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Dense Hybrid Proposal Modulation for Lane
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Abstract—In this paper, we present a dense hybrid proposal
modulation (DHPM) method for lane detection. Most existing
methods perform sparse supervision on a subset of high-scoring
proposals, while other proposals fail to obtain effective shape
and location guidance, resulting in poor overall quality. To
address this, we densely modulate all proposals to generate
topologically and spatially high-quality lane predictions with
discriminative representations. Specifically, we first ensure that
lane proposals are physically meaningful by applying single-lane
shape and location constraints. Benefitting from the proposed
proposal-to-label matching algorithm, we assign each proposal
a target ground truth lane to efficiently learn from spatial
layout priors. To enhance the generalization and model the
inter-proposal relations, we diversify the shape difference of
proposals matching the same ground-truth lane. In addition to
the shape and location constraints, we design a quality-aware
classification loss to adaptively supervise each positive proposal
so that the discriminative power can be further boosted. Our
DHPM achieves very competitive performances on four popular
benchmark datasets. Moreover, we consistently outperform the
baseline model on most metrics without introducing new param-
eters and reducing inference speed. The codes of our method are
available at https://github.com/wuyuej/DHPM.

Index Terms—Lane Detection, High-quality Proposal, Proposal
Modulation, Hybrid Constraints

I. INTRODUCTION

Given a front-viewed image taken by a camera mounted
on the vehicle, lane detection aims to distinguish and locate
the lane markings in an image. As a traditional yet fast-
growing computer vision task, lane detection is one of the
most essential and safety-critical components in autonomous
driving and advanced driver-assistance systems (ADAS). It
is developed with the desired purpose of avoiding traffic
accidents and improving traffic efficiency. Thus it has drawn
the increasing attention of researchers from academia and
industry. However, a variety of challenging issues that may
interfere with the detection have not been fully addressed yet.
For example, many complex-shaped lane lines are difficult to
fit well with existing methods. Moreover, lane lines may be
inapparent or even invisible due to illumination conditions or
due to occlusion by nearby vehicles. There has been a number
of recent attempts to overcome these challenges.
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To overcome these challenges, a variety of approaches have
been proposed to detect lane lines with complex topologies,
which can be roughly categorized into segmentation-based
methods [1–4], anchor-based methods [2, 5–11], and curve-
based methods [12–14]. Unlike general semantic segmentation
methods, segmentation-based lane detectors are expected to
be able to discriminate instance-level lanes. The disadvantage
of these detectors is that they cannot be directly transferred to
predict more lanes without modifying the model. In addition,
they usually require heavy post-processing or post-clustering
strategies [15]. To avoid trading performance for low latency,
anchor-based methods [2, 5, 6] estimate the line shape by
regressing the relative key coordinates. For example, some
methods [2, 6] construct line-shape anchors with vertical lines,
while recent works [5] build a one-stage detection approach
by designing straight-line anchors with arbitrary direction.
However, these predefined anchors cannot describe complex
line shapes, which results in relatively inferior performance.
To make good use of the shape priors, recent methods adopt
row-wise anchors [7–11] and predict the line location for
each row. Different from points regression, curve-based meth-
ods [12–14] formulate the lane curve with parameters and
detect lanes by regressing these parameters. LSTR [13] and
BézierLaneNet [14] predict the fitting parameters of each
lane line, which can provide more proposals to improve the
migration ability. Curve-based methods achieve high efficiency
and superior performance benefitting from the end-to-end
frameworks. However, curve-based methods are sensitive to
the predicted parameters because the high-order coefficient
may directly cause shape changes of lanes. As a brief sum-
mary, we attribute the unsatisfactory performance of existing
methods to two fundamental but intractable challenges.

First, how to increase the number of TP (i.e., true positive)
predictions? Many methods [1, 3, 7, 11, 16, 17] choose
to predict a small number of proposals, which equals the
maximum number of annotations of a single image. This
indicates that the representations of these proposals must
have enough generalization performance to adapt to various
situations. However, there exist many complex-shaped lane
lines in real scenes, even including some invisible lanes,
which limit the overall detection performance. Therefore, we
believe it is necessary to produce more proposals to deal
with varied situations, which have been widely adopted by
many object detection models [18, 19]. Nevertheless, existing
methods [13, 14] only supervise a subset of proposals with
high classification scores. In other words, these methods
typically give no clear location or shape supervision to the low-
scoring proposals, let alone the underlying relations between
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(a) Input image (b) Ground truth

(c) Proposals of BézierLaneNet [14] (d) Proposals of our method

(e) Top 4 proposals of
BézierLaneNet [14]

(f) Top 4 proposals of our method

Fig. 1. The comparison between our DHPM and BézierLaneNet [14].
Compared with BézierLaneNet [14], our DHPM can produce topologically
and spatially high-quality lane proposals. In addition, the confidence gap
between high-quality and low-quality proposals is enlarged by our proposed
quality-aware constraints, where a threshold can be easily found to distinguish
between true and false predictions with less effort.

proposals. For example, we show the 50 proposals predicted
by the top-performing BézierLaneNet [14] in Fig. 1 (c), where
each proposal is represented as 100 key points. We observe
that a vast majority of proposals are with unreasonable shapes
or improper locations, which indicates that these proposals
have a very low probability of being optimized during training,
and these unreasonable proposals have no potentials to fit lane
lines at the test phase. That means a small number of proposals
will be supervised to fit all lanes, which is very challenging for
the learned proposal representation. As a consequence, even
the well-trained proposals cannot handle challenging samples
and produce very confident lane proposals at the test phase, as
shown in Fig. 1 (e). This observation motivates us to densely
modulate all lane proposals w.r.t. ground truth labels since the
increasing number of high-quality proposals are beneficial to
raise the number of TP predictions.

Second, how to decrease the amount of FP (i.e., false
positive) and FN (i.e., false negative) predictions? Most lane
detection methods [1, 3, 7, 13, 14] restrain the proposal
quality (shape and location accuracy) and instance-level dis-
crimination individually. To be specific, they typically use
a standard binary cross-entropy or multi-class cross-entropy
loss as the discrimination constraint. However, these methods
will inevitably produce some proposals with high scores but
inaccurate shapes or locations, resulting in harmful effects
on the discriminative power. To enhance the instance-level
discrimination and decrease false classification, we propose
to adaptively assign quality-aware classification labels to all
proposals, which aims to give relatively lower classification
labels to a low-quality proposal and vice versa.

