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Zhongxuan Luo

Abstract—Underwater object detection suffers from low de-
tection performance because the distance and wavelength depen-
dent imaging process yield evident image quality degradations
such as haze-like effects, low visibility, and color distortions.
Therefore, we commit to resolving the issue of underwater object
detection with compounded environmental degradations. Typical
approaches attempt to develop sophisticated deep architecture
to generate high-quality images or features. However, these
methods are only work for limited ranges because imaging factors
are either unstable, too sensitive, or compounded. Unlike these
approaches catering for high-quality images or features, this
paper seeks transferable prior knowledge from detector-friendly
images. The prior guides detectors removing degradations that
interfere with detection. It is based on statistical observations
that, the heavily degraded regions of detector-friendly (DFUI)
and underwater images have evident feature distribution gaps
while the lightly degraded regions of them overlap each other.
Therefore, we propose a residual feature transference module
(RFTM) to learn a mapping between deep representations of
the heavily degraded patches of DFUI- and underwater- images,
and make the mapping as a heavily degraded prior (HDP)
for underwater detection. Since the statistical properties are
independent to image content, HDP can be learned without the
supervision of semantic labels and plugged into popular CNN-
based feature extraction networks to improve their performance
on underwater object detection. Without bells and whistles,
evaluations on URPC2020 and UODD show that our methods
outperform CNN-based detectors by a large margin. Our method
with higher speeds and less parameters still performs better than
transformer-based detectors. Our code and DFUI dataset can
be found in https://github.com/xiaoDetection/Learning-Heavily-
Degraed-Prior.

Index Terms—Object detection, underwater degradation, im-
age enhancement

I. INTRODUCTION

V Isual underwater object detection (UOD) has been play-
ing an increasingly important role in fisheries, aquacul-

ture, and marine resource investigation [1], [2]. Underwater
images exhibit significant appearance discrepancy with those
captured in natural scenes owing to the complicated imaging
process characterized as:

I = J · t+A · (1− t), (1)

where the operator · denotes the pixel-wise multiplication and
I, J and A are the observed image, scene radiance (ground
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truth), and atmospheric light, respectively. The transmission
map t reflects the portion of scene radiance that reaches the
imaging plane, scattered by particles in water. This distance
and wavelength dependent transmission process yields evident
quality degradations such as haze-like effects, low visibility,
and color distortions. This paper addresses the issue of object
detection with compounded environmental degradations that
greatly challenges existing deep detectors gaining success in
natural scenes [3], [4], [5], [6].

Recently, researchers attempt to develop sophisticated deep
architectures in order to enhance image quality or features
favoring the UOD task. It is straightforward to cascade the net-
work for underwater image enhancement (UIE) with a generic
deep detector [7], [8], [9], [10]. Unfortunately, the visually
appealing output of the UIE module does not necessarily
generate high accuracy for deep detectors [1], [2]. Hence,
researchers resort to a new architecture along with a designated
loss for learning the features yielding better detection [2],
[11]. Typically, these networks enhancing either quality or
features are huge and inefficient for inference, hindering their
applications to time critical scenarios.

One alternative treatment for UOD is to re-train popular
detectors [12], [13], [14], [15], [16], [17], [18], [19] by collect-
ing a large number of underwater training examples [20], [21],
[22]. However, they suffer a poor detection performance, since
the environmental degradation masks many valuable features
of a scene. There also exist works to synthesize underwater
images from natural ones using generative adversarial net-
works [23], [24]. These synthesized methods augment the
quantity of training examples and introduce natural images
guidance, but the effectiveness for real world UOD is ques-
tionable since underwater objects/scenes evidently differ from
natural ones.

This paper focuses on the heavily-degraded (HD) patches
and bridges the distribution gap between these patches and
those detector-friendly ones (DFUI). We pick the images,
to which a detector [12] applies and outputs high accuracy
(AP ≥ 60), from a large collection of underwater images, as
the DFUI set. The patches with the transmission values t less
than a threshold from the DFUI and two publicly available
datasets, i.e., URPC2020 1 and UODD [20], constitute the HD
subsets of these three sets; those having higher transmission
values produce the respective lightly degraded (LD) subsets.
A typical example is shown in Fig. 1(a)-(b). This plot reveals
that the HD subset of the DFUI set distributes apart far from

1http://www.cnurpc.org/
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Fig. 1: We choose starfish as examples, i.e., a1,2, b1,2, c1,2, and d1,2 from HDf , HDu, LDf , and LDu, respectively. (a)
the features visualization of these starfish using ResNet50 trained on DFUI. We can see that the feature response of HDf

and HDu is different while LDf and LDu is similar. (b) the t-SNE [25] diagram of the feature distribution. We can see
that there is an evident feature distribution gap between HDf and HDu while LDf and LDu overlap each other. (c) the
accuracy-speed-size trade-off of accurate models on URPC’20.

those of the other two while the LD subsets of all the three
overlap each other. Thus, existing detectors fail learning fa-
vorable features from images heavily degraded by underwater
environments and thus gain downgraded performance.

