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Semantic-Aware Graph Matching Mechanism for
Multi-Label Image Recognition

Yanan Wu, Songhe Feng and Yang Wang

Abstract—Multi-label image recognition aims to predict a set
of labels that present in an image. The key to deal with such
problem is to mine the associations between image contents
and labels, and further obtain the correct assignments between
images and their labels. In this paper, we treat each image as
a bag of instances, and formulate the task of multi-label image
recognition as an instance-label matching selection problem. To
model such problem, we propose an innovative Semantic-aware
Graph Matching framework for Multi-Label image recognition
(ML-SGM), in which Graph Matching mechanism is introduced
owing to its good performance of excavating the instance and
label relationship. The framework explicitly establishes category
correlations and instance-label correspondences by modeling the
relation among content-aware (instance) and semantic-aware
(label) category representations, to facilitate multi-label image
understanding and reduce the dependency of large amounts of
training samples for each category. Specifically, we first construct
an instance spatial graph and a label semantic graph respectively
and then incorporate them into a constructed assignment graph
by connecting each instance to all labels. Subsequently, the graph
network block is adopted to aggregate and update all nodes
and edges state on the assignment graph to form structured
representations for each instance and label. Our network finally
derives a prediction score for each instance-label correspondence
and optimizes such correspondence with a weighted cross-
entropy loss. Empirical results conducted on generic multi-label
image recognition demonstrate the superiority of our proposed
method. Moreover, the proposed method also shows advantages
in multi-label recognition with partial labels and multi-label
few-shot learning, as well as outperforms current state-of-the-
art methods with a clear margin. Our code is available at
https://github.com/yananwu0510/ML-SGM.

Index Terms—Multi-Label Image Recognition, Graph Match-
ing, Graph Neural Network, Multi-Label Learning with Partial
Labels, Multi-Label Few-Shot Learning

I. INTRODUCTION

Assigning multiple labels to a given image based on its
content is known as multi-label image recognition (MLIR).
As a fundamental yet essential task in computer vision, it
can serve as a prerequisite for many applications, such as
weakly supervised localization and segmentation [1], [2],
attribute recognition [3], scene understanding [4], medical
diagnosis systems [5], [6] etc. Compared with single-label
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Fig. 1: Illustration of the ASsignment Graph Construction
(ASGC). The upper part designs an instance spatial graph
Go, while the lower part builds a label semantic graph Gl.
Then each instance is connected to all labels to form the final
assignment graph GA.

image recognition, MLIR is more general and practical since
an arbitrary image is likely to contain multiple objects in
the physical world [7]. The accurate parsing of multi-label
recognition still faces great challenges because of the rich
semantic information and complex dependencies of an image
and its labels.

The key to accomplish the task of MLIR is how to ef-
fectively explore the valuable semantic information from the
image context, and further obtain the correct assignments
between images and their labels. A simple and straightforward
way is to treat each image as a bag of instances/proposals,
and cope with each instance in isolation. Thus, the multi-
label problem is converted into a set of binary classification
problems. However, its performance is essentially limited due
to ignoring the complex topology structure among labels. This
stimulates research for approaches to capture and mine the
label correlations in various ways. For example, Recurrent
Neural Networks (RNNs) [8], [9] and Graph Convolution
Network (GCN) [10], [11] are widely used in many MLIR
frameworks owing to their competitive performance on ex-
plicitly modeling label dependencies. However, most of these
methods ignore the associations between semantic labels and
image local features, and the spatial contexts of images are not
sufficiently exploited. Some other works introduce attention
mechanisms [12], [13] to adaptively search semantic-aware
instance regions and construct instance-wise correlations based
on statistical co-occurrences or semantic embeddings. For
example, Chen et al. [14] propose to incorporate category
semantics to better learn instance features and explore their in-
teractions under the guidance of statistical label dependencies.
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However, this static dependency neglects the characteristics
of each image, leading to the hallucination for objects with
high-frequent co-occurrences (e.g., hallucinate “person” even
in a scene containing only “car”), or negative optimization
for objects with less-frequent co-occurrences. Furthermore,
due to the lack of fine-grained supervision information, these
methods could merely locate instance regions roughly, which
neither consider the dynamic interactions among instances nor
explicitly describe the instance-label assignment relationship.

To address the above mentioned issues, in this paper, we
fully explore the correspondence (matching) between each
instance and label, and reformulate the task of MLIR as an
instance-label matching selection problem. Accordingly, we
propose an end-to-end deep learning model named Semantic-
aware Graph Matching mechanism for Multi-Label image
recognition (ML-SGM), which simultaneously incorporates
instance spatial relationship, label semantic correlation and
the co-occurrence possibility of varying instance-label as-
signments into a unified framework. Specifically, inspired by
Graph Matching (GM) suitable for structured data, we first
design a dynamic instance spatial graph by representing each
instance feature as the node attributes and the relative loca-
tion relationship of adjacent instances as the edge attributes.
Meanwhile, a label semantic graph is employed to capture the
overall semantic correlations, which takes the word embedding
of each label as node attributes, and concatenates the attributes
of two nodes (labels) associated with the same edge to form
the edge attributes. Then each instance is connected to all
labels to form the final assignment graph, as shown in Figure
1, which explicitly models the instance-label matching possi-
bility. Moreover, Graph Network Block (GNB) is introduced
to our framework to perform computation on the constructed
assignment graph, which forms structured representations for
each instance and label by a graph propagation mechanism.
Finally, we design a weighted cross-entropy loss to optimize
our network output, which indicates the prediction score of
each instance-label correspondence.

It is notable that our constructed instance spatial graph can
dynamically capture the content-aware category relations for
each image. Different from existing methods that extract a
corresponding content-aware category representation for each
label, our proposed method just generates a small number
of image-special instance features, which can reduce the
computational complexity of our model. Meanwhile, we model
the relationship between instances by their relative positions
instead of statistical co-occurrence relationships, which can
further enhance the representative and discriminative capabil-
ities of instance features in this adaptive way. In addition,
we originally designed our architecture to tackle the MLIR
problem, but we would also like to highlight that the proposed
ML-SGM is much more general and can be applied for
multi-label analysis with limited training samples or anno-
tation information, e.g., multi-label few-shot learning (ML-
FSL) [12], [15] and multi-label recognition with partial labels
(MLR-PL) [16], [17]. Specifically, our proposed instance spa-
tial graph and label semantic graph can infer the semantic
correlation between novel categories and base categories to
classify multiple labels using only a few annotated samples

effectively. In addition, the proposed instance-label matching
module can learn category-special feature similarities and
help complement missing labels with high similarities. We
conduct extensive experiments on both MLR-PL and ML-FSL
tasks and empirical results on various image datasets again
demonstrate the advantage of the proposed model. In summary,
the main contributions are as follows:
• To the best of our knowledge, it is the first time to

formulate the task of MLIR as a matching selection
problem, and accordingly we propose a novel semantic-
aware graph matching approach to solve it, where in-
stance spatial relationship, label semantic correlation
and co-occurrence possibility of varying instance-label
assignments are jointly integrated to guide the correct
correspondences between images and their labels.

• Different from previous approaches that build a static
statistics-based instance graph, we introduce a dynamic
instance spatial graph constructed from content-aware
category representations, which can capture the category
relations for a specific image in an adaptive way, further
enhancing its representative and discriminative ability.

• We conduct comprehensive experiments on various im-
age recognition tasks to evaluate the effectiveness of
the proposed model, including generic MLIR, MLR-
PL and ML-FSL tasks. Extensive experimental results
have demonstrated that our model exhibits substantial
improvements over state-of-the-art methods.

This manuscript is an extension of our IJCAI2021 confer-
ence version [18], which differs from [18] with the following
significant additional contributions. First, instead of using
object detection network (Faster-RCNN) [19] for instances
generation, our proposed ML-SGM directly decomposes the
feature map extracted by a CNN backbone into content-aware
category representations. This simplifies the whole framework
and saves massive computational costs. Second, we generalize
the proposed framework to two more challenging learning
tasks, namely multi-label learning with partial labels and
multi-label few-shot learning. We demonstrate the superiority
of our approach to these tasks. Finally, we conduct a com-
prehensive ablation study on several widely used benchmarks
and give detailed experimental analysis to demonstrate the
effectiveness of each component in our proposed model.

II. RELATED WORKS

A. Multi-Label Image Recognition

The task of multi-label image recognition (MLIR) has
attracted increasing interest recently. A straightforward way to
address this problem is to train independent binary classifiers
for each label. However, such method does not consider
the relationships among labels, and the number of predicted
labels will grow exponentially as the number of categories
increases. To overcome the challenge of such an enormous
output space, some works convert the multi-label problem into
a set of multi-class problems over region proposals. Wei et al.
[20] extracted an arbitrary number of object proposals, then
aggregated the label confidences of these proposals with max-
pooling to obtain the final multi-label predictions. Yang et
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TABLE I: Some important abbreviations and notations.