To address these, we propose a dense hybrid proposal mod-
ulation method to generate topologically and locational high-
quality lane proposals with discriminative representations.
Specifically, our hybrid modulation can be divided into three
aspects: 1) availability constraint, 2) diversity constraint, and

3) discrimination constraint. As mentioned above, only a tiny
fraction of lane proposals are sufficiently supervised in shape
and location, which leads to inaccurate predictions and poor
generalization ability of most existing methods. Therefore, our
prime objective is to make each proposal appear around the
ground truth lanes with a reasonable shape. To avoid over-
curved proposals in Fig. 1 (c), we define a simplified curvature
metric to measure and control the degree of bending of curves.
Then we force each proposal to approach its specific locating
target assigned by our proposal-to-label matching algorithm. In
addition to availability constraints, we encourage topological
diversification of the proposals targeting the same ground-truth
lanes, aiming to improve the fitting ability in the training phase
and the generalization ability in the testing phase, respectively.
To achieve this, we efficiently measure and regulate intra-
cluster shape differences by extending our single-curve metric
into a pairwise one (see Fig. 1 (d)). Last but not least,
we propose to enhance the instance-level discrimination of
proposals to reduce the number of false predictions. Instead
of a standard cross-entropy loss, we build a quality-aware
classification objective by explicitly taking shape and location
accuracy into consideration. With this quality-aware design,
our method can redistribute the probability distribution of
existence classification, where a threshold can be easily found
to classify all proposals into high- and low-quality groups.
Fig. 1 (f) shows that our method tends to give relatively higher
scores to good proposals while the score gap between good
and bad proposals is enlarged. Since our method modulates
the proposals with three constraints without modifying the net-
work structure, it only increases the time of back-propagation,
while the forward propagation remains unchanged. Our DHPM
achieves very competitive performance without introducing
new parameters and reducing inference speed on four widely-
used datasets.

The main contributions can be summarized as follows:

1) Unlike existing lane detection methods, which either
predict a few proposals or sparsely supervise a small
fraction of proposals, we propose a dense hybrid proposal
modulation method to improve the overall quality of
proposals.

2) We first present the availability constraint to locate each
proposal around the ground truth lanes with a reasonable
shape. Then we enhance the inter-proposal topological
diversification to exploit the underlying relations between
proposals with our diversity constraint.

3) We propose a quality-aware discrimination constraint to
build a bridge between the proposal quality (including
topological and locational accuracy) and instance-level
discrimination.

4) Experimental results on four popular datasets demonstrate
that our DHPM achieves very competitive performance
without introducing new parameters, and cross-dataset
experiments show that DHPM significantly improves
the generalization ability of proposals compared to the
baseline.

The remainder of this paper is organized as follows: Sec-
tion II describes recent studies related to our work. Section III
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introduces the crucial components of our DHPM. Extensive
experimental results on various datasets are reported in Sec-
tion IV, and the conclusion of this paper is in Section V.

II. RELATED WORK

In this section, we briefly review three related topics,
including lane detection, high-quality proposals learning, and
proposal relations learning.

A. Lane Detection Strategies

1) Segmentation-based Methods: Segmentation-based
methods [1, 2, 10, 16, 17, 20–29] view lane detection as
a per-pixel classification task. To handle the classification
problem of lane line points, some prior arts [28] treat each
lane line as a category for segmentation. In some methods,
pixels are classified as either on lane or background to
generate a binary segmentation mask. LaneNet [2] and
LaneAF [24] predict the instance segmentation mask, and
use post-clustering strategy [15] to determine the final lane
instance. However, segmentation-based methods are limited
by a predefined and fixed number of lanes, which is not
robust to real driving scenarios where the number of lanes is
unknown.

2) Anchor-based Methods: Anchor-based Methods [5–7,
11, 30–35] use the predefined anchor to help describe the
lane line. Instead of predicting lane line points pixel by pixel,
UFAST [7] manages to split the images into row-wise anchors,
where the number of anchors is much smaller than the pixels,
so it can achieve a good trade-off between performance and
efficiency. To minimize the gap between anchor-based predic-
tion and ground truth, some works [5, 6, 11, 30] also predict an
offset map to refine the initial prediction. LaneATT [5] designs
a line-shape anchor according to the slender and monotonous
characteristics of the lane line, which is followed by many
recent anchor-based methods [35]. CLRNet [32] leverages the
high-level semantic features and low-level texture features to
refine the proposal representations. However, the fixed anchor
shape results in a low degree of freedom in describing the
complex topology.

3) Curve-based Methods: Curve-based methods [12–14,
36, 37] directly output parametric lines expressed by curve
equation. PolyLaneNet [12] fits all lane lines into polynomial
functions, and directly predicts the fitting curve parameters
through a deep network. LSTR [13] introduces the transformer
with a similar structure to DETR [18] into the curve-based
method, and redesigns the fitting curve to take the camera
information into account. Different from segmentation-based
methods and anchor-based methods, curve-based methods can
avoid the separation between the predicted adjacent lane line
points. Although the accuracy of curve-based methods still
lags behind that of other methods, they have been proved [38]
to be more robust due to the smoothness of the fitting curve.

B. High-Quality Proposals Learning

In the field of object detection, many methods have made
progress in generating high-quality bounding box proposals.

Cai et al. [39] prove that high-quality proposals can bring
high-quality detector. Some works improve the quality of
proposal through ingeniously region proposal network design,
for example, FPN [40] uses both high-resolution low-level
features and high semantic information of high-level features
to improve the quality of multi-scale proposals. Besides,
LocNet [41] iteratively recognizes and locates the proposal
boxes to generate higher-quality proposal boxes. Cascade
RCNN [39] gradually improves the quality of proposal boxes
through a designed cascade regressor, in which each regressor
will optimize the output proposals according to the previous
regressor. In weakly supervised object detection tasks, PG-
PS [42] combines selective search and Grad-Cam [43] to
perform coarse classification and fine classification in turn
to obtain high-quality proposal boxes. Recently, many lane
detection works [13, 14] predict proposals that are significantly
larger than the number of lane lines. However, they only super-
vised a subset of high-scoring proposals, ignoring the overall
quality. In this paper, we propose a dense hybrid modulation
mechanism to improve the overall quality of proposals.

C. Proposal Relations Modeling

Modeling proposal relations has emerged in many fields,
including 2D [44–46] and 3D object detection [47]. In the
field of action localization, P-GCN [44] constructs a graph of
proposals by establishing the edges and then applying GCNs
to do message aggregation among proposals. For 3D object
detection, Feng et al. [47] extract uniform appearance features
for each 3D object proposal and construct a relation graph that
exploits the 3D object-object relationships. In order to explore
and utilize object-to-object relations, RDN [45] assembles
and propagates object relations to enhance object features
for video object detection. Despite the rapid development
of modeling the proposal relations of 2D or 3D bounding
boxes, the relations between lane proposals have not been
well exploited yet. In our work, we aim to mine the location
and score relations between proposals to generate diverse and
discriminative proposals.

