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Coarse-to-fine Task-driven Inpainting for
Geoscience Images

Huiming Sun†, Jin Ma†, Qing Guo, Qin Zou, Shaoyue Song, Yuewei Lin∗, Hongkai Yu∗

Abstract—The processing and recognition of geoscience images
have wide applications. Most of existing researches focus on
understanding the high-quality geoscience images by assuming
that all the images are clear. However, in many real-world cases,
the geoscience images might contain occlusions during the image
acquisition. This problem actually implies the image inpainting
problem in computer vision and multimedia. To the best of our
knowledge, all the existing image inpainting algorithms learn to
repair the occluded regions for a better visualization quality,
they are excellent for natural images but not good enough
for geoscience images by ignoring the geoscience related tasks.
This paper aims to repair the occluded regions for a better
geoscience task performance with the advanced visualization
quality simultaneously, without changing the current deployed
deep learning based geoscience models. Because of the complex
context of geoscience images, we propose a coarse-to-fine
encoder-decoder network with coarse-to-fine adversarial context
discriminators to reconstruct the occluded image regions. Due
to the limited data of geoscience images, we use a MaskMix
based data augmentation method to exploit more information
from limited geoscience image data. The experimental results
on three public geoscience datasets for remote sensing scene
recognition, cross-view geolocation and semantic segmentation
tasks respectively show the effectiveness and accuracy of the
proposed method.

Index Terms—image inpainting, geoscience images, coarse-to-
fine, task-driven

I. INTRODUCTION

THE geoscience images have various representations,
e.g., street-view and aerial-view images. Geoscience

image processing is an inter-disciplinary research with
wide applications in computer vision and multimedia,
such as remote sensing scene recognition [1], [2], cross-
view geolocation in urban environments [3], [4], change
detection [5], [6], hyper-spectral classification [7]–
[9], satellite-view object detection [10], [11], image
captioning based remote understanding [12], [13], semantic
segmentation [14], [15] and etc.

Most of the existing researches in this area assume
that all the obtained geoscience images are clear without
occlusions. However, in many real-world cases, the geoscience
images might contain occlusions during the image acquisition.
For example, some regions of a street-view image might
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Fig. 1. Illustration of the task-driven inpainting problem for geoscience
images, taking the remote sensing scene recognition/classification task as an
example: (a) a clean satellite image, (b) occluded image, (c) reconstruction
by the image inpainting method CSA [18], (d) reconstruction by the proposed
inpainting method. Green and red colored numbers indicate the classification
confidence of the correct class by a remote sensing scene recognition model
(pre-trained on clean images) and the image quality SSIM of reconstruction
respectively.

be occluded by a passing pedestrian or car close to the
camera [16], and an aerial-view image by UAV (Unmanned
Aerial Vehicle) might be partially occluded by a tall tower or
a kite, and an aerial-view image by satellite might be occluded
by thick cloud(s) to some extents [17]. The occlusion challenge
could result in the significant performance drop when using
existing/deployed deep learning based geoscience models pre-
trained on clean geoscience images. One straightforward way
to relieve the challenge is to recover the occluded regions
by using image inpainting methods. Then, the current deep
geoscience models could be still functional without the need of
any changes if we could well reconstruct the occluded image
regions.

As far as we know, the inpainting problem that focuses on
geoscience images has not been systemically studied before.
The existing image inpainting methods [16], [18]–[23] learn to
recover the occluded regions for a better visualization quality,
which are excellent for natural images but not good enough for
geoscience images because they ignore the geoscience related
tasks and fail to consider the domain speciality. For example,
as shown in Fig. 1, the reconstruction visualization quality
(SSIM) metric itself cannot fully represent the advanced
geoscience task performance, since a higher SSIM score
might not necessarily achieve better classification confidence
in the remote sensing scene recognition/classification task.
Therefore, we introduce the task-driven inpainting problem
for geoscience images in this paper.

There are several domain specialities for the task-driven
image inpainting problem of geoscience images. First, the
reconstruction objective is to largely improve the geoscience
task performance with relatively high image quality, without
changing the existing deep learning based geoscience task
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Fig. 2. Overview of the proposed image inpainting network for geoscience images. From the Coarse Network to Residual Refinement Network with two
adversarial context discriminators, we learn to reconstruct occluded regions in a coarse-to-fine way. Note that © is concatenation and ⊕ is element-wise
summation.

network pretrained on clean images. Second, the context of
geoscience image is more complex than nature image without
prior knowledge. Taking a face image as an example, if one
eye is occluded, the deep learning based image inpainting
model still knows the occluded region should be an eye there,
because we have the prior knowledge of human face. Third,
the dataset of geoscience images is typically much smaller
than the regular nature images. For example, the Place2 [24]
dataset that is frequently used for image inpainting has 10
million nature images. However, the geoscience images are
relatively expensive to collect, so that many geoscience image
datasets [1], [12], [25] only have thousands of geoscience
images.

