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Reference-Guided Large-Scale Face Inpainting with
Identity and Texture Control

Wuyang Luo, Su Yang, Weishan Zhang

Abstract—Face inpainting aims at plausibly predicting missing
pixels of face images within a corrupted region. Most existing
methods rely on generative models learning a face image distri-
bution from a big dataset, which produces uncontrollable results,
especially with large-scale missing regions. To introduce strong
control for face inpainting, we propose a novel reference-guided
face inpainting method that fills the large-scale missing region
with identity and texture control guided by a reference face
image. However, generating high-quality results under imposing
two control signals is challenging. To tackle such difficulty, we
propose a dual control one-stage framework that decouples the
reference image into two levels for flexible control: High-level
identity information and low-level texture information, where
the identity information figures out the shape of the face and
the texture information depicts the component-aware texture.
To synthesize high-quality results, we design two novel modules
referred to as Half-AdaIN and Component-Wise Style Injector
(CWSI) to inject the two kinds of control information into the
inpainting processing. Our method produces realistic results with
identity and texture control faithful to reference images. To
the best of our knowledge, it is the first work to concurrently
apply identity and component-level controls in face inpainting to
promise more precise and controllable results. Code is available
at https://github.com/WuyangLuo/RefFaceInpainting

Index Terms—Reference-Guided Face Inpainting, Large-Scale
Missing Region, Identity and Texture Control.

I. INTRODUCTION

IMAGE inpainting refers to filling up masked areas while
keeping coherence with context. However, it is an ill-

posed problem because a corrupted image can correspond to
countless plausible completed results. Recent successful image
inpainting methods rely on generative models learning a distri-
bution from a big dataset and then predicting pixels of masked
regions by known regions, which makes the generated content
hold in a generic sense. This uncontrollability is unacceptable
for face inpainting with large-scale missing regions. Because
human eyes are extremely sensitive to face images, especially
when the person in the photo is someone you know. In this
case, inpainted results may be far from what the user desires.
Recent works introduce a reference image to control the face
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Fig. 1. Our method introduces flexible control guided by reference images
into face inpainting in terms of identity and texture.

inpainting process, called reference-guided face inpainting. It
is a critical technique due to its wide applications, such as
face frontalization [1], [2], restoration [3], and generation [4].
In this work, we concurrently introduce separate control of
identity and texture into face inpainting, as shown in Fig. 1.

The existing works can be summarized into three frame-
works, as shown in Fig. 2. Recognition-based framework [5]
forces the identity of the inpainted image and the ground
truth to be consistent using identity loss when training. This
approach can only provide limited identity preservation. More
importantly, it cannot freely control the identity of the output.
Input concatenation framework [6] concatenates the corrupted
image and the reference image as input. This strategy always
produces incongruous results due to discrepancies between
corrupted and reference images in terms of color and pose.
Two-stage framework [7] combines face inpainting and face
swapping. It cascades two generators: The first generator is
responsible for completing the face, and the second modifies
the identity using identity features extracted from the reference
image. Input concatenation and two-stage frameworks can
effectively control the high-level identity of the results, but
they ignore low-level features of reference images, such as
texture. Consequently, previous methods suffer from limited
control and low-quality results.

In this work, we propose a novel one-stage framework with
dual control to concurrently exploit the high-level identity
information and low-level texture information of reference
images for controlling face inpainting and obtaining more re-
alistic results. There are two key differences between our pro-
posed approach and the existing methods. First, we decouple
the reference image into high-level identity information and
low-level texture style via two separate feature extractors to
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(a) Recognition-based framework
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(a) Recognition-based framework
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(c) Two-stage framework
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(d)  Dual control one-stage framework
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(b) Input concatenation framework
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(b) Input concatenation framework

G

Fig. 2. (a) Recognition-based framework: Only input the corrupted image and use identity loss on the output end to force the output’s identity to be consistent
with the identity of the ground truth. (b) Input concatenation framework: Concatenate the reference image and the corrupted image together and send them
into the generator. (c) Two-stage framework: Combine two methods of image inpainting and face swapping. (d) Dual control one-stage framework: We view
our task as a whole and propose a one-stage framework that can control the identity and texture of results independently and concurrently. We utilize two
encoders to extract identity and texture information from reference images, respectively.

