, the entire decoder is dedicated
to learning better features (including precise semantics and
details) and a more robust classifier, and the segmentation
decision is only performed in the final segmentation head
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via the per-pixel classification. However, from the human
perspective, the decision-making process of semantic segmen-
tation presents a different pattern. In particular, based on the
underlying knowledge of category-wise structural information
(such as texture, shape and spatial layout), human beings first
determine the rough area of each category and then gradually
refine it, rather than paying close attention to all the image
information at first and final performing the classification at
one time. This motivates us to explore whether a paradigm
more in line with the human decision-making process is
better than the previously popular per-pixel classification for
semantic segmentation.

In this paper, we design a human-like paradigm for semantic
segmentation, named structure-aware extraction. To simulate
human knowledge, we define a set of learnable structure
tokens, each of which is expected to model the implicit
structural information of one category. As shown in Figure 1c,
given the image feature, the structure tokens gradually extract
information from the image feature. Qualitative visualization
shows that the structural information becomes more and
more explicit during progressive extraction. Thus, the refined
structure tokens of the final layer can be directly regarded as
the segmentation result. Obviously, our paradigm is similar
to the human-like process that uses structural knowledge to
make rough discrimination first and then gradually perform
refinement.

Following our structure-aware extraction paradigm, we fur-
ther design a semantic segmentation network, named Struct-
Token, to evaluate the effectiveness of our paradigm. As
mentioned above, the extraction aims to construct the mapping
from channel slices of image features to those of structure
tokens. We instantiate the extraction operation in both content-
agnostic and content-related manners, resulting in three dif-
ferent implementations, namely point-wise extraction (PWE),
self-slice extraction (SSE) and cross-slice extraction (CSE).
The corresponding three variants are denoted as StructToken-
CSE, StructToken-SSE and StructToken-PWE, respectively.
Specifically, PWE and SSE apply point-wise convolution
and channel-wise self-attention to the concatenation of the
image feature and structure tokens, respectively. CSE performs
channel-wise cross-attention between structure tokens and
image feature, where the former is used as query and the latter
is treated as key and value. Since the point-wise convolution
kernel weights are fixed after training, the extraction in PWE is
independent of the input image, i.e., content-agnostic. While,
the attention mechanisms in SSE and CSE determine the
mapping weights according to the similarity between channel
slices, which are content-related. In addition, SSE and PWE
contain the mapping between all the channel slice pairs of
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Fig. 1. Comparison with three semantic segmentation paradigms. In (a), the segmentation results are obtained by the multiplication between the final feature
map and a static classifier, where the classifier is fixed after training. By contrast, (b) further updates the initial kernels according to the image content to
generate a dynamic classifier for each input image. In our (c), it learns a set of structure tokens, and gradually extract information from the feature map
to update structure tokens. The final structure tokens can be regarded as the segmentation results directly. C and K represent the number of channels and
categories, respectively.

image feature and structure tokens, while the more efficient
CSE only involves the one-way mapping of channel slices
from image feature to structure tokens. Interestingly, we find
that PWE shows more advantages compared with the other two
counterparts under fewer extraction operations (more details
please refer to Figure 3). Furthermore, benefiting from stronger
modeling capability, SSE begins to show its superiority under
greater challenges.

We evaluate our approach on three challenging semantic
segmentation benchmarks under different backbones. For ex-
ample, equipped with ViT-L/16 [15] as backbone, our Struct-
Token achieves 54.18% mIoU on ADE20K [55], 82.07%
mIoU on Cityscapes [12] and 49.07% mIoU on COCO-Stuff-
10K [3] respectively, which outperforms the state-of-the-art
methods. Our main contributions include:
• We propose a new paradigm for semantic segmentation,

termed structure-aware extraction paradigm, which fol-
lows a similar mechanism as humans and emphasizes the
critical effect of structural information.

• We present a network, named StructToken under our
structure-aware extraction paradigm, and explore the dif-
ferent implementations of the extraction process.