We have made efforts in this paper to solve the challenges
of the above domain specialities. In this paper, we design a
deep learning based image inpainting framework to embed
the geoscience task network so that the reconstructed images
could align with the geoscience task network. The geoscience
task network can be replaced accordingly so as to fit
different geoscience tasks, making the designed framework
very flexible. Due to the above mentioned challenges, it might
be difficult to simply learn a reliable deep learning based
model within one stage to deal with the complex context of
geoscience images, so we propose a coarse-to-fine encoder-
decoder network to reconstruct the occluded regions with
coarse-to-fine adversarial context discriminators. Due to the
limited data of geoscience images, we design a MaskMix
based data augmentation method to improve model robustness
and overcome unforeseen corruptions by mixing different
augmented random occlusion masks during the model training.
We expect that the inter-disciplinary research proposed in
this paper could particularly benefit the geoscience image
processing and recognition. In summary, the contributions of
this paper are as the following.

• To the best of our knowledge, this paper is the
first deep learning work for the task-driven inpainting
problem of geoscience images. The reconstruction goal
is to largely improve the geoscience task performance
with relatively high image quality, without changing
the existing pretrained deep geoscience task model.
In addition, our method is general and flexible to be
compatible with many different geoscience tasks.

• Due to the complex context in geoscience images, this
paper proposes a deep coarse-to-fine encoder-decoder
network to reconstruct the occluded image regions with
coarse-to-fine adversarial context discriminators.

• Due to the limited training data in geoscience images,
this paper proposes a MaskMix based data augmentation
method to improve model robustness and overcome
unforeseen corruptions.

In the following of this paper, Section II reviews the related
work. Section III explains the proposed method. Experiment
setting and results are described in Section IV, followed by a
conclusion in Section V.

II. RELATED WORK

A. Geoscience image processing

Image processing and recognition have wide applications
in geoscience and remote sensing. The Google Earth aerial-
view images taken by satellites are desirable for remote
sensing scene classification [1], [2]. The street-view Google
Street images can be used to retrieve the aerial-view UAV
or satellite images for the cross-view geolocation in urban
environments [3], [4]. Different objects are possible to be
detected by some CNN based methods in the aerial-view
Google Earth color images [10], [11]. Given an aerial-view
Google Earth color image, image captioning can be utilized
for remote sensing understanding [12], [13]. Most of the
existing researches assume that all the images are clear and
high-quality. However, the geoscience images might contain
occlusions during the image acquisition in many real-world
cases, which result in significant difficulties for geoscience
studies. For example, the street-view image might be partially
blocked by a passing pedestrian or car close to the camera;
the aerial-view image might be occluded by some thick clouds
or flying objects. This paper focuses on the processing for the
occluded geoscience images, i.e., either street-view or aerial-
view color images.

B. Image inpainting

The image inpainting problem aims to repair the occluded
image regions [16], [20]–[23], [26]–[32]. Roughly, the image
inpainting methods can be divided into two classes based
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on the input style: regular and irregular holes. The image
inpainting with regular holes means that the input is a
rectangle-shape hole or multiple rectangle-shape holes, like the
problems in [16], [26]. The image inpainting with irregular
holes means that the input shape is irregular, like the
problems in [27]–[29]. The context-aware information is very
important to repair the occluded regions [16] no matter for
the regular or irregular input. This context-aware information
could be enhanced in multiple ways, such as learning by
the reconstruction and adversarial losses [16], the residual
aggregation [29], contextual attention CNN layers [26], the
partial convolutions [27], etc. All existing methods (e.g., [20]–
[23]) are focused on the inpainting problem to improve the
visualization quality for nature images, not for enhancing the
geoscience related task performance, so they have ignored the
domain speciality of geoscience images.

C. Inpainting for geoscience images

Existing inpainting methods for geoscience images can be
divided into two classes. The first class belongs to non-deep
learning based methods, which apply the traditional image
processing based methods [33], [34] to repair the contaminated
region. Due to the advanced performance of deep learning, the
second class leverages the CNN based methods for geoscience
image inpainting [35]–[39] to remove the occlusions.

