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Abstract

Depth prediction is a critical problem in robotics applica-

tions especially autonomous driving. Generally, depth pre-

diction based on binocular stereo matching and fusion of

monocular image and laser point cloud are two mainstream

methods. However, the former usually suffers from over-

fitting while building cost volume, and the latter has a lim-

ited generalization due to the lack of geometric constraint.

To solve these problems, we propose a novel multimodal

neural network, namely UAMD-Net, for dense depth com-

pletion based on fusion of binocular stereo matching and

the weak constrain from the sparse point clouds. Specifi-

cally, the sparse point clouds are converted to sparse depth

map and sent to the multimodal feature encoder (MFE)

with binocular image, constructing a cross-modal cost vol-

ume. Then, it will be further processed by the multi-

modal feature aggregator (MFA) and the depth regression

layer. Furthermore, the existing multimodal methods ig-

nore the problem of modal dependence, that is, the net-

work will not work when a certain modal input has a prob-

lem. Therefore, we propose a new training strategy called

Modal-dropout which enables the network to be adaptively

trained with multiple modal inputs and inference with spe-

cific modal inputs. Benefiting from the flexible network

structure and adaptive training method, our proposed net-

work can realize unified training under various modal in-

put conditions. Comprehensive experiments conducted on

KITTI depth completion benchmark demonstrate that our

method produces robust results and outperforms other state-

of-the-art methods.

1 Introduction

Dense depth prediction is of great significance to the

robotics applications such as autonomous driving. The ac-

*Corresponding author.

quisition of depth information is the prerequisite for solv-

ing the tasks like obstacle avoidance, 3D object detection

and 3D scene reconstruction [12]. Typically, there are two

major application environments, indoors and outdoors. For

the former, the mainstream method is using the depth cam-

era to proactively acquire the depth information or utilizing

the stereo vision in a passive way. But for the latter, it is

better to apply the stereo vision or LiDAR sensors [19]. Be-

sides, estimating the depth directly from monocular image

[18, 6, 5, 21, 22, 7] is also an attempt although it is a morbid

problem. Recently, stereo vision algorithms have achieved

an impressive progress both in supervised [1, 10, 23, 4] and

in self-supervised way [9, 26, 17, 14], but the problems

of weak texture failure and over fitting are still unsolved,

which will lead to limited accuracy. In contrast, LiDAR sen-

sors can provide reliable and accurate depth sensing. But

unfortunately, current LiDAR sensors only acquire sparse

depth measurements which is not sufficient for real applica-

tions such as robotic navigation. Therefore, how to get both

dense and accurate depth perception is still a challenging

topic.

Many recent works on this topic turn on the trend of

multimodal learning by fusing monocular image informa-

tion and sparse depth measurements for depth completion.

Cheng et al. [3, 2] proposed to utilize the convolutional

spatial propagation network (CSPN, CSPN++) to assemble

the features learning from monocular image and the corre-

sponding LiDAR scans. Similarly, Park et al. [16] contin-

ued this idea and put forward the non-local spatial propaga-

tion network (NLSPN) that predicted non-local neighbors

for each pixel, aiming to solve the mixed-depth problem.

In contrast to the application of spatial propagation scheme,

Tang et al. [19] proposed to fuse the LiDAR data and RGB

image information by performing GuideNet which consists

of learnable content-dependent and spatially-variant ker-

nels. Zhao et al. [25] proposed to adopt the graph propaga-

tion to capture the observed spatial contexts. More recently,

PENet [11] and FCFR-Net [13] were proposed to carried

out the depth completion through a two-stage coarse-to-
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Figure 1. The network architecture of the proposed UAMD­Net, which consists of three main compo­

nents: multimodal feature encoder (MFE), multimodal feature aggregator (MFA) and Depth Regres­

sion Layer (DRL).

fine mechanism. Although these methods have achieved

remarkable results, its demand for a huge amount of label

data and a long training time for convergence cannot be ig-

nored. Besides, the hard fitting of monocular image and

scene depth lacks geometric constraints, which will lead to

scene dependence and limited generalization.

