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Abstract

Monocular 3D object detection is an essential percep-
tion task for autonomous driving. However, the high re-
liance on large-scale labeled data make it costly and time-
consuming during model optimization. To reduce such over-
reliance on human annotations, we propose Mix-Teaching,
an effective semi-supervised learning framework applicable
to employ both labeled and unlabeled images in training
stage. Mix-Teaching first generates pseudo-labels for un-
labeled images by self-training. The student model is then
trained on the mixed images possessing much more inten-
sive and precise labeling by merging instance-level image
patches into empty backgrounds or labeled images. This is
the first to break the image-level limitation and put high-
quality pseudo labels from multi frames into one image for
semi-supervised training. Besides, as a result of the mis-
alignment between confidence score and localization qual-
ity, it’s hard to discriminate high-quality pseudo-labels from
noisy predictions using only confidence-based criterion. To
that end, we further introduce an uncertainty-based filter to
help select reliable pseudo boxes for the above mixing op-
eration. To the best of our knowledge, this is the first unified
SSL framework for monocular 3D object detection. Mix-
Teaching consistently improves MonoFlex and GUPNet by
significant margins under various labeling ratios on KITTI
dataset. For example, our method achieves around +6.34%
AP@0.7 improvement against the GUPNet baseline on val-
idation set when using only 10% labeled data. Besides,
by leveraging full training set and the additional 48K raw
images of KITTI, it can further improve the MonoFlex by
+4.65% improvement on AP@0.7 for car detection, reach-
ing 18.54% AP@0.7, which ranks the 1st place among all
monocular based methods on KITTI test leaderboard. The
code and pretrained models will be released at here.

*Corresponding author: xyzhang@tsinghua.edu.cn
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Figure 1. Performance comparison. The fully-supervised base-
lines are represented in cyan, and their semi-supervised training
results with our Mix-Teaching are displayed in orange. Our pro-
posed method outperforms the baselines by a large margin on both
KITTI validation and test set for Car category.

1. Introduction

Monocular 3D object detection is the task of predict-
ing the categories and 3D bounding boxes for surrounding
objects with a single image. Owing to its distinct advan-
tages and potential applications in autonomous driving and
robotics, this task has attracted extensive attention of re-
searchers from both academia and industry. In recent years,
many innovative detectors have emerged and achieved in-
creasing accuracy. However, most of these methods are
heavily dependent on labeled data. Compared with the
human-annotated images that are often expensive and time-
consuming, raw images are easier to achieve large-scale col-
lection. Thus, taking full advantage of both labeled and un-
labeled data in model training is a promising approach to
alleviate the heavy reliance on human annotations.

Semi-supervised learning (SSL) can help effectively im-
prove the performance of fully-supervised baselines by em-
ploying both labeled and unlabeled data. In recent years,
plentiful SSL methods for classification [1, 41, 51, 55], 2D
object detection [9, 12, 13, 17, 42, 44, 50, 52, 53, 56] and
LiDAR-based 3D object detection [46, 59] have been pro-
posed and applied. It can be generally divided into pseudo
labeling and consistency regularization. Pseudo labeling
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first generates pseudo labels for unlabeled data by self-
training [51] or Mean Teacher [45]. Then the student model
is trained to predict the same pseudo labels on the same
unlabeled images applied with label-preserving data aug-
mentations. In this way, the student model can learn useful
information from pseudo labels. Consistency regularization
adds a consistency loss to enforce the model make stable
predictions on different disturbed data, which helps improv-
ing model generalization ability. But as far as we know,
there hardly exists a semi-supervised learning framework
specially designed for monocular 3D object detection.

Due to the challenge of recovering depth information
from a single image, the accuracy of monocular 3D ob-
ject detection is lagging significantly behind that of 2D ob-
ject detection and LiDAR-based 3D object detection. Take
KITTI [10] benchmark for example, the state of the art
methods for monocular 3D object detection just achieve
less than 15% AP@0.7, while the candidates for the other
two tasks have reached more than 85%-96% AP@0.7. This
means that the pseudo labels for unlabeled images are pre-
dicted by image-based 3D object detectors with lower pre-
cision and recall. Lower precision signifies that more incor-
rect predictions are possible to be used as labels for unla-
beled samples, which can lead to serious confirmation bias.
On the other hand, lower recall explains the true positive
labels on each image are far from enough to provide ade-
quate supervision signals. Meanwhile, lacking of pseudo
labels for plentiful objects can further cause miss-detection.
However, most existing SSL methods directly employ the
original unlabeled images or the mixup of two images as in
Instant-Teaching [9], which can’t handle the situations im-
posed by low recall pseudo labels effectively. To overcome
these issues, we propose Mix-Teaching, an general semi-
supervised learning framework for most monocular 3D ob-
ject detectors.