III. THE PROPOSED APPROACH

In this section, we first formulate the problem of lane
detection and then describe our main idea. At last, we detail
the overall objective function for lane detection.

A. Overview

Given an input image I ∈ RH×W×3 with the corresponding
ground truth G = {g1, g2, ..., gM}, our goal is to predict a
collection of lane proposals P = {p1, p2, ..., pK}, and predict
a confidence value for each lane lines L = {l1, l2, ..., lK},
where K is the total number of lane lines. Generally, a
lane proposal pk is represented by an ordered set of co-
ordinates pk =

{
(x

(k)
1 , y

(k)
1 ), (x

(k)
2 , y

(k)
2 ), · · · , (x(k)N , y

(k)
N )
}

,
where k is the index of proposal lane line and N is
the max number of sampled points. Similarly, each ground
truth lane line gj is also represented as N points gj =
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Fig. 2. Comparison of our overall framework with existing methods. Unlike existing methods that sparsely supervise a subset of proposals with high
classification scores, we densely modulate all proposals to generate topologically and spatially high-quality lane proposals with three constraints, i.e., availability,
diversity, and discrimination.{
(u

(j)
1 , v

(j)
1 ), (u

(j)
2 , v

(j)
2 ), · · · , (u(j)N , v

(j)
N )
}

, where j is the in-
dex of ground truth lane line. The objective of a general
curve-based method can be divided into three terms: 1) a
coordinate regression term Jreg; 2) an existence classification
term Jcls; and 3) an optional binary mask segmentation term
Jseg . Therefore, the overall loss can be written as a weighted
sum of all terms:

Jsparse = λ1Jreg + λ2Jcls + λ3Jseg, (1)

where Jreg can be `1, `2, smooth `1 and other regression-
based loss. Note that existing methods [13, 14] only apply
Jreg to the positive proposals, which depend on the number
of ground truth lanes M . To achieve this, they perform a one-
to-one assignment between M labels and K predictions (M
<K) using optimal bipartite matching [18]. Assuming that pk
is a positive proposal and its corresponding ground truth lane
is gj , we can represent the `1-based regression loss Jreg as:

Jreg =
1

2N

N∑
i=1

||y(k)i − v
(j)
i ||+ ||x

(k)
i − u

(j)
i ||. (2)

Different from Jreg , Jcls and Jseg in a general curve-based
method are calculated for each proposal, so we omit the
proposal index for clarity. For example, Jcls can be written
as follows:

Jcls = −l log(p)− w(1− l) log(1− p), (3)

where l and p represent the existing label and predicted logits
of a proposal, respectively, and w is a hyper-parameter for
weighting negative samples. In addition, the binary segmenta-
tion loss Jseg shares the same format with Jcls.

While existing curve-based methods have made significant
progress by extending the general model introduced above,
their performance is suppressed by the following limitations:

1) Overall poor rationality of lane proposals. Optimal
bipartite matching algorithms such as the Hungarian al-
gorithm [48] only select a subset of the high-scoring lane
proposals during training. Due to insufficient topological
and locational supervision, most proposals become very
curly and have a very chaotic layout.

2) Lack of relations mining between proposals. Existing
methods independently supervise each matching proposal
without considering the shape and location of other
proposals. Therefore, there may exist some highly similar

Fig. 3. Illustration of the shape loss Sk . The length of the red dotted line
represents the straight-line distance between the starting point and the ending
point, and the solid red line represents the curve. Referring to the calculus
idea, we use the total length of the blue dashed line to approximate the length
of the curve with dense sampling.

lane proposals, which have a detrimental effect on the
generalization ability.

3) Weak discrimination of classification scores. During
training, traditional detection methods [49–53] directly
assign labels 1 to matching proposals and 0 to others.
Recent lane detection methods continue to use such
assignments, regardless of the quality (topological and
locational accuracy) of matching proposals. This will
inevitably generate some proposals with high confidence
but inaccurate shapes or locations, increasing the diffi-
culty of finding a suitable threshold.

To make lane proposals topologically and locational accu-
rate and discriminative, we enforce three important criteria to
modulate these proposal descriptors:

1) The modulated lane proposals are topologically and
spatially sound. Realistic lane lines usually have strong
prior knowledge, e.g., the ending points of different
lane lines are usually close to each other, while the
starting points are far apart. Therefore, forcing them to
be reasonable can increase the number of true positive
predictions.

2) The modulated proposals are with good generaliza-
tion ability. There are a few lane lines with complex
topology, including bumps and grooves, and some lane
lines are even invisible. We need to ensure that there are
sufficient and diverse proposals near ground-truth lanes
as alternative predictions.

3) The modulated proposal confidences are closely linked
to the quality of proposals. Since binary cross-entropy
loss does not guarantee higher classification labels for
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higher-quality proposals, it is important to build a bridge
between the quality of proposals and the classification
labels. By doing this, we can determine a threshold in
the testing phase to distinguish between true and false
predictions with less human effort.

To achieve these objectives, we present DHPM method to
generate topologically and spatially high-quality lane propos-
als with discriminative representations, which is illustrated
in Fig. 2. Without introducing new parameters, our DHPM
achieves very competitive performance with three simple yet
effective constraints. A light weight version of our method
could achieve 200+ FPS with a higher performance over the
baseline [14].

B. Availability Constraint

The goal of availability constraint is to make all proposal
lane lines reasonable. Specifically, we separate the objective
into two aspects. On the one hand, the topology of a lane
proposal should not be too much complicated than a straight
line, which is based on the structure priors in the driving
scenarios. Therefore, we hope to find a way to measure and
control the curvature of a lane curve efficiently. On the other
hand, the lane proposals are expected to locate near the ground
truth lanes evenly. At the same time, the endpoints and starting
points should follow the layout priors in real scenarios. Thus,
we propose to assign a label lane for each proposal lane to
give a specific regression target. With such two constraints, we
can make sure that the modulated proposals are topologically
and spatially sound. Note that we densely apply these two
constraints to each lane proposal, which is fundamentally
different from existing sparse constraint methods. To sum up,
we can formulate the full availability constraint as follows:

Java =λshapeJshape + λlocJloc

=λshape
1

K

K∑
k=1

Sk + λloc
1

K

K∑
k=1

Dk,
(4)

where λshape and λloc are weighting coefficients. Sk is the
shape loss of k-th proposal, while Dk is the location loss.