Instead of establishing the multimodal depth completion

network based on monocular image and sparse point cloud,

LiStereo [24] was the pioneer to make use of the multi-

modal learning of binocular image and sparse depth mea-

surements. Except training on supervised mode, it also can

be trained on semi-supervised mode benefited from the view

synthesis scheme of binocular image and the weak con-

straint from the sparse point cloud. However, its feature

fusion and aggregation modules are not sufficient for pro-

ducing satisfactory results.

Besides, all these existing multimodal methods ignore

the problem of modal dependence, which means the net-

work will not work when a certain modal input has a prob-

lem.

To address the aforementioned issues, in this paper

we propose a unified multimodal neural network, namely

UAMD-Net, that is capable to fuse the feature learning of

binocular image and sparse depth map. Specifically, it con-

sists of the MFE and MFA module which can extract the

cross-modal features to construct the 4D cost volume and

then accomplish the feature aggregation based on 3D con-

volution. Besides, to solve the modal dependence problem,

we propose a new training scheme called Modal-dropout

which is capable to adaptively train the network with multi-

ple modal inputs and inference with specific modal inputs.

In particular, the flexible network structure and adaptive

training method enable the network to realize unified train-

ing under various modal input conditions, including binoc-

ular stereo matching (dual), fusion of monocular image and

sparse depth map (mono lidar), and combination of binoc-

ular image and sparse depth map (dual lidar). We con-

ducted extensive experiments on KITTI depth completion

benchmark and the results show that our technique achieves

strong results and outperforms current state-of-the art meth-

ods.

In short, the contributions of our research include:

• We propose a novel multimodal neural network for

realizing depth completion, which we called UAMD-

Net. It is capable to combine the advantages of binoc-

ular stereo matching and sparse point cloud constraint

to get rid of the risk of over fitting and obtain better

generalization performance.

• We propose a new training strategy called Modal-

dropout to solve the modal dependence problem for

multimodal learning. To the best of our knowledge,

this is the first trial to provide a viable solution to the

modal dependence problem.
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Figure 2. The extended network structure of UAMD­Net integrating three new modules including

modal dropout trigger (MDT), conditional feature fusion layer (CFFL) and conditional feature aggre­
gation layer (CFAL), which is designed for carrying out the proposed Modal­dropout training scheme.

• Our proposed network has great flexibility to realize

unified training under various modal input conditions.

Extensive experimental results on KITTI depth com-

pletion benchmark demonstrate the superiority of our

proposed method quantificationally and qualitatively.

2 Related Work

2.1 Monocular Depth Estimation

The first work of monocular depth estimation can be

traced back to 2005, when Saxena et al. constructed a

Gaussian MRF probabilistic model by handcraft features to

directly perform RGB-to-depth regression. With the pop-

ularity of convolutional neural network (CNN), a series

of CNN-based monocular depth estimation networks have

been proposed [6, 5, 21, 22, 7, 15], and achieved a constant

improvement in accuracy. However, since monocular depth

estimation is an ill-conditioned problem that relies heavily

on the learning of scene texture and structure information,

it is difficult to solve the problem of scene generalization.

2.2 Depth Estimation Based on Stereo Match

Unlike monocular depth estimation, binocular depth es-

timation can use the geometric constraints of stereo match-

ing for depth prediction. Generally, it can be divided into

two learning paradigms. The first one is supervised learn-

ing. This kind of methods usually apply a two-stream neural

network to extract binocular image features, then construct

the matching cost volume for further depth regression, like

[1, 10, 23, 4]. The second one is self-supervised learn-

ing. This kind of methods perform self-supervised learning

through the mechanism of view synthesis without the need

for labeled data, such as [9, 26, 17, 14]. Although binocular

depth estimation can utilize the geometric prior information

of the scene, the constraint based on the similarity of the

matching pixels in the left and right views is not strong,

which easily leads to the problem of overfitting.

