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Fully and Weakly Supervised Referring Expression
Segmentation with End-to-End Learning
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Abstract—Referring Expression Segmentation (RES), which is
aimed at localizing and segmenting the target according to the
given language expression, has drawn increasing attention. Ex-
isting methods jointly consider the localization and segmentation
steps, which rely on the fused visual and linguistic features for
both steps. We argue that the conflict between the purpose of
identifying an object and generating a mask limits the RES per-
formance. To solve this problem, we propose a parallel position-
kernel-segmentation pipeline to better isolate and then interact
the localization and segmentation steps. In our pipeline, linguistic
information will not directly contaminate the visual feature for
segmentation. Specifically, the localization step localizes the target
object in the image based on the referring expression, and then
the visual kernel obtained from the localization step guides the
segmentation step. This pipeline also enables us to train RES
in a weakly-supervised way, where the pixel-level segmentation
labels are replaced by click annotations on center and corner
points. The position head is fully-supervised and trained with the
click annotations as supervision, and the segmentation head is
trained with weakly-supervised segmentation losses. To validate
our framework on a weakly-supervised setting, we annotated
three RES benchmark datasets (RefCOCO, RefCOCO+ and
RefCOCOg) with click annotations. Our method is simple but
surprisingly effective, outperforming all previous state-of-the-art
RES methods on fully- and weakly-supervised settings by a large
margin. The benchmark code and datasets will be released.

Index Terms—Referring Expression Segmentation, Weakly-
Supervised, End-to-End, Position-Kernel-Segmentation.

I. INTRODUCTION

REFERRING Expression Segmentation (RES) [1]–[6] is
aimed at generating the segmentation mask on the most

relevant object referring to the given language expression. RES
has wide applications in human-robot interactions, such as
robotic navigation with language instructions [7]–[9]. How-
ever, RES is still a challenging task due to the complex
interactions between the two modalities.

The RES segmentation quality is affected by both tar-
get object localization and segmentation [6]. Target object
localization is aimed at identifying the preliminary target
location by jointly analysing language expression and visual
content. Target object segmentation compares the localized
target region with surrounding regions to draw the object
contour as the segmentation mask.

Some early RES works [2]–[4] do not separate the local-
ization and segmentation modules. The segmentation masks
are directly generated without intermediate localization results.
Recently, end-to-end pipelines, which locate the target object
and then segment it, have been introduced [6], [10]. These
pipelines decouple the referring image segmentation task into
two sequential tasks, and explicitly locate the referred object
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Fig. 1. Comparison of our method with the vanilla method for referring
expression segmentation, using the RefCOCO dataset as an example. (a) The
vanilla method predicts the mask of the target object via the fused feature of
the vision and language. (b) Our method predicts the mask via a position-
kernel-segmentation process, where linguistic information will not directly
contaminate the visual feature for segmentation. Note that the blue lines are
the main difference from previous works.

guided by language expression. The two-step structure uses lo-
calization as relevance filtering, leading to more accurate seg-
mentation masks [10]. Other works use semantic segmentation
tools to improve RES quality. For instance, object boundaries
are utilized to strengthen visual features [5], or Conditional
Random Field (CRF) is used for postprocessing [1], [11]–[14].

However, the difference between localization and segmenta-
tion has not been thoroughly considered in previous methods.
Specifically, for localization, its primary purpose is to distin-
guish the target object from other objects, where the language
expression is essential for excluding nontarget objects. As
shown in Fig.1(a), for the query “green woman”, the target
in the image is the lady in green clothes but blue trousers.
To predict the preliminary target location, “green” contributes
to distinguishing the target person from other persons in
different clothes. However, the incomplete information in
language expressions may distract the segmentation process.
The mismatch between the “green” clothes and the target’s
blue trousers may confuse the segmentation module with the
trousers part unmasked.

To solve this issue, we design an end-to-end parallel
position-kernel-segmentation pipeline, where the position pre-
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diction can be isolated from the segmentation module, as
shown in Fig.1(b). Specifically, the position head (1) finds
the target object’s preliminary region according to the given
image and query sentence. The kernel head (2) selects the
kernels corresponding to the visual feature points within the
target region, predicted from the position module. The segmen-
tation head (3) generates the final fine-grained mask, where
the selected kernels are used to conduct the convolutional
operation. For example in Fig.1, our position head predicts the
center position of the “green woman” via the probability map
of the entire image. Then, our kernel head selects the most
relevant regions. Ultimately, the segmentation head predicts
the final mask of that woman (dismiss “left girl”) based on
the selected regions. Due to the independent structure, the
localization branch is isolated from the segmentation branch.
The segmentation branch uses the visual features and kernels
as input, solely focusing on generating the segmentation mask.

Inspired by weakly supervised semantic segmentation [15]–
[17] and weakly supervised salient detection [18], [19], this
paper also presents the first attempt on Weakly supervised
Referring Expression Segmentation (WRES). We provide an-
notations on three main RES datasets (RefCOCO, RefCOCOg
and RefCOCO+), where pixel-level segmentation labels are
replaced by click annotations on the target object center
and corner points. Compared with REG, WRES dramatically
reduces the annotation cost of pixel-level labeling.

Specifically, our parallel position-kernel-segmentation
pipeline fits the WRES task well, which could be treated as a
benchmark method. (1) The position head is fully-supervised
and trained with the click annotations as supervision. Such a
design is not applicable to other RES methods, as they do not
rely on object localization information as supervision. (2) The
segmentation head is trained with partial cross-entropy loss
and augmented with CRF loss, as full pixel-level segmentation
labels are not available.