The proposed task-driven inpainting problem for geoscience
images has several differences compared to regular image
inpainting on nature images: 1). The final goal is to improve
the geoscience related task performance with the advanced
visualization quality. 2). The context of geoscience image is
more complex than nature image without prior knowledge.
For example, toward the inpainting of face images, we can
somewhat infer the corresponding occluded region because we
have the prior knowledge of face. 3). The cost of collecting
geoscience images is higher than that of collecting nature
images, so the geoscience image dataset is typically much
smaller than the regular nature image dataset. The existing
geoscience image inpainting works are almost all focused
on improving the repaired visualization quality, by ignoring
the geoscience related task performance. In addition, the
existing geoscience image inpainting methods ignore the
above mentioned second and third special difficulties for
geoscience images. Due to the complex contexts and limited
training data, it might be challenging to learn a reliable deep
learning model within one stage, so we propose to reconstruct
the occluded region by a coarse-to-fine adversarial encoder-
decoder structure and the assistance of a MaskMix based data
augmentation during model training.

III. PROPOSED METHOD

In this section, we explain the proposed network of task-
driven image inpainting for geoscience images in details. The
particular network structure is explained in Section III-A,
while the loss functions for network training are presented
in Section III-B, and the MaskMix based data augmentation
is shown in Section III-C.

A. Network Overview

The overall network structure is shown in Fig. 2. It is an
end-to-end deep learning based network. As we discussed
above, reconstructing the occluded image regions is not easy
due to the complex context and limited training data of
geoscience images. It is hard to accomplish this task in
one stage, so we learn to reconstruct the occluded image
regions in a coarse-to-fine manner. In particular, it contains two
Encoder-Decoder sub-networks: Coarse Network and Residual
Refinement Network. The “coarse-to-fine” spirit is similar to
some related computer vision work [40].

Encoder-Decoder Structure: The Encoder-Decoder design
has been widely used in different computer vision tasks [41].
Our proposed Coarse Network and Residual Refinement
Network use the same Encoder-Decoder structure. Our
backbone Encoder-Decoder structure is modified from [42].
The Encoder layers are from the ResNet-34 [43], and the
Decoder is symmetric to the Encoder in network layers. Six
skip connections are built between the symmetric layers of
the Encoder and Decoder for a better deep feature fusion
and perception. The Encoder implements the feature down-
sampling and then the Decoder up-sample the features back
to the same size of input image. The input and output of
the encoder-decoder structure are RH×W×4 and RH×W×3,
respectively. The detailed organization of the used Encoder-
Decoder structure is shown in Fig. 3.

Coarse Network: The target of Coarse Network is to
predict a coarse reconstruction map Rcoarse directly from the
input occluded image and the occlusion mask M . It follows
the above mentioned encoder-decoder structure to reconstruct
the occluded region.

Residual Refinement Network: Sometimes, it might be
hard for a deep neural network to directly learn the prediction
well fitting the ground truth , which is because of the
gradient vanishing problem in the backpropgation of the
deep neural network. The ResNet work [43] shows that the
residuals (by skip connection) could be learned to overcome
the gradient vanishing problem in the backpropgation of the
deep neural network. The objective of Refinement Network
is to predict a refined reconstruction map Rrefined from the
coarse reconstruction map Rcoarse given the occlusion mask
M . Inspired by [42], [44], the refinement network is described
as a residual block that refines the coarse reconstruction map,
then the problem is transferred to learn the residuals Eresidual

between the reconstructed maps and the ground truth by the
following equation:

Rrefined = Rcoarse + Eresidual, (1)

where Rrefined = g(Rcoarse|M), and g indicates the
nonlinear mapping function learned by the Refinement
Network. In the network structure, we build a skip connect
from the output of Coarse Network (Rcoarse) to the end of the
Refinement Network to implement this residual refinement.

Coarse-to-fine Discriminators: To enhance the context
understanding of the occluded region, we deploy a Coarse
Discriminator and a Refinement Discriminator for the
Coarse Network and Refinement Network, respectively. The
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Fig. 3. Architecture of the Encoder-Decoder structure. It includes encoder,
decoder and skip connections between the symmetric layers.

Coarse Discriminator is designed to distinguish the coarse
reconstruction map Rcoarse as real or fake. Furthermore, the
Refinement Discriminator is to judge the refined reconstruction
map Rrefined as real or fake. By introducing an adversarial
learning between the encoder-decoder networks (generator)
and the discriminators, our generator could produce the
reconstructed maps close to the real ground-truth images so as
to fool the discriminators in a coarse-to-fine way. Specifically,
in order to make the discriminators pay more attention on
occluded regions, we process the reconstructed maps to change
the input of discriminator, Dinput, by the following equation:

Dinput = R�M + I � (1−M), (2)

where R is a reconstructed map, I is the input occluded
image, M is binary occlusion mask, and � means pixel-
level dot product. The processing in Eq. (2) are applied to
both Coarse and Refine Discriminators with the corresponding
reconstructed maps, respectively. The network structure of
each discriminator is adopted from the discriminator of the
PatchGAN in the Pix2Pix model [45], whose patch size is
70 × 70 for the real or fake classification. We also feed the
input occluded image I into the discriminators to simulate the
conditional GAN.

