2209.12512v2 [cs.CV] 14 Feb 2023

arxXiv

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 8, JAN 2023 1

Multiscale Latent-Guided Entropy Model for
LiDAR Point Cloud Compression

Tingyu Fan, Linyao Gao, Yilin Xu, Dong Wang, Member, IEEE, Zhu Li, Senior Member, IEEE

Abstract—The non-uniform distribution and extremely sparse
nature of the LiDAR point cloud (LPC) bring significant chal-
lenges to its high-efficient compression. This paper proposes a
novel end-to-end, fully-factorized deep framework that represents
the original LiDAR point cloud into an octree structure and
hierarchically constructs the octree entropy model in layers. The
proposed framework utilizes a hierarchical latent variable as side
information to encapsulate the sibling and ancestor dependence,
which provides sufficient context information for the modeling of
point cloud distribution while enabling the parallel encoding and
decoding of octree nodes in the same layer. Besides, we propose
a residual coding framework for the compression of the latent
variable, which explores the spatial correlation of each layer by
progressive downsampling, and model the corresponding residual
with a fully-factorized entropy model. Furthermore, we propose
soft addition and subtraction for residual coding to improve
network flexibility. The comprehensive experiment results on the
LiDAR benchmark SemanticKITTI and MPEG-specified dataset
Ford demonstrate that our proposed framework achieves state-
of-the-art performance among all the previous LPC frameworks.
Besides, our end-to-end, fully-factorized framework is proved by
experiment to be high-parallelized and time-efficient, which saves
more than 99.8% of decoding time compared to previous state-
of-the-art methods on LPC compression.

Index Terms—point cloud compression, end-to-end learning,
octree, deep entropy model, sparse convolution.

I. INTRODUCTION

UE to the rapid development of 3D sensors, point clouds

(PC) [1]-I3] have become a promising data structure
with broad applications in autonomous driving [4]], robotic
sensing [5], and AR/VR. Among various use cases, a type
of point cloud captured by the Light Detection And Ranging
(LiDAR) sensor, called the LiDAR point cloud (LPC) [6],
has recently received much attention. An LPC represents the
scene information centered on a driving vehicle and is usually
collected in real-time, with over 100,000 points per frame
[7]. However, the non-uniform distribution of the LiDAR
point cloud and the noise brought by real-time acquisition
make the exploration of spatial correlation extremely difficult,
bringing significant challenges to its compression. Therefore,
this paper focuses on the geometry of LiDAR point clouds,
aiming to design an efficient end-to-end deep framework for
the compression of LiDAR point clouds.

Prior works on LiDAR point cloud compression use multi-
ple data structures to regularize the non-uniform point cloud
sequence, e.g., range images [8], KD-trees [9]], [10] and
Octrees [[11]], [12]. Among them, the Moving Picture Expert
Group (MPEG) develops a Geometry-based Point Cloud Com-
pression (G-PCC) standard [|13[]. G-PCC is implemented based
on the octree structure that recursively divides the current

3D cube into eight sub-cubes. G-PCC reports state-of-the-
art performance among all rule-based methods. However, the
above methods are highly dependent on hand-crafted context
selection and entropy model without the optimization by
traversing the whole dataset, leading to unsatisfactory coding
efficiency.

Thanks to the application of deep learning techniques in im-
age/video compression [14]-[19], learning-based point cloud
compression methods [20]-[23] have emerged. For LPC, most
of the methods are based on the octree entropy model. Given
the octree sequence x = {1, z2, - , 2N }, the lower bound of
bit rate can be formulated using the information entropy of the
data distribution p(x) [24]], which is assumed intractable due to
its high dimensionality. Therefore, the goal is to approximate
p(x) with an estimated distribution g(x) computed by a deep
neural network. Given an estimation ¢(x), the lower bound of
bit rate is the cross-entropy between ¢(x) and p(x), i.e.,

H(p, q) = Ex~p [~ 1ogy ¢(x)] , (D

which is a tight lower bound achievable by arithmetic coding
algorithms. Due to the high-dimensionality of x, the probabil-
ity model ¢(x) is often constructed in an auto-regressive [25],
[26] fashion:

N

q(x) = H q(z;|context(x;)), 2)

K3

where context(z;) is a subset of all decoded nodes that
are considered to have dependence with xz;. The strategy to
determine the context set varies among different methods. Oct-
Squeeze [20] assumes the conditional independence of sibling
nodes given their ancestors and applies a hierarchical coding
structure that selects ancestry nodes as context, bringing low
computational complexity at the cost of violating the original
distribution. To mitigate the huge information loss brought by
the sibling independence assumption, VoxelContext-Net [22]]
utilizes a 3D convolutional neural network (CNN) to capture
the dependencies between nodes in the bottom layers of the
octree. OctAttention [23] further encodes and decodes the
octree in a breadth-first order and maintains a context win-
dow {z;—N41, -+ ,x;—1} for attention-based context learning,
which reports state-of-the-art performance among all LPC
compression methods. However, selecting the decoded sibling
nodes causes the context to vary during the decoding process.
Thus the model needs to be constantly re-run to update
the semantic information of the current context, leading to
excessive decoding complexity and non-parallelism. Although
the author proposes mask operation for complexity reduction,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 8, JAN 2023 2

,#

00100001 (33

Fig. 1.