Specifically, we design a residual feature transference mod-
ule (RFTM) to learn a mapping relationship between deep
representations of the heavily-degraded regions (patches) of
DFUI- and underwater- images, and make the mapping as
a heavily degraded prior (HDP) for low-quality UOD task.
The RFTM is devised to transfer the features of heavily
degraded regions of image to those favoring object detec-
tors, where a three layers forward network is designed to
simulate residual transfer mechanism between different data
distributions. This module can be plugged into the feature
extraction network of any convolutional network based deep
detectors, improving their respective performance. Fig. 1(c)
illustrates that our module embedded into two mainstream
networks ResNeXT101 and ResNet50 gains superior accuracy
over the latest CNN/Transformer-based detectors with less
parameter size and inference time. We circumvent constructing
and training complicated deep networks to enhance images or
features as we only consider the HD images stumbling generic
detectors. Meanwhile, the training of RFTM only demands
unlabeled underwater image patches avoiding unrealistic syn-
thesized examples that bring downside effects for real-world
UOD. We summarize the contributions of this paper below:

• This study discovers that the heavily-degraded regions
of underwater and favoring object detector images have
an evident gap, thus acting the bottleneck for real-world
UOD tasks. As a nontrivial byproduct, we build a DFUI
dataset with 5,265 images available for investigating the
UOD task.

• We propose a residual feature transference module to
learn the mapping between the heavily-degraded regions

of the detector-friendly and generic underwater images.
The module can be plugged into existing CNN-based
feature extraction networks of object detectors, tackling
the bottleneck for real-world UOD.

• We devise a two-stage training scheme from the perspec-
tive of the unsupervised and finetune learning strategy
yielding optimal network parameters for efficiently plug-
ging RFTM into a detector.

• Comprehensive experiments on the URPC2020 and
UODD datasets show the superiority of our proposed
methods. On the URPC2020 dataset, our module can in-
crease AP from 45.0 to 48.2 over the baseline ResNet50,
and from 45.2 to 50.9 over ResNetXT101. Similar AP
gains are also achieved on the UODD dataset.

II. RELATED WORK

Visual object detection aims at determining what and where
an object is in an image. Deep-learning based detectors
generally consist of four cascaded parts: a backbone that
extracts feature from an image, a neck that fuses multi-level
features, an optional region proposal network that generates
prediction candidates, and a head predicting classification and
localization. There exist two major categories of solutions,
i.e., enhancing based and re-training based, to the UOD task
in literatures.

CNN- and Transformer- based Detectors. CNN-based
detectors in mainstream evolution of detectors is promoted by
several works. R-CNN [26] is the first to show that CNN-based
methods could lead to dramatic improvement in detection
performance. Following R-CNN, Fast R-CNN [27], Faster R-
CNN [28], Cascade R-CNN [12], and DetectoRS[16] achieve
further performance improvement. Meanwhile, a series of
proposal free detectors has been proposed to speed up the de-
tection development. SSD [29], RetinaNet [30], RefineDet++
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Fig. 2: The overview of DFUI. Images of DFUI do not look sharp images to the eye. The gap between DFUI and underwater
images lies mainly at the heavily instead of lightly degraded regions.

[6], and FreeAnchor [31] extract feature from inputs straightly
for predicting through a unified stage. In the mean time,
some arts concentrate on anchor-free direction, Grid RCNN
[19], YOLOX [13], YOLO [32], and FoveaBox [17] generates
bounding boxes according to key- or center- points.

Over the past two years, there has been growing interest
in using transformer for detection. Transformer-based have
shown strong performance compared with CNN-based meth-
ods from the perspective of both accuracy and speed. DETR
[18] is a pioneer for transformer-based methods and redesigns
the detection framework. DETR treats the detection task as
an intuitive set prediction problem and eliminates traditional
components such as anchor generation and non-maximum
suppression. After DETR, some arts concentrate on improving
specific parts such as transformer backbone [15], [33], [34],
[35] and pre-training scheme [14], [36].

UIE+UOD. This type of method first uses UIE during pre-
processing to improve the quality of underwater images (UI),
and then to perform detection. UIE of VD-UIE+UOD chases
high visual performance [23], [24], [7] and leads to incon-
sistency with detection performance requirements. Therefore,
evaluation of VD-UIE+UOD methods shows a significant drop
in UOD accuracy. Among them, some VD-UIE+UOD methods
[23], [24] are trained on synthetic images due to lacking
paired UI and its corresponding high-quality counterparts,
posing weak adaptation to real-world UI. Prior works on
underwater detection evidence that images favoring detectors
are different from images favoring visibility [2], [1]. There-
fore, UDD-UIE+UOD develops detection-driven features for
UOD is gradually becoming an attractive research direction in
the underwater vision community. While promising, existing
UDD-UIE+UOD methods require complex neural architecture
and training process [2], [11].

III. PROPOSED METHOD

This section details our method, starting from our studies
that the heavily-degraded regions of underwater- and DFUI-

images have an evident distribution gap. Then, we elaborate
a residual feature transference module to learn the mapping
between the heavily-degraded regions of the detector-friendly
and underwater image. Finally, we give a two-stage training
scheme to optimize underwater HDP-oriented detection net-
works with RFTM.

A. Our studies on Underwater Heavily-degraded Prior

The underwater detection task, which has no shortage of
large image datasets, however, has not benefited from the full
power of computer vision and deep learning methods, partly
because imaging quality degradations mask many valuable
features of a scene. Typical underwater detection methods
strive for generating high-quality images or features by directly
removing quality degradations. Unfortunately, these methods
suffer poor performance because imaging factors are either
unstable, too sensitive, or compounded [37].