Abbreviation and Notation Definition
MLIR Multi-Label Image Recognition
MLR-PL Multi-Label Recognition with Partial Labels
ML-FSL Multi-Label Few-Shot Learning
ML-SGM Semantic-aware Graph Matching framework for Multi-Label image recognition
ASGC ASsignment Graph Construction module
CSAC Content-aware Semantic ACtivation module
ILMS Instance-Label Matching Selection module
D = {(Xi, yi)}Ni=1 multi-label image dataset
Xi = [x0i , x1i , ..., xMi ]T ∈ R(M+1)×D i-th image that consists of M + 1 instances
yi = [y1i , y

2
i , ..., y

C
i ]T ground-truth label vector of Xi

x0i ; x1i ∼ xMi whole image feature; semantic-aware instance features
xji → xj simplify xji by xj to represent a specific instance feature for the convenience of description
Go; Gl; GA instance spatial graph; label semantic graph; instance-label assignment graph
ϕv
enc; ϕe

enc; ϕe
dec encoder of node attributes; encoder of edge attributes; decoder of edge attributes

No; Nl the sets of instance nodes and label nodes adjacent with current node

al. [21] treated each image as a bag of instances, and solved
the MLIR task in a multi-instance learning manner. However,
the above methods ignore the label correlations in multi-label
images when converting MLIR to the multi-class task.

Recently, researchers have focused on exploiting the label
correlation to facilitate the learning process [22], [23], [24].
Gong et al. [25] leveraged a ranking-based learning strategy to
train deep convolutional neural networks for MLIR and found
that the weighted approximated-ranking loss can implicitly
model label correlation and achieve state-of-the-art perfor-
mance. Wang et al. [8] combined recurrent neural networks
with CNNs to capture the correlations between labels and pre-
dicted labels in a predefined order. Besides, some studies [26],
[27] utilized graph structure to model the label correlation.
Chen et al. [10] used GCN to map a group of label semantic
embeddings into inter-dependent classifiers. Wang et al. [11]
proposed to model label correlation by superimposing label
graph built from statistical co-occurrence information into the
graph constructed from knowledge priors of labels. However,
none of the aforementioned methods consider the associations
between semantic labels and image local features, and the
spatial contexts of images have also not been sufficiently
exploited.

To solve the above issues, recent progress on MLIR at-
tempts to model label correlation with region-based multi-label
approaches. Zhu et al. [28] designed a spatial regularization
network to explore both spatial and semantic relationships
among multiple labels according to weighted attention maps.
Chen et al. [14] incorporated category semantics to better
learn instance features and explored their interactions under
the guidance of statistical label dependencies. Ye et al. [29]
proposed an Attention-Driven Dynamic Graph Convolutional
Network, which consists of a static graph (label statistics)
for capturing the global coarse category dependencies and
a dynamic graph for exploiting content-dependent category
relations, respectively. Our work is largely inspired by these
region and GCN-based multi-label methods. However, instead
of extracting a corresponding content-aware representation
across all categories for each specific-image, our ML-SGM
just generates a small number of image-special instance fea-
tures, which can reduce the computational complexity. And we

model the relations between instances by their relative posi-
tions instead of statistical label co-occurrence [12] or instance
feature concatenation [29], which can further enhance the
representative and discriminative of categories representation.

B. Multi-Label Recognition with Partial Labels

Multi-label tasks often involve incomplete training data,
hence several methods [17] have been proposed to solve the
problem of multi-label learning with partial labels, i.e., merely
some labels are known while other labels are missing (also
called unknown labels). In general, existing works to deal
with this issue are roughly grouped into four categories. (1)
Missing labels are directly treated as negative labels [30], [31].
Common to these methods is that the label bias is brought into
the objective function. As a result, their performance suffers
from a severe drop when massive ground-truth positive labels
are wrongly annotated as negative. (2) Missing labels are filled
via a matrix completion scheme [32]. These methods utilize
instance-level similarity and label co-occurrence with low-rank
regularization on the label matrix to complete missing labels.
Wu et al. [33] exploited a mixed graph to encode a network of
label dependencies to transfer the given labels knowledge into
missing labels. (3) Missing labels are treated as latent variables
in probabilistic models and updated in an active learning
manner. Kapoor et al. [34] proposed to project the label vector
to a lower dimensional space and predict missing labels by
posterior inference using Bayesian networks. (4) Unlike most
of the previous methods that treat missing labels as negative
labels, some other works formulate it as the third label state
to explicitly distinguish label information in partially labeled
data. For example, Wu et al. [35] defined three label states,
including positive labels +1, negative labels −1 and missing
labels 0, to recover the full label assignment for each sample
by enforcing the consistency with available label assignments
and the smoothness of label assignments.

Recently, some CNN-based deep methods have been pro-
posed to tackle the MLIR with missing labels problem, which
are scalable and end-to-end learnable. Durand et al. [16] de-
signed a normalized binary cross-entropy (BCE) loss to exploit
label proportion information and use it to train the model with
partial labels. Huynh et al. [17] introduced statistical label
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Fig. 2: Illustration of our proposed deep learning framework for MLIR task. Overall our model consists of three major
components: the Content-aware Semantic ACtivation (CSAC), the ASsignment Graph Construction (ASGC) and the Instance-
Label Matching Selection (ILMS). The CSAC module is contained in the ASGC module, and the details of ASGC and CSAC
are shown in Figure 1 and 3, respectively. The ILMS module consists of Encoder, Graph Convolution and Decoder. The
encoder and decoder are designed as MLPs, where encoder transforms all node attributes and edge attributes into latent space
and decoder derives instance-label matching scores from the updated graph state. Moreover, the graph convolution utilizes
Graph Network Block (GNB) to perform nodes and edges attributes aggregating and updating.

co-occurrence and image-level feature similarity to regularize
training networks to avoid overfitting to partial labels. Chen et
al. [36] explored semantic correlations to transfer knowledge
of known labels to generate pseudo labels for missing labels
and use both known and generated labels for model training.
In this paper, we further develop our framework that allows
efficient end-to-end training with partial labels.

C. Few-Shot Learning

Few-shot learning aims to recognize new objects from
extremely limited training samples, which learns from the
base dataset with many labeled training samples and can be
generalized to novel dataset with few labeled samples [37],
[38]. The key to solve this problem is to transfer the knowledge
of the base categories to the novel categories, further achieving
good generalization [39]–[41]. In the standard formulation of
few-shot learning, each few-shot task has a support set and
a query set. Let S denote the support set, which contains
N different image classes and K labeled samples per class
(called N -way K-shot setting). Given the query set Q, few-
shot learning aims to classify each unlabeled sample in Q
according to the set S. In summary, existing few-shot methods
can be grouped into the following aspects.

Metric learning-based methods put emphasis on finding
better distance metrics to determine the correct categories for
the query samples [42]. MatchingNet [43] learned a sample-
wise metric that maps a small labeled support set and an
unlabelled sample to its label, generating the labels of the
query set in terms of distances between samples. ProtoNet [44]
extended the samples-wise to class-wise metric, which adopts
the mean of the embedded sample features in novel categories
as a class prototype and then recognizes test samples by
nearest-neighbor classifiers.

Meta-learning-based methods follow the key idea of learn-
ing to learn that optimizes the models for the capacity of
rapidly adapting to new categories [45], [46]. Early works

focused on meta-learning an optimizer including the LSTM-
based meta-learner [47] and the external-memory assisted
weight updating [48]. Later, researches concentrated on meta-
learning a model initialization [49] that is suitable for fast
adapting the model to a new class by fine-tuning on a few
support samples with few iterations. But such methods are
faced with a difficult bi-level optimization problem owing to
the inter-dependency of the parameters updated in the inner
and outer loops for each episode. To solve this issue, Lee et
al. [50] used implicit differentiation for quadratic programs in
a final SVM layer and Sun et al. [51] proposed to learn task-
relevant scaling and shifting functions to dynamically adjust
the CNN weights.

Data augmentation-based methods aim to synthesize new
samples from the few training samples to augment the gener-
alization of the model. In addition to simple data augmen-
tation tricks such as horizontal flipping, scaling and posi-
tional shifts, more advanced approaches are proposed to learn
compositional representations for novel categories recognition.
Schwartz et al. [52] proposed a delta-encoder to extract
transferable intra-class deformations and synthesize samples
for novel categories. Alfassy et al. [15] focused on a new
and challenging problem - multi-label zero-shot learning, and
proposed a label-set operation network LaSO to synthesize
samples with multiple labels. In this paper, we generalize our
model to this task and demonstrate its superior ability to learn
robust category features and classifiers from limited samples.