The demonstration of octrees. The left three graph shows the hierarchical construction process of the octree sequence with depths 9, 8, and 7.

The rightmost graph shows a part of an octree sequence, where black indicates occupied, and white indicates unoccupied. The occupied nodes need to be

subdivided into smaller cubes until reaching the specified depth.

the model still requires even more than 10 minutes to decode
one frame of point cloud [23]].

To summarize, two major challenges must be compatibly
addressed to design an efficient LPC compression network: 1)
The context selection algorithm needs to thoroughly explore
the dependence of the whole octree to avoid suboptimality. 2)
The decoding process of nodes should be independent enough,
such that the model runs only once during decoding for the
sake of complexity and parallelism.

To this end, we propose a new end-to-end, fully-factorized
LPC entropy model. Inspired by Ballé et al. [15]], we address
the above two issues by transmitting side information, which
encodes additional information to reduce the mismatch of
the entropy model. The proposed side information is a latent
variable encapsulating the dependency information of the
octree, through which the octree nodes are assumed to be
independent layer-wisely. To fully explore the spatial corre-
lation, we design the latent variable in a hierarchical form,
progressively increasing the perceptive field to capture deeper
correlation information. The model we propose encapsulates
the sibling correlation through the latent variable to achieve
optimal coding efficiency. Meanwhile, compared with Fu et
al., the independence of sibling nodes conditioned on the latent
variable significantly decreases the computational complexity
and brings decoding parallelism among nodes in the same
layer, such that the model runs only once during decoding.
To summarize, our contributions are highlighted as follows:

o We propose an end-to-end, fully-factorized LPC compres-
sion framework that encapsulates the spatial correlation of
point clouds by introducing a hierarchical latent variable.
The proposed framework explores the dependence of
sibling nodes to avoid suboptimality while maintaining
low complexity and a high degree of parallelism. The
model runs only once during decoding.

o We propose to replace the ordinary addition/subtraction
operation with soft addition/subtraction to improve the
model’s flexibility.

o The experiment result shows that our proposed network
achieves state-of-the-art performance on LPC datasets Se-
manticKitti and Ford. Furthermore, due to the enormous
complexity reduction, our model saves 99.8% of runtime
compared with the previous state-of-the-art method.

II. RELATED WORK
A. Sparse Convolution

Compared with well-structured 2D images/videos, point
clouds are of unordered and non-uniform characteristics. A
straightforward way to process 3D point clouds is by vox-
elization and 3D convolutional neural networks (CNN), which
runs counter to the sparsity nature of point clouds, resulting
in huge time and memory consumption. Therefore, Choy et
al. propose the generalized sparse convolution [27], with the
original point cloud P = {(z;,y;,2;,fi)}:; expressed as the
coordinate matrix C' and the associated feature matrix F"

b =1 w1 & f1
by T2 Y2 2 fa

C = . JF=1. 3)
by TN YN 2N fn

where b; is the batch index and f; is the associated feature.
The generalized sparse convolution is defined as:

out __
T, =

> Wil for u e cot (4)
i€EN3 (u,Cin)

where 2" is the input feature-vector defined at u, C* and C°%*
are predefined input and output coordinates and A3 (u,C") =
{ilu+i € C™,i € N3} is the set of offsets from u that exist in
C™. The sparse CNN utilizes the same convolutional structure
as the dense CNN for each effective point while significantly
reducing the time and memory consumption.

B. Rule-based LiDAR Point Cloud Compression

Tree structures are widely applied in LPC compression due
to its ability to regularize sparse geometry data, e.g., KD-tree
[10]], quadtree [28]] and octree [11], [13]. Among them, the
octree-based standard G-PCC [[13] developed by the MPEG
group achieves state-of-the-art performance. G-PCC relies on
the decomposition of octree geometry. Specifically, a LIDAR
point cloud P is first quantized into a 2¥ x 2& x 2F cube:

P- bias)

P = round <
qs

&)

bounding

gs = 9L _1

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 8, JAN 2023 3

where bias = [min(P;), min(P,), min(P.)], L is the target
depth of the octree, and bounding is the size of the bounding
box of P. Correspondingly, the inverse quantization is defined
as follows:

P="Px gs + bias, (6)

where P is the reconstructed point cloud. As Figure |1 shows,
the octree is constructed by recursively dividing the current
cube of P into 8 subcubes until the current cube is empty or
the recursion reaches the target depth L. An 8-bit occupancy
code is assigned for each cube to indicate the occupancy
situation (0 for unoccupied and 1 for occupied). However, the
above methods (including G-PCC) rely on the hand-crafted
context model that cannot be optimized by traversing large-
scale data, leading to inferior performance compared with
deep-learning based methods.