Unlike these approaches catering for high-quality images or
features, our methods seek transferable prior knowledge from
detector-friendly images. The prior knowledge guides detec-
tors in removing degradations that interfere with detection.
Specifically, from the existing underwater detection dataset, we
construct a dataset named DFUI that favors detectors. DFUI
is automatically built by a detector, avoiding the unstable
step of removing environmental degradation and eliminating
inconsistencies between detection and visual quality.

Now our focus converts to how to gain prior knowledge
from such a large dataset. We elaborate a series of statistical
experiments on the DFUI and underwater datasets and find
an essential difference between the two datasets. We learn a
mapping of the essential difference between the DFUI and
underwater dataset. The mapping relationship is the prior
knowledge we are looking for and can make DFUI as guidance
for removing degradation interferences for detection. The
whole exploration process is described as follows.
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Fig. 3: Two-stage training strategy. (a) the pipeline of the fist stage is training RFTM in an unsupervised manner on HD subset
of underwater and DFUI datasets (i.e., HDu and HDf ). (b) the pipeline of the second stage is finetuning the subsequent
components of a detector on underwater datasets. (c) the structure of RFTM.

For the training set of URPC2020 and URPC2021 2, we first
use Cascade RCNN to pick images with AP ≥ 60 to con-
struct DFUI datasets. Browsing the images of the constructed
DFUI, we find an interesting phenomenon that detector-
friendly images do not always have a positive correlation with
visual quality. For example, in Fig. 2, there are many that do
not look sharp images to the eye. It demonstrates that detectors
do not always achieve more accurate detection on vision-
friendly images. Therefore, it is necessary to build DFUI with
detectors rather than artificial manner.

Then, we constitute the HD and LD subsets of DFUI,
URPC2020, and UODD according to the transmission value
t. In this paper, we use the traditional method UDCP [38] to
estimate the transmission t. This method [38] estimates trans-
mission t depending on the underwater image and atmospheric
light A. The atmospheric light A is estimated by finding the
brightest pixel in the underwater dark channel. Details can be
referred to [38].

To obtain the feature representations of the HD and LD
subsets in the embedding space [39], we use ResNet50 pre-
trained on DFUI dataset as the feature extractor. The feature
of each image was extracted from the second stage ”Stage1”,
since the middle stage contains rich region information and the
distribution of features is more pronounced. The t-SNE[25]
technology is leveraged to visualize feature distribution.

The feature distributions of the HD and LD subsets of DFUI,
URPC2020, and UODD can be referred in Fig. 2. The results
show that the gap between DFUI and underwater images lie
mainly at the heavily instead of lightly degraded regions.
Therefore, if we find a mapping between the heavily degraded
regions of DFUI- and underwater- images, we can bride them
together. At the heavily degraded regions, transferring the
features from underwater to DFUI ones will certainly benefit
the detection tasks. In this paper, we call such a mapping as
the heavily degraded prior. Next, we will present an efficient
solution to show how to learn and use the effective HDP.

2http://www.cnurpc.org/

B. Residual Feature Transference Module

RFTM aims to learn the mapping relationship between the
heavily degraded regions of DFUI- and underwater- images
(i.e., HDf and HDu). It is inspired by the residual transfer
network method proposed in [40]. The gap between HDf

and HDu can be represented by a residual function that can
be learned. We design a residual feature transference module
(i.e., RFTM) to model the residual function. As is shown
in Fig. 3 (a), The RFTM is plugged into the HDu feed-
forward pipeline. Through the HDu feed-forward pipeline
with RFTM, we can get the transferred feature (TF) of HDu.
The TF is compared with its paired HDf feature (i.e, the
output of PS0,1) to calculate the KL loss and the error is back-
propagated to RFTM to update its parameters. We thus can
explicitly learn the residual function and bridge the feature
gap between HDf and HDu.

To include RFTM into the HDu feed-forward pipeline, we
define the following feed-forward model. Let ∆Fs be the
proposed RFTM at the s-th conv stage. For ∆Fs the feed-
forward equation at the s-th conv stage can be formulated as,

F̂s(i) = Fs(i) +∆Fs(Fs−1(i)), (2)

where Fs(i) is the feature extracted from the s-th stage for the
input i sampled from HDu using the feature extraction net-
work F. ∆Fs(Fs−1(i)) denotes the residual feature extracted
from the output of (s− 1)-th stage, and F̂s(i) denotes the
feature extracted from the s-th stage for any input i ∈ HDu

with RFTM modified feed-forward.
The placement position of RFTM is illustrated in Fig. 3(a)

the HDu feed-forward pipeline. It has no effect on HDf feed-
forward pipeline. Since the intermediate stage of the feature
extraction network contains more regional information, the
feature distribution gap is relatively large. In our case, we
thus put RFTM at stage PS1 of the feature extraction network
to transfer the intermediate stage features between the heavily
degraded regions of DFUI and underwater ones.
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How to design a suitable structure of RFTM plays a vital
role in implementation. As mentioned above, RFTM is placed
at stage PS1 of the network and aims to transfer the interme-
diate stage features. Therefore, RFTM cannot over-extract the
input features but ensures that the processed features contain
as much region information as possible to conform to the
characteristics of the intermediate stage feature. In addition,
as underwater detectors are often deployed to mobile CPUs,
it requires modules to be lightweight. For these purposes,
we construct RFTM with few layers and small kernels. The
structure of RFTM and its parameter settings are shown in
Fig. 3 (c). Specifically, RFTM contains a 2× 2 Maxpool
layer with the stride of 2 and three 3× 3 convolutions with
the stride of 1. ”RELU” activation functions follow the first
and second 3× 3 convolution, and there are no activation
functions following the last 3× 3 convolution.

