
1

Learned Lossless Image Compression Through
Interpolation With Low Complexity

Fatih Kamisli

Abstract—With the increasing popularity of deep learning in
image processing, many learned lossless image compression meth-
ods have been proposed recently. One group of algorithms that
have shown good performance are based on learned pixel-based
auto-regressive models, however, their sequential nature prevents
easily parallelized computations and leads to long decoding times.
Another popular group of algorithms are based on scale-based
auto-regressive models and can provide competitive compression
performance while also enabling simple parallelization and much
shorter decoding times. However, their major drawback are the
used large neural networks and high computational complexity.
This paper presents an interpolation based learned lossless
image compression method which falls in the scale-based auto-
regressive models group. The method achieves better than or
on par compression performance with the recent scale-based
auto-regressive models, yet requires more than 10x less neural
network parameters and encoding/decoding computation com-
plexity. These achievements are due to the contributions/findings
in the overall system and neural network architecture design,
such as sharing interpolator neural networks across different
scales, using separate neural networks for different parameters of
the probability distribution model and performing the processing
in the YCoCg-R color space instead of the RGB color space.

Index Terms—Image compression, Artificial neural networks,
Entropy coding, Lossless compression

I. INTRODUCTION

Most image and video communication applications use
lossy compression, however, there are also applications that
require lossless compression. Lossless compression allows the
original data to be perfectly reconstructed from the compressed
bitstream without any loss of information. For example, med-
ical imaging, satellite imaging, professional photography and
digital cinema are applications where lossless image or video
compression is used. This paper presents a novel learned
lossless image compression method.

Classical lossless image compression methods are based on
pixel [1], [2], [3], [4] or block based prediction [5], [6], [7],
inter-to-integer transforms [8] or both [9]. In the prediction
based methods, the compression is typically performed in a
raster scan order of pixels or blocks. A pixel or a block of pix-
els is predicted using previously coded left and upper neighbor
pixels or neighboring left and upper pixels of the block, and the
prediction error pixel or block is then entropy coded. Then the
compression of the next pixel or block starts. The prediction
error pixels are typically more decorrelated than the original
pixels, allowing good compression performance with simple
entropy codes. For example, JPEG-LS [1] is based on a pixel

The author is with the Department of Electrical and Electronics Engi-
neering at the Middle East Technical University, Ankara, Turkey. (email:
kamisli@metu.edu.tr)

Codes are available at https://github.com/metu-kamisli/LLICTI

based prediction algorithm and lossless compression in HEVC
[7], [10] is based on a block based prediction algorithm.

In the integer-to-integer transform based lossless compres-
sion methods, the integer-valued image pixels are transformed
into a transform domain with integer-valued coefficients [11],
[8], [9]. The transformation is invertible and thus no loss
of information occurs. For example, lossless compression in
JPEG2000 is based on the integer 5/3 wavelet transform
[11], [12], [13]. The obtained transform coefficients are again
more decorrelated than the image pixels and allow for good
compression performance with simple entropy codes. It can
also be useful to use the prediction and integer-to-integer
transform methods together in some contexts [9].

With the high expressive power of artificial neural networks
and the recent advances and interest in deep learning, lossy
[14], [15], [16], [17] and lossless [18], [19], [20] image com-
pression methods with neural networks have been proposed.
The state of the art in learned lossy [17], [21] and lossless
[19], [20] image compression is on par with or exceeds
the compression performance of state of the art classical
compression methods [22], [4].

Recent learned lossless image compression methods can be
roughly categorized to three groups: methods based on pixel-
based auto-regressive models, methods based on integer dis-
crete flows and methods based on scale-based auto-regressive
models. Methods based on pixel-based auto-regressive models
are similar to the methods based on classical pixel based
prediction methods in the sense that they encode/decode the
image in a pixel-by-pixel manner yet use neural networks to
obtain the probabilities of the pixel to be coded/decoded from
previously encoded/decoded neighbor pixels. While achieving
quite good compression performance, their major drawback is
the long decoding times due to the sequential runs of the neural
network for every pixel in the image [23], [24]. Methods based
on integer discrete flows are similar to classical systems based
on inter-to-integer transforms as discrete flows are neural
network based systems mapping integer pixels to integer
latent/transform variables. Their major drawback is that they
require quite big neural networks for good compression per-
formance [25]. Methods based on scale-based auto-regressive
models decompose the original image into a multiple scale
representation, encode/decode first the lowest resolution scale
and then encode/decode the remaining scales sequentially
conditioned on previously encoded/decoded scales. These sys-
tems typically fare better than the previous two in terms of
encoding/decoding speed and/or neural networks size [18],
[19], [20].

This paper presents a learned lossless image compression
algorithm that falls in the scale-based auto-regressive model

ar
X

iv
:2

21
2.

13
24

3v
1

 [
ee

ss
.I

V
]

 2
6

D
ec

 2
02

2

2

category. The system first encodes/decodes a sub-sampled grid
of the original image grid (e.g. every 32nd pixel horizon-
tally and vertically) using simple fixed-length codes. Then it
progressively interpolates (i.e. produces probability distribu-
tions of) finer sub-sampled grids of the original image grid
conditioned on all previously encoded/decoded grids so far,
to achieve the encoding/decoding of the entire image. The
interpolators are all neural network based and learned from a
dataset.