C. Learning-based Point Cloud Compression

Due to the applications of deep learning techniques in
image/video compression, learning-based point cloud com-
pression methods have recently emerged. In general, these
learning-based methods can be summarized as point-based,
voxel-based and octree-based.

1) Point-based methods: The point-based methods directly
process and compress the original point cloud, e.g., Huang et
al. [29] utilizes Pointnet++ [30]] structure for feature extraction
and point cloud reconstruction. Gao et al. [31] further propose
graph-based feature extraction and attentive sampling to im-
prove compression efficiency. However, due to the complexity
factor, the point-based methods are limited to small-scale
datasets like ShapeNetCorev2 [32].

2) Voxel-based methods: The voxel-based methods process
the point clouds by voxelization. Among them, Wang et al.
[33] utilize a 3D CNN-based network for voxelized point cloud
compression. The experiment result shows remarkable coding
gain; however, the voxelization process runs counter to the
sparsity nature of point clouds, leading to excessive time and
memory consumption. Therefore, Wang et al. further utilize
the generalized sparse convolution by Choy et al. [27] and
propose an end-to-end multi-scale point cloud compression
framework based on the sparse CNN [34]]. The experiment
result shows state-of-the-art performance on dense point cloud
datasets 81 Voxelized Full Bodies [35]] (8iVFB) and Microsoft
Voxelized Upper Bodies (MVUB) [36]. However, the above
voxel-based methods are limited to dense point clouds, which
are not yet implementable on LPC [33], [34] due to the
extreme sparsity and noise brought by real-time acquisition.

3) Octree-based methods: As mentioned in Section |I, The
octree-based methods utilize the octree structure to regularize
the point cloud structure, which is widely used in LiDAR point
cloud compression due to the ability to express sparse point
clouds. The auto-regressive probability model is widely used
to infer the high-dimensional octree sequence. However, due
to the inefficiency of the auto-regressive inference, existing
octree-based methods [20]—[23[] fail to balance the perfor-
mance and complexity (more details in Section [[).

Fig. 2.
dashed lines represent the dependencies brought by the first- and second-
order Markovian properties. The decoding follows the order of - - - — f) -
x(D — £+1) _ x(I+1) _, ... The "Expand” denotes the operation that
expands the 8-dimensional occupancy map into the corresponding point cloud.

The decoding pipeline of the proposed method. The solid and

III. PROBLEM FORMULATION

The proposed framework encodes and decodes the oc-
tree in layers to ensure parallelism. The octree is al-
ternatively expressed as an ordered set of layers: x =
{xM x@ ... x()) where the decoding of the I-th layer
x() depends on the previously decoded layers, i.e., x(1*=1),
The corresponding hierarchical probability model is expressed

as follows:
L

q(x) = [a(xPx**=D). (7)

l

The high dimensionality of x(*) makes its probability distribu-
tion intractable to compute. Instead of relying on the inefficient
auto-regressive models for the node-wise decomposition of
x| we introduce a latent variable f(*), conditioned on which
the nodes in x(") are assumed to be independent [37]]. Figure
shows the decoding pipeline with the introduction of £,
Through (), the spatial correlation of x() is captured as
follows:

N;
q(x(l) |f(l)7 X(l:l—l)) _ H Q(xz(-l) |f(l)7 X(l:l—l))7 8)
%

where N is the number of nodes in the I-th layer. £(!) serves
as side information to signal modifications to the probability
distribution x() that requires extra bits to express. Since £(*)
is to be encoded and decoded together with x(!), we express
the the joint probability distribution of x(*) and f(®):

q(X(l), f(l) ‘X(l:l—l)7 f(l:l—l); w) — q(X(l)|X(1:l_1),

f(l:l);’l,bx)q(f(l)lx(l:l_l),f(l:l_l);’l/Jf), ®)

where v, and 1)y are the parameters for decoding x® and
£f(). By assuming the Markovian property, the joint distribu-
tion is reduced to the product of the following two terms:

g = g(x D |x =1 0 51=2) pU=1). 4

T (10)
g = q(Ox=1 £071 x (=) g(=2) 4).

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 8, JAN 2023

elL-1) FL-1) o(L-2)

. e@)
Embedding| Encoder

£(D)

elL-1)
Embedding}—{EncoderJ

£(L-1)

total 5x
downsample

7 T)e-9)
Embedding Encoder

Fig. 3. The overall architecture of the proposed model. The model consists
of 5 layers. For each layer, x(!) is the I-th octree layer and e() is the
corresponding occupancy embedding. £ s the latent variable of the -
th layer. #() is the reconstruction residual. F() and £ are respectively
the predicted and reconstructed latent variable. — and + denote the soft
subtraction and soft addition operator. Q denotes quantization.