C. Two-stage training strategy

For efficiently plugging RFTM into a detector, we propose
a two-stage learning scheme from the perspective of the
unsupervised and finetune learning strategy. The two-stage
training pipeline can be referred in Fig. 3(a)-(b). The first
stage is training RFTM in an unsupervised manner on HDf

and HDu subsets without semantic labels. The second stage
is fixed RFTM to finetune some components of a detector on
underwater datasets.

Unsupervised transference training phase. As is shown
in Fig. 3(a), we use a pretrained network (on DFUI) to extract
the low- and middle- level features of HDu and HDf . The
low- and middle- level features are outputs of the shallow and
intermediate stages of the network, respectively. For example,
”Stage0” in ResNet50 [41]/ResNetXt101 [42] is the shallow
stage, and ”Stage1” in ResNet50 [41]/ResNetXt101 is the
intermediate stage. The shallow and intermediate stages of
the feature extraction network are fixed during the training
phase and called PS0, PS1, and PS0,1, respectively. The novel
RFTM is used to accomplish the transference of the heavily
degraded feature. In the HDu feed-forward pipeline, the
output of PS0 fed into RFTM. According to the residual
feature transference strategy, the output feature from RFTM
and PS1 are element-wise added up. The resulting transferred
feature (TF) is compared with the output of PS0,1 to calculate
the simple KL loss and the gradient is back-propagated to
update RFTM. Let j be the image sampled from the HD
subsets of DFUI (i.e., HDf ). The KL loss can be referred
as follow,

Lkl(i, j) = Fs(j) · log
Fs(j)

F̂s(i)
. (3)

Here, the first stage is training the RFTM on the HD subsets
HDu and HDf . After the first training stage, RFTM can
transfer the features of heavily-degraded regions of underwater
to detector-friendly ones. Note that we do not transfer the
lightly-degraded regions of DFUI and underwater images due
to no evident gap existing in lightly-degraded regions (details
can be referred to Sec. III-A). In addition, HDu and HDf are
patches without semantic labels, and therefore the first training
stage is an unsupervised process.

Finetune phase. As is shown in Fig. 3(b), we put the
trained RFTM into an existing feature extraction network, i.e.,
between its shallow and intermediate stage. Then, we finetune
subsequent detection components, including high-level stages
of the feature extraction network (denoted finetune stage (FS)),
RPN, Neck, and Head, using common detection losses. The
detection loss can be referred as follow,

Ldet = Lbbox + Lcls, (4)

where Lbbox denotes the bounding-box regression loss and
Lcls denotes the object classification loss. The details of
these individual loss components can be found in [28]. Here,
the second stage is finetune FS, RPN, Neck, and Head of
detectors on training sets of underwater datasets. After the
second stage, our methods can be tested on testing sets of
underwater datasets.

IV. EXPERIMENTS

In this section, the experiments described below aim to
demonstrate the improvement of the perception performance
of our proposed underwater heavily degraded prior for UOD,
especially environmental degradations including haze-like ef-
fects, low visibility, and color distortions.

A. Implementation Details

Based on different feature extraction network, we build
our detectors within Cascade R-CNN, denoted as RFTM-50
and RFTM-XT101 , respectively. Specifically, RFTM-50 plugs
RFTM into CNN-based feature extraction network ResNet50;
RFTM-XT101 plugs RFTM into CNN-based feature extraction
network ResNetXT101 3.

We train and test all the methods mentioned below using
URPC2020 and UODD[20] datasets. URPC2020 is a popu-
lar underwater dataset supporting by the China underwater
robot professional contest, which contains 6,575 images in
4 categories (i.e., holothurian, echinus, scallop and starfish).
We divide URPC2020 dataset into training and testing sets
with a ratio of 7:3. In a word, there are totally 4,602 images
for training and 1,973 images for testing. In order to verify
that RFTM also has an effective performance improvement
on other dataset, we carry out a comparative experiment on
UODD. UODD is a rigorous benchmark with 2,688 images in
3 categories (i.e., holothurian, echinus and scallop) and widely
used for underwater detection evaluation. UODD contains
2,560 images for training and 505 images for testing.

All the detectors are trained on URPC2020/UODD training
sets with pretrained models from DFUI dataset. Due to the
different image sizes in the datasets, we resize all image sizes
to 1333 × 800 for URPC2020 and 640 × 640 for UODD as
input. We use a batch size of 2 and set the learning rate as
0.002 training on one NVIDIA A40. All the experiments are
performed on MMDetection 4.

3ResNet50 and ResNetXT101 are popular feature extraction network, and
most detectors support the two networks.

4https://github.com/open-mmlab/mmdetection
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TABLE I: Accuracy comparison of RFTM with baselines in
URPC2020 dataset. (T = 0.5).