control the inpainting process. Identity information dominates
the global structure and layout of large missing regions while
texture information describes the diverse styles of face compo-
nents, so this decoupled design enables our model to leverage
control information from different perspectives and provides
more flexibility. However, previous methods only consider
identity information. Second, the two-stage framework splits
the task into two separate steps: Face inpainting and face
swapping, which leads to a larger number of parameters due
to the fact that it requires two networks to achieve the goal.
In contrast, our one-stage framework end-to-end optimizes our
task within a neat model, achieving better performance with
fewer parameters.

It is technically challenging to impose identity and texture
control on an inpainting model independently and concur-
rently. For identity control, an identity vector can be injected
into the generator via AdaIN [8], which is employed for face
swapping [9]. However, AdaIN is initially designed for the
style transfer task, which is proven to wash away the original
style of feature maps [8], [10], such as colors and textures. For
our image inpainting task, the generated regions must be style-
consistent with the known regions. Applying AdaIN directly
to the entire feature map may result in inconsistent styles,
as shown in Fig. 8. Therefore, we propose a light-overhead
but effectively improved module referred to as Half-AdaIN,
where we let half of the feature maps go through the AdaIN
operation, and the remaining channels bypass AdaIN to avoid
completely washing away the style of the input image.

For texture control, we design a Component-Wise Style
Injector (CWSI) to locate, extract, and inject texture in-
formation of pre-defined face components. Precisely, CWSI
first extracts the style codes of the reference image using
a region-wise style encoder. Then, CWSI parses the feature
maps to obtain the intermediate-level segmentation map for
locating face component regions. Finally, CWSI injects style
codes into corresponding component regions. To improve the
texture control performance, we use a three-mode training
scheme to approach better overall results. Our contributions
are summarized as follows:
• We introduce precise separate control of identity and

texture into face inpainting, for which we propose a novel
dual control one-stage framework for reference-guided

face inpainting.
• We design two new modules: Half-AdaIN and

Component-Wise Style Injector (CWSI). They effectively
inject identity and texture information to impose fine-
grained controls on global profiles and local details
simultaneously.

• Extensive experiments are performed to show that our
method outperforms the state-of-the-art methods and can
provide flexible control subject to reference images in
terms of identity and texture.

II. RELATED WORKS

A. Image Inpainting
The existing inpainting methods can be divided into two cat-

egories: Traditional methods and deep learning based methods.
Traditional methods use the remaining pixels to fill missing
pixels, including diffusion-based methods [11]–[13] and patch-
based methods [14]–[16]. These methods perform well on
stationary textures. However, they often fail to synthesize
satisfactory results for complex scenes because they do not
understand high-level semantics. The methods based on deep
learning can learn to understand the high-level semantics of
images by training neural networks on large-scale datasets.
Recent works have been devoted to improving image inpaint-
ing performance by introducing adversarial training [17]–[19],
contextual attention mechanism [20]–[24], new convolutions
scheme [25], [26], additional information [27]–[30], diversity
[31], [32], memory [33], and vision transformer [34].

As a prevalent branch of image inpainting, face inpainting
has benefited a lot from image inpainting. Face inpainting
methods often use rich prior knowledge or external conditions
of human faces to impose constraints improving performance,
such as semantic structure [35], attributes [36], example im-
ages [6], [37], identity [38], symmetry [5], and correlation
among facial parts [39]. However, the existing methods only
apply distribution learned from big datasets to direct inpaint-
ing, so the global structure as well as fine details are in general
out of control, and not able to fit well into any specific desire.

B. User-Guided Image Inpainting
Some works introduced user interaction based clues to guide

inpainting for control, such as segmentation maps [10], line
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Fig. 3. Overview of the proposed framework. (a) Generator; (b) Half-AdaIN; (c) Component-Wise Style Injector (CWSI).

