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Abstract—Monocular depth estimation plays a fundamental
role in computer vision. Due to the costly acquisition of depth
ground truth, self-supervised methods that leverage adjacent
frames to establish a supervision signal have emerged as the
most promising paradigms. In this work, we propose two novel
ideas to improve self-supervised monocular depth estimation:
1) self-reference distillation and 2) disparity offset refinement.
Specifically, we use a parameter-optimized model as the teacher
updated as the training epochs to provide additional supervision
during the training process. The teacher model has the same
structure as the student model, with weights inherited from
the historical student model. In addition, a multiview check is
introduced to filter out the outliers produced by the teacher
model. Furthermore, we leverage the contextual consistency
between high-level and low-level features to obtain multiscale
disparity offsets, which are used to refine the disparity output
incrementally by aligning disparity information at different
scales. The experimental results on the KITTI and Make3D
datasets show that our method outperforms previous state-of-
the-art competitors.

Index Terms—Monocular depth estimation, Self-supervised
learning, Self-reference distillation, Disparity alignment, Multi-
view check.

I. INTRODUCTION

Perception of the 3D world is one of the main tasks
in computer vision. However, in many cases it might be
unfeasible to obtain access to depth information relying on
expensive or complex sensors. Depth estimation from a single
image has gained extensive attention and has been shown to
be a practical technology with applications ranging from lo-
calization, navigation, autonomous driving, and robot grasping
to 3D reconstruction.

In recent years, supervised monocular depth estimation
has been widely studied and has made significant strides
[1–5]. Supervised depth estimation is a mapping problem
from pixel-level RGB information to depth. With the aid of
CNN, self-attention and other mechanisms, depth estimation
is performed based on image texture, color information, and
surrounding image relationships. While supervised depth esti-
mation has achieved excellent performance, RGB-D data is
still constrained in abundance and variety when compared
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Fig. 1. Illustration of the depth map, error map and binary mask from the
proposed method. The first row is the RGB image, and the second row is
the depth map. The third row is the intermediate error map generated by
the multiview check filter, where the places with large errors are red and
yellowish. The fourth row is a binarized hard mask to filter out outliers.

with available RGB image and video data in the field. Fur-
thermore, gathering a large number of accurate ground-truth
datasets is a challenging task due to sensor noise and limited
operating capabilities. Recent studies have identified a feasible
alternative for performing depth estimator training in a self-
supervised manner. The self-supervised method converts the
depth estimation into an image synthesis using an intermediary
variable (depth or disparity). For instance, the classical method
Monodepth2 [6] trains the model to predict the appearance
of a target image from the viewpoint of another image, by
minimizing the photometric reconstruction loss.

Self-supervised monocular depth estimation relies on the as-
sumption of static scenes and Lambertian surfaces to estimate
both depth and relative pose. However, the assumption may
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Fig. 2. Overview of the proposed framework. The model adopts an encoder-decoder architecture, in which the encoder is a commonly used backbone, such
as ResNet [13] and Swin Transformer [14]. Our decoder outputs disparity, which is then converted to depth. The branch of the teacher model provides depth
supervision to the student model after outliers are filtered out by a multiview check filter. In the architecture, the input sequence consists of It and It′ , where
It′ ∈ {It−1, It+1}. It is used to output depth and It′ is used for reconstruction to generate Ĩt.

not hold in many scenarios, leading to unstable unsupervised
learning and local minimum issues in dynamic regions and
non-Lambertian or low-textured surfaces. To mitigate this
challenge, recent works [7–9] have introduced distillation
techniques to facilitate training. These methods first need to
build a well-behaved and sophisticated teacher model, and
then the teacher model with frozen weights is used to distill
the student model. The entire distillation process requires two
stages of training to be completed separately, thus resulting in
inefficient training. In addition, multiscale prediction structures
are commonly used in dense prediction tasks now. If high-
quality multiscale disparities can be generated, which help im-
prove the depth estimation performance. Multiscale disparities
are usually obtained by upsampling low-resolution disparity,
but upsampling operations lose valuable information and cause
disparity misalignment, bringing negative effects [10–12].

To address these issues, we propose two novel ideas to
enhance self-supervised monocular depth estimation: 1) self-
reference distillation and 2) disparity offset refinement. Specif-
ically, to provide additional supervision during the training
phase, we train a teacher model with a self-supervised ap-
proach during the initial epoch. The teacher model and its
distilled counterpart, i.e., the student model, share an identical
structure. With the increase of training epochs, the teacher
model is continuously updated by inheriting the optimized
parameter, so as to provide better depth supervision. However,
the depth generated by the teacher model on all pixels is not
necessarily reliable, and the edge area and the motion area
will have relatively low confidence (Fig.1). We do not expect
the teacher model to distill this kind of knowledge with large
depth errors to the student model. To obtain better supervision
signals, we introduce a multiview check filter to filter outliers
in the depth map through two steps of forward projection
and backprojection of the camera target view and the source
view. For the misalignment of multiscale disparity maps, we
introduce the disparity offset fields to refine the disparity
output by leveraging the contextual consistency between high-

level and low-level features. The disparity offset fields allow
the multiscale disparities to be aligned and enhance the depth
prediction. The results can be found in the ablation experiment
in Table II.

To summarize, the main contributions are listed as follows:
• We propose a novel self-supervised monocular depth

estimation method employing distillation technique and
disparity offset refinement to effectively improve the
depth estimation performance.

• We propose self-reference distillation and introduce the
multiview check technique to remove the depth outliers
from the teacher model, implementing efficient single-
stage online distillation learning.

• We leverage the contextual consistency in adjacent fea-
tures to predict the disparity offset field. The aligned
refinement for the disparity solves the disparity misalign-
ment problem caused by the upsampling process.

• We conduct extensive experiments on the KITTI and
Make3D datasets, demonstrating that our model outper-
forms existing state-of-the-art methods.

II. RELATED WORK

This section reviews the literature on monocular depth
estimation and knowledge distillation.