• Extensive experiments verify the effectiveness of our ap-
proach and show the prospect of human-like segmentation
paradigm.

II. RELATED WORK

Static Per-pixel Classification Paradigm. Since Fully Con-
volutional Networks (FCN) [34] were proposed, per-pixel
classification has dominated semantic segmentation. It clas-
sifies each pixel to a specific category via a fixed classifier
(such as a 1×1 convolution), which is unchangeable after the
training process. The methods under this paradigm mainly
focused on how to learn better representation for each pixel
via context modeling and fusion. The early PSPNet [53] used
a pyramid pooling module to make multi-scale context fusion.
The DeepLab family [5], [6] introduced the dilated convolution
to expand the receptive fields. DANet [17], DSANet [22],
CCNet [23] and OCRNet [49] used non-local modules to
model more precise context information. [42] proposed a
stage-aware feature alignment module to align and fusion of

features between adjacent levels. [39] proposed the Gaussian
dynamic convolution to adaptive fusion context information.
[24] enhance the ability to locate object boundaries by cas-
caded CRFs. [25] extract the non-rigid geometry features by
deformable convolution. [2] strengthens that connection to
the same object through the object-level semantic integration
module for more efficient integration of context information.
In addition, STLNet [56] starts to consider the structural infor-
mation of the image itself, by introducing the texture enhance
module and pyramid texture feature extraction Module to
model the structural properties of textures in images. However,
STLNet does it by modeling or statistically contextualizing
the information itself, and it is still a per-pixel classification
paradigm. Recent work [32], [36], [43], [46], [50], [54] began
to use transformer architecture to capture long-range context
information.

Dynamic Per-pixel Classification Paradigm. Compared with
the static one, this paradigm dynamically generates classifiers
for each category based on the image content. Specifically,
it establishes the connection between the image content and
the classifier through attention and facilitates the classifier to
be more suitable for the current sample image through the
concatenation of multiple blocks. Segmenter [38] employed
the transformer to jointly process the patches and class em-
beddings (tokens) during the decoding phase and let the class
tokens perform matrix multiplication with the feature map to
produce the final score map. MaskFormer [10] unified instance
segmentation and semantic segmentation architecture by per-
forming matrix multiplication between class tokens and feature
maps and using a binary matching mechanism. Mask2Former
[9] and K-Net [52] used learned semantic tokens, which are
equivalent to the class tokens, to replace 1×1 convolution
kernels and used binary matching to unify semantic, instance,
and panoptic segmentation tasks.

However, both of these two paradigms ignore the structural
information of each category, which is critical in the human
decision-making mechanism. Inspired by the segmentation
discrimination mechanism of the human brain, we aim to
explore a new paradigm to focus more on how to use the
structural information as a cue for semantic segmentation task.
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Fig. 2. The overall framework of our StructToken. (a), (b) and (c) illustrate three different implementations of the extraction module, respectively. Here h and
w represent the height and width of the original image, while H and W represent the height and width of the feature map output by backbone (e.g. using ViT
[15] as the backbone, the size of the output feature map is 1/16 of the original image). HS and WS represent the height and width of the structure t okens.
The Q, K and V in CSE and SSE represent the query, key, and value output by the mapping functions Φ and Ψ, respectively. For more details, please see
the method section.

III. METHOD

In this section, we first present the overall framework of
our StructToken. Then, we give the details about two basic
components in each block of the decoder, the interaction
module and the feed-forward network, respectively.

A. Framework

The overall framework of our StructToken is shown in
Figure 2. Given an input image I ∈ R3×h×w, we first use
a single-scale backbone (such as ViT [15]) to generate the
feature map F ∈ RC×H×W . C is the channel number, and
the (h,w) and (H,W ) represent the spatial size (height and
width) of the input image and feature map, respectively. Then,
the feature map F and structure tokens S ∈ RK×Hs×Ws

are sent to the decoder, where K means the total number
of categories within the dataset. The structure tokens are
learnable during training and fixed during inference, each
of which contains the implicit structural information of a
specific category. Note that, when (H,W ) 6= (Hs,Ws), the
structure tokens are interpolated to the same spatial size of
the feature map F . The whole decoder contains L consecutive
blocks. Each block consists of an extraction module and two
feed-forward networks (FFN). The extraction module aims
to extract the structural information from the feature map to
structure tokens, and each of the resulting structure tokens
can be regarded as a mask for each category. The two FFN
are used to refine the F and S via channel-wise projection
respectively. For the last block, only the FFN for structure
tokens is required because the feature map is not used in the
following process.