In general, existing methods represent a lane proposal
as an ordered set of coordinates. Therefore, the shape and
location representations of a proposal are deeply coupled.
We cannot directly apply our constraints on the coordinates
because a coordinate perturbation will change the shape and
location simultaneously. To disentangle shape attributes from
coordinates, our first step is to densely sample n key points
from a lane proposal, and we can re-write a lane representation
as

_

A1An = {A1, A2, · · · , An−1, An}, where we denote A1
and An as the start and end points, respectively. Based on
these dense points, we can approximate the curve length
with the length of multiple line segments when n −→ ∞.
We present a straightforward and parallel-friendly way to
efficiently measure the curvature of lane proposals. That is,
the ratio of the length of the curve |

_

A1An| to the length of the
straight line |A1An|, as shown in the Fig. 3. Mathematically,

(a) Proposals without Java

(b) Proposals with only Jloc

(c) Proposals with only Jshape

(d) Proposals with full Java

Fig. 4. Visual comparisons between different terms in the availability
constraint. Compared to proposals without our Java (a), applying Jloc (b)
or Jshape (c) alone can slightly improve the overall quality, still leaving
some unreasonable proposals. Differently, the full availability constraint that
includes both shape and location supervision significantly improves the
rationality of proposals. The image is from the test split of CULane [1].

we can represent the simplified curvature term as:

Sk =
|

_

A1An|
|A1An|

≈ |A1A2|+ |A2A3|+ ...+ |An−1An|
|A1An|

=

n−1∑
i=1

√
(x

(k)
i+1 − x

(k)
i )2 + (y

(k)
i+1 − y

(k)
i )2√

(x
(k)
n − x

(k)
1 )2 + (y

(k)
n − y

(k)
1 )2

,

(5)

where the minimum value of Sk is 1, which is only satisfied
when the lane proposal is a strictly straight line.

In addition to the shape properties, the spatial arrangement
of the proposal should be explicitly guided by the layout prior.
We propose to assign a target from ground truth lanes to each
proposal so that the layout prior can be propagated to the lane
proposals. To this end, we design a proposal-to-label matching
algorithm to assign M ground truth lanes to K proposals.
Instead of a slow clustering-based method, we only need to
compute M ×K `1 distances, from which each proposal will
choose the closest ground truth lane as its target. Therefore,
the ground truth lane that matches the k-th proposal can be
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GT baseline confidence baseline result confidence with Java result with Java
Fig. 5. Proposal comparisons between the baseline and the model with only Java. Our Java is used to increase the high-quality proposals (potential True
Positive results), and reduce the bad proposals (useless predictions) at the same time.

computed as follows:

g(k) = argmin
gi∈G

Q(i,k), Q(i,k) = 1− L1(gi, pk), (6)

where Q(i,k) represents the distance between the i-th ground
truth lane line with the k-th proposal. Note that all coordinates
are normalized according to the image resolution. Having
obtained the matched ground-truth lanes, we formulate the
dense location constraints to all proposals as follows:

Dk =D(k)
s +D(k)

e

= (|x(k)1 − u(g
(k))

1 |+ |y(k)1 − v(g
(k))

1 |)

+ (|x(k)n − u(g
(k))

n |+ |y(k)n − v(g
(k))

n |),

(7)

where Ds and De represent the `1 distances of starting points
and ending points, respectively. For some samples that have
no ground truth lanes, we simply omit the location loss
while the shape loss is reserved. It’s worth noting that the
proposed availability constraint is not the only constraint that
supervises the location of proposals. The curve loss Jreg in
basic constraints also provides sparse locational supervision
to a subset of proposals. Differently, our location constraints
supervise all proposals with clear locational targets.

To illustrate the effect of each individual component of Java,
we provide a detailed visual comparison in Fig. 4. Jloc or
Jshape cannot solely improve the proposals since they are
completely decoupled components. On the contrary, the full
Java can effectively modulate most low-quality proposals to be
topologically and spatially plausible. To sum up, our location
constraint supervises the approximate location of the lane head
and tail, while the shape constraint determines the lane neck.
Therefore, it can be concluded that it is the combination
of them that makes the lane have a reasonable location.
Besides, Fig. 5 shows the confidence comparisons between
the baseline and the model with only Java, which proves
that Java successfully increases the high-quality proposals
(potential True Positive results), and reduce the bad proposals
(useless predictions) at the same time. Therefore, the proposals
that exceed the threshold will have a greater probability of
becoming a TP rather than an FP prediction, which proves
that Java can directly improve the detection performance.

C. Diversity Constraint

Having obtained reasonable proposals by applying the avail-
ability constraint, we find that the proposals matching the same

(a) Great shape difference

(b) Small shape difference

Fig. 6. The comparison between great and small differences between
proposals. Compared to (b), greater shape difference (a) can enhance the gen-
eralization ability of proposals by reducing the mutual information between
proposals.

ground truth have a similar shape. The potential disadvantage
can be summarized in the following two aspects. 1) The high
similarity will reduce the generalization ability of the model
since the unique information of each proposal is limited.
2) The discrimination of classification confidences will be
suppressed because similar proposals may be given different
binary labels.

To enhance the generalization ability of proposals and
further model the underlying relations between proposals, we
propose to reduce the mutual information between proposal
lane lines. The mutual information between pi and pj can be
written as:

I(pi, pj) = I(pi)− I(pi|pj), (8)

where I(pi) means the information uncertainty of pi, I(pi|pj)
means the uncertainty of pi, given pj has already appeared,
and they are calculated as follows:

I(pi) = log
1

P (pi)
, I(pi|pj) = log

1

P (pi|pj)
, (9)

where we know the mutual information has a strong link with
the probability between pi and pj .

As shown in Fig. 6 (b), availability constraints lead to the
high similarity between proposals and large mutual informa-
tion values I . There are some overlapping proposals, which
means that their representations are very similar to each other.
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(a) with the upper limit

(b) without the upper limit

Fig. 7. The comparison between the diversity constraint with and without
an upper limit. The upper limit aims to make the distribution of lines more
uniform, as shown in (a).