2.3 Depth Completion Based on Multimodal
Learning

Recently, depth completion based on multimodal learn-

ing receives raising spotlight. CSPN [3] started a fashion

of fusing of features learning from monocular image and

the corresponding depth measurement through the convolu-

tional spatial propagation network. Soon after, CSPN++ [2]

further improves the effectiveness and efficiency of CSPN

by learning adaptive convolutional kernel sizes and the

number of iterations for the propagation. Park et al. [16]

put forward the non-local spatial propagation network (NL-

SPN) that predicted non-local neighbors for each pixel, aim-

ing to solve the mixed-depth problem. Except the applica-

tion of spatial propagation scheme, Tang et al. [19] pro-

posed GuideNet to fuse the LiDAR data and RGB image

information by performing learnable content-dependent and

spatially-variant kernels. Zhao et al. [25] proposed to adopt
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the graph propagation to model the observed spatial con-

texts with depth values, so as to better guide the recovery

of the unobserved pixels’ depth. More recently, PENet [11]

and FCFR-Net [13] were proposed to carried out the depth

completion through a two-stage coarse-to-fine mechanism

and achieved impressive results. However, these methods

need be trained in supervised learning mode, which require

a large amount of annotated label. In order to get rid of

the limit of supervised learning, Zhang et al. proposed LiS-

tereo [24] to realize depth completion by accomplishing the

multimodal learning of binocular image and sparse depth

measurements. It can be trained on semi-supervised mode

based on the view synthesis scheme of binocular image and

the weak constraint from the sparse point cloud. However,

since the sparse point cloud is not able to offer enough con-

straint like the label data, and its feature fusion and aggre-

gation modules are not sufficient enough, it still has a large

performance gap compared with supervised learning meth-

ods. In this paper, we propose a novel multimodal neural

network which tries to combine the advantages of binocular

stereo matching and sparse point cloud constraint, aiming

at improving the performance of both supervised and semi-

supervised learning modes.

3 Proposed Method

In this section, we firstly describe the network architec-

ture of the proposed UAMD-Net, shown in Fig. 1, which

is mainly divided into three components: MFE, MFA and

DRL. Next, we detail the proposed adaptive multimodal

training strategy Modal-dropout and the extended network

structure of UAMD-Net which is designed for unified train-

ing under various modal input conditions. Finally, we intro-

duce the objective function design.

3.1 Multimodal Neural Network for Depth Com­
pletion

MFE: For multimodal inputs, we design three branches

to extract the specific modal features. The branch for stereo

image and the branch for depth map have the same con-

figuration, consisting of multiple convolutional layers with

ReLUs as the activation functions. We use the branch for

stereo image to extract the features from both left and right

image, and then obtain the cross-modal features by accom-

plishing the correlation operation. Besides, we concatenate

the image features from the middle layer to enhance the fea-

ture representation ability. We use the branch for depth map

to extract the cross-modal features from the concatenation

of monocular image and the corresponding sparse depth

map. Moreover, we design a branch for single image in

order to enhance the features from the image domain. More

specific settings are specified in the supplementary material.

MFA: After acquiring the multimodal features from dif-

ferent branches, we design a feature fusion layer to con-

struct the cross-modal 4D cost volume by fusing the multi-

modal features. Then, inspired by [1], we establish a simple

yet effective 3D CNN module by stacking six 3 × 3 × 3
3D convolutional layers and three residual blocks, which

can aggregate the features from both spatial and channel di-

mensions.

DRL: After feature aggregation, we apply the trilinear

interpolation on the disparity feature map to recover the res-

olution to H × W × D (H,W represent the height and

width of the image, D denotes the disparity range which

we set as 192). Then, we adopt the softmax operation to

carry out the disparity regression. In this case, the features

in D dimension are considered to be the probability of the

corresponding disparity. Finally, the disparity map will be

transformed to depth map according to the stereo constraint:

d = fl/disp, where d denotes the depth map, b denotes the

length of baseline, fl denotes the focal length of the camera,

and disp denotes the predicted disparity map.

3.2 Adaptive Multimodal Training Strategy and
the Extended Unified Network Structure

We get inspiration from the universal training method

Dropout, which randomly discards nodes to prevent net-

work overfitting. Similarly, we propose to randomly drop

the specific modal inputs during training while inference

with fixed modal inputs, so as to prevent the network from

being limited to specific modal inputs, which solves the

modal dependence problem. Naturally, we name this train-

ing strategy Modal-dropout. To carry out this training

scheme, we need to further extend the network structure.

As shown in Fig. 2, we design the MDT component to

guide the CFFL and the CFAL to adaptively accomplish

the feature fusion and aggregation, respectively.