The contributions of this paper are as follows. The system
presented achieves better than or on par compression per-
formance with the recent literature, yet requires more than
10x less neural network parameters and encoding/decoding
computational complexity [18], [19], [20]. These achievements
are due to the contributions/findings in the overall system and
neural network architecture design, such as

• using the same interpolator neural networks in different
scales,

• using separate neural networks for different parameters
of the probability distribution and

• performing the processing in the YCoCg-R color space
instead of the RGB color space,

which all help to improve compression performance and/or
reduce complexity, as detailed in Section III and IV.

The remainder of the paper is organized as follows. Section
II reviews recent work on learned lossless image compression
with scale-based auto-regressive models. Section III presents
the proposed method of learned lossless image compression
through interpolation. Section IV presents experimental results
and comparisons and Section V concludes the paper.

II. SCALE-BASED AUTO-REGRESSIVE MODELS

In L3C [18], which is the first to propose a scale-based
auto-regressive model, a three scale model is used. First, all
scale representations denoted z(i), i = 1, 2, 3 are obtained at
the encoder by processing the previous scale representation
with encoder neural networks E(i)(.) and then quantizing the
scale representation variables to the nearest integer:

x(i+1) ← E(i)(x(i)),

z(i+1) ← Q(x(i+1)) i = 0, 1, 2 (1)

The original image is the initial scale representation x(0) and
Q(.) is the quantization operator. Each scale representation
has half the horizontal and vertical resolution of the previous
scale. The last scale’s probability distribution is assumed
uniform and each preceding scale’s probability distribution is
conditioned on the next scale:

p(z(3)) ∼ uniform (2)

p(z(i−1)|z(i)) i = 3, 2 (3)

p(x(0)|z(1)) (4)

Based on the probability models, first, the last scale z(3)

is transmitted by the encoder to the decoder with simple
fixed length codes. Then, starting with z(3), both the encoder
and decoder process the scale representation z(i) with neural
networks to obtain the conditional probability distribution of

the previous scale p(z(i−1)|z(i)) and encode/decode it. This is
repeated until the original image is encoded/decoded.

The lossless image compression through super resolution
(SReC) [19] paper has a framework similar to L3C but the
major differences are how the multiscale representations are
obtained and the progressive modeling of the probability distri-
bution of each scale. Unlike in L3C, the scale representations
x(i) are obtained simply by average pooling every 2x2 pixel
group of the previous scale and rounding to the nearest integer:

x(i+1) ← AvgPool2x2(x
(i)) i = 0, 1, 2 (5)

Each scale representation’s pixels are split to four groups based
on even and odd rows and columns:

{x(i)00 , x
(i)
01 , x

(i)
10 , x

(i)
11 } ← x(i) (6)

Starting with the second last scale (i = 3), each scale’s
probability distribution is progressively obtained by modeling
each group’s probability distribution conditioned on the next
scale and the previous groups in the same scale:

p(x
(i−1)
00 |x(i)), (7)

p(x
(i−1)
01 |x(i), x(i−1)

00), (8)

p(x
(i−1)
10 |x(i), x(i−1)

00 , x
(i−1)
01), (9)

The last group’s pixels (x(i−1)
11) are obtained from the first

three groups and the next scale since the next scale was
obtained by average pooling:

x
(i−1)
11 ← 4x(i) − x(i−1)

00 − x(i−1)
01 − x(i−1)

10 + {−1/0/1/2},
(10)

Note that some additional bits (represented by {−1/0/1/2}
in the above equation) are transmitted by the encoder to accu-
rately find the x(i−1)

11 pixels due to the rounding operation in
the average pooling. Finally, all groups can then be combined
to form the scale’s representation:

x(i−1) ← {x(i−1)
00 , x

(i−1)
01 , x

(i−1)
10 , x

(i−1)
11 } (11)

Equations (7)-(11) are repeated for the next scales (i = 2, 1)
to complete the probability model of the entire image.

Based on the probability models, first, the last scale x(3) is
transmitted by the encoder to the decoder with simple fixed
length codes. Then, both the encoder and decoder process the
scale representation x(3) with neural networks to obtain the
conditional probability distribution of the initial group in the
previous scale p(x

(i−1)
00 |x(i)) and encode/decode it. Similar

processing with neural networks is performed to obtain the
conditional probability distribution of the other groups based
on Equation (8) and (9) and they are encoded/decoded. Then
Equation (10) and (11) are applied to obtain the previous
scale representation x(i−1). Then the processing starts again
with Equation (7) for the new scale. This is repeated until the
original image x(0) is encoded/decoded.

In MSPSM [20], the overall framework is similar to that
of SReC but the scale representations x(i) are obtained by
not average pooling but simply splitting the original image
into 4 groups based on even and rows and columns or 6
groups for improved performance. Then the initial group is

3

split again to form the next scale. Starting with the initial
group in the last scale, each group’s probability distribution is
modeled conditioned on the previous groups in a progressive
manner. Note that since groups are obtained by splitting, once
all groups in a scale are decoded, the previous scale’s initial
group is readily available.

The compression performance of L3C is better than all
classical lossless compression systems except FLIF [4]. SReC
improves the compression performance over L3C significantly
and outperforms also FLIF. MSPSM presents three models
with increasing complexity and the compression performance
of the first one is similar to that of SReC while the latter
two have better performance. While L3C, SReC and MSPSM
provide state of the art lossless compression performance and
reasonable encoding/decoding speeds on GPUs they require
neural networks with millions of parameters (L3C: 5.0M,
SReC: 4.2M, MSPSM:1.9M/9.9M) and high computational
complexity. This paper presents a scale-based auto-regressive
system that has similarities to SReC and MSPSM but sev-
eral modifications in the overall system and neural network
design are proposed, which all help to improve compression
performance and/or reduce complexity, to achieve the same
compression performance as SReC and the first model in
MSPSM with 10x (or more) less parameters and computational
complexity.