In summary, the contributions of this paper are listed as
follows:

• We propose a position-kernel-segmentation framework
for RES, where localization and segmentation are sep-
arated. In the localization branch, the linguistic feature is
fused into the visual feature for better localization. The
segmentation branch uses the visual feature and kernels as
input, solely focusing on generating better segmentation
masks.

• This position-kernel-segmentation framework is naturally
suited for weakly-supervised training, with object center
and corner clicks as labels. To validate our framework
on the weakly-supervised setting, we annotated three
benchmark datasets for the weakly-supervised RES using
click annotations, which will be released to the public.

• For the fully-supervised setting, we achieve state-of-the-
art (SOTA) performances on three primary datasets on the
RES task, including RefCOCO [20], RefCOCO+ [20] and
RefCOCOg [21], [22], where the average mIoU scores
(val/testA/testB) are significantly improved from the pre-
vious SOTA method by 3.07%, 4.66% and 2.39%, respec-
tively. For the weakly-supervised setting, our method also

obtains satisfactory performances, with average mIoU
scores of 49.27%, 37.79% and 40.98%, respectively.

II. RELATED WORK

A. Vision and Language

Multimedia systems have drawn increasing attention to
big data artificial intelligence. Yang et al. [23] first in-
troduced multiple knowledge representation (MKR), where
the knowledge representation learns from different abstraction
levels, different sources, and different perspectives for artificial
intelligence.

The vision-language task has a variety of real-world appli-
cations, including Visual Question Answering (VQA) [24]–
[30], Image-Text Matching (ITM) [31]–[39], Referring Ex-
pression Grounding (REG) [2], [40]–[44], Referring Video
Object Segmentation (RVOS) [45], [46], etc. An important
line of research in existing vision-language works is to align
the image visual feature with the text linguistic feature [33],
[47]–[49]. For the image-text matching task, Wang et al. [47]
proposed consensus-aware embedding to enhance visual and
language features, using the statistical correlations of words
via a GCN [48]. The fused representation takes into account
the cross-modality interactions via different fusion methods.
Chen et al. [33] propose an iterative matching strategy with
recurrent attention memory to associate semantic concepts
between visual features and linguistic features from low-level
objects to higher-level relationships. For the action recognition
task, Zhu et al. [49] proposed cross-layer attention, which
learns the importance weight of different feature layers.

As an important task for human-robot interactions, REG
is aimed at localizing a target object in an image described
by a referring expression. Yu et al. [41] view the proposal-
based method as a region-retrieval problem with proposals of
all candidate objects provided in advance. Yang et al. [42]
combine the linguistic feature of the query sentence and the
visual feature from the image to generate a multimodality
feature map. Then, the binary classification scores (foreground
or background) for all points and their corresponding bounding
box coordinates are predicted.

B. Referring Expression Segmentation

RES is aimed at segmenting the objects based on the
expression instead of at generating their bounding boxes,
which request fine-grained masks with more details, making
it more challenging.

Early RES works focused on directly improving the seg-
mentation quality, and never considered the separation between
the localization modules and the segmentation modules. The
transformer-based architecture is adopted in [2] to better fuse
the vision and language features. Multiple sets of textual
attention maps are proposed in [4], and in each attention
map, an attention weight is predicted for every single word
in the query sentence. Thus, different attention maps can
represent diversified textual comprehensions from different
aspects to better understand the query sentence. Different
from the aforementioned works that combine localization and
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Fig. 2. Overview of the proposed position-kernel-segmentation RES pipeline. The main parts of the proposed method consist of three heads: (a) The position
head predicts a heatmap to localize the object described by the referring expression via a Multi-Step Fusion (MSF) process. (b) The kernel head selects
the kernel vectors from the image feature map using the position information. (c) The segmentation head predicts the final segmentation mask of the target
object. The MSF module fuses the linguistic and visual features. Best viewed in color.

segmentation modules, Jing et al. [6] first proposed an end-to-
end locate-then-segment pipeline, where the localization result
is concatenated with the fused visual-linguistic feature for
segmentation prediction. CMS-Net [10] proposes an end-to-
end cross-modality synergy network, which uses the language
as guidance to get the language-aware visual feature, and
the language-aware visual feature is fused with the original
language feature for final segmentation predictions.

Other works use semantic segmentation tools to improve
RES quality. Feng et al. [5] use the boundary information
as the additional supervision in the training process, which
strengthens the visual features to generate smoother masks. Hu
et al. [14] first introduced the widely-employed segmentation
tool, CRF, to refine the output semantic segmentation map,
which is also adopted by later works [1], [11]–[14].

Unlike existing methods, this is the first work to de-
sign an end-to-end position-kernel-segmentation pipeline that
separates the localization and segmentation modules, where
linguistic information will not directly contaminate the visual
feature for segmentation. Different from previous methods,
our position head influences the segmentation head via the
kernel head, where the noise of the attention does not directly
influence the segmentation process. However, the previous
method does not isolate the segmentation branch, thus the
unstable attention in localization affects the mask generation
process.

C. Semantic Segmentation

Supervised semantic segmentation takes pixel-level labels
as supervision to train a model to predict the precise object
masks. The recent deep-learning-based methods use anchor-
based (Mask R-CNN [50]), kernel-based (SOLOv2 [51]),
and transformer-based (Swin Transformer [52]) solutions for
precise mask generation. However, supervised semantic seg-

mentation has one major limitation: pixel-level annotation is
time-consuming and costly.

To reduce the human annotation cost, many works in-
vestigate weakly-supervised semantic segmentation including
image-level [53], scribble-level [16], and point-level [17]
annotations. For image-level labels, the basic idea is to use
the classification information to generate Class Activation
Map (CAM), where the activated areas can be treated as the
seeds for pseudo labels. For scribble- and point-based methods
with partial pixel-level annotations, ScribbleSup [15] uses
the superpixel method of Simple Linear Iterative Clustering
(SLIC) [54] to expand the original labels. Additionally, other
studies focus on reducing the noise of the expanded pseudo
labels. For instance, Tang et al. [55] use the normalized cut
loss to cut noisy labels lower than the trust threshold.