MDT: The key of MDT is to realize the random

sampling of three modal input combinations: dual lidar,

mono lidar, and dual, which can be formulated as follow:

X ∼ P {X = k} = 1/3, k = 1, 2, 3 (1)

where X denotes the sample variable of three cases.

Therefore, the formulation of the network trained on su-

pervised mode can be described as:







d = f (Il, Ir, Dl) X = 1
d = f (Il, Dl) X = 2
d = f (Il, Ir) X = 3

(2)

and the formulation of the network trained on semi-

supervised mode can be described as:

{

d = f (Il, Ir, Dl, Dr) X = 1
d = f (Il, Ir) X = 2

(3)
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Table 1. Ablation study on weights of loss for semi­supervised learning. Our UAMD­Net is trained in
semi­supervised mode with the modal input dual lidar.

Loss weights
wl = 1

wp = 0

wl = 1

wp = 0.2

wl = 1

wp = 0.4

wl = 1

wp = 0.6

wl = 1

wp = 0.8

wl = 1

wp = 1.0

wl = 1

wp = 1.3

wl = 1

wp = 1.5

wl = 0

wp = 1.0

RMSE (mm) 1725.587 1513.612 1373.387 1337.512 1270.628 1305.006 1267.047 1381.939 2587.277

Table 2. Ablation study on different learning
mode for various modal input combinations.

iRMSE

(1/km)

iMAE

(1/km)

RMSE

(mm)

MAE

(mm)

supervised

dual lidar 1.747 1.007 669.166 252.580

mono lidar 1.938 1.098 918.067 346.224

dual 6.400 4.545 1163.147 603.036

semi-supervised

dual lidar 4.954 1.864 1267.047 460.880

dual 4.639 2.031 2587.277 731.396

where d denotes the predicted depth map, f denotes the net-

work, Il, Ir , Dl, Dr denote the left image, right image, left

sparse depth map, right sparse depth map, respectively.

CFFL: To realize the adaptive multimodal training, we

construct a conditional feature fusion layer. It receives the

command from the MDT to adaptively produce three forms

of 4D cost volume, corresponding to three different modal

input combinations: dual lidar, mono lidar, and dual.

CFAL: Since the feature dimension of 4D cost volume is

changeable, we establish a conditional feature aggregation

layer to adaptively accomplish the feature aggregation. It

receives the same command as the CFFL from the MDT.

We realize it by constructing two 3D convolutional layers

with ReLUs as the activation functions. The input feature

dimension is variant while the output feature dimension is

fixed.

3.3 Objective Function Design

Our network can be trained in both supervised and semi-

supervised mode benefited from the view synthesis scheme

of stereo vision. For supervised learning, we optimize

UAMD-Net by minimizing the following L2 loss,

Losssup =
1

N

∑

p∈Pv

∥

∥dgtp − dp
∥

∥

2
(4)

where Pv represents the set of the valid pixels. dgtp and dp
denote the ground truth and predicted depth at the pixel p,

respectively. N is the number of valid pixels.

For semi-supervised learning, we only provide sparse

ground truth depth map for supervision. Since the density

of sparse depth map is low and L2 is more sensitive to the

outliers, we adopt the following L1 loss.

Losslidar =
1

N

∑

p∈Pv

∥

∥dspp − dp
∥

∥ (5)

where dspp denotes the ground truth sparse depth map.

Besides, we follow [1] to use a combination of an L1

and single scale SSIM term as our photometric image re-
construction loss, which compares the input image Irp and

its reconstruction Ĩrp .

Lossphotometric =
1

N

∑

p∈Pv

α · SSIM

(

Irp ,
∼

Irp

)

+(1− α)·

∥

∥

∥

∥

Irp −

∼

Irp

∥

∥

∥

∥

(6)

Here, we use a simplified SSIM with a 3 × 3 block filter
and set α = 0.85 . We noted that the correlation of stereo
feature map can construct the cost volume for both left and
right disparity, so in semi-supervised training, we construct
the cost volume for right disparity with the reconstruction
constraint of right image, while construct the cost volume
for left disparity in the inference. Moreover, we apply the
following objective for encouraging the depth to be locally
smooth with an L1 penalty on the depth gradients ∂d.