One key challenge for semi-supervised monocular 3D
object detection is the extremely low recall of pseudo-
labels. For an unlabeled image, only a small part of the ob-
jects on this image are correctly detected (less true positive),
whereas most of the remaining instances are ignored (more
false nagetive). Sparsely distributed true positives fail to
provide adequate supervision signals in semi-supervised
training. Meanwhile, training data with overmuch missing
labels tends to bring miss-detection to most monocular 3D
object detectors. In the proposed Mix-Teaching, we firstly
predict pseudo-labels for unlabeled data by self-training.
Unlabeled samples are then split into image patches collec-
tion with high-quality pseudo labels and the collection of
background images containing no objects. Subsequently,
the student model is trained on the mixed images that
are created by merging the above instance image patches
into empty backgrounds or human labeled images through
strong data augmentation. In this way, the generated im-

ages are full of instances with high-quality pseudo labels
while successfully avoiding the missing label cases, which
is more effective for semi-supervised training. Finally, we
adopt multi-stage training scheme to progressively propa-
gate information from the labeled to the unlabeled data.

Another key challenge for semi-supervised monocular
3D object detection is the confirmation bias. In other words,
the model is overfitting to incorrect pseudo labels, which
is caused by the extremely low precision of image-based
3D object detectors. Considering the misalignment between
confidence score and localization quality, it’s not exhaustive
to eliminate incorrect labels using only confidence-based
filter. To this end, we further propose an uncertainty-based
filter to help remove noisy pseudo labels. In this method,
the predictions by the models with identical structure but
different parameters are used to estimate the uncertainty to
each object. For the prediction set belonging to the same
object, the higher uncertainty, the less predictions in this
set, and the larger localization misalignment among them.
We build a formula to represent the localization uncertainty
in 3D object detection task. Base on both confidence-based
filter and uncertainty-based filters, we manage to remove
incorrect pseudo labels more effectively in semi-supervised
training and thus alleviate the confirmation bias. Because
the process of removing noisy pseudo labels is only carried
out at the beginning of each training stage, the efficiency
influence from uncertainty calculation is inappreciable.

We benchmark Mix-teaching with SSL setting using the
full KITTI [10] object data and KITTI [10] raw data. When
using MonoFlex [58] as backbone detector, Mix-Teaching
achieve state of the art results on KITTI test leaderboard,
which even surpasses the LPCG [33] method that directly
relies on LiDAR-based 3D object detectors to generate
pseudo labels. Furthermore, we provide the SSL experi-
ments under different labling ratio, which can serve an ini-
tial baseline for semi-supervised monocular 3D object de-
tection.

Our contributions can be summarized as follows:

• We clarify the main difficulties in accomplishing semi-
supervised learning for monocular 3D object detection
and explain why existing SSL approaches can’t handle
these issues. On this basis, we propose Mix-Teaching,
a general semi-supervised framework for monocular
3D object detection.

• To alleviate the confirmation bias, we further pro-
pose an uncertainty-based filter to help remove noisy
pseudo labels effectively.

• Extensive experiments on KITTI dataset demonstrate
the significant efficacy of Mix-Teaching framework.
As the first study of SSL for monocular 3D object de-
tection, this can serve as a crucial baseline for further
researches.
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2. Related Work

Monocular 3D Object Detection. A number of meth-
ods have been proposed for monocular 3D object detec-
tion. How to reconstruct spatial information more effec-
tively is the core problem of these approaches. The Pseudo-
LiDAR-based methods [8, 28, 29, 49, 54] firstly transform
the input image to dense artificial point clouds with the ex-
isting depth estimation algorithms [7, 34] and then employs
LiDAR-based 3D object detectors [15, 60]. The geometry-
based methods [16,22,31] infer depth information based on
the 2D/3D geometry constraint of specific reference. An-
other keypoint-based works [3, 5, 25, 27, 30, 36, 58, 61] di-
rectly estimate the 3D properties of instance relying on the
high-dimensional features at keypoint position.
Semi-supervised Learning. Semi-supervised Learning fo-
cuses on training models with both labeled and unlabeled
data, which has achieved state-of-the-art performance on
classification [1, 41, 51, 55], 2D object detection [9, 12, 13,
17,42,44,50,52,53,56] and LiDAR-based 3D object detec-
tion [46, 59]. One popular type of SSL is consistency reg-
ularization, which constrains the outputs of different aug-
mented inputs to be consistent. CSD [12] is a consistency-
based method for 2D object detection. This approach en-
sures the consistent predictions between input images and
their flipped versions on both labeled and unlabeled data.
SESS [59] is a semi-supervised learning framework for
LiDAR-based 3D object detection. To enhance the model
generalization ability, this method applies three consistency
losses on two sets of 3D proposals from teacher and stu-
dent networks. The other kind of SSL is pseudo labeling,
which is based on high-quality pseudo labels and can be
seen as the hard version of consistency regularization. Fix-
Match [41] first generates pseudo labels on weakly aug-
mented unlabeled images, and then the student model is
trained to predict the same classifications on strong aug-
mented data. Unbiased Teacher [24] addresses the pseudo-
labeling bias issue caused by class imbalance in 2D annota-
tions with the help of EMA [45] training and focal loss [21].
3DIoUMatch [46] achieves semi-supervised 3D object de-
tection in point cloud with a teacher-student mutual learning
framework. To improve the quality of pseudo labels, all the
predictions that fail to pass the thresholds on classification
score, objectness confidence and 3D IoU will be filtered out.