Finally, a simple ConvBlock [21], including two 3×3 convo-
lutions and a skip connection, is applied to the output structure

tokens of the last block to further refine the segmentation
results.

B. Extraction Module

As the structure tokens are learned from the whole dataset,
the structural information in them is abstract and implicit,
which entails further specification and refinement according to
the current input image. Accordingly, the extraction module is
designed to extract the structural information from the feature
map to structure tokens. For comprehensiveness, we explore
using content-agnostic convolution and content-related atten-
tion to implement the extraction operation, resulting in three
variants: point-wise extraction (PWE), self-slice extraction
(SSE), and cross-slice extraction (CSE), respectively. Specif-
ically, PWE and SSE apply 1 × 1 convolution and channel-
wise self-attention to the concatenation of the image feature
and structure tokens, respectively. CSE performs channel-wise
cross-attention between structure tokens and image feature,
where the query comes from the former and the latter is
treated as key and value. Since the extraction weights in PWE
are independent of the input image, it is content-agnostic,
while the attention-based SSE and CSE are content-related.
In addition, CSE can be regarded as a simplified version of
SSE with only one-way mapping of channel slices from image
feature to structure tokens. We provide the implementation
details of these three variants as follows.

1) Cross-Slice Extraction: Considering that cross-attention
is a well-known operation to aggregate information from one
thing to another, which is highly compatible with the role
of our interaction module. Thus, we utilize cross-attention to
extract structural information from the feature map to structure
tokens. Such process is named cross-slice extraction (CSE).
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The forward pass of CSE in the i-th block can be formulated
as follows:

Qi = Φq(Si), Ki = Φk(Fi), Vi = Φv(Fi), (1)

Si+1 = Softmax(
Qi ×KTi√

C
)× Vi, (2)

where Fi ∈ RC×HW is the input feature map, and Si ∈
RK×HW denotes the structure tokens, which can be viewed
as K tokens, each of which is a 2-dimension slice with height
H and width W . The query in cross-attention is generated
by structure tokens, and the feature map is used to construct
key and value. As the original definition in [40], the projection
layers Φα∈{q,k,v} here play a role of re-mapping each token in
Si and Fi via the same pattern. However, simply performing a
fully-connected layer along the HW dimension on each token
leads to the incompatibility for input images with arbitrary size
as well as the multi-scale inference process. In order to solve
this problem, we replaced the three fully-connected projections
with local-connected ones. Specifically, the Φα∈{q,k,v} in Eq.
(1) is formulated as follows:

Φα∈{q,k,v}(x) = ζα(φα(ξα(x))), (3)

where φα denotes a 3×3 depth-wise convolution which maps
each token locally. ζα and ξα are 1×1 point-wise convolution
to make each token have a preview of its counterparts.

2) Self-Slice Extraction: In this variant, we use self-
attention to interact structure tokens and the feature map with
each other. Specifically, in the forward process of the i-th
block, it first concatenates the structure tokens Si ∈ RK×HW
and the feature map Fi ∈ RC×HW along the channel dimen-
sion,

Gi = Concat(Si,Fi) ∈ R(C+K)×HW , (4)

Then, the self-attention is performed on Gi to exchange
information between structure tokens and feature map,

Qi = Ψq(Gi), Ki = Ψk(Gi), Vi = Ψv(Gi), (5)