Therefore, it is important to make each proposal unique since it
can help generate more effective proposals to adapt to different
situations. Unique proposals are able to better fit lane lines
in their unique scenarios, thus increasing TP and reducing
FP. However, directly using the distance between every two
lane representations as mutual information makes it difficult to
control the shape of decoded proposals. Therefore, according
to Equation (8) and (9), we hope to reduce the mutual
information between proposals by 1) enlarging the shape
differences of proposals; 2) redistributing the probabilities of
proposals. Although both the availability constraint and the
diversity constraint aim to modulate the shape and location of
the lanes, there is an essential difference between the two. The
availability constraint Java aims to supervise the location and
shape attributes of a single lane proposal, while the diversity
constraint Jdiv is proposed to restrain the relationship of
multiple lane proposals. In this subsection, we will elaborate
on how to enlarge the shape differences of proposals.

To enlarge the shape differences, we propose the diversity
constraint to diversify the shapes of different proposal lane
lines. Specifically, we first build a symmetric matrix with K×
K elements, where each element represents a pairwise shape
difference. A simple way to measure the shape difference is to
calculate the curvature difference between different proposals.
Therefore, we can raise the shape diversity by enlarging the
mean curvature difference:

Jdiv = −
2

K(K − 1)

K∑
k=1

K∑
i=k

|Sk − Si|, (10)

where we only count the elements in the upper triangular
matrix, and the diagonal elements are all zero.

However, forcing all proposals to have different shapes may
have strong side effects since proposals matching different
ground-truth lanes should not be computed together. To solve
this issue, we instead compute the intra-cluster shape differ-
ences, i.e., we only calculate the shape difference between

BézierLaneNet [14] ours

Fig. 8. Proposals comparison between BézierLaneNet [14] and ours. From
top to bottom, the images are from TuSimple [54], CULane [1], and LLA-
MAS [55] dataset.

proposals that match the same ground truth according to
Equation (6), and improve Equation (10) as follows:

Jdiv = −
1

K ′

∑
g(k)=g(i)

|Sk − Si|, (11)

where card({(k, i)|g(k) = g(i)}) = K ′. To apply the intra-
cluster diversity constraint for all groups, we generate a binary
mask with K×K elements, of which only K ′ elements are 1
and 0 otherwise. To illustrate the effect of Jdiv , we show the
visual comparison between great and small shape differences
in Fig. 6.

While Jdiv achieves a promising overall arrangement of
proposals, a few samples whose ground truth lanes are less
than 3 will lead to unstable training. Specifically, few ground
truth lanes will cause a large number of proposals to come
together. In other words, one ground truth will match multi-
ple proposal lane lines. Therefore, we limit the number of
proposed lane lines that match a single ground truth. For
example, when there are only two ground truth lane lines in
Fig. 7 (b), all proposals will be forced to locate near these
two lane lines by Equation (7). Setting a higher number will
effectively solve this problem without degrading performance.
We conduct Jloc and Jdiv only on the proposal lane lines
in set {p1, p2, · · · , pU |(p1, p2, · · · ) = sort(Q(i,k)), g

(k) = i}.
The comparison between the proposals with and without an
upper limit is shown in Figure 7. It can be concluded that when
there is an upper limit, all proposed lane lines can still appear
in reasonable locations. To avoid the generalization problem
that may be caused by manually setting the upper limit, we set
the upper limit value according to the number of proposals.

D. Discrimination Constraint

As mentioned above, existing methods separate confidence
loss from proposal quality. Optimal binary matching algo-
rithms such as the Hungarian algorithm [48] only match a
relatively close proposal lane line for each ground truth in the
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TABLE I
DETAILS OF DATASETS

Dataset #Total Train Validation Test Resolution #Lines #Scenarios Environment

TuSimple [54] 6408 3268 358 2782 1280×720 ≤ 5 1 highway
CULane [1] 133235 88880 9675 34680 1640×590 ≤ 4 9 urban and highway

LLAMAS [55] 100042 58269 20844 20929 1276×717 ≤ 4 1 highway
CurveLanes [6] 150000 100000 20000 30000 2560×1440&1570×660 ≤ 14 1 urban and highway

image, regardless of the distance between the matched pro-
posal and the ground truth. Matching proposals will have the
classification label set to 1, and the rest of the proposals will
be assigned 0. This training strategy inevitably produces some
high-confidence but low-quality proposals, which eventually
become FP. During the testing phase, a proposal with a lower
confidence value will be considered a negative prediction, even
if it is close to the ground truth. In general, existing methods
handle all positive proposals in a fixed manner, i.e., enforcing
their confidence level to 1 while ignoring topological and
spatial quality.

To address this, we reform the binary cross-entropy loss to
boost the discriminative power. During training, different from
existing methods that set each matched proposal confidence
label to 1, we generate lane-aware ground truths as follows:

Jdis = −(l′ log(p) + w(1− l′) log(1− p)), (12)

l′ =

{
γ + (1− γ)× e−βJreg , if l = 1,
0, if l = 0,

(13)

where l means the original existence label, and l′ means the
new confidence label. Jreg is the regression loss of selected
proposal, which is set to be a constant variable. β and γ are
used to balance Jreg, which are set to 10 and 0.5, respectively.
When all proposals are insufficient to match the ground truth,
this discriminative constraint will give lower confidence to
the closest proposal. As shown in Fig. 1(e) and (f), due
to the discrimination constraints during training, the three
proposals on the right get higher confidence, while the left-
most proposal gets lower confidence since their shape and
location are not good enough. It proves that our discrimination
constraint can effectively help screen out close but unqualified
proposals, thereby effectively reducing FP. More importantly,
we can determine a threshold in the testing phase to distinguish
between true and false predictions with less human effort.
Experimental results in Section IV show that Jdis success-
fully improved the performance from the perspective of the
confidence distribution of proposals.

E. Overall Loss

Different from the general curve-based models [13, 14],
we add the availability constraint, diversity constraint, and
discrimination constraint together to modulate the quality of
proposals. Our overall loss is a weighted sum of five losses:

Jdense = λ1Jreg + λ2Jseg + λ3Java + λ4Jdiv + λ5Jdis,
(14)

where λ1, λ2, λ3, λ4, λ5 are set to 1, 0.1, 0.0005, 0.0001, 0.75,
respectively. These coefficients are determined by performing

5-fold cross-validation. Compared with the sparse constraints
in existing methods, our dense hybrid modulation significantly
improves lane proposals’ topological and spatial qualities
without introducing new parameters. We compare proposal
quality with our baseline BézierLaneNet in Fig. 8, and the
comparison shows that our proposals outperform the baselines
on all datasets.

IV. EXPERIMENTS

In this section, we conduct various experiments to evaluate
the proposed dense proposal modulation method. We perform
an ablation study to show the effectiveness of each design
through qualitative and quantitative analysis.