In spite of the success of SSL in classification, 2D ob-
ject detection and LiDAR-based 3D object detection, there
hardly exists a general semi-supervised learning framework
specialized for monocular 3D object detection.

3. Method

In this section, we first give a mathematical definition
of semi-supervised monocular 3D object detection task (see
Section 3.1). Then, we show an overview of our training

schema (see Section 3.2) and Mix-Teaching framework (see
Section 3.3). The uncertainty-based filter is introduced in
Section 3.4.

3.1. Problem Definition

In semi-supervised monocular 3D object detection, we
have labeled data IL =

{
(xL1 , y

L
1 ), . . . , (x

L
nl
, yLnl

)
}

and
abundant unlabeled data IU =

{
xU1 , . . . , x

U
nu

}
, where x

is image, y denotes the human-annotated label that con-
tains category and 3D bounding box. nl and nu repre-
sent the number of labeled and unlabeled images respec-
tively. We aim to significantly improve the performance of
fully-supervised baselines by applying both labeled and un-
labeled data in training.

3.2. Multi-stage Training Schema

We adopt a multi-stage training schema. The initial
teacher model is trained on labeled data, followed by a
pseudo-labeling process for the unlabeled data. Then we
train a noisy student model using all the labeled and unla-
beled images following decomposition and re-combination
technique. This resulting model will be used as a new
teacher model in the next stage.

3.3. Mix-Teaching Framework

We propose a SSL framework for monocular 3D ob-
ject detection, called Mix-Teaching, as shown in Figure 2.
This is a general approach that can be easily applied to
most monocular 3D object detectors. Our Mix-Teaching is
mainly composed of two stages: database-oriented pseudo-
labeling and noisy student with mixed data.
Database-oriented Pseudo Labeling. To make the most
of sparsely distributed high-quality pseudo labels in semi-
supervised training, all the labels and background images
need to be gathered together. As shown in Figure 2, we per-
form a test-time inference of the teacher model on unlabeled
images to generate pseudo labels. By applying confidence-
based and uncertainty-based filters, we create an instance
database that is composed of instance-level image patches
and their corresponding high-quality pseudo labels. Based
on the object existence filter, we select all the background
images that don’t contain any predictions from unlabeled
data and create a background database
Noisy Student with Mixed Data. Based on the above
two databases and labeled images, we create the mixed im-
ages containing more intensive and precise labels for semi-
supervised training. There are two general strategies for this
purpose. One way is to paste the image patches from the in-
stance database on labeled images. Another way is to paste
the instance-level patches on the images that come from the
background database. During the process, the instance-level
patches are pasted to target images according to their 2D
bounding box on source images. To avoid over occlusion
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Figure 2. Overview of Mix-Teaching Framework. Mix-Teaching follows multi-stage training scheme. There are two crucial process in
each training stage. Database-oriented Pseudo Labeling: Based on the pseudo labels that are generated by applying the teacher model
on unlabeled images, We create two databases: one is background database that consists of images without any objects, the other one
is instance database composed of image patches with high-quality pseudo labels. Noisy Student with Mixed Data: The student model
is trained on the mixed images that possess much more intensive and precise labels by merging image patches from the above instance
database to labeled images or the ones from background database. See Section 3.2 and Section 3.3 for more details.

and other impossible outcomes, we additionally perform a
2D bounding box collision test to remove invalid paste op-
erations.