Geoscience Task Network: In order to accomplish the task-
driven inpainting network, we incorporate the sub-network
related to the specific geoscience task into the overall pipeline
of the proposed method, as shown in Fig. 2. We treat the
Geoscience Task Network as a fixed deep neural network
that are pre-trained on clean images. This Geoscience Task
Network is only used during training stage and discarded
during testing stage. With such a design, the reconstructed
image by our proposed inpainting method could be directly fed
into the existing/deployed deep neural network for geoscience
tasks during testing, so the existing deep learning based
geoscience model will be compatible to both clean and
occluded images without any changes. In other words, the
proposed inpainting method can be used as a pre-processing
procedure for the occluded geoscience images.

B. Loss Functions

In this section, we will introduce the detailed loss functions
to train the proposed network.

1) Reconstruction Loss: Because the geoscience images
have complex contexts with limited data, we design
the comprehensive reconstruction loss from multiple

perspectives. We reconstruct the occluded region based
on two considerations: pixel-level intensity mismatching,
and human perception difference. Based on these two
considerations, we define the comprehensive reconstruction
loss based on two particular losses, L1 Loss, Perceptual Loss,
to compare the reconstructed maps with the ground-truth
image.
L1 Loss: We expect to minimize the pixel-level intensity

mismatching between the reconstructed image R and the
ground-truth image Igt, where the pixel-level intensity
mismatching is computed as their L1 distance, as defined as:

L1 = ||R− Igt||1. (3)

Minimizing the L1 Loss makes R and Igt have similar pixel-
level intensity.

Perceptual Loss: We also want to minimize the human
perception difference between R and Igt, which is computed
by LPIPS (Learned Perceptual Image Patch Similarity)
distance [46] with a ImageNet pre-trained VGG16 model, as
defined as:

Lp = LPIPS(R, Igt), (4)

where LPIPS is a standard operation defined in [46] to
compute the L2 distance of the activation feature maps in
different CNN layers between two input images. The LPIPS
metric is recently shown as more similar to the human
perception seeing an image. Minimizing the Lp Loss will force
R and Igt to have consistent human perception response.

For the Coarse Network, we only use the L1 loss for its
reconstruction, while we use the summation of L1 Loss and
Perceptual Loss for the Refinement Network’s reconstruction.

2) Adversarial Loss: Let us treat the proposed network in
Fig. 2 except the Coarse Discriminator Dc and Refinement
Discriminator Dr as a coarse-to-fine generator G. We learn
the generator G and the discriminators Dc and Dr by the
following adversarial loss:

min
G

max
Dc,Dr

LGAN = EI,Igt [logDc(I, Igt))]+

EI,G(I)[log(1−Dc(I,G(I)c))]+

EI,Igt [logDr(I, Igt))]+

EI,G(I)[log(1−Dr(I,G(I)r))],

(5)

where I is the input occluded image, Igt is the ground-
truth reconstructed image for I , G(I)c is the predicted coarse
reconstruction map, Rcoarse, and G(I)r is the predicted
refined reconstruction map, Rrefined. G tries to minimize the
loss LGAN against two adversarial Dc and Dr that would
like to maximize it. The coarse and refinement discriminators
try to classify the reconstructed region as real or fake in a
coarse-to-fine manner. Since the context of geoscience images
is complex with limited training data, we use the coarse-
to-fine generator G to reconstruct the occluded regions, and
simultaneously we use the coarse-to-fine discriminators to
adversarially improve the context reconstruction ability of the
generator G.
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3) Geoscience Task Loss: The geoscience task loss LT is
related to the specific geoscience task. In this paper, we applied
the proposed network to three geoscience tasks as example:
remote sensing scene recognition, cross-view geolocation and
semantic segmentation. For example, in the task of remote
sensing scene recognition, the internal purpose is image
classification, so we could choose the image classification
network like fixed VGG16 [47] pretrained on clean images as
the geoscience task network, where the corresponding cross
entropy loss for image classification is used as the geoscience
task loss. When applying our proposed method for cross-view
geolocation, the geoscience task network could be the fixed
LPN [4] pretrained on clean images, and the corresponding
geoscience task loss is the summation of cross entropy losses
over all image parts as defined in [4]. For the semantic
segmentation task, we use HRNet [48] pretrained on clean
images as the geoscience task network and set the pixel-level
cross-entropy loss as the geoscience task loss. Minimizing the
geoscience task loss LT will make the reconstructed image
well fit the fixed geoscience task network pretrained on clean
images.

The overall loss function for training our proposed network
is shown below as

Loverall = L1 + LP + LGAN + λLT (6)

where λ is the weight to balance the image quality of
reconstruction and the geoscience task performance, LT

depends on the specific geoscience task.