A. Experimental Setting

1) Datasets: To evaluate our methods, we conduct exper-
iments on four commonly used benchmark datasets, includ-
ing TuSimple [54], CULane [1], LLAMAS [55] and Curve-
Lanes [6] datasets. TuSimple [54] is collected on the highway
in the daytime with fair weather conditions. CULane [1] is
collected by cameras installed on six different vehicles in
Beijing, with 9 different scenarios such as night, crowded,
and dazzle. LLAMAS [55] is a newly formed large dataset
with over 100k annotated images, which is collected using
Lidar maps. CurveLanes is a recently released dataset whose
driving scenarios are full of complex topologies such as curve
lines and dense lines. Detailed information about the datasets
can be found in Table I.

2) Evaluation Metrics: For the TuSimple [54] dataset,
there are three official evaluation metrics: accuracy, false pos-
itive rate (FPR), and false negative rate (FNR). The accuracy
is computed by:

accuracy =

∑
clip Cclip∑
clip Sclip

, (15)

where Cclip is the number of correctly predicted lane line
points, and Sclip is the total number of ground truth points
in each clip. Different from the TuSimple [54] dataset, the
official evaluation metric for CULane [1], LLAMAS [55] and
CurveLanes [6] datasets is F1 score, which is calculated as
follows:

F1 =
2× Precision×Recall
Precision+Recall

, (16)

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
. (17)

The prediction is considered true positive (TP ) when the
intersection-over-union (IoU) between the prediction and
ground truth exceeds 0.5.
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TABLE II
QUANTITATIVE RESULTS ON THE CULANE [1] DATASET

Method Total Normal Crowded Dazzle Shadow No line Arrow Curve Crossroad ‡ ↓ Night
Segmentation-based Method
SCNN (LargeFOV) [1] 71.60 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10
SAD (ENet) [16] 70.80 90.10 68.80 60.20 65.90 41.60 84.00 65.70 1998 66.00
SIM-CycleGAN (ERFNet) [56] 73.90 91.80 71.80 66.40 76.20 46.10 87.80 67.10 2346 69.40
RESA (ResNet-34) [3] 74.50 91.90 72.40 66.50 72.00 46.30 88.10 68.60 1896 69.80
Anchor-based Methods
UFLD (ResNet-18) [7] 68.40 87.70 66.00 58.40 62.80 40.20 81.00 57.90 1743 62.10
UFLD (ResNet-34) [7] 72.30 90.70 70.20 59.50 69.30 44.40 85.70 69.50 2037 66.70
CurveLanes-NAS(ResNet-18) [6] 71.40 88.30 68.60 63.20 68.00 47.90 82.50 66.00 2817 66.20
CurveLanes-NAS (ResNet-34) [6] 73.50 90.20 70.50 65.90 69.30 48.80 85.70 67.50 2359 68.20
UFLDv2 (ResNet-18) [8] 74.70 91.70 73.00 64.60 74.70 47.20 87.60 68.70 1998 70.20
UFLDv2 (ResNet-34) [8] 75.90 92.50 74.90 65.70 75.30 49.00 88.50 70.20 1864 70.60
CondLaneNet (ResNet-18) [11] 78.14 92.87 75.79 70.72 80.01 52.39 89.37 72.40 1364 73.23
CLRNet (ResNet-18) [32] 79.58 93.30 78.33 73.71 79.66 53.14 90.25 71.56 1321 75.11
LaneATT (ResNet-18) [5] 75.13 91.17 72.71 65.82 68.03 49.13 87.82 63.75 1020 68.58
ours-LaneATT (ResNet-18) 75.42 91.12 72.88 66.49 70.61 48.74 86.84 65.29 979 69.73
Curve-based Methods
LSTR(ResNet-18)* [13] 68.72 86.78 67.34 56.63 59.82 40.10 78.66 56.64 1166 59.92
BézierLaneNet (ResNet-18) [14] 73.67 90.22 71.55 62.49 70.91 45.30 84.09 58.98 996 68.70
BézierLaneNet (ResNet-34) [14] 75.57 91.59 73.20 69.20 76.74 48.05 87.16 62.45 888 69.90
ours-BézierLaneNet (ResNet-18) 74.59 90.55 73.25 63.49 65.53 45.11 84.83 60.19 701 68.94
ours-BézierLaneNet (ResNet-34) 76.21 91.50 74.19 68.11 74.85 48.25 87.38 60.41 872 71.51

*Since the result of CULane [1] is not given in the LSTR [13] paper, we used the results in the paper of BézierLaneNet [14] here.
‡For the “Cross” category, only false positives are shown.

3) Implementation Details: We use the original architec-
ture of BézierLaneNet [14] without changing any architecture,
and we apply our DHPM with the three constraints mentioned
in Section III during the training phase. The batch size is set
to be 20 for all datasets, and we train for 400, 36, 20, and 36
epochs for TuSimple [54], CULane [1], LLAMAS [55] and
CurveLanes [6], respectively. The input images are resized to
360× 640 for TuSimple [54] and LLAMAS [55], 720× 1280
for CurveLanes [6], while 288 × 800 for CULane [1]. Given
the number of proposals K, the upper limits in our diversity
constraint were set to U = b 4K25 c. We use Adam optimizer
and Cosine Annealing learning rate schedule [5] with an
initial learning rate of 6× 10−4. All experiments were based
on PyTorch. The data augmentation contains random affine
transforms, the random horizontal flip of 50% probability, and
color jitter, where random affine transforms include random
rotation within 10 degrees, random sampling ratio from 0.8 to
1.2.

B. Main Results

In this subsection, we compare various state-of-the-
art methods on four large-scale datasets. Following
BézierLaneNet [14], we use ResNet-18 and ResNet-34
as our backbones.

1) CULane [1]: On the CULane dataset, we compare
our DHPM with other 12 methods, including SCNN [1],
SAD [16], UFLD [7], SIM-CycleGAN [56], Curve-
Lanes [6], LaneATT [5], RESA [3], UFLDv2 [8], Cond-
LaneNet [11], CLRNet [32], LSTR (ResNet-18)* [13], and

BézierLaneNet [14]. As shown in Table II, our DHPM
achieves state-of-the-art performance among the curve-based
methods. In addition, we consistently outperform the base-
line models across different backbones. Specifically, our
lightweight model achieves a 0.92 improvement on the F1
score with the same testing speed and without introducing
new parameters to the model. In addition, we achieve the
lowest FP on the “Crossroad” category across all kinds of
methods, where 295 false positive predictions are reduced
compared with the baseline. These results demonstrate the
effectiveness of our dense hybrid modulation method. The
visual comparisons between our DHPM and other methods
are shown in Fig. 9. Besides, our method is not specific
to curve-based methods. We also conduct experiments on
LaneATT [5] as a new baseline. The experimental results
show that our method also achieves a significant improvement
over LaneATT, which demonstrates that our method has broad
application prospects in the task of lane detection.