To alleviate the confirmation bias and improve the model
generalization ability, we further propose a series of box-
level strong data augmentations. For completeness, we de-
scribe the list of augmentations below. Each operation has a
magnitude that decides the augmentation degree of strength.
We visualize the augmented instances with single or fusion
strategies mentioned above in Figure 3.

1. Border Cut (B): Before the pasting operation, cutting
the horizontal or vertical border of image patch with a
random ratio (0-0.3).

2. Color Padding(C): Similar to the border cut, but re-
placing the cut operation with random color padding.

3. Mixup(M): making a weighted average between the
foreground image patches and backgrounds with a ran-
dom ratio (0.6-1.0).

When given a batch of mixed images and the correspond-
ing human labels or pseudo labels, the model is trained
by jointly minimizing the supervised loss and unsupervised
loss as follows:

L = Ls + λ× Lu (1)

where L is total loss, we use hyper-parameter λ to balance
the supervised loss Ls and the unsupervised loss Lu.

The supervised loss Ls consists of a classification loss
Lcls and a regression loss Lreg . It can be calculated as:

Ls =
∑
L

1

Nl

∑
i

(Lcls(b
i
l) + Lreg(b

i
l)) (2)

where L denotes the index of labeled images in a batch, Nl

represents the number of human annotations for each image,
bil is the i-th label in the L-th labeled image.

The unsupervised loss Lu is computed on pseudo labels
and can be written as:

Lu =
∑
L

1

Nu

∑
i

(Lcls(b
i
u) + Lreg(b

i
u))

+
∑
B

1

Nu

∑
i

(Lcls(b
i
u) + Lreg(b

i
u)) (3)

where B indicates the index of background images, Nu is
the number of pseudo labels on each image, biu represents
the i-th pseudo label on a labeled or a background image.

For monocular 3D object detection, the extremely low
recall and precision of related detectors make it a great chal-
lenge to apply the existing semi-supervised methods for 2D
object detection that focus more on false positives but ig-
nore false negatives to this field. In the Mix-Teaching pro-
posed above, following decomposition and recombination
methodology, we collect all positive instances and merge
them into backgrounds to create newly mixed images for
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Original Border Cut Color Padding Mixup Fusion

Figure 3. Visualization of box-level strong augmentations. From left to right: original image patch, border cut, color padding, mixup
and the fusion of previous three methods.

semi-supervised training. The positive instances indicate
object-level image patches with high-quality pseudo labels.
The backgrounds denote empty unlabeled images or labeled
data. The newly mixed images will possess high recall and
less false positives at the same time, which is effective to
solve the extremely low recall and confirmation bias chal-
lenges in semi-supervised monocular 3D object detection.

3.4. Uncertainty-based Filter

As shown in Figure 4(a), there exists a huge misalign-
ment between the classification score and the localization
precision of box candidates. A considerable proportion of
predictions have a high confidence score but low 3D IoU
with ground truth. When the high-quality pseudo labels are
discriminate completely based on the confidence-based fil-
ter, a lot of incorrect pseudo labels will be used for semi-
supervised training, which will strengthen the confirmation
bias.

In order to alleviate the above issues, it is necessary to re-
move noisy labels in semi-supervised training. To this end,
we further propose an uncertainty-based filter in which we
infer localization uncertainty on the basis of the discrepancy
of the predictions for one object from multi models.

When a certain image is given to N isomorphic models
with different parameters. For a specific object on this im-
age, there will be M predictions. We define the localization
uncertainty mainly from two points of view: (1) the number
of predictions M associated with this object; (2) The dis-
crepancy between these predicted boxes. The predictions
number M reflects the level of missed detection among N
models. The disparity in box candidates reveals the ran-
domness in model predictions.

We calculate the uncertainty in the following steps:

(a) (b)

Figure 4. The statistics of MonoFlex predictions on KITTI val-
idation set. (a) the relationship between the 3D IoU with ground
truth box and classification score. (b) the relationship between the
3D IoU and localization uncertainty.

1. All predictions from N models are stored in list B.

2. Declare three lists G, H and U . G is used to store box
clusters. Each cluster represents the predictions for a
certain object from N models . H is for the box with
highest confidence score in each cluster. U saves the
localization uncertainty for each box in list H .

3. Iterate through all the boxes in listB to find the match-
ing box that belongs to the current cluster C. The
matching condition is defined as a box with a large
overlap with the initial box bm of cluster C under the
condition IoU3D > thr. All matching boxes will be
moved from list B to cluster C. And then update the
current cluster C to list G.

4. If there are still unprocessed boxes in list B, select the
box bm that has the maximum score in listB and move
it to list H . Initialize a new cluster C with box bm and
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proceed to step 3.