III. LEARNED LOSSLESS IMAGE COMPRESSION TROUGH
INTERPOLATION (LLICTI)

This section presents the proposed method of learned loss-
less image compression through interpolation (LLICTI) in four
sub-sections.

A. Overall System Architecture and Decoding Procedure

A multi-scale representation of the original input image is
obtained at the encoder by first splitting it into 4 subbands
based on even and odd indices of the rows and columns.
This splitting is then repeated on the first subband of each
scale to obtain a multi-scale representation of the original
image. The obtained multi-scale representation with sub-
bands x(i)mn, where i denotes the scale index and (m,n) ∈
{(0, 0), (0, 1), (1, 0), (1, 1)} denote the subband index, can be
represented as follows if the original image is denoted x

(0)
00

and there are S scales (see also Figure 1):

{x(i+1)
00 , x

(i+1)
01 , x

(i+1)
10 , x

(i+1)
11 } ← x

(i)
00 i = 0, ..., S − 1

(12)

Fig. 1. Multi-scale representation of original image x(0)00 in LLICTI.

The decoding procedure starts with the last scale by de-
coding the x

(S)
00 subband with fixed length codes of their

pixel values in RGB color space. The pixels decoded with
fixed length codes is 1

4S
of all original image pixels and is a

negligible fraction for large S, such as S = 5 which we use
in our experiments.

The processing steps to decode the remaining subbands in
this scale are summarized in Figure 2. First, the x(S)

00 subband
is processed at the decoder with an interpolator convolutional
neural network (iCNN (S)

11) to obtain the probability distri-
bution parameters of the next subband x

(S)
11 , which is then

decoded by an entropy decoder from the bitstream. Next,
x
(S)
00 and x(S)

11 subbands are the inputs to another interpolator
convolutional neural network (iCNN (S)

01) to obtain the prob-
ability distribution parameters of the x(S)

01 subband, which is
then decoded. Then, in a similar manner, the x(S)

10 subband is
decoded. Finally, all the decoded subbands are combined to
obtain the initial subband of the next scale to decode:

x
(i−1)
00 ← {x(i)00 , x

(i)
01 , x

(i)
10 , x

(i)
11 } i = S (13)

To decode the next scales, the above described processing steps
are repeated for each scale (i = S − 1, ..., 1), yielding the
decoding of the original image x

(0)
00 . The encoder performs

similar and appropriate processing to encode the image.

Fig. 2. Decoding procedure for one scale. Three interpolator convolutional
neural networks (iCNN) are used in each scale.

Note that the described decoding procedure corresponds to
an interpolation based scheme which starts with an image grid
of every (2S)th pixel (i.e. x(S)

00) and interpolates progressively
missing pixels of the grid populating the entire image, thus
the name of the method.

B. Probability Model

The probability model of an original image, upon which the
system architecture and decoding procedure in Section III-A
is based on, can be described as follows. The pixels in the
initial subband of the last scale x(S)

00 are assumed to follow a
uniform distribution:

p(x
(S)
00) ∼ uniform (14)

The probability distribution of the initial subband of the
preceding scale p(x

(S−1)
00) is then factorized as the product

4

of conditional distributions of each subband of the scale
conditioned progressively on preceding subbands:

p(x
(i−1)
00) = p(x

(i)
00)×

p(x
(i)
11 | x

(i)
00)×

p(x
(i)
10 | x

(i)
00 , x

(i)
11)×

p(x
(i)
01 | x

(i)
00 , x

(i)
11 , x

(i)
10), i = S (15)

Note that Equation (15) can be applied recursively for each
scale (i = S − 1, ..., 1) to factorizate the distribution of
the original image x

(0)
00 into the conditional distributions of

subbands, conditioned on previous subbands, with an initial
marginal distribution given in Equation (14).

To describe each conditional distribution in Equation (15),
let Y (i)

mn denote the collection of subbands that x(i)mn conditions
on. Further, let x(i)mn[u, v] denote the pixel at spatial location
(u, v) and C

(i)
mn[u, v] denote the collection of pixels in Y

(i)
mn

that the pixel x(i)mn[u, v] conditions on through the receptive
field of the interpolator CNN (iCNN (i)

mn). Then each condi-
tional distribution in Equation (15) is factorized as follows:

p(x(i)mn | Y (i)
mn) =

∏
u,v

p(x(i)mn[u, v] | C(i)
mn[u, v]),

(m,n) ∈ {(1, 1), (1, 0), (0, 1)} (16)

To describe the conditional distributions of each pixel in
Equation (16), let us simplify the notation by dropping the
spatial location, subband and scale indices and simply denote
a pixel by x and the collection of pixels it is conditioned on by
C. Then, the conditional distribution of each pixel in Equation
(16) can be further factorized over distributions of its RGB
color components (x = {x(r), x(g), x(b)}), i.e. sub-pixels1, as
follows:

p(x(r), x(g), x(b)|C) = p(x(r)|C)×
p(x(g)|C, x(r))×
p(x(b)|C, x(g), x(b)) (17)