A. Supervised monocular depth estimation

Depth estimation from a single image is an inherently ill-
posed problem as pixels in the image can have numerous
plausible depths. Saxena et al. [15] used a discriminatively
trained Markov Random Field that incorporates multiscale
local and global features and modeled both depths at individual
points as well as the relation between depths at different
points. Eigen et al. [16] introduced a multiscale architecture
to make a coarse global depth prediction and progressively
refine this prediction locally using two separate networks. A
representative BTS method was proposed by [17] using local



3

CUpconv

OC

Upconv Conv block

Upconv

OC

C

Upconv

OC

C

Conv block

Conv block

Conv block

4 4

H W


8 8

H W


2 2

H W


H W

Decoder

W

W

W

(1)F

(2)F

(3)F

(4)F

(5)F

(1)

OF

(2)

OF

(3)

OF

(4)

OF

( 2 )d

( 3 )d

( 4 )d

(1)O

(2)O

(3)O

(1)d

W

Legend

Warp Upconv Upsample & Conv

ConvConcat
Upsample

OCLow

High

disparity offset

+-

C Concat

Disparity offset Low resolution High resolution

Warp
offset

offset

warp

warp

Fig. 3. Details of the decoder. The input of the decoder comes from the multiscale feature F (i) generated by the encoder, and the output is a disparity map of
H×W size. The disparity output by the decoder is obtained by progressively upsampling the low-resolution disparity map. In this process, the offset calculation
(OC) module provides a disparity offset field to fuse with the upsampled disparity to achieve disparity alignment. In the warp process, the high-resolution
disparity map is the bilinear interpolation of the neighboring pixels in low-resolution disparity map, where the neighborhoods are defined according learned
disparity offset.

planar guidance layers to guide the features to full resolution
instead of standard upsampling layers during the decoding
phase. Shariq et al. [3] divided the depth range into bins
whose center value is estimated adaptively per image. The
final depth values are estimated as linear combinations of
the bin centers. Based on the different features generated by
the encoder, Shao et al. [18] used the strategy of ensemble
learning to obtain more robust depth prediction. Song et al.
[2] adopted the Laplacian pyramid for resolving the problem
of monocular depth estimation. By recovering depth residuals
from encoded features in different levels of the Laplacian
pyramid and summing up those predicted results progressively.

Various fully supervised methods based on deep learning
have been continuously explored. However, all the above
methods require high-quality ground-truth depth, which is
costly to obtain.

B. Self-Supervised monocular depth estimation

While fully supervised approaches for depth estimation ad-
vance rapidly, the availability of precise depth labels becomes
a significant problem. Hence, more recent self-supervised
works provide alternatives to avoid the need for ground-truth
depth annotations.

In monocular depth estimation, self-supervised approaches
unify depth estimation and ego-motion estimation into one
framework using view synthesis as a supervision signal. Zhou
et al. [19] proposed an unsupervised learning framework for
monocular depth estimation and camera motion estimation
from unlabeled video sequences. Zou et al. [20] proposed
leveraging geometric consistency as additional supervision
signals for simultaneously training single-view depth pre-
diction and optical flow estimation models using unlabeled
video sequences based on brightness constancy and spatial
smoothness priors. Furthermore, Godard et al. [6] proposed
a classical method Monodepth2, and they adopted an auto-

masking scheme to filter out invalid pixels from moving
objects and introduced a minimum reprojection loss to address
occlusions. Based on Monodepth2, numerous current self-
supervised monocular depth estimation approaches [21–23]
are further researched. Liu et al. [24] proposed a domain-
separated network for self-supervised depth estimation of all-
day images. Michael et al. [25] presented a novel method for
predicting accurate depths by exploiting wavelet decompo-
sition. Shu et al. [26] exploited the point cloud consistency
constraint to optimize view synthesis process. Jaehoon et al.
[27] exploited semantic-aware depth features that integrate the
semantic and geometric knowledge to overcome the limitations
of the photometric loss. Vitor et al. [28] leveraged novel sym-
metrical packing and unpacking blocks to jointly learn to com-
press and decompress detail-preserving representations using
3D convolutions and implement a self-supervised monocular
depth estimation method combining geometry with a new
deep network. Akhil et al. [29] performed monocular depth
estimation by virtual-world supervision and real-world SfM
self-supervision. They compensate the SfM self-supervision
limitations by leveraging virtual-world images with accurate
semantic and depth supervision, and addressing the virtual-
to-real domain gap. Other published methods were based on
feature representation learning [30], competitive collaboration
[31], edge, normal [32, 33], semantic segmentation [34, 35].

C. Knowledge Distillation

The concept of knowledge distillation was first proposed by
[36] and made popular by [37]. Knowledge distillation aims to
transfer knowledge from a teacher model to obtain a powerful
and lightweight student model. The idea has been exploited
for many computer vision tasks [38–40].

Recently, some works have attempted to exploit distillation
for unsupervised depth estimation. Ren et al. [8] proposed
an adaptive co-teaching framework for unsupervised depth
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Fig. 4. Mutilview check filter. This process uses the target view and the source view to perform forward projection and backward reprojection. In the figure,
dist represents a certain distance function and pixels exceeding the threshold are filtered out. The white part of the output mask is the reserved part, and the
black part is filtered out. The tar view input corresponds to the Zct in Eq.11, and the detailed formulation of dist < τ can be seen in Eq.16.

estimation that enjoys the strengths of knowledge distillation
and ensemble learning for more accurate depth estimation.
Matteo et al. [9] proposed a new and peculiar self-teaching
paradigm to model uncertainty and then used the uncertainty
to assist knowledge distillation. Lyu et al. [7] adopted a large
model to improve the accuracy of a lightweight model through
two-stage training. These methods usually need to build a
complex teacher model. The training of the teacher model and
distillation processes are completely separated, thus resulting
in relatively large time and computational costs.

Inspired by BAN [41] training a student model similarly
parameterized as the teacher model and making the trained
student be a teacher model in a new round, we propose our
self-reference learning mode in monocular depth estimation.
The self-training scheme [42] generates distillation labels
for unlabeled data and trains the student model with these
labels. Different from the two-stage distillation method used
in previous work [7–9], our self-reference distillation achieves
efficient single-stage online distillation.