To prove the improvements in proposal quality, we compare
the selected proposal statistics with the baseline on the test
split of CULane. As shown in Fig. 10, our proposals participate
more in the testing phase than the counterpart model. More
proposals are improved to have reasonable locations and
shapes, which is the basis for contributing their value.

2) TuSimple [54]: On the TuSimple dataset, we compare
with current state-of-the-art methods and report the results
in Table III. We achieve higher accuracy and lower FN
metrics with comparable FP compared to BézierLaneNet [14].
Although the metrics of TuSimple are almost saturated, we
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Ground truth LSTR [13] BézierLaneNet [14] Ours
Fig. 9. Qualitative results on the CULane [1] dataset.

(a) Statistics of times each proposal is selected in BézierLaneNet [14]

(b) Statistics of times each proposal is selected in our method

(c) Selected proposal statistics
of BézierLaneNet [14]

(d) Selected proposal statistics
of our methods

Fig. 10. The comparison of selected proposal statistics between
BézierLaneNet [14] and our method. Statistics are tested using the ResNet-18
backbone on the test set of CULane [1]. The comparison demonstrates that
our proposals participate more in the testing phase than its counterpart model.

still achieve very competitive performances among all kinds
of methods. For both backbones, we consistently improve
the performance over the baseline counterparts, which proves
the effective design of our method. The visual comparisons
between our DHPM and other methods are shown in Fig. 11.

TABLE III
QUANTITATIVE RESULTS ON THE TUSIMPLE [54] DATASET

Method Accuracy FP FN
Segmentation-based Method
SCNN (LargeFOV) [1] 96.53 6.17 1.80
EL-GAN [57] 96.39 4.12 3.36
SAD (ENet) [16] 96.64 6.02 2.05
Anchor-based Method
PointLaneNet (MobileNet-v2) [30] 96.34 4.67 5.18
LaneATT (ResNet-18) [5] 95.57 3.56 3.01
UFLD (ResNet-18) [7] 95.82 19.05 3.92
UFLD (ResNet-34) [7] 95.86 18.91 3.75
UFLDv2 (ResNet-18) [8] 95.50 3.06 4.82
UFLDv2 (ResNet-34) [8] 95.56 3.18 4.37
CondLaneNet (ResNet-18) [11] 95.48 2.18 3.80
CLRNet (ResNet-18) [32] 96.84 2.28 1.92
Curve-based Method
PolyLaneNet (EfficientNet-b0) [12] 93.36 9.42 9.33
LSTR (ResNet18) [13] 96.18 2.91 3.38
BézierLaneNet (ResNet-18) [14] 95.41 5.30 4.60
BézierLaneNet (ResNet-34) [14] 95.65 5.10 3.90
ours-BézierLaneNet (ResNet-18) 95.61 5.30 3.50
ours-BézierLaneNet (ResNet-34) 95.87 5.00 3.40

3) LLAMAS [55]: We also compare DHPM with recent
top-performing approaches on the online benchmark of LLA-
MAS. As shown in Table IV, we achieve very competitive
results on F1 and Recall metrics. Compared to the baseline
model, we consistently improve all metrics by a relatively
clear advantage. Our ResNet-18 model is comparable to
BézierLaneNet’s ResNet-34 model, indicating that our pro-
posal has better overall quality than BézierLaneNet. The visual
comparisons between DHPM and others are shown in Fig. 12.



11

Ground truth LSTR [13] BézierLaneNet [14] Ours
Fig. 11. Qualitative results on the TuSimple [54] test set.

Ground truth [14]’s proposals [14]’s predictions Our proposals Our predictions
Fig. 12. Qualitative comparison on the LLAMAS [55] validation set.

4) CurveLanes [6]: We conduct experiments on the Curve-
Lanes [6] dataset to better prove the effectiveness of our
method on curves. The results are shown in Table V. Since the
CurveLanes dataset [6] does not release the labels of the test
set, we only report the evaluation results on the validation set.
The CurveLanes [6] dataset has more than 90% curve samples,
so the improvement of our method on it can well prove that
our method has a positive effect on curve modeling. The visual
comparisons between DHPM and others are shown in Fig. 13.

C. Cross-Dataset Generalization Results

To verify the generalization of our method, we conduct
cross-dataset experiments between every two datasets. We use
the model trained on one dataset as a starting point to train and
test on another dataset. When re-training on the target datasets,
we use the same loss function as BézierLaneNet [14], which
is illustrated in Equation (1). As comparative experiments,
we also conduct cross-dataset re-training experiments on the
baseline model, utilizing the same training settings. Consistent

improvements in Table VI show that the starting checkpoint
provided by our method is generally better, which demon-
strates that our densely modulated proposals have stronger
generalization ability and can be used as a good feature
initialization.

D. Speed and Parameters

Inference speed and model size are important for au-
tonomous driving algorithms. We report our inference speed
and parameters in Table VII, where all FPS results are
tested with 590 × 1640 random inputs on the same device,
i.e., a single NVIDIA GTX 3090 GPU. Since our method
only re-design the training method and does not modify
the architecture, the testing speed and parameters are the
same as BézierLaneNet. To sum up, our approach improves
model performance and generalization without increasing new
parameters and reducing inference speed.
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Ground truth BézierLaneNet [14] Ours
Fig. 13. Qualitative results on the CurveLanes [6] dataset.