Each conditional distribution in Equation (17) is modeled
with a discretized Gaussian mixture model (GMM) given
below in Equation (18), where F (.) denotes the cumulative
distribution function (CDF) of the standard Gaussian distribu-
tion and µ(c)

i , σ(c)
i and π(c)

i are the mean, standard deviation
and the weight of the ith mixture of the GMM, respectively,
of sub-pixel x(c) ∈ {x(r), x(g), x(b)}:

p(x(c); π(c), µ(c), σ(c)) =

K∑
i=1

π
(c)
i [F (

x(c) + 0.5− µ(c)
i

σ
(c)
i

)

−F (x
(c) − 0.5− µ(c)

i

σ
(c)
i

)]

(18)

The GMM parameters µ(c)
i , σ(c)

i and π(c)
i are produced by

the respective interpolator CNN processing the conditioning

1Here, we follow the convention in the related previous research and use
sub-pixel to denote each color component and pixel to denote all color
components together

pixels C. The conditioning of each sub-pixel on also the
preceding sub-pixels in Equation (17) is accomplished with
the simple but efficient method of Salimans in PixelCNN++
[26], which simply updates the means by multiplication of
preceding sub-pixels with scaling coefficients ({a, b, c} = α)
that are produced also by the interpolator convolutional neural
network:

µ(r) =µ(r)(C)

µ(g) =µ(g)(C) + a(C)x(r)

µ(b) =µ(b)(C) + b(C)x(r) + c(C)x(g) (19)

C. General Neural Network Architecture of One Interpolator
The neural network architecture used for all interpolators

iCNN
(i)
mn, i = 1, ..., S and (m,n) ∈ {(1, 1), (1, 0), (0, 1)}

in the proposed LLICTI system is shown in Figure 3. It has
L layers, where layer 2 to L comprise convolution layers
with 1x1 kernel size, stride of 1 and (except the last layer)
ReLU activation functions. The first layer contains one, two or
three convolutional layers, depending on how many previous
subbands x(i)mn are inputs to this interpolator (see Figure 2).
The outputs are added and processed with ReLU activation.

Fig. 3. Architecture of interpolator Convolutional Neural Network at scale i
for sub-band x10 (iCNN(i)

10). The architectures for the other two interpolators
of a scale, iCNN(i)

01 and iCNN
(i)
11 , are similar and lack the bottom and

bottom two convolutional layers in Layer 1, respectively.

Since all layers, except the first, have filters with kernel
size 1x1, the receptive field of the iCNN or the pixels of
the previous subbands used for interpolation are determined
by the kernel sizes of the first layer convolutions. Due to the
relative positions of different subbands on the sampling grid,
the kernel sizes were determined based on the input subband
and the subband to be interpolated, as shown in Figure 4.

To train the parameters of all interpolator convolutional
neural networks, the cross entropy loss function

E
q(x

(0)
00)

[− log p(x
(0)
00)] (20)

is used, where q(.) is the true distribution of the image and
p(.) is the distribution of the image obtained by the presented
probability model in Equations (14)-(19). In practice, the loss
simply becomes the sum of all − log p(.) quantities of all
interpolated pixels in the training batch where p(.) are the
probability distributions provided by the interpolators for each
interpolated pixel.

5

Fig. 4. Interpolator layer 1 kernel sizes. x
(i)
00 (4x4) → x

(i)
11

x
(i)
00 (3x4), x(i)11 (4x3)→ x

(i)
01 x

(i)
00 (4x3), x(i)11 (3x4), x(i)01 (4x4)→ x

(i)
10

D. System and NN Architecture Parameters to Analyze

The proposed LLICTI system described so far has 3 in-
terpolators (iCNN) per scale, for a total of 3S interpolators
overall, where S is the total number of scales. There are many
parameters of the overall system and the iCNN architecture
that we will analyze. In Section IV-B, we examine

• whether compressing pixels in the RGB or YCoCg-R
color space,

• whether obtaining probability distribution parameters
π, µ, σ, α using a single or using multiple independent
interpolator CNNs

• whether using the same interpolator CNN (i.e. with same
weights) in several scales

performs better in terms of compression-complexity trade-
off. We also examine standard neural network architecture
parameters such as, the number of layers and the number
of channels of each layer for better compression-complexity
trade-off.

IV. EXPERIMENTS AND RESULTS

This section first presents experimental settings and then
provides experimental analyses and results of the proposed
learned lossless image compression through interpolation
(LLICTI) systems. Comparisons with the literature in terms of
compression performance, number of used parameters, encod-
ing/decoding times and computational complexity estimates
are also provided.

A. Experimental Settings

All LLICTI systems to be discussed in Section IV-B are
trained with the Open Images training dataset prepared by
the authors of L3C [18]. The Adam optimizer [27] is used
for optimization with a batch size of 64. The learning rate is
initialized to 10−4 and is reduced with a decay factor of 0.5
(up to a minimum of 10−5) when the validation cost plateaus.
The training takes typically around 500K weight updates.

The LLICTI systems are tested with the Open Images test
dataset prepared again by the authors of L3C [18], which
includes 500 images. The arithmetic coder provided by [18],
which runs on the CPU [28], is used for encoding to and
decoding from a bitstream during the tests. Note that all
neural network operations are performed on the GPU and the
obtained probability tables are copied to the CPU memory and
the arithmetic encoding/decoding operations are performed on

the CPU in our tests of LLICTI. PyTorch [29] is used to
implement both training and testing. Our codes are available
on GitHub [30].