Weakly-supervised RES is more challenging than weakly-
supervised semantic segmentation, since weakly-supervised
semantic segmentation has classification information to gener-
ate a CAM as pseudo labels, which is not available in weakly-
supervised RES. In our setting, the only labels for weakly-
supervised RES are the object center and corner points.

III. METHODOLOGY

As shown in Fig.2, our framework mainly consists of 5
components: the feature encoding module, position head, ker-
nel head, segmentation head and training losses. The position
head, kernel head and segmentation head follow a position-
kernel-segmentation workflow to generate the segmentation
mask of the target object.
• The feature encoding module encodes input images

and referring sentences into high dimensional features
(Sect.III-A). All levels of the hierarchical visual features
will be applied in the following steps.

• The position head fuses linguistic and visual features via
our designed MSF mechanism; then, the position heatmap
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is predicted, describing the target object’s spatial position
in the image (Sect.III-B).

• The kernel head takes the visual features and position
heatmaps to select the kernel features, where the ultimate
selections correspond to the high probability regions from
the position heatmaps (Sect.III-C).

• The segmentation head uses the visual features and
selected kernels to predict the final segmentation mask
of the target object (Sect.III-D).

• The fully-supervised setting uses two parallel losses for
target object localization and segmentation (Sect.III-E);
the weakly-supervised setting uses three losses, with an
addition loss considering color consistency (Sect.IV-B).

A. Feature Encoding Module

For an input image I ∈ RH×W×3 with height H and
width W , the initial visual pyramid features are defined as
XI={xIi }Li=1 with L levels, obtained from the pretrained
feature extractor Feature Pyramid Network (FPN) [56], where
xIi corresponds to the i-th level of the pyramid features.

For a sentence with N words S={ut}Nt=1, its linguistic
feature is denoted as XS={xSt }Nt=1, where each word’s feature
xSt at position t is generated by the linguistic feature extractor
Glove [57], followed by the sequential bidirectional feature
extractor Bi-GRU [58].

B. Position Head

Our position head predicts heatmaps to localize the tar-
get object described by the referring expression via a MSF
process. Using the visual feature XI and linguistic feature
XS from Sect.III-A as inputs, the position head predicts the
heatmaps D={di}Li=1, which have the same levels L as XI .
di is the i-th position heatmap corresponding to feature xIi .
Each pixel value in di ∈ Rhi×wi represents the probability of
whether this pixel belongs to the target object.

Multi-Step Fusion: The visual features XI are fused with
the linguistic feature XS to obtain the position heatmaps D.
Specifically, di is obtained after fusing xIi with XS .

A MSF process is conducted to fuse the visual and language
features, following one fully convolutional layer to calculate
the probability values in the position heatmap.

The MSF takes J steps. In each step, the linguistic feature
XS is blended into feature F j

i (where F 0
i = xIi ) to obtain the

next step fused feature F j+1
i :

F j+1
i = Fusion(XS , F j

i ), 0 ≤ j ≤ J − 1, (1)

where F j
i ∈ Rhi×wi×cji is the fused feature on the i-th level

and at the j-th step, and J is the total step number.
In different fusion steps, different attention values are al-

located to different phrases to focus on different phrases. For
instance, “dish” takes the highest attention value in the first
fusion step while the second step finds “top” and “right” to
be the most relevant, as shown in Fig.3 (left). More examples
are provided be found in Fig.4.
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Fig. 4. Examples of the different attention values that are allocated to different
phrases in different fusion steps.

Using the final fusion feature F J
i as input, one Fully

Convolutional Layer (FCL) is utilized to predict the final
position heatmap di:

di = FCL(F J
i ). (2)

Fusion with Attention: This subsection describes the im-
plementation of Eq.(1) using the attention mechanism. Specif-
ically, the detailed process, which consists of an attention
operation between the language feature and the visual feature,
is illustrated in Fig.3 (right).

The language attention calculates the importance of each
word in the sentences based on the image visual feature. The
language attention matrix for the i-th level and j-th step, i.e.,
Aj

i ∈ RN×1, is calculated by:

Aj
i = φS(XS)(Avg(φF (F j

i )))
T , (3)

where φS(·) and φF (·) are convolutional operations to unify
the linguistic feature and fused features into the same channel
size. Their final sizes are N×cji and hi×wi×cji . To represent
the entire image, we use Avg(φF (F j

i )) ∈ R1×cji , which is
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the average feature of all feature pixels in the hi × wi map.
(·)T is the transpose operation. Then, matrix multiplication is
performed to calculate the final attention values Aj

i .
With the language attention matrix Aj

i in Eq.(3),
we obtain the weighted average linguistic feature
X̂S=(φS(XS))TSigmoid(Aj

i ), where the sigmoid function
is used to scale the attention values to range (0, 1).

The fused feature F j+1
i is calculated as:

F j+1
i = ϕS(X̂S)� ϕF (F j

i ), (4)

where ϕS(·) and ϕF (·) are convolutional operations to convert
the weighted linguistic feature and fused feature into the
next step’s channel size by one convolutional layer. The final
fused feature is calculated by element-wise multiplication.
Specifically, ϕS(X̂S) is broadcast to the same size of ϕF (F j

i ).
Note that Sect.III-B is the only module where the language
information is implemented.

C. Kernel Head

The kernel head uses the visual features XI and the position
heatmaps D to select the kernels G′, which are used in the
segmentation head to produce the target object mask.