Ĝi = Softmax(
Qi ×KTi√

C
)× Vi, (6)

where, the projection layer Ψα∈{q,k,v} share the same im-
plementation of the Φα∈{q,k,v} in CSE. Qi, Ki and Vi have
the same shape with (C + K) × HW . Finally, the structure
tokens Si+1 ∈ RK×HW and feature map Fi+1 ∈ RC×HW
are divided from the updated Ĝi by directly split along the
channel dimension,

Si+1,Fi+1 = Split(Ĝi). (7)

It can be found that the interaction in CSE is uni-directional
(S → F) with only structure tokens being updated, while our
SSE achieves a more comprehensive bi-directional interaction
(S ↔ F) in which both structure tokens and feature map are
updated. Thus, SSE can be regarded as an extension of the
CSE.

3) Point-Wise Extraction: As stated above, the attention
map (with shape R(C+K)×(C+K)) in SSE represents the
aggregation weights for every slice of the concatenated feature,
which is further used to filter out the unuseful information.
Different from using dot-product to generate the aggregation
weights, our point-wise extraction (PWE) is designed to di-
rectly learn the weights via a simple point-wise convolution
layer. To be specific, in the forward process of the i-th decoder
block, we also first concatenate the structure tokens Si ∈
RK×HW and the feature map Fi ∈ RC×HW according to Eq.
(4), resulting in Gi ∈ R(C+K)×HW . Then, the interaction is
performed via the point-wise convolution Ω, whose parameters
are deemed the aggregation weights,

G̃i = Υ(Gi) ∈ R(C+K)×HW , (8)

Ĝi = Ω(G̃i) ∈ R(C+K)×HW , (9)

where the projection layer Υ is implemented same as the Ψ
and Φ in Eq. (1) and Eq. (5). The Ω denotes the point-wise
convolution.

C. Feed-Forward Networks (FFN)

The traditional feed-forward networks (FFN) [40] is com-
prised of two consecutive fully connected layers to expand
and shrink the channel dimension respectively. Considering
that the FFN in our framework plays a role of refinement,
we added a lightweight 3×3 group convolution [29] between
the original two fully connected layers to involve more local
context (ablated in Table III).

IV. EXPERIMENTS

We first introduce the datasets and implementation details.
Then, we compare our method with the recent state-of-the-
arts on three challenging semantic segmentation benchmarks.
Finally, comprehensive ablation studies and visual analysis are
conducted to evaluate the effectiveness of our approach.

A. Datasets

ADE20K [55] is a challenging scene parsing dataset, which is
split into 20210 and 2000 images for training and validation,
respectively. It has 150 fine-grained object categories and
diverse scenes with 1,038 image-level labels.
Cityscapes [12] carefully annotates 19 object categories of
urban driveway landscape images. It contains 5K finely an-
notated images and is divided into 2975 and 500 images
for training and validation, respectively. It is a high-quality
dataset.
COCO-Stuff-10K [3] is a significant scene parsing bench-
mark with 9000 training images and 1000 testing images. It
has 171 categories.

B. Implementation Details

All the experiments are conducted on 8 NVIDIA Tesla V100
GPUs (32 GB memory per-card) with PyTorch implement
and mmsegmentation [35] codebase. We use ViT [15] as the
backbone. During training, we follow the common setting
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE ADE20K
DATASET. “SS” AND “MS” INDICATE SINGLE-SCALE AND MULTI-SCALE
INFERENCE, RESPECTIVELY. † MEANS THE VIT MODELS TRAINED FROM

SCRATCH ON IMAGENET-21K AND FINE-TUNED ON IMAGENET-1K [37]. ∗
REPRESENTS OUR IMPLEMENTATION UNDER THE SAME SETTINGS AS THE

OFFICIAL REPO.