III. THE PROPOSED METHOD

Given a multi-label image dataset D = {(Xi, yi)}Ni=1, we
denote Xi = [x0i , x1i , ..., xMi ]T ∈ R(M+1)×D as the i-th image
that consists of M +1 instances, yi = [y1i , y

2
i , ..., y

C
i ]
T as the

ground-truth label vector for Xi, where each instance xji (j =
0, 1, ...,M) is a D-dimensional feature vector (here x0i denotes
the whole image and x1i ∼ xMi denote the semantic-aware
instances). C is the number of all possible labels in the dataset.
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Fig. 3: Illustration of the Content-aware Semantic ACtivation (CSAC). Different from the semantic attention module in ADD-
GCN [29] that extracts a corresponding content-aware representation across all categories for each image, our CSAC generates
a small number of instance regions while keeping their diversity and computational efficiency. We model the relations between
instances by their relative positions instead of the concatenation of instance features. This can further enhance the representative
and discriminative capabilities of category representations.

yci = 1 indicates that image Xi is annotated with label c(c =
1, 2, ..., C), and yci = 0 otherwise. The goal of ML-SGM is
to learn a multi-label classification model from the instance-
level feature together with the image-level ground-truth label,
and further assign the predictive labels for a test image. For
convenience, we list some crucial abbreviations and notations
in Table I.

A. Overview

The overview architecture of the proposed ML-SGM is
illustrated in Figure 2, which consists of three components: the
Content-aware Semantic ACtivation (CSAC), the ASsignment
Graph Construction (ASGC) and the Instance-Label Matching
Selection (ILMS). The CSAC module dynamically generates a
small number of instance regions while keeping their diversity
as high as possible. The ASGC module takes instance spatial
graph and label semantic graph as input, and considers each
instance-label connection as a candidate matching edge. The
ILMS module is another core component of our learning
framework, which introduces Graph Network Block (GNB) to
convolve the information of neighborhoods of each instance
and label to form a structured representation through several
convolution operators. Finally, our model derives a prediction
score for each instance-label correspondence and optimizes
such correspondence with a weighted cross-entropy loss.

B. The Content-aware Semantic Activation

In MLIR task, visual concepts are highly related with
the local regions of an image [53]. In order to better mine
the information of local regions and further explore their
interplay, the instance regions should be generated in an
efficient manner. The desirable generation module and instance
regions need to satisfy the following basic principles, including
high diversity, small number of instance regions and high
computational efficiency. Following these principles, we intro-
duce the Content-aware Semantic ACtivation module (CSAC)
to dynamically obtain image-specific instance representations
(Figure 3), which includes three steps: class-activation gener-
ation, class selection and instance localization.

a) Class-Activation Generation: In our model, we apply
class activation mapping (CAM) [54] to generate instance re-
gions. Specifically, we feed an image to a pre-trained backbone
network [55] to extract its feature maps F ∈ RD×H×W from
the last convolutional layer, where D, H , W are the number of
channels, height, and width of the feature maps, respectively.
Then a new convolution layer as the classifier is performed
on the feature maps F to generate the content-aware semantic
activation map M ∈ RC×W×H , and regularize it via a sigmoid
function. It is worth noting that these operations are different
from CAM, but have better performance in our experiments.
Next, the semantic activation map M is used to convert the
feature map F into a set of instance representations1, i.e.,
X = {x1, x2, ..., xC}. Each instance representation xc can
selectively aggregate features related to its specific category
c as follows,

xc =
H∑
x=1

W∑
y=1

Mc(x, y)F(x, y). (1)

The discriminative instance regions of a specific xc are
significantly different among all possible instance represen-
tations {xc}Cc=1. If we use {xc}Cc=1 to localize the potential
instance regions, it is easy to increase the diversity of different
instance regions and cover all single objects of the given
multi-label image. Furthermore, in order to make instance
representation be more tailored for the multi-label data, we
fine-tune the representation on our target dataset with the
weighted cross-entropy loss. This can help to overcome the
localization problem of previous unseen categories as the
model has already learned semantic-aware features from a
wide range of categories.

b) Class selection: The number of the above-generated
instance representations is equal to that of all categories
associated with the corresponding dataset. For example, there
are 20 and 80 categories on PASCAL VOC and MS-COCO
datasets, respectively. If we employ all instances, it would
cause two issues. (i) The number of generated instances is
too large to be computationally efficient. (ii) The majority of

1For the convenience of description, in the subsequent content, we simplify
xji by xj to represent a specific instance feature.
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Fig. 4: Semantic activation map and instance region localiza-
tion of the spoon category. The blue boxes indicate instance
region localization before employing the thresholding method.
The red box indicates instance region localization after em-
ploying the threshold method.

instances will be redundant or meaningless since an image is
usually composed of several instances. Moreover, it is a rea-
sonable assumption that high category confidence means that
the corresponding instance is present in the image with a high
probability. Therefore, in our model, we select instances of
which the prediction scores are greater than the threshold γ as
the image visual features X′ = [x1, x2, ..., xM ]T ∈ RM×D to
learn image-specific category correlation. Here, the prediction
scores are generated by performing the global spatial pooling
on the semantic activation map. M is the number of selected
instances and the choice of the threshold γ is analyzed in
Section 4.7. In addition to the instances selected based on the
above criterion, we also extract the global features of the whole
image as the representation x0 of a new instance, which serves
as the complementary information to handle potential missing
target instances or abstract concepts, e.g., “travel” or “singing”,
etc. The representations of these instances eventually form the
image visual features X = [x0, x1, ..., xM ]T ∈ R(M+1)×D.

c) Instance localization: The value of produced
Mc(x, y) indicates the importance of the activation at spatial
location (x, y) leading to classify an image to category c. In
this work, our objective is to recognize multi-class objects
in a given image, and only one discriminative region needs
to be selected for each category. Therefore, some constraints
have to be added such that a unique and important interval
among multiple feasible intervals can be chosen. In order to
efficiently localize such instance regions, we exploit a simple
thresholding method to segment the heatmap. Specifically, we
first segment the regions whose values are above 20% of the
max intensity of the semantic activation map. It results in
connected segments of pixels and then we draw the bound-
ing box B(x, y, w, h) around the single largest segment. As
shown in Figure 4, if the thresholding method is applied, the
visual features of the spoon category are represented as the
instance regions in the red box, otherwise are represented
as all the instance regions in the blue boxes. In addition,
such a thresholding method has been widely used in weakly-
supervised localization tasks [54], [56], [57] to generate object
bounding boxes from class activation maps. Here 20% is a
hyperparameter that is empirically set.

C. The Assignment Graph Construction

As depicted in Figure 1, we first construct an instance spatial
graph to explore the relationship of the spatially adjacent
instances. Specifically, we feed an image to the CSAC module
to generate a set of semantic-aware instances, where each

instance contains a bounding box B(x, y, w, h). Within the
bounding box, (x, y) denotes the location (x-axis, y-axis
coordinates) and (w, h) denotes the size (width and height).
Each of these instances is taken as a node in the instance
spatial graph Go in which the edges between each pair of
nodes are produced through k-Nearest Neighbor criteria. Note
that our Go is a directed graph, where the attributes of
nodes are denoted by the visual feature of the corresponding
instances, and the attributes of edges are represented by the
concatenations of bounding box coordinates of its source
instance and target instance

voi = xi, eoij = [B̂i, B̂j ], (2)

where xi and B̂i(xi, yi, wi, hi) denote the features and lo-
cation coordinates of i-th instance respectively and [·, ·] the
concatenations of its input. It is worth mentioning that the
concatenation operation has been widely used to fuse the
features in many learning paradigms.

Similar to [10], [13], we also construct a label semantic
graph Gl to capture the topological structure in the label space,
where each node of the graph is represented as word embed-
ding of the label. However, different from the above methods,
our Gl does not require the pre-defined label co-occurrence
statistics. Instead, we form the initial edge attributes of Gl by
combining the word embeddings of the connected two label
nodes.

vli = wi, elij = [wi,wj ], (3)

where wi denotes the word embedding of i-th label.
To explicitly establish the instance-label matching relation-

ship, we connect each instance in Go to all labels in Gl to
form the initial instance-label assignment graph GA. In GA,
the attributes of the matching edges that connect instances and
labels are represented as

emij = [voi , v
l
j ]. (4)

where voi is the i-th instance in the visual/object space, vlj
denotes the j-th label in the label space, and emij indicates the
attribute of the matching edge between the i-th instance and
the j-th label.

In this way, we successfully convert the problem of building
the complex correspondence between an image and its labels
to the issue of selecting reliable instance-label matching edges
from a constructed assignment graph. Accordingly, the goal
of the MLIR problem is transformed into how to solve the
matching selection problem and obtain the optimal instance-
label assignment.