AUG

AUG

AUG

AUG

AUG

AUG

AUG

AUG

AUG

thresholding

𝑤
1 =0.2

𝑤4=0.4

𝑤2=0.1

𝑤3
=0
.3

Fig. 4. Illustration of MaskMix based data augmentation. AUG indicates the
random augmentation operation of “translate", “shear" and “rotate".

C. MaskMix based Data Augmentation

Since the geoscience data is always limited, not as large
as the natural image dataset like ImageNet, we propose a
novel data augmentation method for training image inpainting
models to make better use of limited geoscience training data.
Most of existing inpainting methods take the fixed masks, so
some occlusion patterns are never processed when training the
inpainting model, which limits the generalization capability
of models to handle different occlusion scenarios. To address
this issue, we propose to augment seed masks by conducting
a series of transformations on the masks, which might happen
in the real world, and mix them to simulate more complex
scenarios. Specifically, given a seed mask Ms (e.g., the cloud
in a satellite image), we transform it via different augmentation
operations (e.g., translation, shearing, and rotation) and obtain
multiple augmented masks. Intuitively, these processes might
simulate the cloud moving and reshaping in the real world.

Finally, we mix all augmented masks to a single mask to obtain
a complex occlusion pattern. Based on this idea, inspired
by AugMix [53], we propose to augment the diversity of
seed masks and increase robustness to unforeseen occlusion
scenarios by a MaskMix based data augmentation. As shown
in Fig. 4, we set three random operations of “translate", “shear"
and “rotate" in parallel three branches to generate several
random masks, then the MaskMix based data augmentation
is computed by

M = Φ{w4 ∗Ms +

3∑
i=1

wi ∗A3
i (A2

i (A1
i (Ms)))}, (7)

where Ms is the binary seed mask, Aj
i is the randomly sampled

augmentation operations of “translate", “shear" and “rotate" in
the i-th row and j-th column as shown in Fig. 4, wi is the
random sample mixing weight in the i-th row, Φ{·} indicates
the thresholding operation, and M is the final augmented
binary mask by the MaskMix. M is fed to train our proposed
inpainting framework instead of the seed mask Ms. Different
with the AugMix [53] which augments the original image,
the proposed MaskMix aims to augment the binary mask for
the image inpainting problem. Please note that the proposed
MaskMix based data augmentation is only applied in the
model training, not in the model testing.

IV. EXPERIMENTS

In this section, we will evaluate the proposed method
on three widely-used geoscience tasks: remote sensing (RS)
scene recognition, cross-view geolocation, and semantic
segmentation. The RS scene recognition task is to recognize
an aerial-view satellite image into predefined classes [1],
similar to the image classification problem. The cross-view
geolocation task is to localize the spot by matching an given
street-view image to the corresponding aerial-view satellite or
UAV image in a gallery [4], similar to the image retrieval
problem. The remote sensing semantic segmentation task is to
identify the land-cover or land-use category of each part of the
remote sensing High Spatial Resolution (HSR) image [54].

A. Dataset for RS Scene Recognition

The dataset for the RS scene recognition task is the public
aerial-view Google Earth satellite images, i.e., RSSCN7 [1]
dataset. The RSSCN7 dataset contains satellite images
acquired from Google Earth, which is originally collected
for remote sensing scene classification. We conduct image
synthesis on RSSCN7 to make it capable of the image
inpainting task. It has seven classes: grassland, farmland,
industrial and commercial regions, river and lake, forest field,
residential region, and parking lot. Each class has 400 images,
so there are total 2,800 images in the RSSCN7 dataset. 50%
is used for the network training, and another 50% is for
network testing in the RSSCN7 dataset. We first extract some
thick/nontransparent clouds as 28 anchor masks from some
real cloudy satellite images [55], [56]. For each image of
RSSCN7 dataset, we randomly pick one mask, and randomly
rotate, translate, resize the mask and overlap it to the original
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(a) (b)

Fig. 5. Datasets of image inpainting for two geoscience tasks: Remote Sensing (RS) scene recognition and cross-view geolocation: (a) RSSCN7 [1] dataset
for RS scene recognition (Top: satellite view, Bottom: occluded satellite view), (b) CVUSA [49] dataset for cross-view geolocation (From left to right: ground
view, occluded ground view, corresponding satellite view of same location).

(a)           (b)           (c)           (d)          (e)           (f)            (g)

Fig. 6. Qualitative comparisons on the RSSCN7 dataset: (a) Input images, (b-
f) image inpainting results by CSA [18], RFR [50], TELEA [51], MISF [52]
and the Proposed method, (g) ground truth.

image, and we make a constraint that the area ratio of the
added occlusion over the whole image is between 15% and
60%. The inpainting examples of occluded RSSCN7 dataset
are shown in Fig. 5.