[40], transformation [41], image library [42], structures [43],
color [44], and text [45]. Moreover, introducing another image
as a reference is an intuitive way to exert comprehensive
control. However, few works [6], [7], [37], [46] have been
developed to make use of all the potential clues from the
reference image [6], [37], [46]. [37] only considers how to
inpaint a specific component within a small local area and does
not care about the global structure. [6] only inserts reference
images at the beginning of the generator and cannot control
finely the final outcome. [46] requires the reference image
and the inpainted image to be consistent in content, lighting,
and view, which is impractical in many scenarios. [7] only
considers high-level identity consistency but neglects local
texture information. This paper proposes a new framework for
reference-guided face inpainting tasks to make full use of the
control information provided by the reference image in terms
of identity and texture.

C. Conditional Face Generation
Conditional face generation attempts to synthesize face

images based on input conditions. It contains various subtasks,
such as face image translation [47]–[51], face swapping [9],
[52], talking head synthesis [53], [54], face frontalization [1],
[2], [55], and face stylization [56]. Our work is related to two
previous methods [9], [51]. SimSwap [9] utilizes the AdaIN
operation to build its generator, which transfers the identity
information of the source face into the target face at feature
level for arbitrary face swapping. To inject identity features
while preserving the other important original features, we
propose an improved version of AdaIN, referred to as Half-
AdaIN. SEAN [51] synthesizes face images from segmentation
maps, which can control the style of each semantic region
individually. They utilize a style encoder network to extract
the style of each region. We reuse their design to extract

style codes from reference images and then further employ the
proposed CWSI for component-aware style injection serving
face inpainting.

The proposed method introduces controllability to face
inpainting so it can achieve an effect that looks similar to face
swapping. However, our face inpainting task fundamentally
differs from face swapping: (1) Different input: The input of
our task is a face image with an arbitrary hole. Therefore,
the structure of the input face is incomplete, e.g., missing
nose or mouth; the input of face swapping is a complete face
image. (2) Different goals: Face inpainting aims to reconstruct
the missing region to match the known region. For example,
if the central region of the input face is invisible, the face
inpainting method needs to generate components of the face,
such as the nose, at appropriate locations. Face swapping aims
to change the overall identity of the input to another identity.
Face swapping can change all identity-related elements, such
as the shape of the nose and the size of the eyes. But
face swapping does not need to reconstruct the structure. (3)
Different outputs: Face inpainting fills the hole and generates a
complete face. However, the content inside the hole is to some
extent uncontrollable, e.g., if the upper part of the face falls
into the missing region, the position and shape of the generated
eyes may be different if using different face inpainting models.
Face swapping does not need to reconstruct the structure of the
face, so its output and input are aligned in terms of position
and pose.

III. METHOD

We describe our approach in a top-down manner. We first
introduce the architecture of our generator and then give details
of two novel modules for identity and texture control.

Our generator has two inputs: (1) The corrupted image with
the corresponding mask whose value is 0 in the missing region
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Fig. 4. (a) Misalignment issue of supervision signals for segmentation branches. The yellow circles enclose the unaligned regions between inpainted results
and ground truth. (b) Different masks and reference images are applied for different modes. (c) Single-mode training scheme. (d) Three-mode training scheme.

and 1 in the known region; (2) The reference image provides
control information that users desire. The generator adopts an
encoder-decoder architecture with skip connections [57], as
illustrated in Fig. 3(a). Specifically, the encoder is composed
of several successive gated convolutional layers [25] with
stride 2. The decoder is composed of several Half-AdaIN with
upsampling operations. In addition, two CWSI are inserted
into the decoder at the resolution of 64 × 64 and 128 × 128.
For the inpainting task, we generally believe that the encoder
can transfer the available information from the known pixels
to missing pixels by gradually increasing the receptive field,
and the decoder is responsible for the reconstruction of details
[58], so we only place the control modules in the decoder.

In order to force the training generator to produce more real-
istic outputs, we employ a global discriminator and three local
discriminators against the generator. We use SN-PatchGAN
[25] as our global discriminator. The local discriminators
are focused on specific sub-regions, including two eyes and
mouths, which helps the generator synthesize high-frequency
textures in these regions. The discriminators are omitted in
Fig. 3.