B. Experimental Analysis and Ablation Study

The following experiments summarized in Table I are
conducted to analyze several parameters of the overall com-
pression system and the interpolator CNN architecture, as dis-
cussed in Section III-D. Note that all interpolators (iCNN (i)

mn

i = 1, ..., S and (m,n) ∈ {(1, 1), (1, 0), (0, 1)}) can be
trained independently from each other since their inputs can
be obtained directly from the original image and their outputs
contribute to the cost (i.e. total bitrate) independently. Consid-
ering also the fact that compression of scale 1 subbands x(1)mn,
(m,n) ∈ {(1, 1), (1, 0), (0, 1)} is more important (as they
comprise 4 times as many pixels as scale 2, which comprises
4 times as many pixels as scale 3 etc) than that of other
scale subbands, the initial experiments discussed below are
conducted by compressing only scale 1 subbands (i.e. x(1)00 is
assumed available and x(1)11 , x

(1)
01 , x

(1)
10 are compressed).

Note that a primary goal of the LLICTI method is to obtain
a lossless image compression system that has significantly
less complexity than other similar systems in the literature
while achieving the best possible compression performance.
In particular, the goal is to have at least 10x less parameters
in the LLICTI system than the smallest neural network in
the related literature, which is the normal model in MSPSM
with 1.8M parameters. The parameters, in particular number
of layers and channels, of the LLICTI systems in the following
experiments were chosen to chase that goal.

The first conducted experiment is experiment 1, which can
be considered the default system and compresses pixels in the
RGB color space, uses a single (i.e. joint) interpolator CNN
to obtain all probability distribution parameters (π, µ, σ, α),
has L = 4 layers in the interpolator CNNs and has C = 96
channels in each convolutional layer. This system achieves
a compression performance of 5.781 bits per pixel (bpp)
and requires 93K parameters. Note that the 5.781 bpp is
obtained by dividing the total number of bits used for encoding
x
(1)
11 , x

(1)
01 and x(1)10 by the total number of pixels in the original

image, and the bits required for compressing x
(1)
00 are not

considered in this and following similar experiments.
Next, it is investigated whether/how the color space of

input pixels can improve compression-complexity trade-off
and experiment 2 is conducted, where the original image
is converted to the YCoCg-R color space [31], which is
integer-to-integer invertible, and then compressed. While the
interpolator CNNs can learn the dependencies in the RGB
color space and account for them, it may be beneficial in
terms of compression-complexity trade-off to provide the input
to the neural networks in a decorrelated color space and
allocate neural network capacity to learn other dependencies.
The system in experiment 2 achieves an improved compres-
sion performance of 5.736 bpp and requires the same 93K
parameters. Hence, YCoCg-R color space is used in the next
experiments.

6

TABLE I
ANALYSIS OF SYSTEM AND NEURAL NETWORK ARCHITECTURE PARAMETERS

Experiment # 1 2 3 4 5 6 7 8 9 10 11 12 13 14
(Reference Experiment) (1) (2) (3) (4) (5) (4) (7) (8) (9) (10) (11) (12) (13)
Color space: RGB/YCoCg-R RGB YCC YCC YCC YCC YCC YCC YCC YCC YCC YCC YCC YCC YCC
(π, µ, σ, α): Joint/Separate JNT JNT SEP SEP SEP SEP SEP SEP SEP SEP SEP SEP SEP SEP
Layers in iCNN 4 4 4 3 2 2 3 3 3 3 3 3 3 3

Channels

Scale 1 96 96 44 44 44 64 60 - - - - - 60 88
Scale 2 - - - - - - - 44 32 - - - ↑ ↑
Scale 3 - - - - - - - - - 36 24 24 - ↑
Scale 4 - - - - - - - - - 30 20 ↑ - ↑
Scale 5 - - - - - - - - - 30 20 ↑ - ↑

Share iCNN across scales - - - - - - - - - F F T T T

Compression (bpp)

Scale 1 5.781 5.736 5.607 5.605 5.658 5.624 5.524 - - - - - 5.525 5.465
Scale 2 - - - - - - - 1.852 1.862 - - - 1.868 1.841
Scale 3 - - - - - - - - - 0.551 0.556 0.556 - 0.553
Scale 4 - - - - - - - - - 0.158 0.159 0.158 - 0.160
Scale 5 - - - - - - - - - 0.044 0.044 0.044 - 0.045

Total # Parameters (×103) 93 93 94 72 49 72 109 72 48 144 88 34 109 188

Next, it is investigated whether each interpolator CNN
should comprise a single CNN that produces all parameters
(π, µ, σ, α) required for the probability distribution model or
whether each interpolator should comprise 4 separate CNNs,
each producing one of the parameters. Since each of these
parameters affect the probability distribution (and thus the
cost function) in different ways, learning them trough separate
neural networks could be better in terms of compression-
complexity trade-off. Hence, experiment 3 is conducted, which
differs from its reference (experiment 2), by the use of 4
separate CNNs for each interpolator and the reduced number
of channels (from 96 to 44) in each CNN to keep the total
number of parameters similar. The system in experiment 3
achieves an improved compression performance of 5.607 bpp
and requires a similar 94K parameters. Hence, in the next
experiments, for each interpolator, 4 separate CNNs are used,
each of which produces one of the parameters (π, µ, σ, α).