Method Venue Backbone GFLOPs Params mIoU mIoU
(SS) (MS)

FCN [34] CVPR15 ResNet-101 276 69M 39.91 41.40
EncNet [51] CVPR18 ResNet-101 219 55M - 44.65
OCRNet [49] ECCV20 HRNet-W48 165 71M 43.25 44.88
CCNet [23] ICCV19 ResNet-101 278 69M 43.71 45.04
ANN [57] ICCV19 ResNet-101 263 65M - 45.24
PSPNet [53] CVPR17 ResNet-101 256 68M 44.39 45.35
FPT [50] ECCV20 ResNet-101 - - - 45.90
DeepLabV3+ [7] ECCV18 ResNet-101 255 63M 45.47 46.35
STLNet [56] CVPR21 ResNet-101 - - - 46.48
DMNet [19] ICCV19 ResNet-101 274 72M 45.42 46.76
ISNet [27] ICCV21 ResNeSt-101 - - - 47.55
DPT [36] ICCV21 ViT-Hybrid - - - 49.02
DPT∗ ICCV21 ViT-L/16† 328 338M 49.16 49.52
UperNet∗ ECCV18 ViT-L/16† 710 354M 48.64 50.00
SETR [54] CVPR21 ViT-L/16 214 310M 48.64 50.28
MCIBI [26] ICCV21 ViT-L/16 - - - 50.80
SegFormer [46] NeurIPS21 MiT-B5 183 85M - 51.80
SETR-MLA∗ CVPR21 ViT-L/16† 214 310M 50.45 52.06
UperNet [33] ECCV18 Swin-L 647 234M 52.10 53.50
Segmenter [38] ICCV21 ViT-L/16† 380 342M 51.80 53.60
StructToken-SSE - ViT-L/16† 486 395M 52.82 54.00
StructToken-CSE - ViT-L/16† 398 350M 52.84 54.18
StructToken-PWE - ViT-L/16† 442 379M 52.95 54.03

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE

CITYSCAPES VALIDATION SET.

Method Venue Backbone GFLOPs Params mIoU mIoU
(SS) (MS)

FCN [34] CVPR15 ResNet-101 633 69M 75.52 76.61
EncNet [51] CVPR18 ResNet-101 502 55M 76.10 76.97
PSPNet [53] CVPR17 ResNet-101 585 68M 78.87 80.04
GCNet [4] ICCVW19 ResNet-101 632 69M 79.18 80.71
DNLNet [48] ECCV20 ResNet-101 637 69M 79.41 80.68
CCNet [23] ICCV19 ResNet-101 639 69M 79.45 80.66
Segmenter [38] ICCV21 DeiT-B - - 79.00 80.60
Segmenter [38] ICCV21 ViT-L/16 553 340M 79.10 81.30
StructToken-CSE - ViT-L/16 567 349M 79.64 81.98
StructToken-SSE - ViT-L/16 651 377M 80.01 82.02
StructToken-PWE - ViT-L/16 600 364M 80.05 82.07

using data augmentation such as random horizontal flipping,
random resize, random cropping (512×512 for ADE20K and
COCO-Stuff-10K, 768 × 768 for Cityscapes and 640×640
with ViT-L/16 for ADE20K), etc. As for optimization, we
adopt a polynomial learning rate decay schedule; following
prior works [33], we employ AdamW to optimize our model
with 0.9 momenta and 0.01 weight decay; we set the initial
learning rate as 2e-5. The batch size is set to 16 for all datasets.
The total iterations are 160k, 80k, and 80k for ADE20K,
Cityscapes and COCO-Stuff-10K, respectively. For inference,
we follow previous work [33], [54] to average the multi-scale
(0.5, 0.75, 1.0, 1.25, 1.5, 1.75) predictions of our model.
Interpolation operations are used for multi-scale inference.
The slide-window test is applied here. The performance is
measured by the widely-used mean intersection of union

(mIoU) in all experiments. Considering the effectiveness and
efficiency, we adopt the ViT-T/16 [15] as the backbone in the
ablation study on ADE20K.