D. Modeling Instance-Label Correspondence

As illustrated in Figure 2, our matching selection module is
designed on the top of Graph Network Block (GNB) presented
in [58], which defines a class of functions for relation rea-
soning over graph-structured representations. It is extended in
our model to fit the instance-label matching selection problem
by eliminating redundant components and redefining certain
functions. Specifically, the matching selection module consists
of three main components: Encoder, Graph Convolution and
Decoder.
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a) Encoder: The encoder takes the constructed assign-
ment graph GA as input, and transforms its attributes into
a latent feature space by two parametric update functions
ϕvenc and ϕeenc. In our framework, ϕvenc and ϕeenc are de-
signed as multi-layer perceptrons (MLPs), each of which takes
respectively a node attributes vector and an edge attributes
vector as input and transforms them into latent spaces. Note
that ϕvenc is mapped across all nodes (instances and label)
to compute per-node updates, and ϕeenc is mapped across all
edges (relationships) to compute per-edge updates.

Formally speaking, we denote ϕvenc(VA) and ϕeenc(EA) as
the updated node attributes and edge attributes by applying
ϕvenc and ϕeenc to each node and each edge respectively. Then
the encoder module can be briefly described as

GA ← encode(GA) = (VA,EA, ϕvenc(VA), ϕeenc(EA)). (5)

The updated graph GA is then passed to the subsequent
convolution modules as input.

b) Graph Convolution Module: This module consists of
a node convolution layer and an edge convolution layer. The
node convolution layer collects the attributes of all the nodes
and edges adjacent to each node to compute per-node updates.
It is followed by the edge convolution layer that assembles
the attributes of the two nodes associated with each edge to
generate new attributes of this edge.

Specifically, for the i-th node in Go, the aggregation func-
tion gathers the information from its adjacent nodes and
associated edges, and the update function outputs the updated
attributes according to the gathered information. Given that
for each instance node voi , other instance nodes and label
nodes are connected with instance edges and matching edges
respectively, we design two types of aggregation functions as

v̂oi =
1

‖No‖
ρ̂on([e

o
ij , v

o
j ]), ṽoi =

1

‖Nl‖
ρ̃on([e

c
ij , v

l
j ]), (6)

where No and Nl are two sets of instance nodes and label
nodes adjacent with voi . ρ̂on and ρ̃on gather the information
from object nodes and label nodes respectively. Then an update
function is employed to update the attributes for voi

voi ← φon([v
o
i , v̂

o
i , ṽ

o
i ]), (7)

where φon takes the concatenation of the current attributes of voi
and gathered information v̂oi and ṽoi , and outputs the updated
attributes for voi .

Similar to instance nodes, the label nodes are connected
with two types of nodes and associated with two types of
edges. Therefore, we also design two aggregation functions
and an update function for label node vli. Specifically, the
aggregation functions are formulated as

v̂li =
1

‖Nl‖
ρ̂ln([e

l
ij , v

l
j ]), ṽli =

1

‖No‖
ρ̃on([e

c
ij , v

o
j ]), (8)

and the update function is represented as

vli ← φln([v
l
i, v̂

l
i, ṽ

l
i]). (9)

For an instance edge eoij , both of its source node and receive
node are in Go. Therefore, we design an aggregation function
and the update function as follows

êoij = ρoe([v
o
i , v

o
j ]), eoij ← φoe([e

o
ij , ê

o
ij ]), (10)

where ρoe aggregates the information from source instance
node voi and receive node voj , φoe updates the attributes of eoij
according to the gathered information.

Similar to the instance edge convolution operator, the label
edge convolution layer consists of an aggregation function and
an update function, which are designed as

êlij = ρle([v
l
i, v

l
j ]), elij ← φle([e

l
ij , ê

l
ij ]). (11)

Different from instance edges and label edges, the matching
edges connect instance nodes and label nodes. Therefore, the
aggregation function gathers information from different types
of nodes

êmij = ρme ([voi , v
l
j ]), (12)

and the update function also takes the combination of aggre-
gated features and its current features as input and outputs the
updated attributes

emij ← φme ([emij , ê
m
ij ]). (13)

All the above aggregation functions and update functions
are designed as MLPs, but their structure and parameters are
different from each other.

c) Decoder: The decoder module reads out the final out-
put from the updated graph state. Since only the attributes of
instance-label matching edges are required for final evaluation,
the decoder module contains only one update function ϕedec
that transforms the edges attributes into the desired space

S = decode(GA) = ϕedec(EA), (14)

where S ∈ [0, 1]
(M+1)×C denotes the prediction score that

each instance is matched with the corresponding label. Simi-
larly, ϕeenc is parameterized by an MLP.

E. Optimizing Multi-Label Prediction

In order to interpret each ground truth label of the input
image, there should be at least one instance that best matches
it. With consideration of the existence of noisy instances, a
cross-instance max-pooling is carried out to fuse the output of
our framework into an integrative prediction. Suppose sj(j =
0, 1, ...,M) is the prediction score vector of the j-th instance
from the decoder and scj(c = 1, 2, ..., C) is the c-th category
matching score of sj . The cross-instance max-pooling can be
formulated as

pci = max(sc0, s
c
1, ..., s

c
M ), (15)

where pci can be considered as the prediction score for the c-th
category of the given image i.

a) Multi-Label Image Recognition: For generic MLIR
task, the training process of our network is guided by a
weighted cross-entropy loss with the ground-truth labels yi
as supervision,

L =

N∑
i=1

C∑
c=1

wc[yci log(p
c
i ) + (1− yci ) log(1− pci ))]

wc = yci · eβ(1−r
c) + (1− yci ) · eβr

c

, (16)

where wc is used to alleviate the class imbalance, β is a hyper-
parameter and rc is the ratio of label c in the training set.
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b) Multi-Label Recognition with Partial Labels: For
MLR-PL task, the training set contains three label states
where yci is assigned to 1 if label c exists in the i-th image,
assigned to -1 if it does not exist, and assigned to 0 if
it is unknown/missing. Our goal in this task is to train a
robust multi-label classification model given partial labels, and
further assign the correct label for a test image. Since the BCE
loss as Eq. (16) is dependent on the number of categories and
does not apply to partially labeled data, we follow previous
work [16] to employ the partial BCE loss as our objective
function. Specially, given the predicted probability distribution
pi = [p1i , p

2
i , ..., p

C
i ] of the image i and its ground truth yi, the

object function can be defined as

L(pi, yi) =
g(ryi)

C

C∑
c=1

[1[yci=1]log(p
c
i ) + 1[yci=−1]log(1− p

c
i )]

g(ryi) = αrµyi + θ, (17)

where 1[·] is an indicator function whose value is 1 if the
argument is positive and is 0 otherwise. ryi ∈ [0, 1] is the
proportion of known labels in yi. And g(·) is a normalization
function with respect to the label proportion, where α, θ
and µ are the hyper-parameters. It is worth noting that by
learning category co-occurrence and modeling instance-label
correspondences, our framework can not only transfer seman-
tic knowledge of the given labels to missing labels within each
image, but also complement missing labels across different
images.

c) Multi-Label Few-Shot Learning: For ML-FSL task,
the dataset contains a set of Cb base categories with sufficient
training samples and a set of Cn novel categories with limited
training samples, e.g., 1, 2 or 5. Since the training samples
for the base and novel categories are extremely unbalanced, it
will inevitably lead to poor performances if the cross-entropy
loss is directly used to guide the training of all samples. Thus,
we follow the previous work [12], [15] to adopt a two-stage
process to train the proposed framework.

In the first stage, we train the framework using the training
samples of the base categories, which has the same training
protocol as generic MLIR. Specifically, given a sample i from
the Cb categories, we can obtain the corresponding prediction
score pci (c = 1, 2, ..., Cb) for the c-th categories. Then, we
define the loss similar to Eq. (16), expressed as

L =

Nb∑
i=1

Cb∑
c=1

wc[yci log(p
c
i ) + (1− yci ) log(1− pci ))]

wc = yci · eβ(1−r
c) + (1− yci ) · eβr

c

, (18)

where Nb is the number of training samples from the base set.
In the second stage, we fix the parameters of the feature

extractor backbone and train the CSAC and ILMS modules
using the novel set. Notably, we introduce an asymmetric
focal loss [59] for multi-label few-shot recognition in this
stage, which explicitly solves the positive-negative imbalance
problem: {

L+,i,c = (1− pi,c)γ+ log(pi,c),
L−,i,c = (p̂i,c)

γ− log(1− p̂i,c),
(19)

p̂i,c = max(pi,c −m, 0), (20)

where pi,c(c = 1, 2, ..., Cn) is the prediction score for the c-th
category of the sample i from the Cn categories. γ+ and γ−
are respectively the positive and negative focusing parameters.
m is a tunable hyper-parameter performing hard threshold for
very easy negative instances.