Methods Backbone AP AP50 AP75 APS APM APL

Baseline:
Cascade RCNN ResNet50 45.0 78.8 47.5 18.7 39.3 50.7

ResNetXT101 45.2 80.3 46.4 22.7 41.6 50.7

UIE+UOD:
FunIE+Grid RCNN ResNetXT101 39.1 73.7 37.5 11.7 28.8 47.8
FunIE+YOLOX YOLOX-l 43.4 79.3 43.1 16.1 38.0 48.7
FunIE+CSAM DarkNet-53 43.8 76.0 40.8 19.3 44.4 48.1
FunIE+Swin Swin-B 46.3 77.2 47.8 21.2 43.3 50.2
ERH+Swin Swin-B 47.0 79.5 47.7 22.6 42.9 52.4

CNN:
Free-anchor ResNetXT101 44.4 80.0 44.6 24.3 41.7 49.3
FoveaBox ResNet101 43.2 79.3 42.8 24.2 40.2 48.1
YOLOX YOLOX-l 46.7 81.2 49.4 18.8 41.8 51.2
Grid RCNN ResNetXT101 43.5 78.4 44.1 23.6 40.3 48.9
CSAM DarkNet-53 46.4 79.2 41.1 20.4 44.7 50.8
AquaNet MNet 43.1 78.4 40.3 26.2 41.2 47.5

Transformer:
PVTv1 PVT-Medium 44.5 80.1 44.7 21.6 39.3 49.2
PVTv2 PVTv2-B4 48.0 83.2 51.8 24.2 43.2 53.8
Swin Swin-B 50.2 83.0 54.4 24.9 44.7 55.6

Ours:
RFTM-50 ResNet50 48.2 80.7 50.0 19.5 41.6 53.1
RFTM-XT101 ResNetXT101 50.9 84.7 55.2 25.5 45.1 56.9

TABLE II: Accuracy comparison of RFTM with baselines in
UODD dataset. (T = 0.5).

Methods Backbone AP AP50 AP75 APS APM APL

Baseline:
Cascade RCNN ResNet50 49.1 87.9 52.1 36.6 51.0 60.6

ResNetXT101 47.9 85.8 52.1 45.3 46.9 62.9

UIE+UOD:
FunIE+Grid RCNN ResNetXT101 36.2 73.1 31.7 18.4 35.5 55.6
FunIE+YOLOX YOLOX-l 47.1 83.8 47.8 30.4 46.0 62.5
FunIE+CSAM DarkNet-53 45.3 80.4 47.8 32.2 45.6 54.3
FunIE+Swin Swin-B 48.3 85.1 49.7 32.2 45.2 58.2
ERH+Swin Swin-B 48.8 86.0 48.5 30.6 48.6 61.3

CNN:
Free-anchor ResNetXT101 49.7 88.0 52.9 47.2 49.3 58.9
FoveaBox ResNet101 45.6 85.1 43.5 32.4 45.5 57.2
YOLOX YOLOX-l 48.8 86.3 51.7 36.7 47.6 63.0
Grid RCNN ResNetXT101 49.8 86.6 52.3 41.0 51.0 59.3
CSAM DarkNet-53 49.1 88.4 48.3 34.0 49.9 61.2
AquaNet MNet 45.2 84.3 44.0 30.5 44.2 55.2

Transformer:
PVTv1 PVT-Medium 45.8 85.4 43.6 32.0 45.8 56.9
PVTv2 PVTv2-B4 47.5 88.1 46.6 31.6 48.1 54.5
Swin Swin-B 51.0 89.4 53.5 36.5 50.5 61.8

Ours:
RFTM-50 ResNet50 50.8 89.0 53.6 33.6 50.9 62.8
RFTM-XT101 ResNetXT101 52.7 90.8 50.0 47.7 52.4 63.5

For testing process, we keep boxes with confidence thresh-
old greater than 0.3 for subsequent evaluation. For the accu-
racy evaluation, we adopt the standard COCO metrics (mean
average precision, i.e., mAP). AP, AP50, and AP75 mean the
mAP at IoU=[0.50:0.05:0.95], 0.50, and 0.75, respectively.

APS , APM , and APL mean the AP for objects of area smaller
than 32 × 32, between 32 × 32 and 96 × 96, larger than
96× 96, respectively. For the efficiency evaluation, we adopt
two metrics, i.e., Param. and FPS. Param. is the parameters of
a detector and FPS is frames per second.

B. Comparison with Advanced Detectors

Comparison with the baseline. We compare our
methods with the baseline detectors Cascade RCNN. On
URPC2020, as can be seen from Table I, our method reveals a
significant improvement and wins on all accuracy metrics. For
instance, compared with Cascade R-CNN (ResNet50), RFTM-
50 outperforms it by 3.2% in AP, 2.5% in AP75, and 2.3%
in APM . Compared with Cascade R-CNN (ResNetXT101),
RFTM-XT101 outperforms it by 5.7% in AP, 4.4% in AP50,
and 8.8% in AP75. On UODD, Table II show that our methods
also has similar marked improvements. For instance, compared
with Cascade R-CNN (ResNet50), RFTM-50 outperforms it by
1.7% in AP, 1.1% in AP50, and 1.5% in AP75. Compared with
Cascade R-CNN (ResNetXT101), RFTM-XT101 outperforms
it by 4.8% in AP, 5.0% in AP50, and 5.5% in APM . These
results demonstrate the superiority of our method.