B. Dataset for Cross-view Geolocation

The public dataset used for the cross-view geolocation task
is the CVUSA [49] dataset. It includes the geoscience data
collected from the ground view (street view) and satellite
view. In CVUSA dataset, all the ground-view images are
panoramic images downloaded from Google Street View,
while the corresponding satellite-view images are collected
from Microsoft Bing Maps. There are 35,532 ground-and-
satellite image pairs for training and 8,884 image pairs for
testing. The seed masks used to simulate occlusions are
downloaded from the public image inpainting masks [27]
and added to the ground-view images only. We use the seed
masks with 10-20% area ratio in the experiment. In this task,
we assume that the satellite-view images are clean without
occlusions. The examples of occluded CVUSA dataset for
image inpainting are shown in Fig. 5.

C. Dataset for Semantic Segmentation

The dataset used for semantic segmentation task is the
public LoveDA [54] dataset. This dataset consists of rural
and urban images that are obtained from Google Earth
platform, along with their pixel-level labels. The LoveDA
dataset contains 5,987 High Spatial Resolution (HSR) images
in total, with image resolution of 1024× 1024 pixels, whose
spatial resolution is 0.3 m. In this experiment, we follow
the default setting of LoveDA [54] to have 4,191 images for
training and the other 1,796 images for testing. As for the
occlusion simulation, we employ the same strategy as that in
cross-view geolocation task to generate occluded images and
masks.

D. Experimental Setups

Implementation details: In the RS scene recognition
experiment, the VGG16 based image classification
network [47] is used as the geoscience task network. In
the cross-view geolocation experiment, the Local Pattern
Network (LPN) [4] is used as the geoscience task network.
In the semantic segmentation experiment, HRNet [48] is
used as the geoscience task network. The task networks are
trained independently on the clean images without occlusions,
and then they are fixed for task performance evaluation.
We denote “Clean Testing" as testing clean images without
occlusions on the fixed geoscience task network, and denote
“Occluded Testing" as testing the occluded images on the
fixed geoscience task network. During the initialization of
the proposed network, the first three layers of the encoders
are initialized from the ImageNet pre-trained ResNet-34 [43]
model, and the other layers are randomly initialized. We set
the loss balance weight λ as 5 for RS scene recognition
and semantic segmentation, 1.2 for cross-view geolocation.
During the network training, each image is resized to
256×256 for RS scene recognition and cross-view gelocation
task, 512 × 512 for semantic segmentation task. We use the
PyTorch framework to implement the proposed network and
all the experiments are run with a NVIDIA RTX 3090 GPU
card. For more details, we will publicize the code after paper
acceptance.

Baselines: We compare the proposed method with several
state-of-art image inpainting or image transfer methods.
These methods are RFR [50], CSA [18], GMCNN [19],
TELEA [51], Pix2Pix [45], SPL [57], MISF [52]. These
comparison methods are carefully trained on the related
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TABLE I
QUANTITATIVE EXPERIMENTAL RESULTS ON THE RSSCN7 DATASET FOR

RS SCENE RECOGNITION USING FIXED VGG16 [47] (PRETRAINED ON
CLEAN IMAGES) AS THE GEOSCIENCE TASK NETWORK.

Methods PSNR SSIM Accuracy(%)
Clean Testing [47] - - 93.57

Occluded Testing [47] 12.03 0.74 71.14
TELEA [51] 25.20 0.78 76.86
Pix2Pix [45] 24.18 0.73 83.14

SPL [57] 25.43 0.829 84.21
GMCNN [19] 25.18 0.78 81.07

CSA [18] 26.61 0.82 86.79
RFR [50] 26.81 0.81 87.14
MISF [52] 27.44 0.83 87.92
Proposedb 27.85 0.85 87.78
Proposed- 27.74 0.84 89.85
Proposed 28.25 0.86 90.21

geoscience datasets until convergence. We use Proposedb to
represent our proposed baseline method (without Geoscience
Task Network and MaskMix), Proposed- as our proposed
method (without MaskMix), Proposed as our full proposed
method.

Metrics: The evaluation metrics are two folds. One side
is for the image quality evaluation using structural similarity
index (SSIM) [58] and peak signal-to-noise ratio (PSNR),
following most image inpainting researches. The other side
is for the geoscience task-related performance evaluation.
In the RS scene recognition task, the overall classification
accuracy (%) on the whole testing set is used, following [1].
In the cross-view geolocation task, we use Recall@K (R@K)
and the average precision (AP) to evaluate the performance
following [4], where R@K represents the proportion of
correctly matched images in the top-K of the ranking list.
AP calculates the area under the Precision-Recall curve,
which shows the precision and recall rate of the retrieval
performance. For the semantic segmentation task, mean
intersection over union (mIoU) metric is deployed to evaluate
the performance. Higher value indicates the better performance
for each metric.