A. Identity Control

1) Identity Feature Extraction: We employ a well-trained
face recognizer model [59] as the identity feature extractor.
We take the output of the last layer prior to the classifier
and normalize this 512-dimensional embedding as the identity
vector Zid. Compared to using reference images as guidance
directly [6], the high-level identity embedding extracted from
the recognition model trained on large-scale face datasets can
figure out more representative identity features. The identity
embedding largely ignores pose, background, and lighting.
Thus, it is unnecessary to require rigorous spatial alignment
between the corrupted image and the reference image.

2) Half-AdaIN For Identity Injection: The previous face
swapping work [9] borrows the AdaIN [8] operation to inject
the identity feature. However, if we naively reuse AdaIN for
our task, it produces many low-quality results as shown in

Fig. 8. AdaIN washes away the original style of feature maps
revealed by [8], so it is inappropriate for our task that requires
injecting an external identity vector while keeping coherence
between generated content and known pixels. To tackle this
problem, we propose a simple but effectively improved module
referred to as Half-AdaIN, as illustrated in Fig. 3(b). The key
novelty is that we split the input feature maps for different
cues, half for identity control and the other half for preserving
the original contextual information.

Let F ∈ RC×H×W and Zid ∈ RCid denote input fea-
ture maps and the identity vector, respectively. Here, C is
the number of channels, and H and W represent spatial
dimensions. First, F passes through a standard convolutional
layer to obtain F̂ ∈ RC×H×W . Then, we split F̂ into
two equal slices along the channel dimension. Thus, we
get two tensors F1 ∈ RC/2×H×W ([0 : C

2 ) channels) and
F2 ∈ RC/2×H×W ([C2 : C) channels). We inject identity
information by applying a standard AdaIN to F1. Specifically,
first, F1 is convolved to F̂1, and then we perform instance
normalization on F̂1:

F̄1 =
F̂1 − µ
σ

(1)

where µ ∈ RC/2 and σ ∈ RC/2 are the channel-wise means
and standard deviations of F̂1. Then, we modulate feature
maps with scaling parameters γ and shifting parameters β
learned from identity embedding Zid. The modulation process
is formulated as:

F̃1 = γ � F̄1 ⊕ β (2)

where γ ∈ RC and β ∈ RC are generated from Zid through
two fully connected layers and expanded to match the spatial
resolution of F̄1. � and ⊕ are element-wise multiplication and
addition, respectively. For F2, to adaptively distinguish valid
and invalid pixels during the inpainting process, we apply a
spatial attention mechanism following gated convolution [25].
Specifically, we generate a soft weight map W using F2

through a convolutional layer followed by a sigmoid operation
to make the values of W between 0 and 1. Finally, the output
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Fig. 5. Visual comparison with baselines. The turquoise lines highlight that our method can synthesize texture-consistent results.

of the Half-AdaIN is formulated as:

Fout = ReLU
(
F̃1‖(F2 �W )

)
(3)

where (·‖·) means concatenating two feature maps along the
channel dimension and ReLU(·) is ReLU activation function.

B. Texture Control

The texture information of the face component region is
difficult to capture due to its small area and diversity. To
extract image-specific local texture, we define five face regions
with rich textures: Left eye, right eye, left eyebrow, right
eyebrow, and lip. For texture control, we explicitly extract the
texture information of these regions from the reference image
and inject them into the corresponding regions of the corrupted
image.

1) Region-Wise Style Code Extraction: First, we obtain the
segmentation map S ∈ LN×H×W of the reference image via a

well-trained face parsing network [60]. Here, N is the number
of semantic classes defined by the parsing network. H and W
represent the height and width. Then, we can find five pre-
defined regions according to S, and distill their style codes
from the reference image using the same style encoder of
SEAN [51]. Specifically, a region-wise pooling layer is applied
at the last layer of the style encoder, and we extract a 512-
dimensional style code matrix SM ∈ R5×512. Note that if a
component has any pixels in the non-masked region, we ignore
it and fill its style code value with 0.