Specifically, the first step in our kernel head is to generate
the kernel map pools G={gi}Li=1, using the image features XI .
gi corresponds to the i-th feature xIi , which is calculated as

gi = CoordConv(xIi ). (5)

CoordConv(·) [59] represents a set of convolutional oper-
ations on the coordinate-enhanced visual feature. Each ci-
channel feature point in xIi (resolution is hi×wi) is concate-
nated with its two-dimensional coordinates, where the channel
number becomes ci + 2.

The final gi ∈ Rhi×wi×c′ shares the same height hi
and width wi with the position heatmap di. Based on the
confidence values in di, ki kernel features g′i ∈ Rki×c′ are
selected from gi for level i:

g′i =
{
gi[m,n, :]

∣∣di[m,n] > λf
}hi,wi

m=1,n=1
, (6)

where [m,n] is the coordinate within hi × wi. λf is the
threshold, where the probability value di[m,n] is higher than
λf for the selected kernel position [m,n]. The element number
of the selected kernel set G′={g′i}Li=1 is

∑L
i=1 ki. Note that,

during the training process, the kernels g′i are selected by
the ground-truth label from the position head. The details of
generating the ground-truth label for the position head are
introduced later in Sect.III-E.

D. Segmentation Head

The segmentation head uses the visual features XI and the
selected kernels G′ to predict the final segmentation mask P
of the target object.

First, a segmentation decoder [60] is employed to generate
the mask feature map M by taking the L − 1 levels of the
visual feature pyramid XI as input:

M = Decoder({xIi }Li=2), (7)

（a) Image （b) Fully-Supervised Mask

（c) Click Annotations （d) Superpixel Mask

Fig. 5. Annotated example for weakly-supervised RES from dataset Ref-
COCO [20]. (a) The original image. (b) The fully-supervised mask, where
the blue area is the ground-truth mask. (c) Click annotations, where the blue
point is the object center point, while the white points are the object corners.
(d) Superpixel mask, where the blue area is the superpixel mask, while the
areas outside the corner points are the background.

TABLE I
COMPARISON OF THE COST BETWEEN FULLY-SUPERVISED ANNOTATIONS

AND WEAKLY-SUPERVISED ANNOTATIONS FOR ONE TARGET.THE TIME
COST IS OBTAINED FROM [61], [62].

Parameters Fully-Supervised Weakly-Supervised
Request polygon points
Number of points ≈ 15 3
Time ≈ 79s ≈ 7.2s

where M ∈ RH
4 ×

W
4 ×c

′
has a quarter size of the original input

image I and the same channel number c′ as g′i in Eq.(6).
Second, the final predicted mask P={pi}Li=1 (each pi ∈

Rki×H
4 ×

W
4 ) is generated using the convolution operation be-

tween the mask feature M and the kernel g′i ∈ G′,

pi = Sigmoid(conv(M, g′i)), (8)

where the sigmoid operation is used to scale the predicted
values to range (0, 1).

E. Fully-Supervised Losses

In the localization branch, the training loss Lpos measures
the difference between the predicted position heatmaps D and
the ground-truth label:

Lpos =
1

L

L∑
i=1

Focal(di, y
pos
i ), (9)

which uses the focal loss [63] to optimize the predicted di on
all L levels. yposi ∈ {0, 1}hi×wi is the one-hot ground-truth
map for the i-th position map, where the object’s center 3× 3
points are set to 1 to represent the position of the target object.

In the segmentation branch, taking the predicted mask P
from Eq.(8), the segmentation loss is:

Lseg = Dice(P, Y seg), (10)
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Fig. 6. Examples of the fully-supervised and weakly-supervised annotations on (a) RefCOCO [20] and (b) RefCOCO+ [20]. For each example, we provide:
the expression, original image, superpixel pieces, fully-supervised mask, center point annotation, and weakly-supervised superpixel mask.

where the Dice loss [64] is adopted to measure the mask
difference. Y seg ∈ {0, 1}H

4 ×
W
4 is the one-hot ground-truth

mask of the target object with an 1/4 bilinear down-sampling
process.

The final training loss is the sum of Eq.(9) and Eq.(10):

L = Lpos + Lseg. (11)

In the inference process, the Matrix NMS [51] is employed
to merge all the predicted masks P from Eq.(8) into one final
segmentation mask.

IV. EXTENSION FOR WEAKLY-SUPERVISED SETTING

A. Annotation of Weakly-Supervised RES

Fully-supervised RES requests the annotator to draw pre-
cious polygon vertices of the target object (Fig.5(b)). In
contrast, weakly-supervised RES only needs clicks in the
labelling process. Fig.5(c) shows one example of the weak
annotations for the target object “baby elephant”.

We annotate three datasets including RefCOCO [20], Ref-
COCO+ [20] and RefCOCOg [21], [22]. For each object, we
need three key points for the target object: (1) center of the

object; (2) left-top corner of the object, and (3) the right-down
corner of the object. In our case, we use the object’s center-of-
mass as the center point, the left-top and right-down bounding
box corners as two corner clicks for convenience.

Inspired by the semantic segmentation task, we use super-
pixel [54] to expand the center point annotation to generate
initial labels for the target object. The areas outside the two
corners are treated as the background for the target object. The
remaining regions are defined as unknown areas (Fig.5(d)).

Table I compares the annotation cost of fully-supervised
and weakly-supervised RES. Each target object needs approx-
imately 15 points for a precious boundary, costing 79 s [61].
Our weakly-supervised annotation only needs 3 points for one
object, costing 7.2 s, which is approximately ten times faster
than the fully-supervised counterpart. A lower annotation cost
also means lower financial budget. Some annotation examples
are shown in Fig.6.