Next, the number of layers and channels in the interpolator
CNNs are examined in experiments 4-7. In experiment 4,
the number of layers in the interpolator CNNs are reduced
from 4 to 3 and almost the same compression performance
of 5.605 bpp as reference experiment 3 is achieved, while
the required number of parameters drops from 94K to 72K.
Based on this result, the number of layers in the interpolator
CNNs are further reduced to 2 in experiment 5, however, the
compression performance deteriorated to 5.658 bpp while 49K
parameters were required. Thus experiment 6 is conducted,
where the number of layers is kept at 2 but the number of
channels is increased to 64 to achieve the same number of
parameters (72K) as experiment 4. The achieved compression
performance is 5.624 bpp, which is inferior to the result of
experiment 4. Hence, experiment 7 is conducted, which keeps
the number of layers at 3 and increases the number of channels
to 60 to achieve a compression performance of 5.524 bpp with
109K required parameters.

It is now assumed that several parameters of the overall
system and the interpolator CNN architecture have been identi-
fied for better compression-complexity trade-off. In particular,
compressing pixels in the YCoCg-R space, using 4 separate
CNNs for each interpolator to obtain parameters (π, µ, σ, α)

and using 3 layers in the interpolator CNNs have been iden-
tified to provide better compression-complexity trade-off and
will be used in the next experiments.

Next, in experiments 8 and 9, compressing scale 2 sub-
bands (i.e. x(2)00 is assumed available and x

(2)
11 , x

(2)
01 , x

(2)
10 are

compressed) is considered and only the number of channels
in the interpolator CNNs are examined. In experiment 8, 44
channels are used to achieve a compression performance of
1.852 bpp with 72K required parameters. In experiment 9,
the number of channels is reduced to 32 and a slightly worse
compression performance of 1.862 bpp is obtained with 48K
required parameters.

In experiments 10 and 11, scale 3, 4, and 5 subbands are
compressed. In experiment 10, 36, 30 and 30 channels are used
to achieve a compression performance of 0.551 bpp, 0.158
bpp and 0.044 bpp for scales 3, 4 and 5, respectively, with a
total 144K required parameters. In experiment 11, the number
of channels is reduced to 24, 20 and 20 for scales 3, 4 and
5, respectively, and the obtained compression performance is
slightly inferior but the required total number of parameters
drops by a significant amount to 88K.

Next, it is investigated whether using the same interpolator
CNN (i.e. with same weights) in several scales is beneficial for
compression-complexity trade-off. Although the dependency
of pixels in different scales may be different, it is likely
that there are significant amount of common features and
sharing interpolator CNNs across scales may improve the
compression-complexity trade-off. Hence, in experiment 12,
the interpolator CNNs for scale 3 with 24 channels are
shared across scales 3, 4 and 5 (Note that they are trained
from scratch using the total cost of the three scales.) The
compression performance is almost identical to that of the
reference experiment 11 for all scales but the total number of
required parameters drops significantly from 88K to 34K. This
is a surprising and significant result. Inspired by this result,
experiment 13 is conducted, where the interpolator CNNs
(with the same 60 channels as in experiment 7) are shared
across scales 1 and 2. The obtained compression performance
of 5.525 bpp for scale 1 is identical to that of experiment 7
and scale 2 is compressed at a competitive 1.868 bpp (see

7

experiments 8, 9). Hence, sharing interpolator CNNs across
scale 1 and 2 proved to be also very beneficial in terms of
compression-complexity trade-off.

Finally, experiment 14 is conducted, where the same in-
terpolator CNNs are shared across all scales 1-5 and the
number of channels in the convolution layers is set to 88
to achieve a total 188K parameters, which is 10x less (our
initial goal) than the smallest neural network in the literature
[20]. The compression performance is the best so far in the
experiments for scales 1 and 2, achieving 5.465 bpp and
1.841 bpp, respectively. The compression performance for the
remaining scales 3-5 is also very competitive as can be seen
in Table I. The total bitrate for all scales becomes 8.064 bpp
(which dos not include the 0.023 bpsp bitrate of x(5)00 that is
to be coded with fixed-length codes of 8 bits per symbol.)
Hence, the system and the neural network architecture for the
interpolators in experiment 14 is chosen to be the best in terms
of compression-complexity trade-off and is compared to other
systems in the literature in the next section.

C. Comparisons with Related Literature

This section compares the proposed LLICTI to other loss-
less image compression systems in the literature in terms
of compression performance, number of required parameters,
encoding/decoding times and computational complexity. The
comparison results are summarized in Table II. (Note that in
these results of the LLICTI system, all necessary informa-
tion is written into the bitstream including x

(5)
00 and control

information, such as the number of scales, height and width
of every scale and the image. The LLICTI system can also
compress arbitrary sized images.)

TABLE II
COMPARISONS WITH RELATED LITERATURE

Method bpsp(bpp) Param- Enc/Dec Enc/Dec
eters Computat. Time

(KMAC/pix) (sec)

Traditional
Methods

PNG 4.01(12.03) - - -
JPEG2000 3.06(9.18) - - -

WebP 3.05(9.15) - - -
FLIF [4] 2.87(8.61) - - -

Learning
Based
Methods

L3C [18] 2.99(8.97) 5.01 M 686/428 0.67/0.61
SReC [19] 2.70(8.10) 4.20 M 878/878 0.56/0.59

MSPSM(norm)[20] 2.71(8.14) 1.87 M - -
MSPSM(big) [20] 2.63(7.88) 1.87 M - -
LLICTI (Ours) 2.70(8.10) 0.19 M 66/66 0.53/0.70

1) Compression performance and number of parameters:
The compression performance results for the Open Images
test dataset [18] are given in terms of bits per sub-pixel
(bpsp) and bits per pixel (bpp). The best performing traditional
method is FLIF [4] and it achieves an average compression
performance of 2.87 bpsp. Among the learning based methods,
the first proposed scale-based auto-regressive method L3C
[18] achieves a compression performance of 2.99 bpsp. Next,
SReC [19], MSPSM(normal) [20] and the proposed LLICTI
achieve a compression performance of 2.70 bpsp. A common
feature of these three scale-based auto-regressive methods
is that they perform the compression/probability-modeling
of each scale in 3 progressive steps. MSPSM(big) achieves

an improved compression performance of 2.63 bpsp as it
performs the compression/probability-modeling of each scale
in 6 progressive steps [20].