Comparison with advanced detectors. On URPC2020 and
UODD, we conducted several experiments on other advanced
detectors including UIE+UOD and CNN-/Transformer- besed
methods. For UIE+UOD detectors, we select common under-
water enhancement methods FunIE-GAN [7] and ERH [43]
as the pre-processing methods. URPC2020 and UODD are
pre-processed by FunIE-GAN/ERH and then send to detectors
(Grid R-CNN, YOLOX, CSAM, and Swin) for training and
testing. For the CNN-based methods, we select Free-anchor
[31], FoveaBox [17], YOLOX [13], Grid RCNN [19], CSAM
[20], and AquaNet [44] as comparisons. For the Transformer-
based methods, we select Pvtv1 [34], Pvtv2 [35], and Swin
Transformer [15] as comparisons. As can be seen from Table I
and Table II, our methods significantly surpass these detectors.

On URPC2020, UIE+UOD uses underwater enhancement
methods to enhance images for subsequent detection. The
performance of these methods on detection tasks is disap-
pointing. [2] reports that UIE+UOD has inconsistent pursuits,
the former pursuing image quality while the latter pursuing
detection accuracy, leading to disappointing detection results.

CNN-based detectors are mainstream methods in the de-
tection community, and most existing UOD methods are
developed based on CNN ones. Our methods outperform
CNN-based detectors by a large margin. Free-anchor and Grid
RCNN adopt ResNetXT101 as the feature extraction network.
Our RFTM-XT101 outperforms Free-anchor and Grid R-CNN
by 6.5% and 7.4% in AP, respectively. RFTM-XT101 also
outperforms YOLOX by 4.2% in AP. RFTM-50 achieves
48.2% in AP and is 5.0% higher than FoveBox. CSAM fuses
high-level image information for UOD tasks while neglects re-
moving underwater degradations. RFTM-50 surpasses CSAM
by 1.8% in AP, 1.5% in AP50, and 8.9% in AP75. RFTM-
XT101 surpasses CSAM by 4.5% in AP, 5.5% in AP50, and
14.1% in AP75. AquaNet designs a Multi-scale Contextual
block and Multi-scale Blursampling block for their backbones
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TABLE III: Accuracy performance of various detectors on
DFUI dataset. DFUI benefits various detectors.

Methods AP AP50

Cascade R-CNN 79.7 98.0

FoveaBox 76.6 98.3

YOLOX 75.9 97.9

Grid R-CNN 77.1 97.9

DetectoRS 76.3 98.9

Swin Transformer 72.4 95.3

TABLE IV: On URPC2020 dataset, AP results of RFTM-50
and RFTM-XT101 with various threshold value T.

T value 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

RFTM-50 48.7 48.5 47.8 49.1 48.2 49.1 49.5 49.1 49.3 48.8

RFTM-XT101 49.8 49.3 48.9 50.3 50.9 50.4 50.0 50.0 50.2 50.1

TABLE V: On UODD dataset, AP results of RFTM-50 and
RFTM-XT101 with various threshold value T.

T value 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

RFTM-50 49.8 48.4 50.6 50.9 50.8 51.3 51.0 51.1 51.1 50.9

RFTM-XT101 52.4 52.8 52.7 52.8 52.7 53.0 53.8 53.1 53.4 50.4

HDf

HDu (URPC2020)

HDtu (URPC2020)

HDf

HDu (UODD)

HDtu (UODD)

(a) (b)

Fig. 4: Transference performance results of RFTM. (A) is the
feature distributions of HD sub sets on URPC2020. (B) is the
feature distributions of HD sub sets on UODD. Here, we adopt
RFTM-50, T = 0.7 for URPC2020 and 0.6 for UODD. At the
value T = 0.7,0.6, RFTM-50 achieves the best improvement
on URPc2020 and UODD, respectively.

to improve the performance of underwater detection. RFTM-
50 surpasses AquaNet by 5.1% in AP, 2.3% in AP50, and
9.7% in AP75. Similarly, RFTM-XT101 also achieves better
performance than AquaNet by a large margin.

Transformer based detector has risen in recent years and at-
tracted much focus due to its excellent detection performance.
Our methods still surpass these types of detectors. Typically,
RFTM-XT101 achieves 50.9% in AP and is 0.7% higher than
Swin which is best in the baseline. For AP50, RFTM-XT101
reaches 84.7% and outperforms Swin by 1.7%. For AP75,
RFTM-XT101 reaches 55.2% and outperforms Swin by 0.8%.

On UODD, our methods also achieve the best performance
among all detectors and have significant improvements com-

TABLE VI: Brief of various training strategies. UI: Underwa-
ter images, TF: Transference training, FT: Finetune, and *r:
Randomly generate patch subsets for *.

Strategy
Stage Patch

TF FT HDu UIr DFUI HDf DFUIr

CAS - - - - - - -

CAS+HDu - - ✓ - - - -

CAS+UIr - - - ✓ - - -

CAS+TF1 ✓ ✓ - ✓ - - ✓

CAS+TF2 ✓ ✓ ✓ - ✓ - -

no FT ✓ - ✓ - - ✓ -

RFTM-50 ✓ ✓ ✓ - - ✓ -

TABLE VII: Accuracy results of various training strategies on
URPC2020. The based feature extraction network is ResNet50.
T = 0.5.