B. Training Losses of Weakly-Supervised RES

In the localization branch, the training loss L̂pos measures
the difference between the predicted position heatmaps D and
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TABLE II
COMPARISONS BETWEEN THE PROPOSED METHOD AND OTHER SOTA METHODS ACCORDING TO THE MIOU SCORE, ON REFCOCO [20],

REFCOCO+ [20] AND REFCOCOG [21], [22] DATASETS. U: UMD SPLIT. G: GOOGLE SPLIT.

Backbone RefCOCO RefCOCO+ RefCOCOg
val test A test B val test A test B val (U) test (U) val(G)

RMI [1] ICCV’17 ResNet101 45.18 45.69 45.57 29.86 30.48 29.50 - - 34.52
DMN [65] ECCV’18 ResNet101 49.78 54.83 45.13 38.88 44.22 32.29 - - 36.76
RRN [11]+DCRF CVPR’18 ResNet101 55.33 57.26 53.93 39.75 42.15 36.11 - - 36.45
MAttNet [41] CVPR’18 ResNet101 56.51 62.37 51.70 46.67 52.39 40.08 47.64 48.61 -
CMSA [12]+DCRF CVPR’19 ResNet101 58.32 60.61 55.09 43.76 47.60 37.89 - - 39.98
BRINet [14] CVPR’20 DeepLab-101 60.98 62.99 59.21 48.17 52.32 42.11 - - 48.04
CMPC [13] CVPR’20 DeepLab-101 61.36 64.53 59.64 49.56 53.44 43.23 - - 39.98
LSCM [66] ECCV’20 DeepLab-101 61.47 64.99 59.55 49.34 53.12 43.50 - - 48.05
MCN [67] CVPR’20 DarkNet53 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40 -
CGAN [68] ACM MM’20 DarkNet53 64.86 68.04 62.07 51.03 55.51 44.06 51.01 51.69 46.54
ACM [5] CVPR’21 ResNet101 62.76 65.69 59.67 51.50 55.24 43.01 51.93 - -
LTS [6] CVPR’21 DarkNet53 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25 -
VLT [4] ICCV’21 Transformer 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65 49.76
ReSTR [69] CVPR’22 Transformer 67.22 69.30 64.45 55.78 60.44 48.27 - - 54.58
PKS ResNet101 70.87 74.23 65.07 60.90 66.21 51.35 60.38 60.98 56.97

TABLE III
ABLATION STUDY OF THE INFLUENCE OF THE KERNEL HEAD ON THE

REFCOCO [20] VALIDATION SET.

Modules prec@X mIoU0.5 0.6 0.7 0.8 0.9
w/o kernel 77.45 74.98 70.66 61.08 34.01 68.27
w/ kernel 80.13 77.67 73.15 64.60 35.87 70.87

+2.68 +2.69 +2.49 +3.52 +1.86 +2.60

the ground-truth label, which involves the same calculation
as Eq.(9).

In the segmentation branch, using the predicted mask P
from Eq.(8), the weakly-supervised segmentation loss is:

L̂seg = pCE (P, Ŷ seg), (12)

where partial Cross-Entropy Loss (pCE) is adopted to measure
the mask difference. Ŷ seg ∈ {0, 1,−1}H

4 ×
W
4 is the ground-

truth mask of the target object for weakly-supervised RES,
which is defined in Sect.IV-A. We only consider the fore-
ground and background areas of the target object (as 1 and 0)
and disregard the unknown areas (as -1) during the training
process.

To better consider the color information from the image, we
adopt the widely-applied Gated-CRF (GCRF) loss [70] in the
training process:

L̂w = GCRF (P, Î), (13)

where Î is the resized raw RGB image and P is the predicted
mask.

The final training loss for weakly-supervised RES is:

L̂ = L̂pos + L̂seg + λwL̂w, (14)

where λw is the hyperparameters to balance the influence of
the GCRF loss.

V. EXPERIMENTS

A. Experimental Settings

Metrics: The RES has two evaluation metrics: the mean
Intersection over Union (mIoU) and the precision score over

a threshold X (prec@X). mIoU calculates intersection regions
over union regions of the predicted segmentation mask and the
ground-truth. prec@X measures the percentage of test images
with an IoU score higher than the threshold X , where X∈
{0.5, 0.6, 0.7, 0.8, 0.9}.

Dataset: The proposed method is evaluated on three main
RES datasets, including RefCOCO [20], RefCOCO+ [20] and
RefCOCOg [21], [22].

RefCOCO is a standard RES dataset, where the numbers
of images, objects, and expressions are 19,994, 50,000, and
142,210, respectively. Expressions are split into 120,624,
10,834, 5,657, and 5,095, as the train, val, testA, and testB
sets, respectively. A single image contains multiple targets,
each of which is annotated by several sentences.

RefCOCO+ is another widely-employed RES dataset, where
fewer spatial descriptions are applied in referring expressions.
The numbers of images, objects, and expressions are 19,992,
49,856, and 141,564, respectively. Expressions are split into
120,191, 10,758, 5,726, and 4,889, as the train, val, testA, and
testB sets, respectively.

RefCOCOg has two different branches: Google [21] and
UMD [22]. In terms of Google, the numbers of images,
objects, and expressions are 26,711, 54,822, and 85,474,
respectively. Objects are split into 44,822, 5,000, and 5,000
as train, val, and test sets, respectively, where the test set
is not released. For UMD, the numbers of images, objects,
and expressions are 25,799, 49,822, and 95,010, respectively.
Objects are split into 42,226, 2,573, and 5,023 as the train,
val, test and sets, respectively.