If the learned systems are compared in terms of number
of parameters of the neural networks that they use, it can be
seen that the proposed LLICTI method uses 0.19 M (188K)
parameters, which is about 10x less than MSPSM, 22x less
than SReC and 26x less than L3C. Despite the significantly
less number of parameters of LLICTI, compression perfor-
mance similar to these methods was achieved. The improved
compression-complexity trade-off of LLICTI is due to several
factors, such as simpler neural network design, sharing the
same interpolator neural networks across different scales,
using separate neural networks for different parameters of the
probability distribution and performing the compression in the
YCoCg-R color space instead of the RGB color space.

2) Computational complexity and encoding/decoding times:
The computational complexity of the neural network cal-
culations for encoding and decoding in the learning based
systems are compared using the multiply-accumulate (MAC)
operations counter tool in [32]. As shown in Table II, the
proposed LLICTI system requires more than 10x less MACs
than L3C and SReC for both encoding and decoding, which is
mainly due to the less number of parameters of the used neural
networks. (Note that MSPSM is not included in computation
or encoding/decoding times comparisons since their codes are
not shared.)

The average encoding and decoding time of an image
(averaged over all 500 images on the Open Images test dataset
where the average image resolution is ∼768x576) measured
on our computing system with an NVIDIA GeForce RTX
2080 GPU and Intel i7-9700 CPU are also given in Table
II. L3C, SReC and the proposed LLICTI achieve similar
average encoding/decoding times under one second and close
to half a second. However, the implementations of L3C and
SReC enjoy an advantage over that of LLICTI. In particular,
implementations of L3C and SReC don’t copy the calcu-
lated CDFs (necessary for arithmetic coding on the CPU)
from GPU to CPU but use a custom CUDA kernel to store
the CDFs in managed/unified memory accessible from both
CPU and GPU (see L3C appendix [18] and GitHub page
[33].) On the other hand, LLICTI implementation moves the
CDF tensors from GPU to CPU for arithmetic coding. If
the LLICTI implementation would also store CDF tensors
in unified/managed memory, its encoding/decoding times are
likely to decrease. Lastly, while encoding/decoding times of
MSPSM could not be obtained on our computing system (since
their codes are not shared), it is reported in their paper [20]
that their encoding/decoding times are about 20% and 100%
longer than those of SReC, for their normal and big systems,
respectively.

V. CONCLUSIONS

This paper presented a learned lossless image compression
method based on a progressive interpolation scheme. First, a
subset of pixels of the original image grid (e.g. every 32nd

pixel horizontally and vertically) is encoded/decoded using

8

simple fixed-length codes. Then, finer sub-sampled grids of
the original image grid are progressively interpolated (i.e.
their probability distributions are obtained) conditioned on
previously encoded/decoded grids so far, to encode/decode all
pixels of the image grid. The interpolators are neural network
based and learned from a dataset.

The presented method was shown to achieve better than or
on par compression performance with the recent scale-based
auto-regressive models literature, yet required 10x or more
less neural network parameters and encoding/decoding com-
putation complexity. The improved compression-complexity
trade-off was attributed to several contributions/findings in the
overall system and neural network architecture design, such as
using the same interpolator neural networks in different scales,
using separate neural networks for different parameters of the
probability distribution and performing the processing in the
YCoCg-R color space instead of the RGB color space.

ACKNOWLEDGMENT

We would like to thank Sinem Gumus for obtaining the
encoding/decoding times of several compression methods on
the same computing system.

REFERENCES

[1] W. B. Pennebaker and J. L. Mitchell, JPEG: Still image data compres-
sion standard. Springer Science & Business Media, 1992.

[2] T. Boutell and T. Lane, “Png (portable network graphics) specification
version 1.0,” Network Working Group, pp. 1–102, 1997.

[3] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The loco-i lossless
image compression algorithm: Principles and standardization into jpeg-
ls,” IEEE Transactions on Image processing, vol. 9, no. 8, pp. 1309–
1324, 2000.

[4] J. Sneyers and P. Wuille, “Flif: Free lossless image format based on
maniac compression,” in 2016 IEEE international conference on image
processing (ICIP). IEEE, 2016, pp. 66–70.

[5] Google, “An image format for the web,” https://developers.google.com/
speed/webp, 2022, last accessed 12 October 2022.

[6] Y.-L. Lee, K.-H. Han, and G. J. Sullivan, “Improved lossless intra
coding for h. 264/mpeg-4 avc,” IEEE Transactions on Image Processing,
vol. 15, no. 9, pp. 2610–2615, 2006.

[7] M. Zhou, W. Gao, M. Jiang, and H. Yu, “Hevc lossless coding and
improvements,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 12, pp. 1839–1843, 2012.

[8] A. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, “Lossless
image compression using integer to integer wavelet transforms,” in
Proceedings of International Conference on Image Processing, vol. 1.
IEEE, 1997, pp. 596–599.