5. When all boxes in B are processed, calculate the un-
certainty u for each box cluster C in list G with the
following equations. The results are added to list U .

u = uncertain(C) =

1−
∑M

i=0

∑M
j=0 aij × IoU3D(bi, bj)∑N

i=0

∑N
j=0 aij

(4)

aij =

{
1 if i 6= j

β if i = j
, (5)

where M is the number of boxes in cluster C, N de-
notes the number of models, bi is the i-th box in clus-
ter C, aij represents the weight for each item. β is the
hyper-parameter that controls how the number of box
candidates affects uncertainty.

The uncertainty u ranges from 0 to 1. When the value
is 0, it indicates that there exists no miss-detection in N
models (M = N ), and all N box candidates are perfectly
consistent. When the value is 1, it means that all models fail
to detect this object.

As shown in Figure 4 (b), we visualize the relationship
between the 3D IoU and localization uncertainty. Com-
pared with the classification score, the obtained uncertainty
can better measure the localization accuracy.

Compared with 3D confidence [39] or 3D IoU [18, 46]
that requires related branch design for specific detectors,
our uncertainty-based filter is model-independent and can
be applied to many types of image-based 3D object detec-
tors, which is more appropriate for the proposed general
semi-supervised learning framework.

4. Experiments
4.1. Dataset and Metrics

Contrasted with nuscenes [2] and waymo [43] dataset
that lacks of a large amount of unlabeled data, KITTI
[10] dataset provides 15K frames labeled data and 48K
unlabeled images, which is more appropriate for semi-
supervised learning research that relies on limited labeled
data and larger scale unlabeled images. Therefore, we
evaluate our Mix-teaching on the challenging KITTI [10]
dataset. KITTI contains 7,481 images for training and 7,518
images for testing. Since we have no access to the man-
ual annotations of testing set, the training set is further split
into 3,712 training samples and 3,769 validation samples as
mentioned in [4] for local evaluation. Besides, there are ad-
ditional raw data consists of 48K temporal images. These
images don’t coincide with the above training or testing set,
and thus can be used as unlabeled data for semi-supervised

training. We use the average precision on Car, Pedestrian
and Cyclist for 3D and bird’s eye view (BEV) object detec-
tion as the metrics. Following [40], all the evaluation results
on validation and testing set are based on AP40 instead of
the original 11-point interpolated average precision.

4.2. Implement Details

We adopt the MonoFlex [58] and GUPNet [27] as two
baseline detectors. The localization uncertainty is calcu-
lated based on five models from different training rounds.
During the pseudo labeling process, only the predictions
with confidence score larger than 0.7 and localization uncer-
tainty less than 0.25 will be added to the instance database.
The images without any detections are collected to build
background database. During the student model training
period, We initialize the student with the previous teacher
model. the images from background database are selected
with a chance of 42% apart from labeled images. For the
box-level strong data augmentation, we apply mixup on ev-
ery instance image patches. border cut and color padding
augmentation are employed with a chance of 50%. We set
the hyper-parameter λ = 1.0. Following the multi-training
scheme, we conduct three cycles of semi-supervised train-
ing for all experiments.

4.3. Quantitative Results

Comparison with Fully-supervised Baselines. We make
a detailed comparison with the supervised baselines, in-
cluding GUPNet [27] and MonoFlex [58], under different
ratios of training set. All 48K raw images of KITTI are
used as unlabeled data for semi-supervised training. As de-
picted in Table 1, Mix-Teaching significantly outperforms
MonoFlex [58] and GUPNet [27] under each ratio set-
tings, which verify the effectiveness of our semi-supervised
framework. when using only 10% labeled data, our ap-
proach gains around +6.34% and +5.98% AP3D improve-
ments on moderate level over MonoFlex and GUPNet base-
lines. This indicates our framework is able to learn knowl-
edge from unlabeled data, and the effect is more obvious
when the number of labeled data is scarce. Furthermore,
it is worth pointing out that when using all training set,
our Mix-Teaching is able to further outperforms the upper-
bound performance of two baselines by a large margin.
Results on KITTI Test Set. We evaluate the proposed
Mix-Teaching on KITT test set using MonoFlex [58] and
GUPNet [27] as two base monocular detectors. Table 2
shows the quantitative results of our method and other
top performance detectors from the official KITTI leader-
board. Overall, Mix-Teaching achieves superior results
over all two baselines across all settings under fair con-
ditions. For instance, the proposed method improve the
AP3D of GUPNet [27] by +7.44/+3.62/+2.95 absolute im-
provements under easy/moderate/hard setting. Meanwhile,
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Method 10% 50% 100%
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