Since we focus on emphasizing the contribution of positive
instances, we commonly set γ−>γ+. Asymmetric focusing
decouples the decay rates of positive and negative instances.
By means of this way, our model can better control the
contribution of positive and negative instances, and aid the
network learn significant features from positive instances,
despite their rarity.

L =

Nn∑
i=1

Cn∑
c=1

yi,cL+,i,c + (1− yi,c)L−,i,c, (21)

where Nn is the number of training samples from the novel
set. In summary, by extracting semantic features and exploiting
the correlation between novel categories and base categories,
our proposed model can classify multiple labels only using a
few samples effectively.

IV. EXPERIMENTS

In this section, we first conduct extensive experiments on
various benchmarks to evaluate the performance of the pro-
posed framework over existing state-of-the-art methods. Then,
we perform ablative studies to further discuss and analyze the
contribution of the crucial components in our ML-SGM.

A. Datasets

a) PASCAL VOC 2007 Benchmark: PASCAL Visual
Object Classes Challenge 2007 (VOC 2007) [60] is the most
widely used benchmark for multi-label image recognition. It
contains 9,963 images from 20 object categories, which is
divided into train, val and test sets. We follow the common
setting [10] to train our network on the train-val sets, and eval-
uate its classification performance on the test set. To compare
with other state-of-the-art approaches, we calculate the results
of average precision (AP) and mean average precision (mAP).

b) MS-COCO Benchmark: Microsoft COCO [61] is
initially constructed for object detection and segmentation,
and has recently been employed to evaluate multi-label image
recognition task in terms of scene comprehension. The training
set consists of 82,783 images, including common objects in the
scenes. The objects are divided into 80 categories, and each
image has about 2.9 labels. Because the ground-truth labels
of test set are not available, we assess all approaches on the
validation set (40,504 images).

c) NUS-WIDE Benchmark: The NUS-WIDE [62] is
a web dataset with 269,648 images and 5018 labels. There
are 1000 classes remaining after removing the noise and the
rare labels. These images are further manually labeled into 81
concepts with an average of 2.4 concepts per image. According
to its standard settings, we employ 161,789 images to train and
107,859 images to test.
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TABLE II: Comparisons of AP and mAP on the VOC 2007 dataset. The performance of our method is based on a report
with a resolution of 448× 448. Among the different metrics, the red numbers represent the best results, and the blue numbers
represent the sub-optimal results. Best viewed in color. * denotes the performance of our implementation.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP
HCP [20] 98.6 97.1 98.0 95.6 75.3 94.7 95.8 97.3 73.1 90.2 80.0 97.3 96.1 94.9 96.3 78.3 94.7 76.2 97.9 91.5 90.9

CNN-RNN [8] 96.7 83.1 94.2 92.8 61.2 82.1 89.1 94.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0
ResNet-101* [55] 99.5 97.7 97.8 96.4 65.7 91.8 96.1 97.6 74.2 80.9 85.0 98.4 96.5 95.9 98.4 70.1 88.3 80.2 98.9 89.2 89.9
RNN-Attention [9] 98.6 97.4 96.3 96.2 75.2 92.4 96.5 97.1 76.5 92.0 87.7 96.8 97.5 93.8 98.5 81.6 93.7 82.8 98.6 89.3 91.9

ML-GCN [10] 99.6 98.3 97.9 97.6 78.2 92.3 97.4 97.4 79.2 94.4 86.5 97.4 97.9 97.1 98.7 84.6 95.3 83.0 98.6 90.4 93.1
SSGRL [14] 99.5 97.1 97.6 97.8 82.6 94.8 96.7 98.1 78.0 97.0 85.6 97.8 98.3 96.4 98.8 84.9 96.5 79.8 98.4 92.8 93.4
TSGCN [64] 98.9 98.5 96.8 97.3 87.5 94.2 97.4 97.7 84.1 92.6 89.3 98.4 98.0 96.1 98.7 84.9 96.6 87.2 98.4 93.7 94.3

ADD-GCN* [29] 99.7 98.5 97.6 98.4 80.6 94.1 96.6 98.1 80.4 94.9 85.7 97.9 97.9 96.4 99.0 80.2 97.3 85.3 98.9 94.1 93.6
DSDL [65] 99.8 98.7 98.4 97.9 81.9 95.4 97.6 98.3 83.3 95.0 88.6 98.0 97.9 95.8 99.0 86.6 95.9 86.4 98.6 94.4 94.4
SST [66] 99.8 98.6 98.9 98.4 85.5 94.7 97.9 98.6 83.0 96.8 85.7 98.8 98.9 95.7 99.1 85.4 96.2 84.3 99.1 95.0 94.5

Ours 99.9 98.8 98.5 98.6 86.3 96.0 98.0 99.2 84.5 97.6 87.7 99.2 98.9 97.2 99.3 86.0 98.3 87.2 99.1 95.3 95.2

TABLE III: Comparisons of AP and mAP on the MS-COCO dataset. Rtrain and Rtest denote resolution used in training and
testing stage. The red numbers represent the best results, and the blue numbers represent the sub-optimal results. Best viewed
in color. * denotes the performance of our implementation. ’-’ indicates the results are not reported in the original literature.

Methods (Rtrain, Rtest) mAP All Top-3
CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

CNN-RNN [8] (—, —) 61.2 - - - - - - 66.0 55.6 60.4 69.2 66.4 67.8
Order-Free RNN [67] (—, —) - - - - - - - 71.6 54.8 62.1 74.2 62.2 67.7

ResNet-101* [55] (448, 448) 77.3 80.2 66.7 72.8 83.9 70.8 76.8 84.1 59.4 69.7 89.1 62.8 73.6
SRN [28] (224, 224) 77.1 81.6 65.4 71.2 82.7 69.9 75.8 85.2 58.8 67.4 87.4 62.5 72.9

ML-GCN [10] (448, 448) 83.0 85.1 72.0 78.0 85.8 75.4 80.3 89.2 64.1 74.6 90.5 66.5 76.7
CMA [13] (448, 448) 83.4 82.1 73.1 77.3 83.7 76.3 79.9 87.2 64.6 74.2 89.1 66.7 76.3

TSGCN [64] (448, 448) 83.5 81.5 72.3 76.7 84.9 75.3 79.8 84.1 67.1 74.6 89.5 69.3 78.1
DSDL [65] (448, 448) 81.7 88.1 62.9 73.4 89.6 65.3 75.6 84.1 70.4 76.7 85.1 73.9 79.1
SST [66] (448, 448) 84.2 86.1 72.1 78.5 87.2 75.4 80.8 89.8 64.1 74.8 91.5 66.4 76.9

Ours (448, 448) 85.1 87.2 74.2 80.2 88.7 76.5 82.1 90.1 67.5 77.2 92.3 71.2 80.4
ADD-GCN [29] (448, 576) 85.2 84.7 75.9 80.1 84.9 79.4 82.0 88.8 66.2 75.8 90.3 68.5 77.9

Ours (448, 576) 86.0 88.1 75.0 81.0 89.4 77.2 82.9 91.0 68.6 78.2 93.0 72.4 81.4
SSGRL [14] (576, 576) 83.6 89.5 68.3 76.9 91.2 70.7 79.3 91.9 62.1 73.0 93.6 64.2 76.0
C-Tran [68] (576, 576) 85.1 86.3 74.3 79.9 87.7 76.5 81.7 90.1 65.7 76.0 92.1 71.4 77.6

Ours (576, 576) 86.3 88.4 75.6 81.5 89.8 77.2 83.0 91.4 68.9 78.6 93.8 72.5 81.8

d) Visual Genome Benchmark: The Visual Genome
[63] is a dataset that contains 108,249 images and covers
80,138 categories. Since most categories have very few sam-
ples, we merely consider the 200 most frequent categories
to obtain a VG-200 subset for MLIR-PL task. Meanwhile,
we also follow previous work [12] to consider the 500 most
frequent categories, resulting in a VG-500 subset for ML-FSL
task. Moreover, because there is no official train/-val split,
we randomly select 10,000 images as the test set and the
remaining 98,249 images are used as the training set.

B. Evaluation Metrics

Following the traditional setting [10], [14], we employ
six widely used multi-label metrics to evaluate our method
and each comparing method. Specifically, we compute the
average per-class precision (CP), recall (CR), F1 (CF1) and
the average overall precision (OP), recall (OR), F1 (OF1)
with the assumption that a projected label is positive if the
estimated probability is larger than 0.5. We also present the
results of top-3 labels to fairly compare with state-of-the-art
approaches. Furthermore, we calculate and show the average
precision (AP) and mean average precision (mAP) used to
evaluate the classification accuracy of multi-label images.