Strategy AP AP50 AP75

CAS 45.0 78.8 47.5

CAS+HDu 24.3 49.4 21.3

CAS+UIr 21.7 43.4 25.2

CAS+TF1 46.6 78.8 49.8

CAS+TF2 47.2 80.2 45.5

no FT 47.6 79.7 49.2

RFTM-50 48.2 80.7 50.0

pared with others. These experimental results further demon-
strate the superiority of our method.

Comparison on accuracy-speed-size trade-off. On
URPC2020, we provide the comparison results in terms of
accuracy-speed-size trade-off of accurate models. As is shown
in Fig. 1(c), compared with other detectors, our methods
achieve the best compromise results. For instance, RFTM-50
surpasses Cascade R-CNN, Grid R-CNN, and PVTv2 with
fewer parameters and higher speeds. For similar parameter
sizes, RFTM-50 surpasses Free-anchor and PVTv1 by a large
margin with higher speeds. RFTM-XT101 surpasses Swin with
fewer parameters and higher speeds.

C. Performance Analysis

Generalization of DFUI. To evaluate the generalization
of DFUI, we observe the accuracy performance of various
detectors on DFUI dataset. We select 6 popular detectors
from CNN-/Transformer- based methods, including Cascade
R-CNN, FoveaBox, YOLOX, Grid R-CNN, DetectoRS, and
Swin Transformer. as shown in Table III, all methods achieve
high AP and AP50 and surpass their performance on common
underwater datasets by a large margin. These results demon-
strate that DFUI set is beneficial to various detectors although
only built by one detector.

Influence on different Threshold T. We first explore
the influence of the medium transmission t on underwater
heavily degraded prior modeling. We use different threshold
T to generate various HDu and HDf . In this paper, we
set T as (0.1,0.2,0.3, · · · ,1.0) and conduct explorations on
URPC2020 and UODD.
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Input UIE+UOD ResNet50 ResNetXT101Swin-BYOLOX-l ResNet50 (Ours) ResNetXT101 (Ours)

Input UIE+UOD ResNet50 ResNetXT101Swin-BYOLOX-l ResNet50 (Ours) ResNetXT101 (Ours)

Input UIE+UOD ResNet50 ResNetXT101Swin-BYOLOX-l ResNet50 (Ours) ResNetXT101 (Ours)

Input UIE+UOD ResNet50 ResNetXT101Swin-BYOLOX-l ResNet50 (Ours) ResNetXT101 (Ours)

Fig. 5: Examples of visualization of the feature maps on URPC2020. The feature maps are extracted from the Stage1 of
these feature extraction networks. The example from top to bottom is haze-like effects, color distortions, and low visibility,
respectively.

TABLE VIII: Brief of various parameter settings of RFTM.

Settings Kernel Layers Position

Ker5 5× 5 - -

Layr4 - 4 -

Pos0 - - Before Stage0

Pos1 - - After Stage1

Pos2 - - After Stage2

RFTM-50 3× 3 3 After Stage0

TABLE IX: Experiment results in various parameter settings
of RFTM on URPC2020. The based feature extraction network
is ResNet50. T = 0.5.

Settings Ker5 Layer4 Pos0 Pos1 Pos2 RFTM-50

AP 45.5 45.2 46.8 46.9 46.2 48.2

The results are reported in Table IV and Table V, re-
spectively. As can be seen, the performance of RFTM is
somewhat sensitive to the degrees of degradation. For instance,
on URPC2020, RFTM-50 with T = 0.7 achieves 49.5% in
AP and is 1.7% higher than T = 0.3. RFTM-XT101 with
T = 0.5 achieves 50.9% in AP and is 2.0% higher than
T = 0.3. On UODD, RFTM-50 with T = 0.6 achieves 51.3%
in AP and is 2.9% higher than T = 0.2. RFTM-XT101 with
T = 0.7 achieves 53.8% in AP and is 3.4% higher than
T = 1.0. In addition, the best results tend to be achieved
in the medium T value, i.e., T = 0.5,0.6, or 0.7. While
the extreme degradation condition that T = 0.2/0.3/1, the
improvement is not noticeable. We deduce that the smaller

the value T, the more regions that denoted as lightly-degraded.
This results in regions that should be transferred being divided
into regions that do not need transference, leading to poor
improvements. While the higher the value T, the more regions
that denoted as highly-degraded. This results in regions that
should not be transfered being divided into regions that need
to be transfered leading to poor improvements. Therefore, we
recommend choosing the medium Threshold T.

Transference performance of RFTM. RFTM aims to
transferring highly-degraded regions of DFUI and underwater
ones. To evaluate the transference performance of the RFTM,
we visualizes the feature distribution of three HD subsets, i.e.,
HDf , HDu, and HDtu. HDtu denotes HDu processed by
RFTM. As is shown in Fig. 4, there exist overlaps between
HDf and HDtu, while there remain exist evident gaps be-
tween HDf and HDu. The feature distribution demonstrates
that RFTM complete the transference task on HDu to HDf .