GUPNet 8.42 / 13.61 5.14 / 8.67 4.11 / 7.35 18.21 / 26.28 14.14 / 19.38 11.12 / 16.63 22.76 / 31.07 16.46 / 22.94 13.72 / 19.75
Ours 16.55 / 22.57 11.48 / 15.90 9.44 / 13.13 25.67 / 34.87 19.76 / 26.19 17.07 / 21.76 29.12 / 38.48 21.04 / 28.25 17.56 / 24.36
Abs. Imp. +8.13 / 8.96 +6.34 / +7.23 +5.33 / +5.78 +7.46 / +8.59 +5.62 / +6.91 +4.95 / +5.13 +6.36 / +7.41 +4.58 / +5.31 +3.84 / +4.61

MonoFlex 5.76 / 9.93 4.67 / 7.68 3.54 / 6.09 21.91 / 28.24 15.43 / 20.51 13.09 / 18.37 23.64 / 29.86 17.51 / 23.05 14.83 / 20.68
Ours 14.43 / 18.80 10.65 / 14.28 8.41 / 11.73 29.34 / 36.23 20.63 / 26.70 17.31 / 23.07 29.74 / 37.45 22.27 / 28.99 19.04 / 25.31
Abs. Imp. +8.57 / +8.87 +5.98 / +6.60 +4.87 / +5.64 +7.43 / +7.99 +5.20 / +6.19 +4.22 / +4.70 +6.10 / +7.56 +4.76 / +5.94 +4.21 / +4.63

Table 1. Quantitative results of AP3D/APBEV (IoU=0.7)|R40 on KITTI val set under under different ratios of training set. “Abs.
Imp.” represents absolute improvements.

Method Reference GPU
Runtime AP3D(IoU=0.7)|R40 APBEV (IoU=0.7)|R40

(ms) Easy Mod. Hard Easy Mod. Hard

MonoGRNet [35] TPAMI 2021 Tesla P40 60 9.61 5.74 4.25 18.19 11.17 8.73
MonoPair [5] CVPR 2020 Tesla V100 60 13.04 9.99 8.65 19.28 14.83 12.89
RTM3D [19] ECCV 2020 1080Ti 50 14.41 10.34 8.77 19.17 14.20 11.99
D4LCN [8] CVPR 2020 1080Ti 200 16.65 11.72 9.51 22.51 16.02 12.55
Monodle [30] CVPR 2021 1080Ti 40 17.23 12.26 10.29 24.79 18.89 16.00
MonoRUn [3] CVPR 2021 1080Ti 70 19.65 12.30 10.58 27.94 17.34 15.24
GrooMeD-NMS [14] CVPR 2021 Titian X 120 18.10 12.32 9.65 26.19 18.27 14.05
MonoRCNN [38] ICCV 2021 - 70 18.36 12.65 10.03 25.48 18.11 14.10
DDMP-3D [47]∗ CVPR 2021 - 180 19.71 12.78 9.80 28.08 17.89 13.44
Ground-Aware [23] RAL 2021 1080Ti 50 21.65 13.25 9/91 29.81 17.98 13.08
PCT [48] NIPS 2021 - 487 21.00 13.37 11.31 29.65 19.03 15.92
CaDDN [37] CVPR2021 2080Ti 485 19.17 13.41 11.46 27.94 18.91 17.19
DFR-Net [63]∗ ICCV 2021 - 180 19.40 13.63 10.35 28.17 19.17 14.84
MonoEF [62] TPAMI 2021 - 30 21.29 13.87 11.71 29.03 19.70 17.26

MonoFlex [58]† CVPR 2021 2080Ti 30 19.94 13.89 12.07 28.23 19.75 16.89
AutoShape [26] ICCV 2021 2080Ti 52 22.47 14.17 11.36 30.66 20.08 15.95
GUPNet [27]† ICCV 2021 2080Ti 26 20.11 14.20 11.77 - - -
MonoDTR [11] CVPR 2022 - 37 21.99 15.39 12.73 28.59 20.38 17.14
MonoDETR [57] CVPR 2022 - 40 23.65 15.92 12.99 32.08 21.44 17.85
MonoDistill [6]∗ ICLR 2022 1080 Ti 40 22.97 16.03 13.60 31.87 22.59 19.72
MonoJSG [20] CVPR 2022 - 42 24.69 16.14 13.64 32.59 21.26 18.18
DD3D [32]∗ ICCV 2021 2080Ti 60 23.19 16.87 14.36 32.35 23.41 20.42
LPCG [33]∗ Arxiv 2021 2080Ti 30 25.56 17.80 15.38 35.96 24.81 21.86