C. Implementation Details

In the CSAC module, we employ ResNet-101 [55] as the
backbone network to extract visual features per image. To
save computational cost, we further convert the number of
channels of feature map F to 1024 via a convolution layer.
For label initial embeddings, we adopt 300-dim GloVe [69]
trained on the Wikipedia dataset. In the ILMS module, the
Graph Convolution Layer consists of k convolution modules,
where they are stacked to aggregate the information of kth-
order neighborhoods. In our experiments, k is 2 and the output
dimension of the corresponding convolution module is 512
and 256, respectively. During the training stage, the input
images are adjusted to 640×640, and randomly cropped into
448× 448 with random horizontal flips for data augmentation.
Instead, testing images are center cropped. All modules of our
framework are implemented in PyTorch 6.0 and the optimizer
is SGD with momentum 0.9. Weight decay is 10−4. The initial
learning rate is 0.01, which decays by a factor of 10 for every
30 epochs. The hyperparameter β in the Eq. (16) is set to 0
in VOC 2007 dataset and 0.4 in MS-COCO, NUS-WIDE and
Visual Genome 500 datasets. The hyperparameter α, θ and µ
in Eq. (17) are set to -4.45, 5.45 and 1 on VOC 2007, MS-
COCO and Visual Genome 200 datasets for MLR-PL task.
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person, bottle, dining table person, bottle, dining table person, dining table person, dining table, chair, bottle person, tvmonitor, bottle person, chair, plant, table, bottle

person, bottle person, bottle person bottle, person, dining table tvmonitor, person, bottle chair, table, person, plant, bottle

Fig. 5: Some incorrect classification results on the dinner table and bottle categories. The last row represents the ground truth
label of the corresponding image. The second row is the predicted labels of our model. The red indicates false positives and
the green indicates false negatives. Best viewed in color and zoom in.

And the hyperparameter γ+, γ− and m in Eq. (19) and (20)
are set to 0, 4 and 0.05 on both MS-COCO and Visual Genome
500 datasets for ML-FSL task. Unless otherwise stated, the
choice of these hyperparameters is carefully turned with the
validation set in target datasets.

D. Results on Multi-Label Image Recognition

a) Comparison on Pascal VOC 2007: We first report the
AP of each label and mAP over all labels in Table II. Despite
the fact that the VOC 2007 dataset is less complicated and rel-
atively small size, our method still sets the new SOTA in terms
of mAP and significantly outperforms the second best method
SST [66] by 0.7% (note, SST only outperforms DSDL [65] by
0.1%). And the proposed method achieves the best results on
16 out of 20 categories. In Particular, it achieves meaningful
improvements in several difficult categories, such as bird,
chair, plant and sofa with 98.5%, 84.5%, 86.0% and 87.2% in
terms of AP. This phenomenon illustrates that exploiting the
co-occurrence and matching relationships among instances and
labels with graph neural network is effective for MLIR task.
Note that * is employed to denote the performance result of
our implementation based on author-supplied code. For fair
comparisons, we adopt the same ResNet-101 network as the
backbone and follow exactly the same train/val split settings.
In addition, the performance results of other comparison
methods are directly taken from the source publications.

Here Table II shows that our proposed method does not
perform well on the category bottle and dinner table compared
to TSGCN [64]. The main reason is due to the higher model
complexity and computational budget required for TSGCN.
For example, TSGCN uses a pre-trained ResNet-101 as a
feature extractor in the input space and utilizes another pre-
trained Mask R-CNN in the output space. However, our
method follows an easier one-stage framework as in [10], [14],
[29], [64]–[66] which only uses one pre-trained ResNet-101.
Despite the higher learning capacity of TSGCN, our method
still outperforms it by a large margin in terms of mAP.

On the other hand, we visualize some incorrect classification
results on the dinner table and bottle categories in Figure 5.
The first three examples of Figure 5 show that the dinner
table is incorrectly predicted as positive. The reason for this
phenomenon can be attributed to two aspects: (i) some images
in the dataset mislead our model due to the missing anno-
tation of “dinner table”; (ii) similar categories share similar

TABLE IV: Comparisons with state-of-the-art methods on
the NUS-WIDE dataset. * denotes the performance of our
implementation. ’-’ indicates the results are not reported in
the original literature.

Methods All Top-3
mAP CF1 OF1 CF1 OF1

CNN-RNN [8] 56.1 - - 34.7 55.2
SRN [28] 61.8 56.9 73.2 47.7 62.2

MLIC-KD-WSD [70] 60.1 58.7 73.7 53.8 71.1
ML-ZSL [71] - - - 45.7 -

PLA [72] - 56.2 - - 72.3
ResNet-101* [55] 59.8 55.7 72.5 48.9 62.2

CMA [13] 61.4 60.5 73.8 55.7 69.5
SST [66] 63.5 59.6 73.2 55.9 68.8

Ours 64.6 62.4 72.5 57.3 71.7

characteristics and are easily confused by the model, e.g.
“dinner table” and “table”. In addition, it can be seen that the
bottle category presents a higher false negative from the last
three examples in Figure 5. Further analysis reveals that bottle
category is often filtered out when we select class activation
maps or instance regions with prediction scores greater than
the threshold γ. Since there are fewer pixels representing small
objects, they will disappear in the process of downsampling
the feature map and lead to low prediction scores.

b) Comparison on MS-COCO: As shown in Table III,
ML-SGM achieves the best mAP, CF1, and OF1 on the MS-
COCO dataset, which are all the most important performance
indicators. In general, the most used input size is 448 × 448
in the training and inference phase. But it is worth noting
that some methods evaluate their performance on different
resolutions in the above two stages, e.g., C-Tran [68] and
ADD-GCN [29]. For fair comparisons, we follow their res-
olution settings and present three results, which reach a new
performance ranking with obvious advantages.

Concretely, the CF1 and OF1 of ML-SGM in Top-3 case
are 77.0% and 79.3%. These numbers in All cases are 80.4%
and 83.0%. Compared with the plain RestNet101 model, ML-
SGM gets 9.0% improvements in mAP which validates the
effectiveness of our proposed method. Moreover, ML-SGM
conformably executes better than other comparing approaches,
i.g. DSDL, SSGRL and ADD-GCN. The gains over the above
methods in mAP are 3.4%, 2.7% and 0.8% respectively. Next,
we choose some images at random from different scenes
and show top-3 predicted labels via ML-SGM and baseline
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person,bicycle,car person,chair,tvmonitor bottle,person,dining table cow,person,car car,person,chair tvmonitor,chair,potted plant

person,bicycle,bottle chair,person,dining table person,bottle,tvmonitor cow,person,sofa car,person,sofa tvmonitor,chair,sofa

orange,bowl,dining table person,handbag,parking meter truck,bicycle,car pizza,dining table,spoon person,umbrella,handbag spoon,microwave,refrigerator

orange,bowl,book person,skis,backpack truck,car,person dining table,bowl,sandwich person,umbrella,backpack refrigerator,sink,oven

Fig. 6: Selected examples of the top-3 returned labels by ML-SGM (red word) and baseline ResNet101(blue word) on the
VOC 2007 dataset (first row) and MS-COCO dataset (last row). Best viewed in color and zoom in.

ResNet-101 (Figure 6) to visually understand the effectiveness
of our model.

Furthermore, it is worth mentioning that F1 is the harmonic
mean of precision (P) and recall (R). Ideally, we would expect
both P and R to be high, but they naturally compete with each
other. The ultimate goal is to achieve a better trade-off between
P and R. However, the previous methods are less favored
in such metrics. For example, SSGRL [14] outperforms our
method on CP by 1.1%, but we are able to be 7.3% higher
on CR. ADD-GCN [29] achieves 0.3% higher on CR, but
we outperform it by 3.7% in terms of CP. It indicates that
our approach may lose some performance on one metric but
achieve significantly better on another. Overall, our approach
preserves a better trade-off.

We analyze the performance of the proposed method on
all the metrics in depth, especially on the precision (CP) and
recall (CR). Then we find that our model can achieve higher
CP when the threshold γ is increased, since the class activation
maps (instance regions) with higher prediction scores will
be selected. In contrast, our model can achieve higher CR
when the threshold γ is decreased, since more class activation
maps and instance regions will be selected. In summary,
our proposed method is a multi-instance multi-label learning
framework, and the selection of instance regions is crucial to
the performance of multi-label image classification.

c) Comparison on NUS-WIDE : We further compare
ML-SGM to the state-of-the-art methods such as SRN [28],
CNN-RNN [8], PLA [72], MLIC-KD-WSD [70], ResNet-101
[55], CMA [13] and [66] on the NUS-WIDE validation set.
Table IV presents the quantitative results of all models. It
can be clearly seen that ML-SGM not only can effectually
learn from the large-scale dataset, but also outperforms the
competition in most metrics, with 64.6% mAP, 62.4% CF1,
72.5% (71.7%) OF1 (Top-3) respectively.