TABLE IV
QUANTITATIVE RESULTS ON THE LLAMAS [55] DATASET

Method F1 Presicion Recall
Anchor-based Method
PolyLaneNet [12] 88.40 88.87 87.93

CLRNet (ResNet-18) [32] 96.00 - -

LaneATT(ResNet-18) [5] 93.46 96.92 90.24

UFLDv2 (ResNet-18) [8] 94.58 95.29 93.88

UFLDv2 (ResNet-34) [8] 94.95 95.75 94.17

Curve-based Method
PolyLaneNet [12] 88.40 88.87 87.93

BézierLaneNet (ResNet-18) [14] 94.91 95.71 94.13

BézierLaneNet (ResNet-34) [14] 95.17 95.89 94.46

ours-BézierLaneNet (ResNet-18) 95.15 96.05 94.26

ours-BézierLaneNet (ResNet-34) 95.30 96.16 94.46

TABLE V
QUANTITATIVE RESULTS ON THE VALIDATION SET OF CURVELANES [6]

Method F1 Precision Recall
Anchor-based Method
SCNN (LargeFOV) [1] 65.02 76.13 56.74

SAD (ENet) [16] 50.31 63.60 41.60

PointLaneNet (MobileNet-v2) [30] 78.47 86.33 72.91

CurveLanes-NAS (ResNet-18) [6] 81.12 93.58 71.59

CondLaneNet (ResNet-18) [11] 85.09 87.75 82.58

Curve-based Method
BézierLaneNet (ResNet-18) [14] 74.56 83.27 67.50

ours-BézierLaneNet (ResNet-18) 75.03 82.75 68.62

E. Ablation Study

We conduct ablation experiments on the CULane [1] dataset
to verify the effectiveness of each component. All the ablation
experiments are performed based on the ResNet-18 version of

TABLE VI
QUANTITATIVE COMPARISON OF CROSS-DATASET GENERALIZATION

Target

Source TuSimple [54] CULane [1] LLAMAS [55]

baseline ours baseline ours baseline ours

TuSimple [54] 95.01 95.44 94.98 95.13 95.51 95.70
CULane [1] 73.48 73.91 73.36 74.33 72.53 73.56

LLAMAS [55] 95.36 95.78 95.52 95.66 95.42 95.75

TABLE VII
INFERENCE SPEED AND MODEL SIZE. THE INFERENCE SPEED WAS TESTED

ON AN NVIDIA GTX 3090 GPU.

Method FPS (image/s) Params (M)
LaneATT (ResNet-18) [5] 205 12.02

LaneATT (ResNet-34) [5] 183 22.13

CLRNet (ResNet-18) [32] 130 11.77

CLRNet (ResNet-34) [32] 106 21.88

CondLaneNet (ResNet-18) [11] 201 11.93

CondLaneNet (ResNet-34) [11] 149 22.04

UFLDv2 (ResNet-18) [8] 320 206.30

UFLDv2 (ResNet-34) [8] 162 216.41

BézierLaneNet (ResNet-18) [14] 212 4.10

BézierLaneNet (ResNet-34) [14] 179 9.48

ours-BézierLaneNet (ResNet-18) 206 4.10

ours-BézierLaneNet (ResNet-34) 183 9.48

our method. The results are shown in Table VIII, which are the
average values of four independent experiments with the same
training settings. The visualization of ablation experiments is
shown in Fig. 14. We emphasize that the availability constraint
Java aims to supervise the location and shape attributes of a
single lane proposal, while the diversity constraint Jdiv is pro-
posed to restrain the relationship of multiple lane proposals. In
other words, the availability constraint is a unitary constraint
about Sk, while the diversity constraint is a dualistic constraint.
They make their own contributions and assist each other in
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(a) Proposals under the supervision of Java alone

(b) Proposals under the supervision of Jdiv alone

(c) Proposals under the supervision of Java and Jdiv

Fig. 14. The visualization of ablation experiments. The proposals sparsely
supervised by the availability constraint (a) would cause the overlapping
problem. Only applying the diversity constraint (b) would result in low-
quality predictions, where most proposals are no longer located in the image.
When we add the diversity constraint based on the availability constraint (c),
proposals are more dispersed in the image space and of higher diversity.

TABLE VIII
ABLATION STUDY OF THE IMPROVEMENT STRATEGIES ON CULANE

Model Basic constraints Java Jdiv Jdis F1 Score

(a) X 73.36

(b) X X 73.14

(c) X X 73.28

(d) X X 73.92

(e) X X X 73.72

(f) X X X 73.66

(g) X X X 73.85

(h) X X X X 74.33

jointly optimizing the model.
From Table VIII (a-c), we observe that availability con-

straint or diversity constraint do not positively impact training
and even lead to performance degradation. From models (a-
d), we observe that the models trained with only Java or Jdiv
fail to bring a performance boost while Jdis successfully im-
proved the performance from the perspective of the confidence
distribution of proposals. The reason for this phenomenon can
be attributed to the fact that Java and Jdiv are designed to
regulate the spatial distributions of proposals from different
orientations. On the one hand, Java is proposed to locate
each proposal around the ground truth lanes with a reasonable
shape. On the other hand, Jdiv enhances the inter-proposal
topological diversification to exploit the underlying relations
between proposals. Therefore, the combination of two losses
(i.e., model (e)) significantly improves the detection results
of our method compared to the baseline. After adding the
discrimination constraint, the average F1 score of our method
can reach 74.33, which proves the feasibility of improving the
quality of all proposals.

The goal of availability constraint is to improve the quality
of all proposals. To achieve that, we need to constrain their

TABLE IX
ABLATION STUDY OF AVAILABILITY CONSTRAINT

Baseline Location constraint Shape constraint F1 Score

X 73.85

X X 73.80

X X 74.06

X X X 74.33

TABLE X
ABLATION STUDY OF DIVERSITY CONSTRAINT

Baseline Difference Constraint Upper Limit F1 Score

X 73.66

X X 74.01

X X X 74.33

shapes and locations to a reasonable range. Table IX presents
the ablation experiment to evaluate each component (i.e., shape
and location) in the availability constraint. We can observe
that none of them can improve performance alone, because
the attributes they constrain are orthogonal, so constraining
the shape and location of the proposal at the same time will
bring obvious performance improvement.

As described above, the diversity constraint is divided into
two parts: the constraint to increase shape differences and the
upper limit of proposal-to-label matching. We conduct three
groups of experiments to verify their effectiveness, and results
are shown in Table X. By comparing the first two rows in
Table X, we can see that the proposed difference constraint
has successfully improved the performance. Comparing the
results of the last two rows, we can see the positive effect of
an upper limit. Comparing these three groups of experiments
proves that both parts of the diversity constraint are essential.

Compared with the first two constraints, the discriminative
constraints are relatively independent. The conclusion can be
drawn by comparing (a-d) and (e-h) of Table VIII. We find
that experiments with discriminative constraints have higher
F1 scores than experiments without discriminative constraints,
leading to the conclusion that discriminative constraints alone
can have a positive effect.

V. CONCLUSION

In this paper, we have proposed dense hybrid proposal
modulation to generate high-quality proposals for lane de-
tection. The availability constraint makes all proposal lane
lines have suitable locations and shapes while the diversity
constraint avoids all the proposals under the supervision of
availability constraint overlapping together and improves the
diversity of proposals. The discriminative constraints improve
the discriminative ability of detectors and filter out proposals
that are not good enough. Benefitting from these constraints,
we achieve very competitive results on four popular datasets.
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