Lossgradient =
1

N

∑

p∈Pv

∣

∣∂xd
r
p

∣

∣ · e−‖∂xI
r

p‖ +
∣

∣∂yd
r
p

∣

∣ · e−‖∂yI
r

p‖

(7)

Furthermore, inspired by [27, 20], we employ the noise

label learning strategy. We generate the noise depth map

by the traditional depth estimation method Semi-Global

Matching (SGM) for convenience. Since the accuracy of

the noise depth map is limited and L2 is more sensitive to

the outliers, we adopt the following L1 loss.

Lossnoise =
1

N

∑

p∈Pv

∥

∥dnp − dp
∥

∥ (8)

where dnp denotes the generated noise depth map.

Finally, the above objective will be combined to train in

a multi-task learning fashion. wl, wp, wg , wn represent the

corresponding weight parameters, which will be fine-tuned

according to the training feedback.

Losssemi = wl · Losslidar + wp · Lossphotometric

+ wg · Lossgradient + wn · Lossnoise
(9)
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Table 3. Ablation study on Modal­dropout training scheme: both training and validating with various

modal input combinations.

iRMSE (1/km) iMAE (1/km) RMSE (mm) MAE (mm) Performance attenuation

supervised

dual lidar 1.873 1.095 730.327 284.489 ↓9.14%

mono lidar 9.423 5.986 1306.826 610.729 ↓12.35%

dual 2.086 1.234 973.540 385.330 ↓6.04%

avg. - - - - ↓9.18%

semi-supervised

dual lidar 4.269 1.862 1419.445 515.308 ↓13.02%

dual 4.343 2.014 3087.818 744.682 ↓19.35%

avg. - - - - ↓16.19%

Table 4. Ablation study on Modal­dropout training scheme: training with various modal input combi­

nations while validating with specific modal input combination. For example, the first section means
training with {dual lidar, mono lidar, dual} while validating with dual lidar.

iRMSE (1/km) iMAE (1/km) RMSE (mm) MAE (mm) Performance attenuation

supervised

dual lidar

dual lidar 1.888 1.065 747.816 285.691 ↓11.75%

mono lidar 7.135 4.908 1319.096 631.323 ↓13.48%

dual 1.165 2.035 991.919 373.009 ↓8.04%

avg. - - - - ↓11.09%

mono lidar

dual lidar 1.810 1.036 709.975 269.336 ↓6.10%

mono lidar 4.758 3.011 1319.360 526.489 ↓13.43%

dual 2.054 1.139 967.731 364.451 ↓5.41%

avg. - - - - ↓8.31%

dual

dual lidar 1.888 1.056 731.881 278.886 ↓9.37%

mono lidar 6.138 3.760 1369.923 527.990 ↓17.78%

dual 2.130 1.154 988.307 370.867 ↓7.65%

avg. - - - - ↓11.60%

semi-supervised

dual lidar

dual lidar 5.129 1.887 1320.503 492.800 ↓4.22%

dual 5.692 2.156 7733.671 955.438 -

avg. - - - - -

dual

dual lidar 4.663 1.811 1351.973 488.343 ↓6.70%

dual 4.140 2.020 2902.286 742.696 ↓12.18%

avg. - - - - ↓9.44%
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Figure 3. Modal failure situations: image failure (three forms including half of horizontal pixels, half
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Figure 4. Qualitative results of different methods. From top to down are the input images, results of
ACMNet [25], NLSPN [16], PENet [11] and our UAMD-Net respectively.

7



Table 5. Ablation study on noise label learn­

ing. Our UAMD­Net is trained in semi­
supervised mode with the modal input

dual lidar.

wn 0 0.1 0.2 0.3 0.4

RMSE (mm) 1267.05 1225.85 1270.06 1264.00 1269.72

4 Experiments

4.1 Experiments Settings

Benchmark Dataset: The KITTI depth completion

dataset [8] contains 42949 pair depth maps for training,

3426 pair depth maps for validation, and 1000 frames for

testing. Specially a selection set of 1000 frames is also

provided. These ground truth depth maps are generated by

registering 11 LiDAR scans temporally and further refined

with the corresponding stereo image pairs. Since the test

set does not contain stereo images, we split the validation

set into two sub-sets, 2426 pairs of stereo images for test-

ing (split-test) and 1000 for validation (split-val) according

to the selection set, which guarantees the fairness of the ex-

perimental comparison with other methods.