III. METHOD

In this section, we first present the proposed network
architecture. Then, we describe the implementation details
of self-reference distillation, including the construction of a
teacher-student distillation model and the implementation of a
multiview check filter. Finally, we provide a detailed account
of how we leverage contextual consistency between high-level
and low-level features to obtain the disparity offset.

A. Motivation

In self-supervised monocular depth estimation, the depth
and relative pose are estimated together, and these two inter-
mediate variables are used to perform projection and repro-
jection operations to synthesize images. Then the photometric
error is minimized to train the model. Static scenes and
Lambertian surfaces are important underlying assumptions for
self-supervised depth estimation. However, dynamic regions,
non-Lambertian surfaces or low-texture surfaces violate this
assumption, causing unstable unsupervised training and local
minima problems. To mitigate this challenge, recent works
have introduced distillation techniques to facilitate training.

These methods first need to build a well-behaved and so-
phisticated teacher model, and then the teacher model with
frozen weights is used to distill the student model. The
entire distillation process requires two stages of training to
be completed separately, thus resulting in inefficient training.
Therefore, we design efficient single-stage online distillation
learning to further alleviate this problem. We first let the
model optimize a set of parameters through self-supervision
in the first training epoch. In the next epoch of training,
the optimized parameters will be loaded for direct inference
and generate depth pseudolabels. To produce higher-quality
depth supervision, we propose a multiview check filter, which
subjects depth pseudolabels to multiple views to filter out
outliers.

In addition, multiscale prediction structures are commonly
used in dense prediction tasks now. If high-quality multi-
scale disparities can be generated, it will help improve the
performance of depth estimation. Multiscale disparities are
usually obtained by upsampling low-resolution disparity, but
upsampling operations will lose valuable information and
cause disparity misalignment, bringing negative effects [10–
12]. Therefore, we leverage the contextual consistency be-
tween high-level and low-level features to obtain the disparity
offset and refine the disparity output incrementally based on
the disparity offset to align disparity information at different
scales.

B. Network Architecture

For self-supervised monocular depth estimation, the pro-
posed method utilizes an encoder-decoder architecture with
skip connections. In this architecture, the encoder transforms
the input image into a latent space representation, while the
decoder reconstructs the disparity from the latent space repre-
sentation, as shown in Fig.2. After converting from disparity
to depth, the output of the decoder becomes the model’s final
output. During the training process, the depth output by the
depth network and the relative pose output by the pose network
are used for view synthesis, and self-supervised training is
achieved by optimizing the photometric loss. Additionally,
the output depth of the teacher depth network is used as a
pseudolabel to distill knowledge to the student model.
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Fig. 5. Visualization of disparity offset. The first two rows are low-resolution
disparity and high-resolution disparity. The third row and the fourth row are
horizontal disparity offset and vertical disparity offset. The last two rows are
different levels of disparity offset, and from left to right are high level to low
level.

Encoder. The encoder plays a crucial role in effectively
extracting features. Therefore, inspired by the outstanding per-
formance of Transformers[43–46] in various vision tasks, we
adopt an improved multipath Vision Transformer architecture
MPViT [47], which leverages both the local connectivity of
convolutions and the global context of the transformer. The
encoder receives a single frame with resolution H×W as input
and extracts features at five different scales, with resolutions
H×W , H

2 ×
W
2 , H

4 ×
W
4 , H

8 ×
W
8 , and H

16×
W
16 . These multiscale

features are then directly accessed by the decoder through
skip connections. According to the differences in layers and
channels in the four scales, MPViT [47] has tiny, xsmall,
small and base versions. We use MPViT-S (small) with a
parameter size of 22.8M, equivalent to ResNet50 (25M)and
Swin Transformer-T (28M). The layers of the 4 scales are set
to [1,3,6,3], and the channels are set to [64, 128, 216, 288]. It
should be noted that we actually use features of 5 scales, so
we modify MPViT and add H

2 × W
2 scale features. The layers

of this scale are set to 3, and the channels are set to 64.
Decoder. The multiscale features output by the encoder are

used as input to the decoder, which progressively upsamples
and convolves the feature maps to increase their resolution.
The upsampled feature maps are then fused with the skip-
connected encoding features and passed through the layers in
a top-down manner, combining strong semantic information
features and high-resolution features. Based on the features of
two adjacent scales, the offset calculation module calculates
the disparity offset field at each scale. The low-resolution
disparity is refined with the assistance of the disparity offset
and is progressively passed to the high-resolution scale to
obtain the output disparity of the decoder. More specific
details on how the offset calculation (OC) module calculates
the disparity offset field from the features of adjacent scales
will be discussed in the section on disparity alignment. The
structure of the depth decoder is shown in Fig.3. The multi-

scale features generate three scale disparity offsets (O) in the
figure. The final disparity output of the model is generated
from the low-resolution disparity step-by-step upsampling, and
the disparity map after each upsampling operation will be
aligned according to O. After the disparity of the H×W scale
is refined, the decoder outputs the disparity and then converts
it to depth.

Pose Network. Our pose network uses the same lightweight
architecture ResNet18[13] as [6, 7, 48, 49], taking a sequence
of three frames as input to predict a 6-DoF relative pose
between adjacent frames.

C. Self-Supervised Learning

Disparity alignment. Dense prediction tasks achieve a
better performance with multiscale predictions. In depth esti-
mation, multiscale disparities are usually obtained by upsam-
pling low-resolution disparity. However, commonly used up-
sampling operations (e.g., bilinear interpolation) lose valuable
information and cause disparity misalignment [10–12].

Inspired by various feature alignment works [10, 50, 51],
we design an offset calculation module (OC) that utilizes the
adjacent scale features to calculate the disparity offset field.
The OC outputs allow effective disparity alignment of different
scales and improve the prediction accuracy, which is provided
evidence in the ablation study.