Note that we assume second-order Markovian property to
exploit the context of lower layers. qg(ul) can be derived by
a classification network with 256 dimensions, each indicating
the probability of an occupancy code. However, q;l) is unable
to be derived in the same way, because different from x
in one-hot representation, f(!) is a numerical vector whose
distribution cannot be explicitly represented by a classification
network. Therefore, we first apply residual coding to remove
the redundancy in f():

£ — F0 42O with FO = gy(x(=1), g1,

“2) el (1
x72) £y,

where gq is a neural network with %) ¢ as its parameters, £ is
the predictable component given its context, which requires no
extra bits; and r(®) is the residual. As we have no prior beliefs
about r(), we assume it to be independent and identically
distributed (i.i.d.), and model it with a fully-factorized entropy
model [14]:

N
gy = q(r®) = T a("). (12)

IV. NETWORK ARCHITECTURE

The overall architecture is shown in Figure 3] The proposed
network follows a 5-layer architecture, where each layer
consists of an embedding network, an encoder network, and
a decoder network. Each octree layer x(V) passes through the
embedding network (chapter [[V-A) to generate the occupancy
embedding e("). The encoder network (chapter analyses
the correlation between eV and £0+1) (assume £(L+1) = 0 for
consistency) and outputs the latent variable £(*) encapsulating
the spatial correlation of input variables. The decoder network

(@)

(b)

Encoder Decoder
£+ R0 §0-) 0D 0
Conv(64, 2, 2) | Concatenate | | Concatenate |
ReLU l]
i : oo 3T Deconv(64, 2, 2)
' onv|) 9,
IRN 5 ReLU Retd
IRN Conv(64, 3, 1) i
el IRN Softmax IRN
; IRN
| —— RN
| Arithmetic
| Coder
Conv(16, 3, 1) onv(16, 3, 1)
£ x® Fu+1)
© g () g ©
Soft Addition : Soft Subtraction : Embedding
#0 FO 'FO £ ; x®

L-{ Concatenate |
l

[conv(16,3,1) |

1 Conv(64, 3, 1)
: Concatenate | : ReLU
i) i

Conv(64, 3, 1)
RelLU
Conv(64, 3, 1)

[conv(16,3,1) |

£ £ el

Fig. 4. The detailed network architecture of (a) the encoder module, (b)
the decoder module, (c) the soft addition module, (d) the soft subtraction
module, (e) the occupancy embedding module. Conv(C, K, S) denotes a
sparse convolution layer with output channel size C, kernel size K, stride S.
IRN stands for the Inception Residual Network in [34].

(chapter decodes the I-th octree layer x() from the
previously decoded context, including £, e(:=1), (=1 and
e(=2) where £() is the reconstructed latent variable of the
i-th layer. Meanwhile, the decoder network generates the
predicted latent variable f(*1) for the higher layer, which
is softly subtracted (chapter [IV-C)) from f(*1) to generate
the residual r+1, r(+1) s quantized into #(+1) with the
quantization step of 1 before entropy coding. During training,
the quantization is replaced by adding a uniformly distributed
noise 1 ~ U(—%,1) to maintain the differentiablity of the
network. Due to the i.i.d. assumption illustrated in Equation
@), we utilize a factorized entropy model [|14]] (chapter
to compress the quantized residual #0+1) | which is softly
added (chapter with £(+1) to generate the reconstructed
latent variable (1) for the higher layer.

Due to the negligible spatial correlation after down-
sampling, £E5) s compressed by a factorized entropy model,

and x(“~9) is compressed by OctSqueeze [20].

A. Occupancy Embedding

The architecture of the occupancy embedding module is
shown in Figure [@fe). The occupancy embedding module
takes the one-hot octree layer x() as input and outputs the
corresponding occupancy embedding e"). The network aims
to encode the semantic information of x() into a densely

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 8, JAN 2023 5

Input: N channels

| |
Conv(N/4, 3, 1) Conv(N/4, 1, 1)
RelU RelLU
Conv(N/4, 3, 1) Conv(N/4, 3, 1)
RelLU RelLU
Conv(N/2, 3, 1) Conv(N/2, 3, 1)

Output: N channels

Fig. 5. The Inception Residual Network (IRN) block.

distributed representation that can be better processed by a
neural network. As shown in Figure E[e), the network consists
of three sparse convolution layers, which are trained jointly
with the entire network. Ablation studies in chapter
demonstrate the effectiveness of the occupancy embedding
network, where we can observe that occupancy codes geo-
metrically closer are more similar in the vector space.