Influence on training strategy. We perform an ablation
study where we evaluate the following configurations to an-
alyze the effectiveness of different training strategies in our
methods. As is shown in Table VI, we progressively add
additional steps which enables us to gauge the performance
improvements obtained by each of them,

• CAS: the baseline experiment where Cascade R-CNN is
trained on the training set of URPC2020.

• CAS+HDu: Cascade R-CNN is trained on the training
set and HD subset of URPC2020.

• CAS+UIr: Cascade R-CNN is trained on the training
set and UIr subset of URPC2020. UIr is constituted by
randomly masked URPC2020 images.

• CAS+TF1: RFTM-50 train RFTM on the UIr subset
of URPC2020 and DFUIr subset of DFUI. DFUIr is
constituted by randomly masked DFUI images.
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Input UIE+UOD ResNet50 ResNetXT101

Swin-BYOLOX-l ResNet50 (Ours) ResNetXT101 (Ours)

UIE+UOD ResNet50 ResNetXT101

Swin-BYOLOX-l ResNet50 (Ours) ResNetXT101 (Ours)

Input UIE+UOD ResNet50 ResNetXT101

Swin-BYOLOX-l ResNet50 (Ours) ResNetXT101 (Ours)

Input UIE+UOD ResNet50 ResNetXT101

Swin-BYOLOX-l ResNet50 (Ours) ResNetXT101 (Ours)

Input

1B|0.56

0B|0

Fig. 6: Some qualitative examples on URPC2020. The example from left to right, top to bottom, is haze-like effects, color
distortions, and low visibility, respectively.

• CAS+TF2: RFTM-50 train RFTM on the HDu and
DFUI.

• no FT: RFTM-50 do not finetune the subsequent compo-
nents of detectors.

• RFTM-50: our ultimate training program which can be
referred to Sec. III-C.

As can be seen in Table VII, CAS+HDu and CAS+UIr
use patches and underwater images (here, URPC2020) train
Cascade R-CNN, however, their performance on detection task
is disappointing. Compared with CAS, CAS+TF1, CAS+TF2,
and no FT use DFUI related datasets training the proposed
RFTM, they have improved to varying degrees. However,
RFTM-50 outperforms CAS+TF1 by 1.6%, CAS+TF2 by
1%, and no FT by 0.6% in AP. These results indicates that
it is important to transfer features under the guidance of
transmission t. More importantly, finetune can further improve
the perception performance.

Structure of RFTM. We perform an ablation study where
we evaluate the following configurations to analyze the ef-
fectiveness of different parameter settings in RFTM. As is
shown in Table VIII, we progressively change the setting
which enables us to gauge the performance obtained by each
of them,

• Ker5: adopting 5× 5 kernels.
• Layer4: adopting five 3× 3 convolutions.
• Pos0: putting RFTM before Stage0 of ResNet50.
• Pos1: putting RFTM after Stage1 of ResNet50.
• Pos2: putting RFTM after Stage2 of ResNet50.
As can be seen from Table IX, RFTM-50 outperforms

Ker5 by 2.7% and Layer4 by 3% in AP, respectively. It
demonstrates that the property of RFTM does not benefit from
large receptive fields. RFTM-50 is higher than Pos0, Pos1 and
Pos2. It demonstrates that transferring the intermediate stage
feature is the most efficient setting.

Environmental degradation performance. We present
the feature visualization results to demonstrate the perfor-
mance of our methods on various environmental degradations.
Here we take images from URPC2020 as examples. We
visualize the feature maps of UIE+UOD (FUnIE+YOLOX),
ResNet50 (Cascade R-CNN), ResNetXT101 (Cascade R-
CNN), YOLOX-l (YOLOX), Swin-B (Swin Transformer),
and ours. For haze-like effects, color distortions, and low
visibility, the feature response of objects of UIE+UOD and
YOLOX-l is relatively weak. The amplitude of the feature
response of objects of ResNet50, ResNetXT101, and YOLOX-
l is attenuated inconsistently. But our methods significantly
boost the feature response on the discriminative region while
suppressing the interference.

We also present some qualitative results to further demon-
strate the performance of our methods on various environ-
mental degradations. For color distortions, most methods fail
to complete detection, there are errors and missed detection
phenomena of these feature extraction networks. In contrast,
our Cascade RFTM-50 completes the detection correctly. For
haze-like effects and low visibility, most and our methods can
complete the detection task very well. Only a few methods
have error and missed detection phenomena, for example,
YOLOX-l has error detection. ResNet50 and ResNetXT101
have error and missed detection phenomena. The qualitative
results also demonstrate that our method actually does perform
well on various environmental degradations.

V. CONCLUSION

In this paper, we introduce a novel heavily degraded prior
(HDP) for low-quality UOD task, which can be used to reduce
the feature mismatch between the heavily degraded regions
of underwater- and DFUI- images. We design a simple and
effective module named residual feature transference module
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(RFTM) to learn the HDP by adaptively transferring features at
heavily degraded regions. The proposed RFTM can be easily
learned without the supervision of semantic labels and plugged
into existing popular CNN-based feature extraction networks
to improve their performance. In addition, we propose a
novel two-stage training strategy to coordinating the feature
extraction networks with RFTM. Extensive comparison and
analysis experiments conducted on two popular UOD datasets,
i.e., URPC2020 and UODD, our methods significantly boost
the detection performance (especially various environmental
degradations) without bells and whistles.
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