The OC module in the decoder receives two resolution
features{F (i)

o , F
(i+1)
o }. (1) The low-resolution feature F

(i+1)
o

is first upsampled to obtain features of the same resolution as
F

(i)
o . (2) The resulting features are concatenated with the high-

resolution feature F
(i)
o to produce the disparity offset O(i),

as shown in the offset calculation structure of the legend in
Fig.3. (3) The disparity d(i+1) is warped by O(i) to obtain
the refined disparity map (the high-resolution disparity map).
In the warp process, the high-resolution disparity map is
the bilinear interpolation of the neighboring pixels in low-
resolution disparity map, where the neighborhoods are defined
according learned disparity offset as shown in Fig.3. (4)
Refined disparity is concatenated with F

(i)
o to generate d(i).

This process can be mathematically formulated as follows:

O(i) = Conv(Cat(F (i)
o , Upsample(F (i+1)

o ))), (1)

d(i) = Conv(Cat(F (i)
o ,Warp(O(i), d(i+1)))), (2)

In the legend of the figure, we mark that the disparity offset
is positive or negative, which represents the direction of the
disparity offset. The disparity offset includes the horizontal
offset and vertical offset. In Fig.3, we only indicate the
horizontal offset for convenience.

In the visualization of Fig.5, we show the disparity offset
in the horizontal and vertical directions. The first two rows
are low-resolution disparity and high-resolution disparity, re-
spectively and the low-resolution disparity map needs to be
aligned with the high-resolution disparity map by offsetting
both horizontally and vertically. The third row and the fourth
row are the horizontal disparity offset and vertical disparity
offset. The last two rows are different levels of disparity offset,
and from left to right are high level to low level. As the
upsampling proceeds, high level features are propagated to
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appropriate high-resolution positions following the guidance
of disparity offset. Disparity offset have coarse-to-fine trends
from high level to low level, so at the low level, the main
salient regions are mainly located at the edges with rich details.
In the ablation experiments, we verify the effectiveness of
the disparity alignment and show the visualization results of
predicted depth with disparity alignment and without disparity
alignment in Fig.8. Our proposed DA is much clearer in the
estimation of edge contours, which is consistent with the
performance of the multiscale disparity offsets.

Photometric Loss. Self-supervised monocular depth esti-
mation performs image synthesis by minimizing the photo-
metric loss during training, so that the images synthesized
from other views are close to the appearance of the target
image, and the depth and relative pose required for the
synthesized image are solved during this optimization process.
It denotes the target image and It′ denotes the source image
i.e. It′ ∈ {It−1, It+1}. The relative pose of each source
image’s associated image is indicated as Tt→t′ and the camera
intrinsics are denoted as K. Dt is a depth map transformed
from the disparity d(1). Similar to [6, 52, 53], we predict a
dense depth map that minimizes the photometric reprojection
loss Lpe, where

Ĩt = π(It′ ,K,Dt, Tt→t′), (3)

Lpe = minF(It, Ĩt), (4)

F(It, Ĩt) = α
1− SSIM(It, Ĩt)

2
+ 2α|It − Ĩt|, (5)

Here π is a reconstruction function following [6, 52] and
Ĩt ∈ {It−1→t, It+1→t}. F is the weighted sum of the intensity
difference term L1 [6, 52] and the structural similarity term
SSIM [54] and α is set to 0.85 as [6].

Smoothness Loss. As in [6, 52], we use edge-aware
smoothness loss to encourage the smoothness property of
inverse depth map:

Ls = |∂xd∗t |e−|∂xIt| + |∂yd∗t |e−|∂yIt|, (6)

where d∗t = dt/d̄t is the mean-normalized inverse depth from
[55] to discourage shrinking of the estimated depth.

D. Knowledge Distillation

Self-reference distillation. To mitigate the unstable un-
supervised training and local minima problems, knowledge
distillation is introduced in depth estimation [7–9], using
the pseudo depth labels generated by a teacher model as
supervision for a student model.

Our knowledge distillation process is finished in a single
stage, online, as opposed to earlier work [56], which needs
a two-stage training procedure: (1) finishing training a well-
behaved and sophisticated teacher model and (2) the teacher
model with frozen weights is used to distill the student
model. In our method, the student branch of Fig.2 depicts
the model going through self-supervised learning first. The
model’s weights are saved after the initial training epoch.
The weights from the previous epoch of training are loaded
online and utilized for inference starting with the second
training epoch, which corresponds to the teacher branch in

Fig. 6. Mask comparison. The second row is the auto mask, where the area
with large photometric errors is masked and the third row is our filter mask,
where the area with large depth errors is masked.

Fig.2. The student model is then distilled using the output of
this inference as pseudo depth labels. In terms of network
architecture, the teacher branch model is identical to the
student branch model, with the only difference being the model
weights. As shown in Fig.2, the decoder performs a disparity-
to-depth conversion after outputting the disparity. To make
more comprehensive use of information, we not only convert
the depth of the H×W scale, but also convert the multiscale
disparities into multiscale depth maps, which can provide more
supervision information to distill the student model on multiple
scales. Our distillation loss can be written as:

Ld =
1

4

4∑
i=1

(||Dteacher − D̂student||1)i. (7)

Mutilview Check. Although teacher-student distillation
provides supervision during training, the prediction of the
teacher model at each pixel is not highly reliable. For example,
the edge area will have relatively low confidence, resulting in
some incorrect outlier points.

Like Monodepth2, we also employ masking strategy to
boost performance. The auto-masking strategy of Monodepth2
calculates the minimum photometric error between RGB im-
ages to obtain the mask, which is used to re-weight the self-
supervised loss term. In knowledge distillation, our aim is to
remove out these points with large depth errors. The auto-
masking technique does enhance performance by reducing
motion scenes, however it masks out points with large photo-
metric errors rather than large depth errors. The area with large
photometric errors does not completely reflect the large depth
errors as illustrated in Fig.6. Our needs cannot be satisfied by
the auto masking strategy.