2) Component-Wise Style Injector (CWSI): The structure of
CWSI is shown in Fug. 3(c). Let F ∈ RC×H×W denote the
input feature maps. The generator must online predict a seg-
mentation map associated with F to locate the five pre-defined
regions. To this end, we send F into a segmentation branch
to obtain its segmentation map S̄ ∈ LN×H×W and select
the five pre-defined regions S̃ ∈ L5×H×W . The segmentation
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TABLE I
QUANTITATIVE COMPARISON WITH DIFFERENT MASK RATES. (↑: HIGHER IS BETTER; ↓: LOWER IS BETTER)

Method Mask rate ∼ 20 Mask rate ∼ 30 Mask rate ∼ 40
FID↓ LPIPS↓ IDR↑ FID↓ LPIPS↓ IDR↑ FID↓ LPIPS↓ IDR↑

ICT 9.86 0.073 26.69 10.12 0.109 17.36 14.83 0.137 10.09
CoMod 7.29 0.068 23.81 9.01 0.089 20.50 11.81 0.128 9.32
ICT+SimSwap 8.99 0.070 61.31 9.75 0.113 53.85 14.33 0.133 58.90
CoMod+SimSwap 7.39 0.069 63.47 9.33 0.092 56.16 10.95 0.122 60.21
Zhao et al. 36.66 0.123 59.87 36.33 0.188 56.16 35.57 0.222 56.51
Ge et al. 10.03 0.083 29.15 10.34 0.98 21.91 12.15 0.129 11.21
SwapInpaint 7.06 0.069 63.17 8.73 0.093 61.40 10.98 0.133 61.10
Ours 5.75 0.059 69.98 7.67 0.083 66.85 9.02 0.116 66.34

branch consists of two resnet blocks [61] and a softmax layer.
We broadcast the style code into the corresponding region
according to S̃ through a matrix multiplication:

zstyle = SM> × S̃ (4)

where SM> denotes the transposed matrix of SM . Thus,
zstyle ∈ R512×H×W has the same layout as S̃ but is filled by
the style codes from SM . Finally, we use a denormalization
operation similar to SPADE [50] to inject texture features.
Specifically, we learn two parameters γ and β from zstyle to
modulate F :

F̃ = ReLU (γ � IN(F )⊕ β) (5)

where IN(·) denotes instance normalization.
3) Training Scheme For Texture Control: The success of

texture control highly relies on the performance of CWSI’s
segmentation branch. If we cannot provide aligned supervision
signals, texture control will fail, as described in Section
4.8. Ideally, we need an aligned segmentation map Sf to
match the current inpainted result online when training, as

illustrated in Fig. 4(a). In practice, we can only pre-generate
Sgt from ground truth as supervision signals for segmentation
branches. However, it cannot be guaranteed that Sgt could
be aligned with the inpainted result precisely in the working
pipeline when the masked region is large, especially for
small eye and mouth regions. The general training scheme
suffers from always appearing misalignment, if we only uti-
lizes regular masks (inpainting mode) to generate corrupted
images, where the training scheme as such is referred to
as Single-Mode Training (SMT) depicted in Fig. 4(c). To
overcome the misalignment problem, we introduce a Three-
Mode Training scheme (TMT) with two additional modes
referred to as segmentation mode and style extracting mode,
as shown in Fig. 4(b). Segmentation mode utilizes a small
mask that does not cover the face’s central region and takes
ground truth as the reference image. Under such settings, we
force the generator to focus on improving the performance
of the segmentation branch. Style extracting mode employs a
special mask corresponding with the five pre-defined facial
components to enhance training on the facial components
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for texture control injection. In two additional modes, Sgt is
aligned with the inpainted result because missing regions are
set to be small. TMT applies three training modes iteratively
for each training step. Specifically, we alternately perform
segmentation mode and style extracting mode between two
adjacent inpainting modes, as described in Fig. 4(d).

C. Loss Function

1) Pixel Reconstruction Loss LR calculates the L1 distance
between the inpainted image and the ground truth in RGB
space.

2) Perceptual Loss LP [62] is used to force the output of
the generator to be closer to the ground truth in a pre-trained
VGG-19 [63] feature space at multiple layers.

3) Identity-preserving Loss Lid is used to force the gen-
erated image’s identity to be consistent with the reference
image’s identity. It is formulated as:

Lid = 1− cos (zid (IG) , zid (Ir)) (6)

where cos(·, ·) represents the cosine similarity of two vectors.
4) Semantic Segmentation Loss LS is employed for training

the segmentation branches of CWSI. We supervise the output
of each segmentation branch using cross-entropy loss of se-
mantic segmentation task [64].