C. Comparisons with the State-of-the-art Methods

1) Results on ADE20K: Table I reports the comparison
with the state-of-the-art methods on the ADE20K validation
set. From these results, it can be seen that our StructToken
is +1.02%, +1.15% and +1.04% mIoU (52.82, 52.95 and
52.84 vs. 51.80) higher than Segmenter [38] with the same
input size (640×640), respectively. When multi-scale testing is
adopted, our StructToken is +0.4%, +0.43% and +0.58% mIoU
(54.00, 54.03 and 54.18 vs. 53.60) higher than Segmenter,
respectively. For ViT-T/16, as shown in Table V, our best
results is +0.86% mIoU (42.99 vs. 42.13) higher than DPT [36]
with the same input size (512×512). For ViT-S/16, our best
result is +1.44% mIoU (48.89 vs. 47.45) higher than DPT. For
ViT-B/16, our best result is +1.82% mIoU (51.82 vs. 50.00)
higher than Segmenter. Furthermore, the larger the model is,
the better StructToken performs.

2) Results on Cityscapes: Table II demonstrates the com-
parison results on the validation set of Cityscapes. The previ-
ous state-of-the-art method Segmenter with ViT-L/16 achieves
79.10% mIoU. Our StructToken is +0.54%, +0.91% and
+0.95% mIoU (79.64, 80.01 and 80.05 vs. 79.10) higher than
it, respectively. As to multi-scale inference, our method is
+0.68%, +0.72% and +0.77% mIoU (81.98, 82.02, 82.07 vs.
81.30) higher than Segmenter, respectively.

3) Results on COCO-Stuff-10K: Table IV compares the
segmentation results on the COCO-Stuff-10K testing set. It
can be seen that our StructToken-SSE can achieve 49.07%
mIoU, and our method is +4.18% mIoU higher than MCIBI
[26] (49.07 vs. 44.89).

D. Ablation Study

In this section, all the models in the following experiments
adopt ViT-T/16 [15] as the backbone and are trained on
ADE20K training set for 160K iterations. Our baseline model
is the CSE module and FFN module without grouped convo-
lution. Note that we does not perform ablation experiments
using a fully connected layer to map query, key, and value
matrices because it does not support the multi-scale inference.

1) Effect of Each Component: As shown in Table III, we
experiment with adding a 3×3 group convolution layer [29] to
the FFN module and a ConvBlock to the model. In addition,
the FLOPs of FFN with a group convolution layer are only
0.002G, which is ignored in Table III. It is a lightweight
convolution layer, and the performance of the model reaches
39.12% mIoU after the FFN module and ConvBlock module
are added, which is +1.41% mIoU (39.12 vs. 37.71) higher
than the base model, and +1.33 % mIoU (40.23 vs. 38.90) for
multi-scale inference.

2) Number of Blocks: Figure 3 shows the comparison
among StructToken-CSE, StructToken-SSE and StructToken-
PWE under different block numbers. It can be seen that
the performance of all the variants presents an upward trend
with the increase of block number. For the trade-off between
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TABLE III
ABLATION STUDY OF EACH COMPONENT IN OUR STRUCTTOKEN ON ADE20K. “♦” MEANS THE BASIC ARCHITECTURE OF FFN, i.e., TWO

CONSECUTIVE LINEAR LAYERS, AND “♦♠” DENOTES THE ABOVE BASIC FFN WITH A 3× 3 GROUP CONVOLUTION BETWEEN TWO LINEAR LAYERS TO
ENHANCE THE LOCALITY. ALL THE EXPERIMENTS ARE EQUIPPED WITH VIT-T/16 AS THE BACKBONE.

Interaction Module FFN ConvBlock GFLOPs Params mIoU mIoU
(SS) (MS)

CSE ♦ 6.74 8.5M 37.71 38.90
CSE ♦ ♠ 6.74 8.5M 38.17 38.85
CSE ♦ X 7.16 8.9M 38.01 39.29
CSE ♦ ♠ X 7.16 8.9M 39.12 40.23

TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE

COCO-STUFF-10K DATASET.