E. Results on Multi-Label Recognition with Partial Labels

a) Experimental Settings: We follow previous works
[36] to conduct experiments on Pascal VOC 2007 [60], MS-

COCO [61], and Visual Genome 200 [63] datasets for MLIR-
PL evaluation. Since the three datasets are fully annotated,
we randomly drop some labels to create the training set with
partial labels. In this work, the proportion of dropped labels
varies from 10% to 90% with the step of 10%, resulting
in 90% to 10% observed labels. For a fair comparison, we
adopt the mean average precision (mAP) over all categories
for evaluation under different proportions of known labels.
And we also compute the average mAP over all proportions.

b) Comparison on Pascal VOC 2007: We report the
performance comparisons on VOC 2007 dataset in Table V.
Since this dataset merely covers 20 categories and it is more
simple than MS-COCO and Visual Genome, current methods
achieve comparable results when keeping a certain proportion
of known labels (e.g., more than 40%). But their performances
drop dramatically when the proportion decreases to 10% and
20%. Our ML-SGM also suffers a performance drop, but it
consistently outperforms current methods for all proportion
settings. Specifically, it outperforms SST and KGGR by 4.8%
and 5.0% when known labels are merely 10%.

c) Comparison on MS-COCO: Next, we present the
comparison results on the MS-COCO dataset in Table V. We
find the traditional multi-label recognition methods SSGRL
and GCN-ML can achieve competitive performance when
the proportion of known labels is high (e.g., 70%-90%),
but suffer from an obvious performance drop when the pro-
portion decreases. By introducing category correlations and
instance-label matching relationships to transfer knowledge of
known labels into unknown labels, our model achieves the
best performance over all known label proportion settings.
It is noteworthy that our ML-SGM obtains more significant
performance improvement compared to existing methods when
decreasing the known label proportions. For example, the mAP
improvements over the previous second-best SST model are
2.1% and 4.2% when using 90% and 10% known labels,
respectively. These results indicate that the proposed method
is very effective in handling missing labels.

d) Comparison on Visual Genome 200: As previously
discussed, VG-200 is a more challenging benchmark that
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TABLE V: Performance of our ML-SGM and current state-of-the-art methods for MLIR-PL on VOC 2007, MS-COCO and
Visual Genome 200 datasets. The red numbers indicate the best results, and the blue numbers indicate the sub-optimal results.
* denotes the performance of our implementation.

Datasets Methods 10% 20% 30% 40% 50% 60% 70% 80% 90% Ave. mAP

Pascal VOC 2007

SSGRL* [14] 77.7 87.6 89.9 90.7 91.4 91.8 92.0 92.2 92.2 89.5
ML-GCN* [10] 74.5 87.4 89.7 90.8 91.0 91.3 91.5 91.8 92.0 88.9

KGGR* [12] 81.3 88.1 89.9 90.4 91.2 91.4 91.5 91.6 91.8 89.7
Curriculum labeling* [16] 44.7 76.8 88.6 90.2 90.7 91.1 91.6 91.7 91.9 84.1

Partial BCE* [16] 80.7 88.4 89.9 90.7 91.2 91.8 92.3 92.4 92.5 90.0
SST [36] 81.5 89.0 90.3 91.0 91.6 92.0 92.5 92.6 92.7 90.4

SARB [73] - - - - - - - - - 90.7
Ours 86.3 89.5 91.3 91.8 92.6 92.9 93.0 93.3 93.2 91.6

MS-COCO

SSGRL* [14] 62.5 70.5 73.2 74.5 76.3 76.5 77.1 77.9 78.4 74.1
ML-GCN* [10] 63.8 70.9 72.8 74.0 76.7 77.1 77.3 78.3 78.6 74.1

KGGR* [12] 66.6 71.4 73.8 76.7 77.5 77.9 78.4 78.7 79.1 75.6
Curriculum labeling* [16] 26.7 31.8 51.5 65.4 70.0 71.9 74.0 77.4 78.0 60.7

Partial BCE* [16] 61.6 70.5 74.1 76.3 77.2 77.7 78.2 78.4 78.5 74.7
SST [36] 68.1 73.5 75.9 77.3 78.1 78.9 79.2 79.6 79.9 76.7

SARB [73] - - - - - - - - - 77.9
Ours 72.3 75.6 77.8 79.5 80.2 80.8 81.4 81.7 82.0 79.0

VG-200

SSGRL* [14] 34.6 37.3 39.2 40.1 40.4 41.0 41.3 41.6 42.1 39.7
ML-GCN* [10] 32.0 37.8 38.8 39.1 39.6 40.0 41.9 42.3 42.5 39.3

KGGR* [12] 36.0 40.0 41.2 41.5 42.0 42.5 43.3 43.6 43.8 41.5
Curriculum labeling* [16] 12.1 19.1 25.1 26.7 30.0 31.7 35.3 36.8 38.5 28.4

Partial BCE* [16] 27.4 38.1 40.2 40.9 41.5 42.1 42.4 42.7 42.7 39.8
SST [36] 38.8 39.4 41.1 41.8 42.7 42.9 43.0 43.2 43.5 41.8

SARB [73] - - - - - - - - - 45.6
Ours 43.6 43.9 45.2 45.8 46.6 47.0 47.3 47.5 47.8 46.1

covers much more categories. We report the performance
comparisons in Table V. As shown in Table V, existing
methods achieve quite poor performances, but our ML-SGM
framework obtains the best performance over all proportion
settings. Specifically, its average mAP is 46.1%, outperforming
the best SARB algorithm by 0.5%. In addition, it outperforms
leading multi-label image classification methods SST and
KGGR by 4.8% and by 7.6% when known labels are 10%.

F. Results on Multi-Label Few-Shot Learning

a) Experimental Settings: We follow previous works
[12], [15] to conduct experiments on MS-COCO [61] and
Visual Genome 500 [63] datasets for ML-FSL evaluation.
For MS-COCO benchmark, we split the 80 categories into
64 base categories and 16 novel categories. Specifically, the
novel categories are bicycle, boat, stop sign, bird, backpack,
frisbee, snowboard, surfboard, cup, fork, spoon, broccoli,
chair, keyboard, microwave, and vase. For Visual Genome
500 benchmark, we randomly split VG-500 into 400 base
categories and 100 novel categories. To ensure fair compar-
isons with current works, we utilize the trainval samples of the
base categories as the base set and randomly select K (K=1,5)
trainval samples from the novel categories as the novel set. We
evaluate the models on the test samples of the novel categories.

b) Comparison on MS-COCO: We first compare our
proposed method with the state-of-the-art method SSGRL
[12] and LaSO [15] on MS-COCO dataset. The results are
reported in Table VI. As shown, LaSO and SSGRL obtain
mAPs of 48.4% (60.8) and 52.3% (63.5) on the 1-shot (5-shot)
setting, respectively. In contrast, our ML-SGM incorporates
instance spatial relationships and label global correlations to
guide feature and semantic propagation among the different

TABLE VI: Performance of our ML-SGM and current state-of-
the-art competitors for MLIR-FSL on MS-COCO and Visual
Genome 500 datasets. * denotes the performance of our
implementation.

Datasets Methods 1-shot 5-shot

MS-COCO
LaSO(ResNet-101)* [15] 48.4 60.8

KGGR [12] 52.3 63.5
Ours 54.1 65.8

VG-500
LaSO(ResNet-101)* [15] 16.6 21.8

KGGR [12] 20.7 26.1
Ours 23.6 31.9

categories, leading to superior performance. Especially, our
model obtains mAPs of 54.1% and 65.8% on the 1-shot and
5-shot settings, outperforming SSGRL by 1.8% and 2.3%.

c) Comparison on Visual Genome 500: Visual Genome
500 is a more complex and realistic benchmark for the ML-
FSL problem since it covers a wider range of categories. Thus
we utilize it as a new evaluation benchmark and present the
comparison results in VI. As shown in Figure VI, our proposed
framework clearly outperforms the LaSO and SSGRL by a
sizable margin. Specifically, our ML-SGM achieves mAPs of
23.6% and 31.9%, yielding about 7.0% and 10.1% improve-
ment over LaSO on the 1-shot and 5-shot settings, respectively.
Besides, it outperforms the state-of-the-art ML-FSL method
SSGRL by 2.9% and 5.8% on the 1-shot and 5-shot settings.

G. Performance Analysis

a) Ablation Studies: To evaluate the effectiveness of
each component in our proposed framework, we reconstruct
our model with different ablation factors on the MS-COCO
and VOC 2007 datasets. The performance of different variant
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Fig. 7: Visualization analyses of ResNet-101 and our proposed ML-SGM. We present several labels and their corresponding
location boxes and the incorrect label localization in the image are highlighted in red. Compared to the baseline ResNet-101
our ML-SGM has the ability to handle objects in small scales in a) and b) or with confused appearances in c) and d).