B. Encoder Network

The architecture of the encoder network is shown in Figure
H(a). Equation (I0) shows that the probability distributions of
x() and £+ is correlated with latent variable £(*) of the I-th
layer. Therefore, the encoder network (Figure a)) is designed
as a deterministic transform on x() and £f(*+1) to encapsulate
their spatial correlation into f():

£ = g (xW, £ 4p,), (13)

where 1), is the encoder parameters. Inspired by Wang et al.
[34], we adopt sparse-CNN to design g.(-) for high-efficiency
octree feature extraction. The octree sequence is modeled as a
sparse tensor mentioned in equation (??), where the coordinate
matrix C corresponds to the coordinates of the octree nodes,
and the feature matrix F' corresponds to the occupancy code.
The down-scaling of the octree layers is achieved by a stride-
two and kernel-size-two sparse convolution layer. Specifically,
£U+1) is first down-sampled by a stride-two sparse convolution
layer, followed by several Inception Residual Network (IRN)
blocks [38] (Figure E]) for neighborhood feature extraction
and aggregation. For the feature fusion of fU+1) and x(),
the down-sampled f(+1) is concatenated with the occupancy
embedding e(*) and passes through a sparse convolution layer
to generate the latent variable £(*) for the I-th layer.

C. Soft Subtraction/Addition

The quantization of the residual r(") introduces error to
decoding, leading to noise between the latent variable £f(*) and
its reconstruction f(). Therefore, instead of directly adding
the quantized residual #() to the predicted latent variable f(*)
shown in equation (II), we propose soft addition (denoted as
@) to compensate for the information loss during quantization:

PO — FO @30 — FO 4 p, O FDgpy), (14)

where h,(-) is a transform with 1), as its parameters. Simi-
larly, the soft subtraction (denoted as ©) is defined as follows:

e — £ g FO — £O _p GO £ 0. (15)

Note that the difference between f(") and f(!) can be arbitrarily
close to zero provided that with additional bit rate to encode
#@ and the corresponding proper choice of hg(-), hs(:).
The network dynamically adjusts the quantization precision
of each node in) to balance the reconstruction quality of
£ and the corresponding bit rate consumption in an end-to-
end manner. h,(-) and hy(-) (Figure c)(d)) are designed as
sparse convolution layers to fit arbitrary transformations.

D. Decoder Network

The design of the decoder network follows equation (I0)
and @]) When constructing the network, we assume second-
order Markovian property for the system stability, as the lower
layer context is potentially informative for the entropy coding
of the current layer. To demonstrate the necessity of second-
order Markov property, we compare the performance of first-
and second-order Markov assumptions in chapter [VI-B

Figure Ekb) shows the architecture of the decoder network,
which is divided into two branches corresponding to the
decoding of x(and f+1) respectively:

1) The decoding of xV: The context of x| including
x=DfO x(0=2) and £0-1 are concatenated together and
pass through a 2-layer sparse CNN. Finally, a 256-dimensional
softmax layer is used to generate the probability distribution of
x() (denoted as p{) € RN1*256) During training, we directly
represent the bit rate of entropy coding with the cross entropy
between x() and p(), since cross entropy is a tight lower
bound achievable using arithmetic coding algorithms. When
evaluating the model, an arithmetic coder is used to encode the
difference between p() and x(V) to ensure that the decoding
of x() is lossless.

2) The decoding of £+1): The context x(V, £, x(=1) and
£f=1 are concatenated together and up-sampled to generate
the predicted latent variable £/, We adopt a stride-two and
kernel-size-two sparse transposed convolution layer to achieve
the octree up-sampling. Similar to the encoder network, we
utilize several IRN modules for local feature analysis and
aggregation and a stride-one sparse convolution layer to adjust
the dimension of output.

Note that the nodes in the same layer share the same context,
meaning that the decoding process of each node is independent
of other nodes in the same layer. This independence brings
superior parallelism to the entire network. Compared with Oc-
tAttention, which requires re-running the model multiple times
to overcome the continuous varying of context, our proposed
model needs only run once during decoding. Therefore, one
can observe significant runtime improvement in the subsequent
experiments.

E. Factorized Deep Entropy Model

We adopt the factorized deep entropy model [14] for entropy
coding. Two operations in the entropy encoding system block

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 8, JAN 2023 6

the back-propagation of gradients: 1) quantizing the input vari-
able y into y, 2) encoding the quantized variable to and from
the bitstream. For 1), the quantization operation is replaced by
adding a uniformly distributed noise g ~ U(f%, %) to ensure
differentiability during training.

For 2), thanks to the development of arithmetic coding,
we can approximate the bit rate of encoding y without the
actual encoding and decoding process. The estimated size of
bitstream is the entropy of y, which is a tight lower bound
achievable by arithmetic coding algorithms:

Ry =Ey [~ log gy (¥)]

We follow [[14]] and model the probability distribution of y
with a fully factorized density model:

(16)

t5106319) = [T (1100 (0) stt(-3,)) G0, (17
where Dy, |6 is the univariate distribution of the ¢-th channel
and @) is the corresponding parameters. In general, adding
a hyperprior variable z upon y can further capture the spa-
tial correlation of y for more bit rate reduction [15]], [39].
However, it is unnecessary for our proposed model due to
the i.i.d. assumption of the residual rY) in equation (12).
More information can be found in Section that plots the
visualization of (). One can observe the strong independence
of r¥ among nodes in the same layer.