Evaluation Metrics: We follow the KITTI benchmark

and exiting methods [19, 25, 11] to use four standard met-

rics for evaluation: root mean squared error (RMSE), mean

absolute error (MAE), root mean squared error of the in-

verse depth (iRMSE) and mean absolute error of the inverse

depth (iMAE). Among them, RMSE and MAE measure the

depth accuracy directly, while iRMSE and iMAE compute

the mean error of the inverse depth, giving less weight to

the far-away points. Since RMSE is more sensitive to the

outliers, it is chosen as the dominant metric to rank the sub-

missions on the KITTI leaderboard.

Implementation Details: Our network is implemented

using PyTorch framework. For supervised learning, the

learning rate begins at 1e-4 and is decayed by 0.5 at 10

epochs, 0.1 at 14 epochs and 0.01 at 17 epochs. For semi-

supervised learning, the learning rate begins at 1e-4 and is

decayed by 0.1 at 10e3 iterations, 0.01 at 14e3 iterations and

0.01 at 16e3 iterations. The batch size is set to 4 for training

on 2 NVIDIA GTX 1080Ti GPUs for all models. We report

the experimental results based on the validation set (split-

val) for ablation studies of our proposed method. While

compared with other start-of-the-art methods, we report the

experimental results conducted on the test set (split-test). In

all tables, bold values indicate the best performance, under-

lined values indicate the suboptimal performance.

4.2 Ablation Study on Weight of Loss for Semi­
supervised Learning

The photometric loss is essential for the model to be

trained in a self-supervised manner, so we investigate the

influence of the weight of the photometric loss wp. Accord-

ing to Eq. 9, we keep wl = 1, wg = 0.01, wn = 0, and set

wp between 0 to 1.5, and the results are shown in Table 1. It

is clear that the photometric loss does help complete sparse

depth map, reducing RMSE from 1725mm to 1267mm with

wp = 0 and wp = 1.3 respectively. However, too much

weight on photometric loss worsens the results. So we set

wp = 1.3 throughout the experiments.

4.3 Ablation Study on Different Learning Modes
for Various Modal Input Combinations

In this section, we report the performance of our net-

work trained with various modal input combinations in su-

pervised and semi-supervised mode. As shown in Table

2, dual lidar achieves the lowest RMSE while dual ac-

quires the highest in both supervised and semi-supervised

mode, proving that our network can solve the problem of

overfitting well. Besides, mono lidar has a better perfor-

mance than dual benefited from the constraint of sparse

point cloud.

4.4 Ablation Study on Two Different Modal­out
Training Schemes

In this section, we study the performance of our two pro-

posed Modal-dropout training strategies. The first one is

both training and validating with various modal input com-

binations, the results are shown in Table 3. The second

one is training with various modal input combinations while

validating with specific modal input combination, the re-

sults are shown in Table 4. It is obvious that the model

performance drops while trained with the Modal-dropout

scheme, with the lowest average 8.31%. However, the

model then will obtain the ability to inference with dif-

ferent modal input combinations, solving the modal de-

pendence problem, which greatly improves its robustness

against modal input failure situations.

4.5 Ablation Study on Noise Label Learning

We introduce the noise label learning scheme to further

improve the performance of semi-supervised learning. As

shown in Table 5, an appropriate proportion of noise labels

is conducive to improve the performance, reducing RMSE

from 1267 to 1225 with wn = 0.1.
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Table 6. Robustness against different modal failure situations. In order to deal with the situations of
image failure, our UAMD­Net switches to work with the modal input mono lidar.

image failure (half h) image failure (half v) image failure (full)

iRMSE

(1/km)

iMAE

(1/km)

RMSE

(mm)

MAE

(mm)

iRMSE

(1/km)

iMAE

(1/km)

RMSE

(mm)

MAE

(mm)

iRMSE

(1/km)

iMAE

(1/km)

RMSE

(mm)

MAE

(mm)