E. RS Scene Recognition Results

Table I shows the quantitative performance on the RSSCN7
dataset. When there are no occlusions, the geoscience task
network gets 93.57% overall accuracy, seeing “Clean Testing".
If we feed the occluded images into the fixed geoscience task
network pre-trained on clean images, the overall accuracy
for “Occluded Testing" is only 71.14%, since it is more
difficult for the fixed geoscience task sub-network to make
accurate recognition when there are occlusions in image.
With each of the image inpainting methods, the recognition
accuracy is improved, this improvement indicates that image
inpainting could help the geoscience related task. Among
the comparison methods, the MISF [52] method got the
advanced performance of PSNR 27.44, SSIM 0.83, Accuracy
87.92%. However, the Proposed method obtained the best
performance of PSNR 28.25, SSIM 0.86, Accuracy 90.21%.

This phenomenon demonstrates that the proposed method
could not only achieve the best task-related performance,
but also obtain advanced reconstructed image quality. The
qualitative results of image inpainting for RS scene recognition
are shown in Fig. 6.

Comparing the Proposedb, Proposed-, and Proposed
versions of our method, we can see that 1) the proposed
coarse-to-fine baseline method is with good-quality
reconstruction and reasonable task-related performance;
2) adding the geoscience task network into the proposed
framework is helpful in the RS scene recognition task,
with only slightly decrease in reconstructed image quality;
3) further including MaskMix in the proposed framework
could continue to improve the task-related performance and
reconstructed image quality.

F. Cross-view Geolocation Results

Table II shows the quantitative results on the CVUSA
dataset for the cross-view geolocation task. With the fixed
LPN [4] pretrained on clean images as the geoscience
task network, clean images could obtain 84.77% AP while
occlusions will reduce it to 28.12%. It demonstrates that
occlusion leads to the significant challenge to the cross-view
geolocation problem. By each image inpainting method, the
task-related performance could be increased. Among them, the
Proposed method gets the best AP as 78.84%, much larger
than other image inpainting methods. This is because that the
Proposed method is designed to improve the geoscience task-
related performance without changing the fixed geoscience
task network. Reconsidering 1) the large increase from 28.12%
AP to our 78.84% improvement and 2) no need to change the
fixed geoscience task network pretrained on clean images, our
proposed method is quite promising to process and understand
the occluded geoscience images. Specifically, the Proposedb

already obtains better performance than other comparison
methods on both image quality evaluation metrics and
geoscience task-related evaluation metrics. When combined
with geoscience task network (Proposed-) and MaskMix
(Proposed), the task-related performance, R@K and AP, could
be further improved, which is consistent with the experimental
results for RS scene recognition.

It is worth mentioning that the image quality (PSNR,
SSIM) of final Proposed method is relatively high but not
the best, compared to Proposedb. It also verifies that better
image quality not always lead to higher geoscience task
performance. Our goal is applying inpainting to reach much
better geoscience task performance along with relatively good
image quality, without changing the fixed geoscience task
network pretrained on clean images. Some previous computer
vision research also shows that only enhancing the image
reconstruction quality does not necessarily improve the next
computer vision task performance. As shown in [59], deraining
even decreases object detection accuracy on the rainy images.
As studied in [60], removing haze cannot largely improve its
classification performance. The qualitative results of image
inpainting for cross-view geolocation are shown in Fig. 7.
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TABLE II
QUANTITATIVE EXPERIMENTAL RESULTS ON THE CVUSA DATASET FOR CROSS-VIEW GEOLOCATION USING FIXED LPN [4] (PRETRAINED ON CLEAN

IMAGES) AS THE GEOSCIENCE TASK NETWORK.

Methods Recall@1 Recall@5 Recall@10 Recall@top1% AP PSNR SSIM
Clean Testing [4] 82.34 93.14 95.28 98.83 84.77 - -

Occluded Testing [4] 24.55 38.89 45.29 68.18 28.12 11.87 0.70
TELEA [51] 43.85 61.85 68.65 86.44 48.10 24.17 0.80
Pix2Pix [45] 40.05 57.85 64.40 83.53 44.32 23.76 0.76

SPL [57] 52.62 70.33 75.98 90.03 56.73 24.74 0.85
GMCNN [19] 46.25 63.81 70.14 86.44 50.40 26.23 0.84

CSA [18] 52.47 70.66 76.60 91.32 56.73 26.26 0.89
RFR [50] 47.55 66.05 72.29 87.83 51.88 26.84 0.88
MISF [52] 69.64 85.92 89.94 97.07 73.33 26.73 0.86
Proposedb 68.20 84.68 88.87 96.74 71.93 28.47 0.92
Proposed- 75.46 89.46 92.38 97.75 78.62 28.34 0.91
Proposed 75.69 89.55 92.55 97.76 78.84 28.37 0.91

(a) (b) (c) (d) (e)

Fig. 7. Qualitative comparisons on the CVUSA dataset: (a) Input ground/street-view images, (b-d) image inpainting results by CSA [18], RFR [50], and the
Proposed method, (e) ground truth.