To achieve better distillation of depth information, we
design a multiview check filter demonstrated in Fig.4, to filter
outliers and offer a hard mask for teacher-student distillation.
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Specifically, the multiview check filter receives the depth
output from the model, which consists of the depth map from
the target view and the depth map from the source view.
According to the imaging principles of a pinhole camera, the
correspondence between the pixel points of each perspective
and the 3D spatial points can be mathematically described:

Zc

uv
1

 =
[
K 0

] [R t
0 1

]
Xw

Yw

Zw

1

 , (8)

=
[
K 0

] 
Xc

Yc

Zc

1

 , (9)

K =

fx 0 u0

0 fy v0
0 0 1

 , (10)

where K refers to camera intrinsic matrix,
[
R t
0 1

]
refers to

camera extrinsic matrix. (Xw, Yw, Zw) and (Xc, Yc, Zc) rep-
resent points in the world coordinate and camera coordinate,
respectively.

We use p0 = (u, v) to represent an arbitrary point in the
target view and project it into the 3D space of the target view
P0 = (Xct, Yct, Zct) through depth Dt(u, v) = Zct, as shown
in Eq.11. Xct

Yct

Zct

 = K−1Zct

uv
1

 , (11)

Combined with the relative pose Tt→t′ output by the
pose network, we can obtain the 3D representation P1 =
(Xcs, Ycs, Zcs) of P0 in the source view, as shown in Eq.12.Xcs

Ycs

Zcs

 = Tt→t′

Xct

Yct

Zct

 = Tt→t′K
−1Zct

uv
1

 , (12)

The P1 is projected to the 2D point p1 = (u1, v1) of the
source view through Zcs = Ds = model(It′) as shown in
Eq.13.

Zcs

u1

v1
1

 = K

Xcs

Ycs

Zcs

 , (13)

Then, the source view depth map Ds is remapped to D′
s

according to p1 = (u1, v1). Similar to the projection forward
process mentioned above, we use D′

s to perform a reprojection
process to obtain reprojected 3D point P̃0, 2D point p̃0 and
depth map D̃r in the target view.

A reprojection error at p̃0 is defined as ereproj , and a
geometric error egeo is used to measure the relative depth error,
which is formulated as [57]:

ereproj = ||p̃0 − p0||2, (14)

egeo =
|Dr(p0)−Dr(p̃0)|

Dr(p0)
, (15)

The valid subset of pixels for the filter mask is determined by
Eq.16, where α and β are hyperparameters. We set α = β =
4.

{p0}i = {p0|ereproj < αēreproj , egeo < βēgeo}, (16)

{p0}i represents the set of multiview checks between the
target view and the i-th source view, and the intersection of
the sets calculated under all source views is the filter mask.
We show the egeo and the filter mask in Fig.1 and Fig.9. In
Fig.9, the error map on the third row is egeo, and the mask
on the fourth row is the filter mask. In the error map, darker
areas represent smaller relative errors (black areas), and lighter
areas have greater errors (red, yellowish areas). In knowledge
distillation, it is not expected that teacher model to distill
inaccurate depth information to the student model. Inaccurate
depth information is mainly distributed on the border around
the image and a small part is distributed in the middle area
as shown in Fig.9. These outliers with relatively large errors
are harmful to the student model if they also participate in
knowledge distillation. The most direct filtering method is to
use Eq.16 to generate a binary hard mask. It is easy to find
that the filter mask and error map in Fig.9 may not necessarily
correspond exactly. In the picture on the left, the points in the
yellow area (with relatively large errors) are basically filtered
out, while in the picture on the right, only part of the points in
the yellow area are filtered out. This is caused by two reasons:
one is caused by the binary hard mask, which will be filtered
out only when it reaches a certain threshold, and the other is
related to the setting of the threshold. Different image scenes
require different thresholds (α and β) for truncation, but for
ease of implementation, we choose a unified α and β.

In fact, we also consider using a soft mask as a weight
to balance the supervision loss term. We use the error map
directly as a soft mask, i.e. M = 1−egeo to aid the distillation.
However, the soft masking method impairs the distillation.
Because the supervisory signal is not truncated in the part with
large error, this method also brings negative optimization, as
shown in Table II of the ablation experiment results.

Distillation Loss. After the depth pseudo labels produced
by the teacher model are filtered by a multiview check filter,
we apply the resulting filter masks to our distillation loss. The
modified distillation loss can be formulated as:

Ld =
1

4

4∑
i=1

(M ||Dteacher − D̂student||1)i, (17)

where M is the filter mask.
Total Loss The total loss in training consists of three

parts, photometric loss Lpe, smoothing loss Ls and distillation
lossLd, which are calculated at four scales.

Ltotal =
1

4

4∑
i=1

(µLpe + λLs + γLd)i, (18)

with λ set to 10−3 and γ set to 0.1. Similar to previous
works[6, 22], we apply a per-pixel binary mask, i.e. µ ∈
{0, 1}, which is formulated as:

µ = [minF(It, Ĩt) < minF(It, It′)], (19)

where [] is the Iverson bracket.
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Method Train Backbone Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen [16] D - 0.203 1.548 6.307 0.282 0.702 0.890 0.890
Liu [58] D VGG16 0.201 1.584 6.471 0.273 0.680 0.898 0.967
Klodt [59] D*M ResNet50 0.166 1.490 5.998 - 0.778 0.919 0.966
AdaDepth [60] D* ResNet50 0.167 1.257 5.578 0.237 0.771 0.922 0.971
DVSO [61] DS ResNet50 0.097 0.734 4.442 0.187 0.888 0.958 0.980
SVSM FT [62] DS VGG16 0.094 0.626 4.252 0.177 0.891 0.965 0.984
Guo [63] DS VGG16 0.096 0.641 4.095 0.168 0.892 0.967 0.986