PENet [11] 4.448 1.626 1630.624 463.079 3.545 1.320 1779.584 421.798 5.173 1.854 2531.038 656.476

ACMNet [25] 3.255 1.086 1131.010 274.131 2.592 0.971 1151.714 261.263 3.307 1.111 1439.257 319.110

UAMD-Net

(mono lidar)
4.821 3.009 1348.657 525.945 4.821 3.009 1348.657 525.945 4.821 3.009 1348.657 525.945

Table 7. Robustness against different modal failure situations. In order to deal with the situations of

rotation failure and LiDAR data failure, our UAMD­Net switches to work with the modal input dual.

rotation failure LiDAR data failure

iRMSE

(1/km)

iMAE

(1/km)

RMSE

(mm)

MAE

(mm)

iRMSE

(1/km)

iMAE

(1/km)

RMSE

(mm)

MAE

(mm)

PENet [11] 524.298 430.731 17517.829 12812.575 - - - -

ACMNet [25] 276.951 247.391 16856.885 12277.822 - - - -

UAMD-Net (dual) 2.115 1.151 956.168 361.121 2.115 1.151 956.168 361.121

Table 8. Comparison with other supervised

methods. Our UAMD­Net is trained in super­

vised mode with the modal input dual lidar.

iRMSE

(1/km)

iMAE

(1/km)

RMSE

(mm)

MAE

(mm)

PENet [11] 2.159 0.903 756.667 209.369

ACMNet [25] 2.099 0.868 765.210 205.503

GuideNet [19] - - 763.3 -

NLSPN [16] 2.0 0.8 776.3 198.5

UAMD-Net (ours) 1.729 0.999 677.132 254.056

Table 9. Comparison with other semi­

supervised methods. Our UAMD­Net is
trained in semi­supervised mode with the

modal input dual lidar.

iRMSE

(1/km)

iMAE

(1/km)

RMSE

(mm)

MAE

(mm)

Sparse2dense [15] 4.08 1.61 1301.05 352.22

LiStereo [24] 3.84 1.32 1278.87 326.10

UAMD-Net (ours) 4.71 1.82 1241.10 464.38

4.6 Robustness against Different Modal Failure
Situations

In order to prove the effectiveness of our proposed

Modal-dropout training strategy, we simulate the situa-

tions when the input modalities are problematic: image fail-

ure (three forms including half of horizontal pixels, half

of the vertical pixels and full pixels), camera and LiDAR

calibration failure, and LiDAR data failure, as shown in

Fig. 3. The experimental results reported in Table 6 and

7 shows that current multimodal depth completion models

like PENet [11] and ACMNet [25] will have a large perfor-

mance penalty for the case of image failure. Besides, they

will complete failure for the case of calibration failure and

LiDAR data failure. On the contrary, our model can switch

to proper inference mode to maintain stable performance,

demonstrating the great robustness of our method against

modal input failure situations. More discussions are pre-

sented in the supplementary material.

4.7 Comparison with State­of­the­Arts

As shown in Table 8 and 9, our method surpasses

other state-of-the-art methods no matter in supervised or

semi-supervised learning fashion. Especially, our method

achieves an 80mm RMSE gap with the closest competitor,

PENet [11].

4.8 Qualitative Results

The qualitative results are reported in Fig. 4. From top

to down are the input images, results of ACMNet [25], NL-

9



SPN [16], PENet [11] and our UAMD-Net respectively. It

shows that the depth map predicted by our method has great

advantages in preserving edge details.

5 Conclusion

In this paper, we propose a unified multimodal neural

network called UAMD-Net for depth completion task, aim-

ing to combine the advantages of binocular stereo matching

and sparse point cloud constraint to get rid of the risk of over

fitting and obtain better generalization performance. Be-

sides, to address the modal dependence problem, we further

propose a new training strategy named Modal-dropout.

The flexible network structure and adaptive training strat-

egy enable the network realize unified training under vari-

ous modal input conditions, which greatly improves the ro-

bustness of the multimodal neural network in the case of

a modal input failure. Our experimental results demon-

strate that the proposed method not only overcomes the

modal dependence problem but also achieve better quanti-

tative and qualitative performance compared with state-of-

the-art methods.
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