5) Global Adversarial Loss Ladv,G follows SNPatchGAN
[25] but with the hinge version [65], [66]. It is applied to the
entire image and evaluates whether the entire image is coherent
as a whole.

6) Local Adversarial Loss Ladv,L is calculated on three sub-
regions (left eye, right eye, and mouth) using the same loss
function as the global adversarial loss following the previous
work [39]. Then, the losses of the three regions are summed
as the final local adversarial loss.

The overall Loss can be written as:

L = λRLR+λPLP+λidLid+λSLS +Ladv,G+Iadv,LLadv,L

(7)
Here, λR = 20, λP = 10, λid = 3, λS = 2.5. Iadv,L is 1 in
inpainting mode and 0 in other modes.

IV. EXPERIMENTS

A. Dataset

Our task needs a high-quality dataset for training. Based
on Celeb-ID [37], we build a dataset suitable for our task.
Celeb-ID contains around 1700 individual identities and a total
of 100K images, but it contains a large number of extremely
blurred and occluded photos. We manually eliminated the low-
quality images. In the end, our dataset contains a total of
16,259 identities and 94,770 images and at least two photos
are provided for each identity. 1,500 identities are used for
testing, and the rest are used for training.

B. Evaluation Metrics

1) Fréchet Inception Distance (FID) [67] utilizes a pre-
trained Inception-v3 [68] network to extract features and
measure the distance between generated samples and real
samples. It has been widely demonstrated that it is consistent
with human visual perception. Lower FID value indicates
higher fidelity.

2) Learned perceptual image patch similarity (LPIPS) [69]
evaluates the similarity between the generated image and the
corresponding ground truth in a pairwise manner. A lower
LPIPS indicates that the generated image is closer to the target.

3) ID retrieval accuracy (IDR): We randomly select two
images as the corrupted images and the reference image for
each identity in the test set, respectively. The unselected
images are put into a retrieval pool. The identity embeddings
are extracted from the inpainted image and the retrieval pool
images, using a different face recognition model [70]. Then,
the pair-wise distance is calculated using cosine similarity.
We look for the nearest sample in the retrieval pool for each
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TABLE II
QUANTITATIVE COMPARISON OF ABLATION STUDIES.

Method Mask rate ∼ 20 Mask rate ∼ 30 Mask rate ∼ 40
FID↓ LPIPS↓ IDR↑ FRR↑ FID↓ LPIPS↓ IDR↑ FRR↑ FID↓ LPIPS↓ IDR↑ FRR↑

w AdaIN 7.93 0.081 65.13 48.80 10.04 0.094 60.25 46.13 11.16 0.130 62.18 47.33
w/o Half-AdaIN 7.04 0.062 47.75 11.33 9.79 0.095 27.57 5.93 11.49 0.143 23.90 1.40
w/o CWSI 6.04 0.060 69.12 61.33 8.30 0.090 69.31 59.80 10.29 0.118 65.93 57.33
w SMT 6.73 0.069 68.03 60.67 8.73 0.091 64.33 60.27 11.08 0.129 63.79 58.26
Full model (w TMT) 5.75 0.059 69.98 67.60 7.67 0.083 66.85 68.07 9.02 0.116 66.34 67.87

TABLE III
COMPARISON OF SEGMENTATION PERFORMANCE WITH DIFFERENT

TRAINING SCHEMES.

mIoU↑ Acc↑
w SMT 0.543 0.898
w TMT 0.698 0.947

completed result and check whether they belong to the same
identity. The accuracy of such retrieval is reported as identity
retrieval accuracy (IDR).

C. Implementation Details

All images are resized to 256× 256, and the cropped sizes
of eyes and mouth are 55 × 60, and 44 × 90, respectively,
in calculating the local adversarial loss. In order to simulate
a more general application scenario, we use free-form masks
with different sizes. We employ Adam [71] optimizers for both
the generator and the discriminators with momentum β1 = 0.5
and β2 = 0.999. The learning rate is set to 0.0002. We only
update the parameters of the style encoder in style extracting
mode. The proposed model is trained for 300 epochs on a
single RTX 3090 GPU.