Monodepth2 [6] M ResNet18 0.115 0.903 4.863 0.193 0.877 0.959 0.981
MonoDEVSNet [29] M ResNet18 0.116 0.836 4.735 - 0.860 0.954 -
R-MSFM3 [64] M ResNet18 0.114 0.815 4.712 0.193 0.876 0.959 0.981
R-MSFM6 [64] M ResNet18 0.112 0.806 4.704 0.191 0.878 0.960 0.981
SAFENet [27] M+Se ResNet18 0.112 0.788 4.582 0.187 0.878 0.963 0.983
VC-Depth [65] M ResNet18 0.112 0.816 4.715 0.190 0.880 0.960 0.982
Ours M ResNet18 0.111 0.762 4.619 0.186 0.877 0.961 0.983
Shu [26] M ResNet50 0.129 0.976 4.958 0.203 0.848 0.951 0.979
Mono-Uncertainty [9] M ResNet50 0.111 0.863 4.756 0.188 0.881 0.961 0.982
PackNet†[28] M PackNet 0.108 0.727 4.426 0.184 0.885 0.963 0.983
Johnston et al. [66] M ResNet101 0.106 0.861 4.699 0.185 0.889 0.962 0.982
MonoFormer [67] M Res50+ViT 0.106 0.839 4.627 0.185 0.884 0.962 0.983
CADepth [21] M ResNet50 0.105 0.769 4.535 0.181 0.892 0.964 0.983
Ours M ResNet50 0.106 0.718 4.520 0.180 0.886 0.964 0.983
DIFFNet [23] M HRNet18 0.102 0.749 4.445 0.179 0.897 0.965 0.983
MonoViT [22] M MPViT-S 0.099 0.708 4.372 0.175 0.900 0.967 0.984
Ours M MPViT-S 0.099 0.659 4.314 0.174 0.898 0.967 0.985

Monodepth2(1024×320) [6] M ResNet18 0.115 0.882 4.701 0.190 0.879 0.961 0.982
R-MSFM3(1024×320) [64] M ResNet18 0.112 0.773 4.581 0.189 0.879 0.960 0.982
R-MSFM6(1024×320) [64] M ResNet18 0.108 0.748 4.470 0.185 0.889 0.963 0.982
Ours(1024×320) M ResNet18 0.106 0.673 4.379 0.180 0.886 0.965 0.984
DCNDepth(1024×320) [68] M ResNet50 0.104 0.720 4.494 0.181 0.888 0.965 0.984
CADepth(1024×320) [21] M ResNet50 0.102 0.734 4.407 0.178 0.898 0.966 0.984
Ours(1024×320) M ResNet50 0.102 0.653 4.381 0.178 0.898 0.966 0.985
DIFFNet(1024×320) [23] M HRNet18 0.097 0.722 4.345 0.174 0.907 0.967 0.984
MonoViT(1024×320) [22] M MPViT-S 0.096 0.714 4.292 0.172 0.908 0.968 0.984
Ours(1024×320) M MPViT-S 0.096 0.635 4.158 0.171 0.905 0.969 0.985

TABLE I
QUANTITATIVE RESULTS. Comparison of our method to existing methods on KITTI 2015 [69] using the Eigen split. The best results in each category are
in bold. The resolutions we used for training and testing the models were 640×192 and 1024×320 (marked in the table). In the training approach, Se stands

for training with semantic labels, D for depth supervision, D* for auxiliary depth supervision, and M for mono self-supervision. † refers to the model
pretained on Cityscapes [70].

IV. EXPERIMENTS

A. Implementation Details

We use PyTorch to implement our model and the backbone
includes ResNet18, ResNet50, Swin Transformer-T, MPViT-S,
pretrained on the ImageNet1K dataset [71]. There are a total
of 20 training epochs. In the first epoch, γ in the Ltotal item
is set to 0, and from the second epoch of training, we load the
model saved in the last epoch for teacher-student distillation
and the Ltotal item is set to 0.1. The initial learning rate for
the optimizer we employ, AdamW [72], is set to 1e-4. Inputs
with a resolution of 640×192 are trained with a single A5000
GPU, and the batch size is set to 12. Inputs with a resolution
of 1024×320 adopt distributed data parallel training, requiring
4 GPUs, and the batch size of a single GPU is set to 4.

B. Datasets

KITTI [69]. The KITTI dataset provides 61 scenes from
cities, residential areas, roads, and campuses, utilizing a typical
image size of 1242×375. We follow the data split of Eigen et

al. [16] and Zhou et al.’s [19] preprocessing. There are 39,810
monocular triplets for training and 4,424 for validation. In
the comparative experiment with other methods, we conduct
on the test set [16] containing 697 images, which provides
652 depth ground-truth labels. We report results using the per-
image median ground-truth scaling [19] during evaluation.

Make3D [74]. The Make3D dataset is an outdoor dataset
with a scene similar to KITTI with a fixed image size of
1704×2272, containing a training set of 400 image-depth pairs
and a test set of 134 image-depth pairs, which is generally
used as a generalization test for monocular depth estimation.
Following previous preprocessing [6, 22] on a center crop with
a 2×1 ratio, we test the performance of different solutions
[6, 22, 49].

C. Quantitative Evaluation

In the comparison experiment, we evaluate images with
two resolutions 640×192 and 1024×320 on the KITTI [69]
dataset, adopting the standard metrics (Abs Rel, Sq Rel,
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Fig. 7. Qualitative results on the KITTI [69]. Our proposed model in the last row produces much superior depth maps than others, which are reflected in the
quantitative results in Table I.

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.103 0.740 4.458 0.179 0.896 0.966 0.983
Baseline+DA 0.101 0.725 4.450 0.178 0.896 0.966 0.983
Baseline+SRD 0.100 0.708 4.357 0.176 0.897 0.966 0.984
Baseline+SRD+DA 0.099 0.673 4.333 0.175 0.898 0.966 0.984
Baseline+SRD+DA+MVC (full) 0.099 0.659 4.314 0.174 0.898 0.967 0.985
Ours (w/o mask) 0.099 0.673 4.333 0.175 0.898 0.966 0.984
Ours (w/auto mask [6]) 0.102 0.707 4.364 0.175 0.895 0.967 0.984
Ours (w/self-discoverd mask [73]) 0.102 0.667 4.356 0.175 0.892 0.966 0.985
Ours (w/soft mask) 0.102 0.665 4.351 0.174 0.890 0.965 0.985
Ours (w/hard mask) 0.099 0.659 4.314 0.174 0.898 0.967 0.985
Baseline (ResNet18) 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Ours (ResNet18) 0.111 0.762 4.619 0.186 0.877 0.961 0.983
Baseline (ResNet50) 0.110 0.831 4.642 0.187 0.883 0.962 0.982
Ours (ResNet50) 0.106 0.718 4.520 0.180 0.886 0.964 0.983
Baseline (Swin-T) 0.109 0.814 4.636 0.185 0.888 0.963 0.982
Ours (Swin-T) 0.105 0.686 4.493 0.178 0.885 0.964 0.985
Baseline (MPViT-S) 0.103 0.740 4.458 0.179 0.896 0.966 0.983
Ours (MPViT-S) 0.099 0.659 4.314 0.174 0.898 0.967 0.985