B. Implementation Details

The adopted visual feature extractor is ResNet-101 [71],
where the feature maps of all levels in FPN [56] are used as the
multiscale inputs of the later modules. The linguistic feature
extractor is Bi-GRU [58], where a sequential bidirectional
module is utilized to embed the sentence and each word is
embedded into a 1024-D vector. In terms of the MSF module
described in Sect.III-B, we set the step number J=4 in Eq.(1).
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TABLE IV
ABLATION STUDY OF DIFFERENT FUSION STRATEGIES, CONDUCTED ON THE VALIDATION SET OF REFCOCO.

modules prec@X mIoUstrategy multi-level multi-step prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9
concat 3 3 33.29 32.63 31.41 28.50 17.10 29.97
multipy 3 3 64.91 60.78 55.73 46.17 22.10 56.76
mean 3 3 72.67 69.58 64.58 55.21 28.61 63.89
MSF 7 7 69.37 67.16 63.18 55.99 31.23 61.61
MSF 3 7 76.28 73.83 69.89 61.75 34.88 67.52
MSF 7 3 76.33 73.36 68.82 60.50 33.97 67.43
MSF 3 3 80.13 77.67 73.15 64.60 35.87 70.87

TABLE V
ANALYSIS ON HOW THE STEP NUMBER J AFFECTS THE PERFORMANCE,

CONDUCTED ON THE VALIDATION SET OF REFCOCO [20]. THE RESULTS
ARE EVALUATED BY PREC@X AND MIOU, ON DIFFERENT SETTINGS OF J

WITH/WITHOUT MULTI-LEVEL (ML) FEATURES.

ML J
prec@X mIoU0.5 0.6 0.7 0.8 0.9

7

1 69.37 67.16 63.18 55.99 31.23 61.61
2 73.76 71.05 67.20 59.35 32.19 65.47
3 76.14 73.07 69.01 60.74 34.01 67.39
4 76.33 73.36 68.82 60.50 33.97 67.43

3

1 76.28 73.83 69.89 61.75 34.88 67.52
2 79.21 75.43 72.10 63.09 35.58 69.72
3 79.87 77.19 72.88 63.93 35.85 70.58
4 80.13 77.67 73.15 64.60 35.87 70.87

TABLE VI
ANALYSIS ON POSITION PREDICTIONS ON DIFFERENT RANGE OF THE

FEATURE LEVELS CONDUCTED ON THE VALIDATION SET OF
REFCOCO [20]. THE RESULTS ARE EVALUATED ACCORDING TO PREC@X
AND MIOU. A LARGER LEVEL NUMBER REPRESENTS A DEEPER FEATURE,

WITH A SMALLER RESOLUTION.

level range prec@X mIoU0.5 0.6 0.7 0.8 0.9
level 5 76.33 73.36 68.82 60.50 33.97 67.43
level 4-5 78.39 75.89 71.61 62.68 34.77 69.46
level 3-5 78.98 76.09 71.61 62.95 35.30 69.87
level 2-5 79.31 77.05 72.22 63.85 35.34 70.18
level 1-5 80.13 77.67 73.15 64.60 35.87 70.87

The hyperparameter λf for kernel selection in Eq.(6) is set to
0.1, as in SOLOv2 [51].

The training process is conducted on four 32G TESLA
V100 GPUs, with a batch size of 8 for each GPU. The process
takes approximately 50 hours for 30 epochs. The input image
sizes H and W for all images are rescaled to 1,333 and
800, respectively. SGD is adopted as the optimizer, with the
learning rate set as 0.01, the momentum set as 0.9, and the
weight decay is set as 1× 10−4. All the obtained results have
some fluctuations, from -0.2 to 0.2, when different seeds are
employed.

For weakly-supervised RES in Sect.IV, SLIC [54] is
adopted as the superpixel generation method for weakly-
supervised annotation, where the number of segmentation
areas for each image is set to 100, and the other parameters
follow the same settings as in the original paper. The hyperpa-
rameter λw in Eq.(14) is set to 0.01. The parameters in GCRF
loss are the same as in [70]. Other settings remain the same
as those in the fully-supervised case.

TABLE VII
UPPER-BOUND ANALYSIS ON THE REFCOCO [20] VALIDATION SET. gt
pos. INDICATES THAT THE GROUND-TRUTH POSITION OF THE TARGET

OBJECT IS UTILIZED ON THE KERNEL SELECTING PROCESS IN SECT.III-C

gt pos. prec@X mIoU0.5 0.6 0.7 0.8 0.9
7 80.13 77.67 73.15 64.60 35.87 70.87
3 93.28 90.28 84.65 74.50 41.56 81.91

+13.15 +12.61 +11.50 +9.90 +5.69 +11.04

C. Experimental Results for Fully-Supervised RES

1) Comparison with Fully-Supervised SOTA Methods:
Table II reports the comparisons between the proposed method
and other SOTA methods according to the mIoU score. The
proposed method achieves a new SOTA accuracy with a
significant gain on three RES datasets, including RefCOCO,
RefCOCO+ and RefCOCOg. Compared with the previous
SOTA method ReSTR [69], the proposed method improves the
mIoU scores (averaged over val, test A and test B) by 3.07%,
4.66% and 2.39% on RefCOCO, RefCOCO+ and RefCOCOg,
respectively. This result demonstrates the effectiveness of the
proposed parallel pipeline in the RES task. Note that the
proposed model is a one-stage framework trained end-to-end
without generating proposals or masks in advance. In our
method, we use the original ResNet101 as the feature extractor
which is the same as [1], [5], [11], [12], [41], [65]. Some other
methods use more powerful backbones (DarkNet53, DeepLab-
101 and Transformer). Nevertheless, our method still achieves
better performances than them, proving the effectiveness of
our method.