D. Baselines

We introduce additional three types of baselines for an
extensive comparison.

1) Reference-Guided Face Inpainting Method: Zhao et al.
[5]–[7] are the most relevant works to our method and also
uses a reference image to control inpainted results.

2) General Image Inpainting Method: We investigate the
performance of two currently leading inpainting methods, ICT
[34] and CoMod [72]. They show impressive results dealing
with large-region masks.

3) Combination Of Image Inpainting And Face Swapping:
Because the general inpainting method does not employ the
reference image, we combine the image inpainting and face
swapping as new baselines for a fairer comparison. Specifi-
cally, the results of ICT or CoMod with reference images are
fed into a face-swapping method SimSwap [9]. SimSwap is
capable of transferring the identity of an arbitrary source face
into an arbitrary target face. Some famous open-source tools
[73]–[75] are not considered because they require specialized
training for different inputs.

E. Quantitative and Qualitative Comparison

Fig. 5 provides a visual comparison. Zhao et al. [6] suffers
from serious style inconsistency and misalignment. Since

Corrupted image Reference image SMT TMTSMT TMT

(a) Segmentation result (b) Inpainted result

Fig. 9. (a) Visualize segmentation maps predicted by the segmentation
branch. Different colors represent different semantic classes. (b) SMT causes
color inconsistency between the inpainted results and the reference images.

Corrupted image OursZhao et al.Reference image Ge et al. SwapInpaint

Fig. 10. Visual comparison on CelebA dataset.

[6] directly uses the reference image as the condition, it is
difficult for their generator to decompose information into
identity and texture from the reference image. General face
inpainting [34], [72] methods are able to produce visually
pleasing results. However, they lack controllability and cannot
produce desired results guided by specific reference images.
Combination methods can control the inpainted result, but
they suffer from several significant drawbacks: (1) Simply
combining two methods leads to error accumulation. For
example, face swapping will produce unpleasant results if
the inpainting method produces some distorted structures.
(2) Although the face swapping approach can inject identity
information, it ignores the texture information provided by
the reference image. Ge et al. [5] only employ identity loss
to constrain the inpainted results, which cannot effectively



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 9

C
o

rr
u

p
te

d
 I

m
a

g
e

Reference Image

Fig. 11. Cross-identity results on CelebA dataset.

TABLE IV
QUANTITATIVE COMPARISON ON CELEBA DATASET.

Method FID↓ LPIPS↓ IDR↑
Zhao et al. 123.12 0.497 39.25
Ge et al. 80.10 0.319 13.10
SwapInpaint 79.12 0.309 43.70
Ours 61.34 0.237 53.75

preserve identity information. SwapInpaint [7] can generate
identity-consistent results but ignores local texture information
provided by the reference image. Our method can generate
high-quality results consistent with the reference image in
terms of identity and texture. Significant performance gains
benefit from our separate injection of identity and texture
information, as well as the end-to-end joint optimization in
the proposed comprehensive framework. As shown in Table I,
the quantitative results also demonstrate that our method can
yield realistic results and maintain a high degree of consistency
with reference images.

F. Cross-Identity Face Inpainting

Our model can also achieve cross-identity face inpainting,
which is similar to face swapping. However, it should be noted
that our task is fundamentally different from face swapping.
Face swapping can see the layout of the source image, but
our task needs to predict the content in the missing region.
Correspondingly, our results are demonstrated in Fig. 6.

G. Separately Control Identity and Texture

Due to our decoupled design, our model can flexibly control
identity and texture. Furthermore, we use two different refer-
ence images to generate identity vectors and style codes to
demonstrate how the decoupled controls work in cooperation
with each other. Some visual results are shown in Fig. 7.

Corrupted image Reference image Result

Fig. 12. Failure cases.

TABLE V
COMPARISONS OF INFERENCE SPEED AND FLOPS.