TABLE II
ABLATION RESULTS.The baseline model is Monodepth2 [6], which is replaced backbone by MPViT-S [47] .DA denotes disparity alignment, SRD denotes

self-reference distillation, and MVC denotes mutilview check.

RMSE, RMSE log, δ1 < 1.25, δ2 < 1.252, δ3 < 1.253)
proposed in [16] and we cap depth to 80 m per standard
practice [52]. δ < t: % of d satisfies

(
max

(
d̂
d ,

d

d̂

)
= δ < t

)
for t = 1.25, 1.252, 1.253.

• AbsRel = 1
|T|

∑
d̂∈T

∣∣∣d̂− d
∣∣∣/d,

• SqRel = 1
|T|

∑
d̂∈T

∥∥∥d̂− d
∥∥∥2/d,

• RMSE =

√
1

|T|
∑

d̂∈T

∥∥∥d̂− d
∥∥∥2,

• RMSElog =

√
1

|T|
∑

d̂∈T

∥∥∥log10d̂− log10d
∥∥∥2,

We compare the results of several variants of our model
trained with different types of supervision. In Table I, Se
denotes training with semantic labels, D for depth supervision,
D* for auxiliary depth supervision, and M for mono self-
supervision. On evaluation metrics, our model (MPViT-S)
outperforms most methods (e.g. [16, 58–60]) when compared
to the depth supervision method. Other metrics outperform the
DVSO [61], with the exception of the Abs Rel metric, which
is slightly lower. According to the experimental findings,
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Fig. 8. Visualization results of w/ DA and w/o DA. From the top to bottom, the RGB images, the predicted depth maps without DA (disparity alignment)
and the predicted depth maps with DA. The area inside the white box clearly shows that the depth prediction performance is better with DA than without DA.

Distillation
method

Traning
time Params FLOPs Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

w/oDistillation 42.3h 27.9M 20.6G 0.101 0.725 4.450 0.178 0.896 0.966 0.983
w/[9] 74.7h 55.8M 34.8G 0.100 0.695 4.373 0.175 0.897 0.966 0.984
w/[8] 75.9h 54.5M 38.0G 0.100 0.695 4.337 0.176 0.897 0.965 0.983
w/[7] 92.5h 107.6M 46.8G 0.100 0.675 4.302 0.174 0.896 0.966 0.984
w/SRD (Ours) 43.4h 50.5M 23.5G 0.099 0.659 4.314 0.174 0.898 0.967 0.985

TABLE III
COMPARISON OF THE RESULTS OF DIFFERENT DISTILLATION METHODS. [7–9] is a two-stage distillation, and SRD (self-reference distillation) is a

single-stage online distillation. The Params and FLOPs are calculated according to the input through a forward function of model.

RGB

Error 

map

Mask

Depth

Fig. 9. Visualization of the filter mask. In the fourth row, the black area is
filtered out, and the white area is retained.

our method closes the gap between supervised and self-
supervised monocular depth estimation. In comparison with
self-supervised depth estimation methods, ours has a consider-
able improvement on most evaluation metrics compared to our
baseline model Monodepth2 [6]. Our accuracy is superior to
that of the newly proposed approaches, such as MonoFormer
[67], CADepth [21], and DIFFNet [23] in all metrics. We
also contrast the most advanced approach currently available,
MonoViT [22]. Our results on Abs Rel and δ1 are comparable,
but we perform better on other measures, particularly Sq Rel.
On a higher resolution of 1024×320, the accuracy of the model
has been further improved. Our monocular depth estimation
method demonstrates superior performance compared to state-
of-the-art approaches, as evidenced by the results presented in

Table I.
We provide a comparison chart of the visualized outcomes,

as seen in Fig.7, to present our results more intuitively. We
indicate with the white dotted box where our method performs
better than other methods. For example, in the visualization
results, it can be found that MonoViT [22] does not perform
well in the depth estimation of car mirrors, and Monodepth2
[6] does not perform well in overlapping pedestrian occlusion
areas.

D. Generalization Evaluation

We conduct generalization experiments on the Make3D
dataset [74]. Our model is directly used for the test of the
make3D test set without any fine-tuning after training in the
KITTI dataset [69]. When evaluating metrics, we maintain
consistent data preprocessing on a center crop of 2×1 ratio
with [6, 21–23].

In our generalization testing experiments, we conduct ex-
periments on a test set with 134 samples. We compare some
supervised methods with state-of-the-art unsupervised meth-
ods. In the generalization of Make3D, our method performs
better than the supervised method developed by [16] and
[58]. Other metrics are marginally inferior when compared
to Laina’s supervised method [75], but our method performs
better on the Sq Rel evaluation metric. Our method achieves
the best results compared to self-supervised monocular depth
estimation methods, and our Sq Rel metric shows the greatest
improvement, which is reflected not only in the generalized
experiments, but also in the ablation experiments. The results
in Table IV demonstrated that, in terms of generalization
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Input DIFFNet Monodepth2 MonoViT Ours

Fig. 10. Qualitative comparison on the Make3D [74] dataset. Predictions by
DIFFNet [23], Monodepth2 [6], MonoViT[22] and ours.