TABLE VII: Ablation study for different components of our
framework. MBL denotes the baseline ResNet101. MCASC

denotes content-aware semantic activation module. MGo de-
notes instance spatial graph. MGl denotes label semantic
graph. MILME denotes instance-label matching edges.

Index MBL MCASC MGo MGl MILME
mAP

COCO VOC

1 3 7 7 7 7 77.3 89.9
2 3 3 7 7 7 78.0 90.5
3 3 3 3 7 7 79.2 92.0
4 3 7 7 3 7 78.4 91.2
5 7 7 3 3 7 81.1 93.2
6 3 3 3 3 7 82.6 94.3
7 3 3 3 3 3 85.1 95.2

models are shown in Table VII. Since our proposed frame-
work builds on ResNet-101 [55], we first compare it with
this baseline to analyze the contributions of our ML-SGM
framework (Index-1). Specifically, we simply replace the last
fully connected layer of ResNet-101 with a 2,048-to-C fully
connected layer and then use sigmoid functions to predict the
probability of each category. And the mAP respectively drops
7.8% and 5.3% on the MS-COCO and VOC2007 datasets,
which demonstrates the necessity of the proposed modules
to obtain the best classification results. It can be found that
only adopting content-aware semantic activation module for
instance generation can significantly improve the performance
(Index-2), e.g., 0.6% on MS-COCO, which illustrates the
effectiveness of exploiting content-aware category features for
MLIR task. Besides, as objects normally co-occur in an image,
it is desirable to model category dependencies to improve
the classification performance. Our proposed instance spatial
graph Go could enhance image-special category correlations
and suppress background noises, which further boost perfor-
mance by 1.2% on MS-COCO (Index-3).

We also construct the label semantic graph Gl to capture
label global correlations which are inferred from knowledge
beyond a single image. As shown in the Index-4 of Table

TABLE VIII: The computation resource of each module in our
proposed model, including the number of parameters (params)
and floating point operations (FLOPs).

Methods #params(M) FLOPs
ResNet101 42.51 31.53

+CSAC 42.52 31.57
+Encoder 44.89 32.26

+GCL 57.62 36.09
+Decoder 57.65 36.11

VII, Using label semantic relationships alone can also bring
performance improvements, e.g., 1.1% on MS-COCO. And
the performance further boosts for 2.7% by jointing instance
spatial graph Go (Index-5), which illustrates that simultane-
ously modeling the spatial dependencies and semantic co-
occurrences among categories are essential for multi-label
image understanding. Finally, to verify the effectiveness of
instance-label matching edges, we replace these matching
edges with a simple concatenation operation. Specifically,
we train instance spatial graph Go and label semantic graph
Gl in parallel using graph neural network, and then directly
concatenate generated instances and label features to identify
multiple labels. The performance shows a clear drop (2.5%)
in mAP on MS-COCO (Index-6 & 7), which illustrates that
the ILMS module plays a vital role in our model, and it could
guide the model to learn representative category features via
establishing explicit correspondence, and further improve the
classification precision.

In addition to the classification performance, we further ex-
plore the computational complexity of our method, including
the number of parameters and FLOPs of each module in the
proposed model. As reported in Table VIII, the graph convo-
lution layer in the ILMS module dominates the computation
cost (i.e., 44.89M v.s. 57.62M) of our ML-SGM. Reducing
the number of graph convolution blocks would significantly
decrease the complexity of the model. Moreover, our Encoder
module requires approximately 2.37M learnable parameters to
map the attributes of all nodes and edges into a latent feature
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Fig. 8: Accuracy comparisons with different parameter values.

space. It is worth noting that our CSAC and Decoder modules
require very few parameters and enjoy the time complexity
(measured in FLOPs) that is negligible compared to the feature
extraction network ResNet101.

b) Hyper-parameter Sensitivity: Furthermore, we study
the sensitivity of our proposed method given different parame-
ter settings. We first vary the threshold value γ of the selected
instances per image and show the results in Figure 8 (a). Note
that, if we keep all category instances, the model will no
doubt contain a lot of noise instances, which is difficult to
converge and increases computational complexity. However,
when too many instances are filtered out, the accuracy drops
since some positive instances in images may be removed
incorrectly. Therefore, an appropriate threshold γ is crucial for
the accurate parsing of multi-label recognition. Empirically,
the optimal value of γ is set to 0.5 in VOC 2007 dataset,
and 0.2 in both MS-COCO and NUS-WIDE datasets. Then,
we show the performance results with different numbers of
convolution modules k for our model in Figure 8 (b). As the
number of convolution modules increases, the accuracy drops
on all the evaluation datasets. Thus, we set k = 2 in our
experiments. Next, we study the sensitivity of ML-SGM with
respect to its two parameters d and β, which are the dimension
of conv module and class imbalance factor, respectively. From
Figure 8 (c)-(d), we find that the d value has a great influence
on the performance of our ML-SGM. Meanwhile, our model is
fairly robust to the class imbalance factor β. Additionally, we
find that the performance of the proposed model is insensitive
to changes in the k value of k-Nearest Neighbor criterion. The
main reason is that the multi-label datasets used in MLIR tasks
usually contain few instances per image.

c) Interpretable Visualization: We adopt CAM [54] to
exhibit the visualization results of baseline ResNet-101 and the
proposed ML-SGM in Figure 7. Benefiting from the instance
spatial graph Go and label semantic graph Gl, our model could
capture more accurate localization and effectively perceive
small object, e.g., spoon in Figure 7 (a) as well as vase ,
remote, and book in Figure 7 (b). Furthermore, since ResNet-
101 could not distinguish objects with similar appearances,
e.g., the triplet labels {knife, fork, spoon} in Figure 7 (c)
and the paired labels {skateboard, snowboard} and {bench,
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Fig. 9: Visualization of the learned classifiers by our proposed
model on the MS-COCO dataset.

TABLE IX: The comparison of inference speed and mAP on
the MS-COCO dataset. All experiments are evaluated at a
single 2080ti GPU.

Methods FPS(Hz) mAP(%)
ResNet101 68.2 77.3
ML-GCN 62.4 83.0
SSGRL 34.3 83.6

ADD-GCN 57.9 83.9
Our w/o CASC 54.3 83.7
Our w/o ILMS 63.5 82.6
Our ML-SGM 52.4 85.1

chair} in Figure 7 (d), these issues can be well handled by
our proposed instance-label matching module benefiting from
the instance-label explicit correspondence captured by graph
neural network. In Figure 9, we utilize t-SNE [74] to visualize
the final label representations learned by our proposed method,
which demonstrates that the meaningful semantic topology is
maintained. Specifically, the learned representations exhibit
clear cluster patterns. For example, the apple, orange and
banana within one super concept (e.g. animal) as well as
person and car with high-frequent co-occurrences, tend to
be close in the label semantic space. This is consistent
with common sense, which further indicates that our learned
label representations may not be limited to the corresponding
dataset, but may enjoy generalization capacities.

d) Time Consumption: To compare the computational
time between our ML-SGM and the state-of-the-art methods,
we adopt Frames Per Second (FPS) as the evaluation metric.
We further separately record the FPS change on our core
components: CASC and ILMS modules. All experiments are
conducted on an Nvidia 2080 GPU with an input size of
448×448. As reported in Table IX, the inference speed of
our method is lower than the baseline ResNet101 due to ad-
ditional convolution operations involved in the ILMS module.
Therefore, introducing ILMS or CASC module decreases FPS
from 68.2 to 54.3 and 63.5, respectively. FPS further decreases
to 52.4 when both modules are adopted. However, despite
the decrease in speed, our method still achieves real-time
performance. In addition, sacrificing only 15% inference time
improves mAP by 8%. Our method also shows superior speed
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compared to SSGRL and comparable performance to ADD-
GCD. This highlights the significant advantage of our SST in
terms of the trade-off between both speed and accuracy.

V. CONCLUSION

In this paper, we propose a novel semantic-aware graph
matching framework for multi-label image recognition, which
reformulates the MLIR problem into a graph matching struc-
ture. By incorporating instance spatial graph and label se-
mantic graph, and establishing instance-label assignment, the
proposed ML-SGM utilizes graph network block to form
structured representations for each instance and label by con-
volving its neighborhoods, which can effectively contribute the
label dependencies and semantic-aware features to the learning
model. We apply the proposed framework to MLIR, MLIR-
PL and ML-FSL tasks, and extensive experimental results
on various datasets significantly demonstrate its superiority
over existing state-of-the-art methods on all three tasks. In
summary, our proposed method is a multi-instance multi-label
learning framework, and the selection of instance regions is
crucial to the performance of multi-label image classification.
In future work, we will explore a more effective instance
region generation module, which can well satisfy the high
diversity, small number of instance regions, and high com-
putational efficiency.
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