Running time (Sec.) FLOPs (MB)
Zhao et al. 0.0070 3045
Ge et al. 0.0109 3463
SwapInpaint 0.0453 5733
Ours 0.0372 4005

H. Ablation Study

1) Identity Control: Identity information is introduced
to control the identity of the result. We replace all Half-
AdaIN with standard convolutional layers but still use identity
preserving loss (w AdaIN). As shown in Fig. 8, the model
without identity control cannot recall the identity information
of the reference image. The quantitative results in Table II
show the effectiveness of identity control, especially from the
perspective of retrieval accuracy. We also report Face Recog-
nition Rate (FRR). Specifically, we utilize a well-trained face
recognizer [59] to calculate the distance between generated
and reference images. The threshold value is set to 0.7

2) Effect of Half-AdaIN: We design Half-AdaIN to inject
identity information for generating high-quality results. The
distinct point of Half-AdaIN is that it preserves the contextual
style from corrupted images. We replace all Half-AdaIN with
AdaIN (w/o Half-AdaIN). The visual results drop significantly
and produce style inconsistency as illustrated in 8. Quantitative
results are given in Table II, which indicates that Half-AdaIN
contributes to the performance gain.

3) Effect of CWSI: We develop CWSI to effectively
control the texture of face component regions. We remove all
CWSI in our model as a baseline (w/o CWSI). Fig. 8 shows
that the results generated by baseline are inconsistent with
the reference image in texture style. This shows that CWSI
can effectively extract the texture information of pre-defined
regions from the reference image and inject them into the
corresponding regions of the inpainted image.

4) Effect of Training Scheme: Three-mode Training (TMT)
scheme is designed for more efficient generation of inter-
mediate segmentation maps and accurate injection of texture
features into corresponding regions. We set a baseline (”w
SMT”) using Single-Mode Training scheme. We apply the
masks similar to those of segmentation mode , so the outputs
of the segmentation branch should be the same as ground
truth segmentation maps. Then, we evaluate the performance
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of the segmentation branch with the resolution of 128 × 128
for the two different training schemes. Some visual results
are shown in Fig. 9(a). It is clear that SMT produces more
false predictions on small face component regions, especially
in mouth and eye regions. Quantitative results in Table III
show that TMT helps the generator significantly improve
the segmentation branch’s performance in terms of Mean
Intersection over Union (mIoU) and Pixel Accuracy (Acc).
We demonstrate some inpainted examples, as shown in Fig.
9(b). We observe an apparent texture inconsistency between
SMT’s results and the reference images in component regions.
This inconsistency is caused by SMT not generating accurate
segmentation maps to locate face components.

I. Cross-Dataset Evaluation

To demonstrate the generalization of the proposed method,
we conduct a cross-dataset evaluation on CelebA dataset [76].
The generator is trained with the Celeb-ID dataset, where we
utilize a pre-trained arcface model [77] to extract identity
vectors. We randomly selected 2000 identities from CelebA
dataset and generated masks with random rates. The Quali-
tative and quantitative comparisons, as shown in Fig. 10 and
Table IV, reveal that the proposed method can generate more
realistic results and achieve better consistency with reference
images. The results in Fig. 11 demonstrate more results of our
model on CelebA dataset.

J. Failure cases

We show some failure cases in Figure 12. Our model may
produce unsatisfactory results if the input images have extreme
poses. There are two reasons for this phenomenon: (1) Most
training set images are frontal. Images with extreme poses are
rare. Therefore, the generator does not have enough training
samples. (2) Face images with extreme poses are difficult to
inpaint due to their diversity and complexity.

K. Efficiency

The average running time per image and FLOPs during
testing are listed in Table V. This experiment is performed
on a NVIDIA RTX 3090 GPU.

V. CONCLUSION

In this paper, we propose a comprehensive framework for
reference-guided face inpainting. Our approach can efficiently
control the generated results guided by a reference image.
To accurately inject two types of control information and
produce high-quality results, we gracefully designed modules:
Half-AdaIN and CWSI. Half-AdaIN is a variant of AdaIN,
which injects identity information while preserving the con-
textual style of the input face. CWSI can inject component-
specific texture information precisely into the corresponding
face regions by parsing feature maps. The proposed model can
provide separate control for identity and texture over missing
regions. Extensive experiments verify the superiority and prac-
ticability of our method. However, our method remains limited
in processing face images with extreme poses, which needs to
be addressed in future work.
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