GUPNet + Ours - 2080Ti 26 27.55 17.82 14.72 36.39 24.14 20.49
Abs. Imp. - - - +7.44 +3.62 +2.95 - - -

MonoFlex + Ours - 2080Ti 30 26.89 18.54 15.79 35.74 24.23 20.80
Abs. Imp. - - - +6.95 +4.65 +3.72 +7.51 +4.48 +3.91

Table 2. Performance of the Car category on KITTI test set. We use bold to highlight the highest results and underlined for the second-
highest ones. † represents the baseline we employed. All methods are ranked by AP3D on moderate setting (same as KITTI leaderboard),
Our method outperforms the baseline by a large margin and achieves the best performance.

our approach increases the same metric of MonoFLex [58]
from 19.94/13.89/12.07 to 26.89/18.54/15.79, which is ab-
solutely remarkable. What’s more, Our Mix-Teaching even
surpasses the LPCG [33] that directly relies on LiDAR-
based 3D object detectors to help generate pseudo labels on
AP3D metric using the same MonoFlex baseline. We rank
the 1st place according to AP3D on moderate setting (same
as KITTI leaderboard).

Results on Pedestrian and Cyclist Categories. Compared
with Car, Pedestrian and Cyclist are more challenging to
be detected owing to their non-rigid structure, small scale.
As shown in Table 3, our Mix-teaching can further boost
the AP3D(IoU=0.5)|R40 metric of MonoFlex [58] baseline
around 18% relative improvements for pedestrian and 108%
for cyclist on the test set, which demonstrates the effective-
ness of our method on small-scale objects.
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Method Cat. AP3D|R40 APBEV |R40

Easy Mod. Hard Easy Mod. Hard

MonoFlex
Ped.

9.43 6.31 5.26 10.36 7.36 6.29
Ours 11.67 7.47 6.61 12.34 8.40 7.06
Rel. Imp.(%) 23.75 ↑ 18.38 ↑ 25.67 ↑ 19.11 ↑ 14.13 ↑ 12.24 ↑

MonoFlex
Cycl.

4.17 2.35 2.04 4.41 2.67 2.50
Ours 8.04 4.91 4.15 8.56 5.36 4.62
Rel. Imp.(%) 92.81 ↑ 108.94 ↑ 103.43 ↑ 94.10 ↑ 100.75 ↑ 84.80 ↑

Table 3. Quantitative results for Pedestrian and Cyclist on
KITTI test set. “Rel. Imp.” represents relative improvements.

4.4. Ablation Studies

In this section, we perform ablation studies to investigate
the effects of each elements. We use MonoFlex [58] as the
base detector. The training of ablation experiments is con-
ducted on the full KITTI training set. The results for car
category are evaluated on the corresponding validation set.
The Scale of Unlabeled Data We investigate if the pro-
posed semi-supervised learning strategy keeps improving
performance with increasing unlabeled data. As show in ta-
ble 4, Compared with the results of 24K KITTI raw data, the
experiment when using the whole 48K unlabeled data can
further improve the AP3D for car category from 20.61% to
22.27%. This means that, with more unlabeled images, our
Mix-Teaching can improve the accuracy of fully supervised
detectors to a new level.
Background Database Next, we investigate if the back-
bone database is necessary during the student model train-
ing period. As shown in table 4, when using half KITTI raw
data, we gain +2.23% and +2.45% absolute improvement
over the without background database version on AP3D and
APBEV respectively. And when it comes to all the un-
labeled data condition, background database brings about
significant improvements as well.

Raw Data Background AP3D|R40 APBEV |R40

Easy Mod. Hard Easy Mod. Hard

- - 23.64 17.51 14.83 29.86 23.05 20.68

50% - 23.79 18.29 15.66 32.55 24.15 21.58√
27.49 20.61 17.68 36.19 26.60 23.13

100% - 24.22 19.02 16.16 33.33 25.70 22.34√
29.74 22.27 19.04 37.45 28.99 25.31

Table 4. Ablation study on the effects of background database
and unlabeled data scale.

Box-level Data Augmentations. We ablate the effects of
box-level data augmentations. As shown in Table 5, all bor-
der cut, color padding and mixup are helpful to improve
performance. The combination of the above three data aug-
mentations can further improve the performance of Mix-
Teaching.