Method Abs Rel Sq Rel RMSE log10

Eigen†[16] 0.428 5.079 8.389 0.149
Liu†[58] 0.475 6.562 10.05 0.165
Laina†[75] 0.204 1.840 5.683 0.084
Monodepth [52] 0.544 10.94 11.760 0.193
Zhou [19] 0.383 5.321 10.470 0.478
DDVO [55] 0.387 4.720 8.090 0.204
Monodepth2 [6] 0.322 3.589 7.417 0.163
CADepth [21] 0.319 3.564 7.152 0.158
HR-Depth [7] 0.305 2.944 6.857 0.157
MonoViT [22] 0.286 2.758 6.623 0.147
Ours 0.252 1.583 5.833 0.114

TABLE IV
GENERALIZATION RESULTS. The method marked (†) denotes the depth

supervision method, and the other methods are self-supervised.

capacity, our model is much superior to the existing state-of-
the-art approaches. Fig.10 displays a depiction of the gener-
alization visualization. We mark the areas worthy of attention
with white dotted boxes, and it can also be seen from the
visualizations that our method outperforms the others.

E. Ablation Study

To evaluate the effectiveness of each module of the model,
we conduct ablation experiments on the KITTI [69] dataset.
Our benchmark model is Monodepth2 [6], but for a fair
experimental comparison, we replace the backbone network
of Monodepth2 from ResNet [13] with MPViT-S [47]. Based
on the benchmark model, we conduct ablation experiments
on three modules, namely, self-reference distillation (SRD),
multiview check (MVC) and disparity alignment (DA). The
experimental results confirm the effectiveness of the three
modules we proposed. From the results in Table II, it can
be found that the self-reference distillation has a significant
improvement in the Sq Rel metric.

To verify the effectiveness of the proposed mask (hard
mask), we compare against other masking strategies, including
the proposed mask (soft mask), the self-discovered mask [73]
and the auto mask [6]. The soft mask and the discovered
mask are similar in form, but the difference is that the soft
mask is used to re-weight depth supervision loss in distillation
and the discovered mask is used to re-weight photometric

loss in self-supervised learning. From the experimental results,
the strategy of re-weighting the loss improves the Sq Rel
metric, but other metrics decrease. The auto mask and the
proposed mask (hard mask) both use a binarized mask. The
former sets mask to only include the loss of pixels where the
reprojection error of the warped image is lower than of the
original, unwrapped source image, which is used to remove the
motion information in the self-supervised training. The latter
filters out outliers with large depth errors output by the teacher
model during the distillation process. The distribution of these
two masks is not consistent. The former is sparsely distributed
in the whole image, while the latter is mainly distributed in the
border around the image, and a small part is in the middle area
of the image. Compared with these three masks, our proposed
mask (hard mask) achieves the best performance among all
metrics, as shown in the Table II.

We compare different backbone networks. We use ResNet
[13], Swin Transformer [14], and MPViT [47] as the backbone
networks to train the model. We selected several models with
relatively small and similar numbers of parameters. These
models include ResNet18 with 11.7M parameters, ResNet50
with 25 M parameters, Swin Transformer-T with 28 M param-
eters, and MPViT-S with 22.8 M parameters. The experimental
findings in Table II reveal that our method has considerably
enhanced most metrics when compared to the baseline model
using the same backbone network, and the model using
MPViT as the backbone network has achieved the greatest
performance outcomes.

In addition, we compare different distillation method [7–
9] to verify the effectiveness of our self-reference distillation.
We compare the computational cost and quantitative results of
these methods as shown in Table III. In terms of computational
costs, we compare the training time, the parameters and the
FLOPs, where the parameters and the FLOPs are calculated
according to the input through a forward function of model.
[7–9] are two-stage distillations, which need to complete
the training of the teacher model first, and then distill the
student model. The entire distillation process requires two
stages of training to be completed separately, increasing the
training time, while our single-stage online distillation method
basically does not increase training time. [7] builds complex
teacher model to distill, so the parameters and FLOPs are
large. [8] uses ensemble strategy but for the fair comparison, it
remains consistent with other methods using a single teacher
model. The parameters of [8, 9] are comparable to our
method but their FLOPs are still larger than ours. Overall, our
method performs better in quantitative results with minimal
computational costs.

V. CONCLUSION

In this paper, we propose a novel self-supervised monocular
depth estimation method, employing self-reference distillation
to provide depth supervision signals for the student model
and introducing a multiview check filter to filter outliers
in depth maps. In addition, we propose the disparity offset
to solve the disparity misalignment problem caused by the
upsampling process. Extensive experiments are carried out on
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two challenging datasets, including the KITTI and Make3D
datasets. The experimental results emphasize the effectiveness
and strong generalization of our method.
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falioglu, and Antonio M López. Monocular depth estima-
tion through virtual-world supervision and real-world sfm self-
supervision. IEEE Transactions on Intelligent Transportation
Systems, 23(8):12738–12751, 2021.

[30] Jaime Spencer, Richard Bowden, and Simon Hadfield. Defeat-
net: General monocular depth via simultaneous unsupervised
representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages
14402–14413, 2020.

[31] Anurag Ranjan, Varun Jampani, Lukas Balles, Kihwan Kim,
Deqing Sun, Jonas Wulff, and Michael J Black. Competitive
collaboration: Joint unsupervised learning of depth, camera
motion, optical flow and motion segmentation. In Proceedings



13

of the IEEE/CVF conference on computer vision and pattern
recognition, pages 12240–12249, 2019.

[32] Zhenheng Yang, Peng Wang, Yang Wang, Wei Xu, and Ram
Nevatia. Lego: Learning edge with geometry all at once by
watching videos. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 225–234, 2018.

[33] Zhenheng Yang, Peng Wang, Wei Xu, Liang Zhao, and
Ramakant Nevatia. Unsupervised learning of geometry
with edge-aware depth-normal consistency. arXiv preprint
arXiv:1711.03665, 2017.

[34] Vitor Guizilini, Rui Hou, Jie Li, Rares Ambrus, and Adrien
Gaidon. Semantically-guided representation learning for self-
supervised monocular depth. arXiv preprint arXiv:2002.12319,
2020.

[35] Marvin Klingner, Jan-Aike Termöhlen, Jonas Mikolajczyk, and
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