FE Loss function

The model is trained in an end-to-end manner with the
following loss function:

L
L=« Z
=L

l

L
RO+ D R
k I=L—k

where k is the number of layers, Rg) is the bits per out-

put point bpop to encode the quantized residual #() (let
#(L=R)=f(L=F) for consistency) of the I-th layer, RY is the
bpop to entropy encode x(). In experiments, we find that the
model easily converges to a local optimum where the bit rate
of £ is extremely low. Therefore, we add a scaling factor
« to encourage the model to output more informative £, o
is set as 0.5 for the first several epochs and 0.95 after that.
Rgl) is computed by the factorized entropy model mentioned
in chapter |[V- Rg) is computed by the binary cross entropy
(BCE) between the probability p() and the ground truth x(V):

(18)

| 256 l l
Rgcl) = N, Z Z zz(‘j) log, p7(jj)7 19)
i=1 j=1

where N; is the number of nodes in the [-th layer, and N is
the number of points in the output point cloud.

V. EXPERIMENTS
A. Datasets

o SemanticKITTI [40] is a public LiDAR dataset for
autonomous driving, containing 22 sequences with 43352
scans collected from a Velodyne HDL-64 sensor. We

7

Fig. 6. The visualization of datasets. We randomly choose six scans from two
datasets. The upper row is the scans from SemanticKITTI. The lower row is
the scans from Ford.

TABLE 1
DIFFERENT BD-RATE(%) GAINS AGAINST G-PCC.

Ours OctAttention Voxelcontext-Net OctSqueeze
SemanticKITTI -28.27 -25.33 -14.37 -3.95
Ford -25.55 -22.01 -11.68 -2.98

adopt the official data splitting that takes sequences 00 to
10 as the training set and 11 to 21 as the test set.

o Ford is a LiDAR dataset suggested by MPEG Common
Test Conditions (CTC) [41]]. The dataset contains three
sequences with 4500 frames. The precision of the original
point cloud is 18 bits. We divide sequence 01 as the
training set and sequences 02 and 03 as the test set.

B. Training Strategy

o For SemanticKITTI, we train four models for octree depth
L =12,11,10,9. We utilize an Adam optimizer with 5 =
(0.9,0.999) and the initial learning rate set as 0.0006. We
further utilize a learning rate scheduler with a decay rate
of 0.7 for every 20 epochs. We train the proposed model
for 200 epochs, with 1200 iterations for each epoch. For
the first 10 epochs, « in equation (I8) is set as 0.5. The
batch size is set as 4 during training. We conduct all the
experiments on a GeForce RTX 3090 GPU with 24GB
memory.

« For Ford, we also train four models for octree depth L =
12,11,10,9. As Ford is a small dataset with only 1500
frames for training, we first train the L = 12 model for
40 epochs. « in equation (I8) is set as 0.5 for the first
two epochs and 0.95 for the remaining. For the models
of L = 11,10,9, since the amount of quantized data is
too small to support the end-to-end training, we perform
four epochs of finetuning on the L = 12 model on Ford
dataset with the initial finetuning learning rate 0.0002. «
is set as 0.95 during finetuning.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 8, JAN 2023

Bitrate vs D1-PSNR (KITTI) 825 Bitrate vs D2-PSNR (KITTI) 1e-3 Bitrate vs CD (KITTI)
77.54 27
184 —e— ours .
75.01 80.0 OctAttention
1.6 —— VCN
72.51 77.5 [) —— OctSqueeze
% 1.4 —— G-PCC
o 1 e 75.0
< 70.0 4 12
& & 72.51 e
% 6751 o e 9 1.0
. © 7001 E
65.0 ours 70. ours So8
OctAttention OctAttention O
62.5 e VCN 67.5 e VCN 0.6
60.0 —e— OctSqueeze 65.0 1 —e— OctSqueeze 0.4
) —— G-PCC . —— G-PCC
1 2 3 4 5 1 4 5 1 2 3 4 5
Bits per Input Point (bpip) Bits per Input Point (bpip) Bits per Input Point (bpip)
65.0 Bitrate vs D1-PSNR (Ford) Bitrate vs D2-PSNR (Ford) 1e2 Bitrate vs CD (Ford)
. 231 —— ours
62.51 67.5 OctAttention
—— VCN
60.01 65.0 o 29 —— OctSqueeze
2 —— G-PCC
o 57.5 o 62:5 8
= = 3151
g 550 £ 60.0 -
— ~ L
O 525 O 575 £
ours ours L_B 1.0
50.0 OctAttention 55.0 OctAttention O
—— VCN —— VCN
475 —e— OctSqueeze 52.5 —e— OctSqueeze 0.5
—s— G-PCC —— G-PCC
: T T T T 50.0 T T T T T T T - r
1 2 3 4 5 1 2 4 5 1 2 3 4 5
Bits per Input Point (bpip) Bits per Input Point (bpip) Bits per Input Point (bpip)
Fig. 7. Rate-distortion curves on SemanticKITTI and Ford. From left to right: D1-PSNR, D2-PSNR and chamfer distance