G. RS Semantic Segmentation Results

Table III shows the quantitative performance on the
LOVEDA dataset. When there are no occlusions, the
segmentation task network gets 0.4403 mIoU. If the occluded
images are fed into the semantic segmentation task network
pre-trained on clean images of the LOVEDA dataset, the mIoU
for “Occluded Testing” is only 0.3554. The mIoU performance
could be improved by different inpainting methods. These
improvements demonstrate that inpainting methods help to
reduce the impact of occluded regions on geoscience task.
Among the comparison methods, the SPL method obtains
the advanced performance of PSNR 30.90, SSIM 0.93, mIoU
0.4176. However, the proposed method achieves the best mIoU
0.4329, with comparable PSNR and SSIM score of 29.2 and
0.92. This phenomenon indicates that although the proposed
method did not reach the highest image reconstruction quality
in PSNR and SSIM, it could obtain the best task-related
performance. The qualitative results of image inpainting for
semantic segmentation are shown in Fig. 9. The proposed
method could generate comparable image reconstruction

quality as other methods while obtain the best task-related
results at the same time.

Fig. 8. Illustration of the coarse and refined reconstruction maps by the
proposed image inpainting method using Proposedb as example. From left to
right: input satellite image with occlusions, coarse reconstruction map, refined
reconstruction map, and ground truth.
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TABLE III
QUANTITATIVE EXPERIMENTAL RESULTS ON THE LOVEDA DATASET FOR
RS SEMANTIC SEGMENTATION USING FIXED HRNET [48] (PRETRAINED

ON CLEAN IMAGES) AS THE GEOSCIENCE TASK NETWORK.

Methods PSNR SSIM mIoU
Clean Testing [48] - - 0.4403

Occluded Testing [48] 12.13 0.85 0.3554
CSA [18] 28.76 0.92 0.4231
RFR [50] 30.15 0.92 0.4132
MISF [52] 30.76 0.92 0.4271
SPL [57] 30.90 0.93 0.4176
Proposedb 28.45 0.92 0.4283
Proposed- 29.21 0.92 0.4320
Proposed 29.20 0.92 0.4329

(a)           (b)           (c)           (d)           (e)          (f)

Fig. 9. Qualitative comparisons on the LOVEDA dataset: (a) Input images,
(b-e) image inpainting results by CSA [18], RFR [50], MISF [52] and the
Proposed method, (f) ground truth.

H. Effectiveness of Coarse & Refined Inpaintings

In this section, we study the effectiveness of coarse and
refined inpaintings respectively. Taking the Proposedb method
on RSSCN7 dataset as an example, the coarse reconstruction
gets PSNR 27.10 and SSIM 0.84, while the coarse-to-fine
reconstruction obtains better PSNR 27.85 and SSIM 0.85.
Therefore, the coarse-to-fine learning performs better than the
coarse network learning only. As shown in Fig. 8, compared to
the coarse reconstruction map, the refined reconstruction map
looks more smooth with less defects in our experiment.

I. Running Time & Failure Case

During the testing stage, our running time per 512 × 512
RGB color image inpainting is 0.1s, and our running time
per 256 × 256 RGB color image inpainting is 0.033s. This
demonstrates the proposed network is efficient for geoscience

Fig. 10. Illustration of the failure case by the proposed image inpainting
method. From left to right: input satellite image with occlusion, result by
MISF [52], result by proposed method, and ground truth.

image inpainting task and could be used as an image pre-
processing step.

As shown in Fig. 10, if an object (like an island) of
geoscience image is fully covered by occlusion, the proposed
method could not well reconstruct it because the proposed
method does not have enough prior knowledge of the
geoscience context. This disadvantage of the proposed method
could be overcame if feeding with more context images,
e.g., other geoscience images without occlusion of the same
location in different time. This is different with the common
image impainting problem with rich prior knowledge, e.g., the
face image impainting.

V. CONCLUSIONS

In this paper, we studied the research problem of task-
driven image inpainting for geoscience images. Instead of
only going for a better image quality after reconstruction,
our objective is to largely improve the geoscience task
performance with relatively high image quality, without
changing the fixed/deployed geoscience task network pre-
trained on clean images. We proposed a coarse-to-fine task-
driven learning based deep CNN model with MaskMix based
data augmentation for this problem. The experimental results
on RS scene recognition, cross-view geolocation, and semantic
segmentation tasks show the effectiveness and accuracy of the
proposed method.
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