Method Venue Backbone mIoU
(MS)

PSPNet [53] CVPR17 ResNet-101 38.86
SVCNet [13] CVPR19 ResNet-101 39.60
DANet [17] CVPR19 ResNet-101 39.70
EMANet [31] ICCV19 ResNet-101 39.90
SpyGR [30] CVPR20 ResNet-101 39.90
ACNet [14] ICCV19 ResNet-101 40.10
OCRNet [49] ECCV20 HRNet-W48 40.50
GINet [44] ECCV20 ResNet-101 40.60
RecoNet [8] ECCV20 ResNet-101 41.50
ISNet [27] ICCV21 ResNeSt-101 42.08
MCIBI [26] ICCV21 ViT-L/16 44.89
StructToken-PWE - ViT-L/16 48.24
StructToken-CSE - ViT-L/16 48.71
StructToken-SSE - ViT-L/16 49.07

TABLE V
COMPARE THE PERFORMANCE OF VIT VARIANTS ON THE ADE20K

DATASET.

Method Backbone GFLOPs Params mIoU mIoU
(SS) (MS)

Segmenter 6 7M 38.10 38.80
UperNet 35 11M 38.93 39.19
SETR-MLA 10 11 39.88 41.09
DPT ViT-T/16 104 17M 40.82 42.13
StructToken-CSE 7 9M 39.12 40.23
StructToken-SSE 13 14M 40.81 42.24
StructToken-PWE 10 12M 41.87 42.99
UperNet 140 42M 45.53 46.14
SETR-MLA 21 27M 44.85 46.30
Segmenter 22 27M 45.00 46.90
DPT ViT-S/16 118 36M 46.37 47.45
StructToken-CSE 23 30M 45.86 47.44
StructToken-SSE 37 41M 47.11 49.07
StructToken-PWE 31 38M 47.36 48.89
UperNet 292 128M 46.58 47.47
DPT 171 110M 47.20 47.86
SETR-MLA 65 92M 48.21 49.32
Segmenter ViT-B/16 81 107M 49.00 50.00
StructToken-CSE 86 113M 49.51 50.87
StructToken-SSE 123 142M 50.72 51.85
StructToken-PWE 105 132M 50.92 51.82

performance and computation complexity and the number of
parameters, we choose to use 4 blocks by default for all
the variants, which also means that the performance of our
StructToken in Table I,II and IV are lower than its upper
bound. Interestingly, SSE and CSE with more flexible content-
related attention operation perform worse than the content-
agnostic PWE, and performance gap between them narrows

Block Number

m
Io

U
 (%

)
37

38

39

40

41

42

1 2 4 6 8

Parameters (M)

6 10 14 18 22

PWECSE SSE

Fig. 3. Comparison under different block numbers on ADE20K. Here, ViT-
T/16 is used as the backbone.

with the increase of block number. This may be attributed to
the more inflexible convolution operation easier to learn, while
the attention operation need more blocks to show its strengths.

3) Comparison of CSE, SSE and PWE: We compare these
three variants from the following three aspects: (a) The com-
plexity of scenarios. As can be seen from Table I, II and IV,
StructToken-PWE tends to perform better under small dataset
and simple scenario (e.g., cityscapes with 19 categories). For
the moderately complex scenarios (such as ADE20k with 150
classes), SSE, CSE and PWE have similar performanc, in
addition CSE saves 18% GFLOPs compared to SSE. However,
as the scenario becomes more complicated (e.g., COCO-
Stuff-10K with 171 categories), content-related attention (i.e.,
SSE and CSE) begins to show its strengths, having benefited
from dynamic modeling. The SSE with greater complexity
performs better in this case. Compared to SSE and CSE,
while PWE performs poorly on larger datasets, it performs
well on smaller ones. (b) Strength of backbone. As shown
in Table V, when using ViT-T/16 [15] as the backbone,
StructToken-PWE surpasses CSE and SSE counterparts by a
large margin, with +2.75% and +1.06% mIoU respectively. As
the backbone gets stronger, such performance gap gradually
narrows (StructToken-PWE is only +0.2% mIoU higher than
StructToken-SSE), and the content-relevant SSE gradually
shows its advantages. In addition, content-relevant attention
is more dependent on the features extracted by the backbone,
and the richer the features, the better the performance. (c)
Number of decoder blocks. The quantitative results in Figure
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Fig. 4. Visualization of our three variants following structure-aware extraction paradigm (row 1∼3) and their counterpart following per-pixel classification
paradigm (row 4). We choose two examples (1st column) including “car” and “door” category respectively. For the 1st ∼ 3rd row of each example, the S in
the second column denotes the structure tokens learned from the dataset, which contains the implicit structural information of each category. Si in 3rd ∼6th
columns represent the output structure tokens of the ith block. The Y in the last column indicates the output score map in the final layer. For the 4th row of
each example, the F in the second column denotes the backbone output feature, and Fi in the 3rd ∼6th columns represent the output feature of ith residual
block. “IoU” means the intersect over union score of the specific class (“car” or “door”) in the image.