Number of Points vs Decoding Time

Number of Points vs Decoding Time

—e— ours

OctAttention
—— OctSqueeze
—— G-PCC

Decoding Time
= =) N w w
o v o wu o wu
o o o o o o

u
=3

o

Decoding Time

10t

10°

—— ours

OctAttention
—— OctSqueeze
—— G-PCC

-

0 20000 40000 60000 80000 100000
Number of Points

104 10°
Number of Points

Fig. 8. Decoding time comparison of our model, OctAttention, OctSqueeze
and G-PCC. The experiment is done on SemanticKITTI-00-000000. For each
network, we run it ten times and count the average decoding time. The left
figure is the decoding time comparison of the ordinary coordinate. The right
figure is the experiment results of the logarithmic coordinate.

C. Baseline Setup

We compare our proposed model with G-PCC and other
learning-based LPC compression network including Oct-
Squeeze, VoxelContext-Net and state-of-the-art method OctAt-

tention:

For G-PCC, we follow the MPEG CTC to generate
the results on SemanticKITTI and Ford with the latest
TMC13-v14.

For OctSqueeze, as the source code is not publicly
available, we re-implement their model and train for 200
epochs on SemanticKITTI, 40 epochs on Ford 01.

For VoxelContext-Net, as the source code is also unavail-
able, we adopt the re-implemented result by Muhammad
et al. [42], which reports better results than [22[]. We
remove the coordinate refinement module (CRM) in
VoxelContext-Net for the fairness of comparison. It is
a post-processing module that enhances the quantized
point cloud to reduce distortion but is irrelevant from the
entropy coding of point cloud geometry.

For OctAttention, we adopt the result on SemanticKITTI
in the paper. Since they have no available results on the
Ford dataset, we retrain their model on Ford 01 for 8
epochs (the same number of epochs as SemanticKITTI)
to generate the result on Ford 02 and 03.

D. Evaluation Metrics

The bit rate is evaluated using bits per input point (bpip),
and the distortion is evaluated using point-to-point geometry
(D1) Peak Signal-to-Noise Ratio (PSNR) and point-to-plane

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 8, JAN 2023 8

Bitrate vs D1-PSNR (KITTI) 825 Bitrate vs D2-PSNR (KITTI) 1e-3 Bitrate vs CD (KITTI)
77.54 -2
184" —e— second order
75.01 80.0 first order
1.6
72.51 77.5 [J]
% 1.4
o] o 75.0
=700 = @ 1.2
g g 725 o
& 6751 & / @ 1.0
fa) fa) g € :
65.01 70.0 508
<
62.5 67.5 “ o6
—— second order —e— second order
1 65.0 / B
60.0 first order (/ first order 04 \
1 2 3 1 2 3 1 2 3
Bits per Input Point (bpip) Bits per Input Point (bpip) Bits per Input Point (bpip)
Fig. 9. Ablation study of second-order Markovian property and first-order Markovian property.
Bitrate vs D1-PSNR (KITTI) 825 Bitrate vs D2-PSNR (KITTI) 1e-3 Bitrate vs CD (KITTI)
77.54 .
1841 —e— with soft addition/subtraction
75.01 80.0 w/o soft addition/subtraction
1.6
72.51 77.5 ot
% 1.4
o o 75.0
Z 700 PP
g g 725 o
EI 67.51 8. : 510
65.01 70.0 Eos
<
62.5 / 67.5 “os6
) —— with soft addition/subtraction 65.01 —— with soft addition/subtraction 04l
60.01 / w/o soft addition/subtraction ’ w/o soft addition/subtraction :
1 2 3 1 2 3 1 2 3

Bits per Input Point (bpip)

Bits per Input Point (bpip)

Bits per Input Point (bpip)

Fig. 10. Ablation study of the model with soft addition/subtraction and w/o addition/subtraction.

geometry (D2) PSNR, which are computed by the software
pc_error developed by MPEG. For Ford dataset, we follow
the MPEG CTC that sets the PSNR peak value p = 30000.
For the floating-point SemanticKITTI dataset, we follow the
evaluation metric in [23|] that scales the point clouds into
[~1,1], and sets the PSNR peak value p = 1. We also
compare the chamfer distance (CD) among all methods:

CD(P,P) = max(CD (P, P),CD (P, P)),

, _ 1 . _ (20)
CD'(P,P) = B > " min; [|Ip; — By, -

E. Experiment Results

1) Results on SemanticKITTI: The rate-distortion (D1-
PSNR, D2-PSNR, chamfer distance) curves of different meth-
ods on SemanticKITTI are shown in Figure [/| We can observe
that the four learning-based methods outperform G-PCC due
to the optimization by traversing the whole dataset. Besides,
OctSqueeze and Voxelcontext-Net assume different degrees
of node independence considering the time complexity; thus,
neither fully explores the sibling correlation, leading to sub-
optimal performance. Our method dramatically surpasses the
two methods due to the hierarchical latent variable, which
encapsulates the correlation of sibling nodes to remove spatial
redundancy. Meanwhile, our model surpasses OctAttention,
which considers sibling dependence despite the excessive

complexity. We also report the corresponding BD-Rate gain
of the four learning-based methods against G-PCC in Table
The experiment result shows that our model achieves state-of-
the-art coding efficiency on SemanticKITTI, with the highest
-28.27% BD-Rate gain against G-PCC.