B C M AP3D|R40 APBEV |R40

Easy Mod. Hard Easy Mod. Hard

- - - 26.44 20.04 17.18 35.04 25.87 22.54
√

- - 28.40 21.05 18.15 36.73 26.95 23.48
-

√
- 27.22 20.76 17.85 35.93 26.71 23.26

- -
√

27.74 21.21 18.32 36.99 27.08 23.54√ √ √
29.74 22.27 19.04 37.45 28.99 25.31

Table 5. Ablation study on the effects of box-level data aug-
mentations. “B” implies the border cut, “C” denotes the color
padding, “M” represents the mixup.

Confidence-based and Uncertainty-based Filters. As
shown in Table 6, the results of applying uncertainty-based
filter surpass that of only using confidence-based filter by
1.06% AP3D on moderate set, which explains that our pro-
posed uncertainty-filter is much more effective. When em-
ploying both of the two filters, we achieve the best results.

Conf. Unc. AP3D|R40 APBEV |R40

Easy Mod. Hard Easy Mod. Hard

- - 23.83 17.81 15.13 30.52 23.14 19.96
√

- 26.51 20.08 17.21 35.14 25.95 22.59
-

√
27.78 21.14 18.18 35.36 26.87 23.52√ √
29.74 22.27 19.04 37.45 28.99 25.31

Table 6. Ablation study on the effects of two filters. “Conf.”
denotes the filter based on the confidence. “Unc.” represents the
uncertainty-based filter.

The Thresholds for Confidence-based and Uncertainty-
based Filters. We studies the effects of different confidence
score thresholds and uncertainty thresholds in discriminat-
ing high-quality pseudo labels. As shown in Table 7, The
best performance is achieved when the confidence threshold
is set to 0.7 and the uncertainty threshold is set to 0.25.

Conf. Thre. Unc. Thre. AP3D|R40 APBEV |R40

Easy Mod. Hard Easy Mod. Hard

0.6 0.25 27.84 21.63 18.26 36.04 26.51 23.49
0.7 0.25 29.74 22.27 19.04 37.45 28.99 25.31
0.8 0.25 28.07 21.96 18.54 36.69 27.06 23.90
0.9 0.25 26.31 20.20 16.59 33.59 24.58 21.24

0.7 0.45 26.97 21.65 18.31 34.09 26.50 23.45
0.7 0.35 28.89 21.98 18.51 36.75 26.85 23.72
0.7 0.15 27.34 21.42 18.37 35.45 26.32 23.50

Table 7. Ablation study on the effects of different uncer-
tainty and confidence thresholds. “Conf. Threshold” denotes
the threshold of confidence-based filter. “Unc. Threshold” repre-
sents the threshold of uncertainty-based filter.
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Figure 5. Qualitative results on the KITTI val set. We present four pairs of comparisons marked with capital letters from A to F. Each
pair consists of four pictures, the upper left displays the predictions of MonoFlex [58] baseline(blue), the lower left is its representation in
the bird’s-eye view. The upper right shows the results of our Mix-Teaching(green), the lower right is its bird’s-eye view display. The red
boxes in the bird’s eye view represent ground truths. We use dashed ovals to highlight the pronounced difference in the predictions.

4.5. Qualitative Analysis

From the qualitative results shown in Figure 5 , Mix-
teaching can improve the performance of MonoFlex [58]
in various street scenes. As highlighted by the red ovals,
our method can produce superior performance for person
and cyclist(A in Figure 5), over-occluded objects (C in Fig-
ure 5) and cars in both close range (B-C in Figure 5) and
long range (D,E,F in Figure 5), which demonstrates the ef-
ficiency of our Mix-teaching.

5. Conclusion and Future Work
In this paper, we proposed Mix-Teaching, a general

semi-supervised learning framework for monocular 3D ob-
ject detection. Our method first generates pseudo labels for
unlabeled data by self-training. Then, following decompo-
sition and re-combination technique, we break the limita-
tion of original images and create newly diverse and label-
rich mixed images for semi-supervised training, which can
effectively handle the issues imposed by the extremely
lower precision and recall of initial pseudo labels. With
the proposed uncertainty-based filter, we manage to filter
poorly positioned pseudo labels effectively, leading to less
noise so as to alleviate confirmation bias. Experiments on
KITTI dataset show that Mix-Teaching manages to improve
the baseline model by a large margin under various label-
ing ratios. More importantly, when using 100% training
set and MonoFlex as backbone detector, we successfully

rank the first place among all monocular 3D object detec-
tors on KITTI test leaderboard. In this way, we can contin-
uously boost monocular 3D object detectors by collecting
more unlabeled images, which has great economic signifi-
cance in autonomous driving. Moreover, the proposed Mix-
Teaching follows the multi-stage training scheme. Adopt-
ing end-to-end training fashion will be left for future work.
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