2) Ablation Studies on Fully-Supervised Components: The
first ablation study is to show the effectiveness of isolating
localization with segmentation, as reported in Table III. Item
“w/o kernel” means that the attention-fused language-visual
features are directly provided to the segmentation predictions
(similar to [6], [10]). Item “w/ kernel” means that the kernel
head is introduced as the bridge to isolate the position head and
segmentation head, which is our method. The final mIoU score
on the validation set of RefCOCO increases from 68.27% to
70.87%, with a gain of 2.60%, proving the effectiveness of
isolating the two modules via the kernel head.

The second ablation study is on MSF. This study is con-
ducted on the validation set of RefCOCO, and the results are
reported in Table IV. We implement three different language
fusion strategies in addition to our MSF module. “concat”
means that the language and visual features are simultaneously



9

a) Image

b) GT

e) VLT

d) MCN

f) Ours

c) CMPC

“green 
woman”

“lady 
sitting”

“lady 
on right”

“zebra 
on left”

“suitcase 
second from 

right”

“man”“girl in 
purple”

“blue shirt”“left 
sandwich”

“woman 
on left”

“quilt” “tennis player 
in white shirt”

cases: 7653 421 1211108 9

Fig. 7. Qualitative comparisons between (f) our method and other SOTA methods: (c) CMPC [13], (d) MCN [67] and (e) VLT [4], on the validation set
of RefCOCO [20]. The segmentation results are obtained based on the expression at the bottom of each column. Note that (a) Image indicates the original
image and (b) GT indicates the ground-truth segmentation mask.

concatenated on the channel dimension, followed by one FCL
to keep the same dimension size in each layer. “multipy”
means that the language and visual features are element-
wise and simultaneously multiplied on the channel dimension,
followed by one FCL. “mean” represents that the mean feature
value of all words is used to present the entire sentence in our
MSF. The results prove that our MSF strategy is the most
effective feature fusion solution for our method.

We also explore the influence of each component in the
proposed method (i.e., multi-level and multi-step). When the
“multi-step” part is disabled, the mIoU score descends from
70.87% to 67.52%. The result demonstrates that “multi-step”,
which allocates different phrases with different attention values
in different steps, renders language-vision fusion more effec-
tive than the traditional one-step fusion process. On the other
hand, when the “multi-level” part is forbidden, the mIoU score
declines by 3.44%, indicating that comprehensively using the
visual features extracted under different resolutions can better
localize the target objects, especially for the minute features.

The third ablation study is examines how the number of
steps J in Eq.(1) affects the segmentation performance of the
proposed method. As shown in Table V, the proposed method
achieves the mIoU score of 61.61% when J=1 without multi-
level features. The performance is improved when the number
of steps increases, demonstrating the necessity of the MSF
mechanism. When J increases from 3 to 4, the improvement
is limited, thus J=4 is selected to balance performance and
complexity. A similar accuracy change is observed when
multi-level features are adopted, indicating the robustness of
the proposed method.

In the last ablation study, we evaluate the performance when

“dish in top right corner”  

“lady sitting”  

“lady on right”  

“black cat on left”  

a) Image b) GT c) Level-1 d) Level-2 e) Level-3 f) Level-4 g) Level-5

Fig. 8. Visualization of the position heatmaps on different feature levels,
where red areas represent the target regions while blue areas indicate the
non-target regions. A larger level number represents a deeper feature, with a
smaller resolution.

visual features with a certain range of levels are adopted.
During the training stage, only the features of the selected
levels are used, while in the inference period, Matrix NMS [51]
is conducted on the predictions of the selected levels to localize
the target object. As shown in Table VI, the accuracy improves
when more levels of the features are adopted in the position
head. The highest mIoU score of 70.87% is achieved when
all levels (“level 1-5”) of features are adopted, showing that
visual features of all levels jointly contribute to localizing the
target objects.
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TABLE VIII
COMPARISONS BETWEEN THE PROPOSED METHOD AND OTHER METHODS ACCORDING TO THE MIOU SCORE, ON REFCOCO [20], REFCOCO+ [20]

AND REFCOCOG [21], [22] DATASETS. F REPRESENTS FULLY-SUPERVISED RESULTS, AND W REPRESENTS WEAKLY-SUPERVISED RESULTS.

RefCOCO RefCOCO+ RefCOCOg
val test A test B val test A test B val (U) test (U) val(G)

VLT [4] F 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65 49.76
PKS F 70.87 74.23 65.07 60.90 66.21 51.35 60.38 60.98 56.97
VLT [4] W 45.23 46.32 44.57 31.74 34.83 27.43 33.20 32.63 30.67
PKS W 49.27 52.23 45.64 37.79 42.09 32.87 40.98 40.80 36.43

TABLE IX
ABLATION STUDIES ON THE INFLUENCE OF LABELS AND GCRF LOSS, FOR THE WEAKLY-SUPERVISED SETTING, CONDUCTED ON THE VALIDATION SET

OF REFCOCO.

modules prec@X mIoUp@0.1 p@0.2 p@0.3 p@0.4 p@0.5 p@0.6 p@0.7 p@0.8 p@0.9
Fully-Supervised 85.40 84.54 83.57 82.12 80.13 77.67 73.15 64.60 35.87 70.87
baseline + point FG 28.24 14.01 5.96 2.04 0.69 0.16 0.05 0.00 0.00 7.30
baseline + point FG + BG 73.35 57.18 29.40 9.42 2.02 0.35 0.03 0.00 0.00 21.11
baseline + superpixel FG + BG 76.98 74.07 70.50 64.80 56.21 42.47 25.61 8.60 0.75 46.25
baseline + superpixel FG + BG + GCRF loss 80.18 77.90 74.77 69.69 61.53 48.35 28.56 9.56 0.78 49.27

3) Analysis on Upper-bound: We also analyse the upper-
bound of our method conducted on the validation set of
RefCOCO in Table VII. The upper-bound denotes that the
ground-truth position of the target object is utilized in the
kernel selection process in Sect.III-C. The performance dif-
ference between the upper-bound and the standard setting in
our method on position is 13.15% at prec@0.5 (prec@0.5 is
the normal overlap threshold of correct findings). Even with
the ground-truth position, the proposed method achieves an
mIoU of 81.91%, where the predicted masks still do not fully
overlap the ground-truth masks.