[9] F. Kamisli, “Lossless image and intra-frame compression with integer-
to-integer dst,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 29, no. 2, pp. 502–516, 2017.

[10] S. R. Alvar and F. Kamisli, “On lossless intra coding in hevc with 3-tap
filters,” Signal Processing: Image Communication, vol. 47, pp. 252–262,
2016.

[11] D. Le Gall and A. Tabatabai, “Sub-band coding of digital images using
symmetric short kernel filters and arithmetic coding techniques,” in
ICASSP-88., International Conference on Acoustics, Speech, and Signal
Processing. IEEE, 1988, pp. 761–764.

[12] M. Rabbani and R. Joshi, “An overview of the jpeg 2000 still image com-
pression standard,” Signal processing: Image communication, vol. 17,
no. 1, pp. 3–48, 2002.

[13] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The jpeg2000 still
image coding system: an overview,” IEEE transactions on consumer
electronics, vol. 46, no. 4, pp. 1103–1127, 2000.

[14] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image
compression,” arXiv preprint arXiv:1611.01704, 2016.

[15] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Vari-
ational image compression with a scale hyperprior,” arXiv preprint
arXiv:1802.01436, 2018.

[16] D. Minnen, J. Ballé, and G. D. Toderici, “Joint autoregressive and
hierarchical priors for learned image compression,” Advances in neural
information processing systems, vol. 31, 2018.

[17] D. Minnen and S. Singh, “Channel-wise autoregressive entropy models
for learned image compression,” in 2020 IEEE International Conference
on Image Processing (ICIP). IEEE, 2020, pp. 3339–3343.

[18] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van Gool,
“Practical full resolution learned lossless image compression,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE Computer Society, 2019, pp. 10 621–10 630.

[19] S. Cao, C.-Y. Wu, and P. Krähenbühl, “Lossless image compression
through super-resolution,” arXiv preprint arXiv:2004.02872, 2020.

[20] H. Zhang, F. Cricri, H. R. Tavakoli, N. Zou, E. Aksu, and M. M. Han-
nuksela, “Lossless image compression using a multi-scale progressive
statistical model,” in Proceedings of the Asian Conference on Computer
Vision, 2020.

[21] A. B. Koyuncu, H. Gao, A. Boev, G. Gaikov, E. Alshina, and E. Stein-
bach, “Contextformer: A transformer with spatio-channel attention for
context modeling in learned image compression,” in European Confer-
ence on Computer Vision. Springer, 2022, pp. 447–463.

[22] B. Bross, Y.-K. Wang, Y. Ye, S. Liu, J. Chen, G. J. Sullivan, and J.-
R. Ohm, “Overview of the versatile video coding (vvc) standard and
its applications,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 31, no. 10, pp. 3736–3764, 2021.

[23] I. Schiopu and A. Munteanu, “Deep-learning-based lossless image cod-
ing,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 30, no. 7, pp. 1829–1842, 2020.

[24] S. Gumus and F. Kamisli, “A learned pixel-by-pixel lossless image
compression method with 59k parameters and parallel decoding,” arXiv
preprint arXiv:2212.01185, 2022.

[25] E. Hoogeboom, J. W. Peters, R. van den Berg, and M. Welling, “Integer
discrete flows and lossless compression,” in Proceedings of the 33rd
International Conference on Neural Information Processing Systems,
2019, pp. 12 145–12 155.

[26] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “PixelCNN++:
Improving the pixelCNN with discretized logistic mixture likelihood
and other modifications,” in International Conference on Learning
Representations, 2017. [Online]. Available: https://openreview.net/
forum?id=BJrFC6ceg

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[28] F. Mentzer, “torchac: Fast arithmetic coding for pytorch,” https://github.
com/fab-jul/torchac, Dec. 2022.

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[30] F. Kamisli, “Learned lossless image compression through interpolation,”
https://github.com/metu-kamisli/LLICTI, Dec. 2022.

[31] H. Malvar and G. Sullivan, “Ycocg-r: A color space with rgb reversibility
and low dynamic range,” ISO/IEC JTC1/SC29/WG11 and ITU-T SG16
Q, vol. 6, 2003.

[32] V. Sovrasov, “Flops counter for convolutional networks in pytorch frame-
work,” https://github.com/sovrasov/flops-counter.pytorch, Nov. 2022,
last accessed November 2022.

[33] F. Mentzer, “Practical full resolution learned lossless image compres-
sion,” https://github.com/fab-jul/L3C-PyTorch, Dec. 2022.

https://developers.google.com/speed/webp
https://developers.google.com/speed/webp
https://openreview.net/forum?id=BJrFC6ceg
https://openreview.net/forum?id=BJrFC6ceg
https://github.com/fab-jul/torchac
https://github.com/fab-jul/torchac
https://github.com/metu-kamisli/LLICTI
https://github.com/sovrasov/flops-counter.pytorch
https://github.com/fab-jul/L3C-PyTorch

	I Introduction
	II Scale-based auto-regressive models
	III Learned Lossless Image Compression Trough Interpolation (LLICTI)
	III-A Overall System Architecture and Decoding Procedure
	III-B Probability Model
	III-C General Neural Network Architecture of One Interpolator
	III-D System and NN Architecture Parameters to Analyze

	IV Experiments and Results
	IV-A Experimental Settings
	IV-B Experimental Analysis and Ablation Study
	IV-C Comparisons with Related Literature
	IV-C1 Compression performance and number of parameters
	IV-C2 Computational complexity and encoding/decoding times

	V Conclusions
	References