3 and qualitative visualization in Figure 4 show that PWE has a
stronger advantage with few decoder blocks. The performance
gap is reduced with the increase of block number.

E. Visual Analysis
To better understand the mechanism of our paradigm, we

visualize the evolution of structure tokens with progressive
extraction operations to show how it works. Figure 4 shows
two examples sampled from ADE20K dataset, containing
“car” and “door” respectively. We compare the three extraction
methods in the first three rows of each example, where
the 2nd column denotes the learned structure token slice
corresponding to a specific category (“car” or “door”) and the
3rd ∼6th columns represent its updated results in 1st ∼4th

blocks. From the 2nd column, we can find that the structure
token learned from dataset is relatively abstract. It does not
present an obvious object pattern, which is also understandable
because of the diversity of objects in each category. The
3rd ∼6th columns show that the structural information in the
structure token is more and more obvious with the gradual

extraction operations. In addition, StructToken-PWE presents
a rough object outline after the first block (3rd column), while
such phenomenon is much more ambiguous in the other two
counterparts, which means that PWE can extract information
from the image feature much faster. In contrast, the extraction
process of content-related SSE seems the slowest.

We further visually compare our paradigms and per-pixel
classification paradigms to better understand the differences in
how they work. For better comparison, we instantiate a model
following the per-pixel classification paradigm as a counter-
part, which is more aligned with our paradigm. Specifically,
we first apply a 1 × 1 convolution on the backbone output
feature to project the channel number to the category number,
then use four residual blocks [20] to transform the feature
map, followed by a 1 × 1 convolution to generate the final
segmentation result. So the feature map output of each residual
block has a similar meaning to structure tokens, i.e., each
slice contains the structure information of a specific category.
But their difference is that the structural information in the
per-pixel classification paradigm only comes from the current
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input image, while the structural information in structure
tokens is the prior knowledge learned from the dataset. In
Figure 4, the 4th row of each example shows the visualization
of the feature slice corresponding to the specific category from
each residual block output. We can find that even though the
per-pixel classification paradigm is similar with our paradigm
in the final mIoU and output feature of the segmentation
head, the feature map after each block presents a completely
different pattern compared with the structure tokens. From
1st ∼3rd rows, we can see the clear structure of the “car” and
“door” categories in the structure tokens. In contrast, in the 4th

row, we can only see the blurry structure or even no structure
of the semantic class until the 1×1 convolution transform the
feature maps to per-pixel classification score map. Such more
explicit structure information provides strong evidence of the
strength of our paradigm in retaining structural information.

V. CONCLUSION

In this paper, we propose a new paradigm different from
the per-pixel classification, termed structure-aware extraction.
The classical per-pixel classification methods only focus on
learning better pixel representations or classification kernels
while ignoring the structural information of objects, which
is critical to human decision-making mechanism. In con-
trast, structure-aware extraction has a good ability to extract
structural features. Specifically, it generates the segmentation
results via the interactions between a set of learned structure
tokens and the image feature, which aims to progressively
extract the structural information of each category from the
feature. We hope this work can bring some fundamental
enlightenment to semantic segmentation and other tasks.
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