4) Qualitative Analysis for Fully-Supervised RES: The
qualitative comparison between our method and other SOTA
methods, including CMPC [13], VLT [4], and MCN [67], is
shown in Fig.7. Different from the broken masks predicted
by CMPC [13], the proposed method generates more intact
results, such as “suitcase” in Case (4) and “green woman” in
Case (7). Compared with MCN [67], our proposed method
predicts better contours, such as “lady sitting” in Case (6)
and “quilt” in Case (8). Compared with VLT [4], whose
prediction covers other distracting objects similar to the target,
the proposed method correctly distinguishes the target from
other distracting objects, such as “girl in purple” in Case (1)
and “green woman” in Case (7).

The visualization of the position heatmaps corresponding
to different levels is provided in Fig.8. As observed, the
target center is adequately localized in all heatmaps. The
low-resolution deep-level features (such as level-5), which
contains more semantic information, take more responsibility
for identifying the main region of the object. However, the
low-level feature, with a larger resolution, can predict a more
precise position heatmap, especially for irregular, long-shaped
objects. In this way, all these features are complementary,
which jointly contributes to the localization of the target.

In addition, four failed cases are illustrated in Fig.9. In
the left two cases, the target object is not properly localized,
and the distracting object is predicted. Specifically, the first
case shows that it is arduous for the proposed method to

“left kid”  “pink”  

a) Image

c) GT

d) Ours

“left half of 
right sandwich”  

b) Pos

“third from left”  

Fig. 9. Visualization of failed cases on the validation set of RefCOCO [20].
Note that GT indicates the ground truth segmentation mask and Pos indicates
the position prediction. Best viewed in colors.

handle ordinal numbers (e.g., “third”), as these words are not
common in the training set. In the second case, the proposed
method fails as too many spatial descriptions occur in a single
referring sentence (e.g., “left half” and “right”). The right two
cases show that the segmentation quality needs to be further
improved, especially when the target object contour is hard to
identify, or the target object consists of several separate parts.

D. Experimental Results for Weakly-Supervised Setting

1) Comparison with Other Methods: Table VIII compares
the mIoU scores between the proposed method and VLT [4],
on both fully-supervised (F) and weakly-supervised (W) RES.
The fully-supervised VLT is trained with the originally pub-
lished code, and the weakly-supervised VLT is trained with
superpixel masks by replacing CE loss with pCE loss. As
observed, our method achieves clear gains for both fully-
supervised and weakly-supervised settings.
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“left zebra” “gitl in 
bikini on 

right”

“broc 
bottom 
right”

“woman 
on left 

standing”

“lady in 
purpl 
asian”

“catcher”“batter” “guy near 
wall”

“broken 
hot dog”

“top comic 
near front”

“last book 
on top 
right”

“left green shirt 
bending down”

（a) 

（b) 

（c) 

（d) 

（e) 

Fig. 10. Qualitative results of weakly-supervised RES on the validation set of RefCOCO. (a) Original image. (b) Fully-supervised masks, white regions
are the foreground and black regions are the background. (c) Weakly-supervised masks, the grey regions have unknown labels for the training process. (d)
Weakly-supervised predictions.

2) Ablation Studies on a Weakly-Supervised Setting: Table
IX reports the performances when some components are
disabled, to show their effectiveness. “Point FG” represents
the setting that the ground-truth labels only contain the center
point as the foreground. “Point FG + BG” means that the
ground-truth labels contain both the foreground points and
background points. “superpixel FG + BG” means that the
superpixel method is used to expand the foreground labels
to replace the center point foreground. “superpixel FG + BG
+ GCRF loss” represents that the training optimization adopts
the GCRF loss. As observed, with only the center point as the
foreground, a mIoU score of 7.30% is achieved. After adding
the background points, the mIoU score increases to 21.11%,
showing that the foreground labels do not contain enough
information and that background annotation is necessary for
weakly-supervised RES training process. When replacing the
center point with the superpixel foreground, a major improve-
ment from 21.11% to 46.25% is obtained. After adopting
the GCRF loss, the mIoU score increases to 49.27%. We
observe that the gap between the fully-supervised and weakly-
supervised results is 21.60%, indicating that there is still room
for further improvement for weakly-supervised RES.

3) Qualitative Analysis for Weakly-Supervised RES: Fig.10
provides examples of the weakly-supervised RES results.
The target objects are sufficiently localized based on the
expression, which shows that our position head is performed
well with the click annotation as supervision. However, the
predicted masks are not precise, and the details of the objects
are missing, due to a lack of detailed ground-truth masks.
We suggest that the segmentation head could be further
improved, especially when the target object shape is complex.
For instance, object saliency information could be used to
improve the object boundary, which will be addressed in future
research.

VI. CONCLUSION

In this paper, we have individually analysed the two main
components of referring expression segmentation: localization

and segmentation. We propose a position-kernel-segmentation
framework to train the localization and segmentation process
in parallel and then interact the localization results with
the segmentation process via a visual kernel. Our paral-
lel framework could generate complete, smooth and precise
masks, achieving state-of-the-art performances with more than
4.5% mIoU gain over previous SOTA methods on three
main RES datasets. Our framework also enables training
RES in a weakly-supervised way, where the position head
is fully-supervised and trained with the click annotations as
supervision, and the segmentation head is trained with weak
segmentation losses. We annotate three benchmark datasets
for weakly-supervised training, and achieve satisfactory per-
formances.
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