2) Results on Ford: The rate-distortion curves of different
methods on Ford are also shown in Figure [/} and the corre-
sponding BD-rate gain against G-PCC is shown in Table
Ford is a dataset suggested by MPEG CTC. Our proposed
model also achieves state-of-the-art performance on Ford,
with the highest -25.55% BD-Rate gain against G-PCC. The
experiment result demonstrates the extensibility of our model.

3) Complexity Comparison: In this section, we evaluate
the complexity. Figure [§| compares the decoding time of each
method. We can observe that:

o The complexity of OctAttention is extraordinarily high
compared to other methods. This is due to the sibling
context selection strategy, which causes the context to
change during the decoding process and requires multiple
runs of the model to update the context. OctAttention
requires more than 5 minutes to decode one point cloud
frame, which is unaffordable in practical applications.

e On the contrary, our model is end-to-end and fully-
factorized, where the nodes in the same layer are indepen-
dently decoded. Compared with OctAttention, our model
is highly parallelized and requires running only once, thus

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 8, JAN 2023 9

GT(SemanticKITTI) reconstructed latent

residual latent predicted latent

B TN . 3

GT(SemanticKITTI)
43@\%\ =

1B ﬁi :
HER - Ll

7 residual- latent ‘ predicted' latent -
b Q e

LR
i,

W 4 I< .
(i

N

\ M v Lo "
dicted latent

residual latent < pre

Fig. 11. The visualization of the latent variable and residual. We randomly visualize 5 LiDAR point clouds and the corresponding latent variables and residuals
from SemanticKITTI and Ford. The 5 point clouds are from separate sequences. The leftmost column shows the original LiDAR point cloud. The middle-left
column shows the reconstructed latent variable £(!). The middle-right column shows the residual #(). The rightmost column shows the predicted component
of £, je. £ The color is visualized by random projection || which projects the high dimensional latent variable and residual into 3D color space, then
normalizes the 3D vectors to 0-255 to represent the RGB value. The dependence can be judged by color. The area with similar colors can be regarded as

highly spatial-correlated.

saving more than 99.8% of decoding time.

e Due to the complexer network structure, our model is
slightly slower than OctSqueeze, which assumes the
independence of sibling nodes and also decodes layer-
wisely. But our model explores the correlation of sibling
nodes, thus our model achieves better performance.

VI. ANALYSIS AND ABLATION STUDY

A. Ablation study on soft addition/subtraction

In chapter [[V-C] we propose substituting the ordinary ad-
dition/subtraction operator for the soft addition/subtraction.
Therefore, we perform an ablation study on its effectiveness in
Figure [T0] We separately train the two models on the training
split of SemanticKITTI and evaluate the result on the test split.
The experiment result proves that the soft addition/subtraction
enables the network to dynamically balance the reconstruction

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 8, JAN 2023 10

—e— bpip w/o latent

overall bpip with latent
44 —— occupancy bpip
—e— latent bpip

= —

9 10 11 12
Octree Depth

Fig. 12. The overall bit rate of the entropy model with latent variable (orange
line), the bit rate of the occupancy with latent variable (green line), the bit
rate of the latent variable (red line), and the overall bit rate of the entropy
model if no latent variable is introduced to capture the sibling dependency
(blue line). The x-axis is the depth of the octree, i.e., L. The performance
comparison is made on SemanticKITTI-00-000000.

loss and the corresponding bit rate of £, thus achieving
3.47% BD-Rate gain against the ordinary addition/subtraction.

B. Ablation study on the Markovian property

In equation , we assume the Markovian property of f()
and x() for simplification. When establishing the network, we
instead assume second-order Markovian property for system
stability in the hope that the lower layer context is also
informative for the entropy coding of the current layer. We
separately train two models of first-order and second-order
Markovian properties on the training split of SemanticKITTI
and evaluate the result on the test split. In Figure [0} we show
the performance comparison of the model based on first-order
and second-order Markovian properties. The experimental
result proves that the assumption of second-order Markovian
property is effective, which achieves 1.09% BD-Rate gain
against first-order Markovian property.

C. Analysis on Latent Variable

Defined by equation li the latent variable £ of the I-
th octree layer is decomposed into two parts: the predictable
component () given the previously decoded context, and the
independent residual component #(*) with no prior knowledge.
In this section, we visualize the decomposition process of £
in Figure The middle-left column is the visualization of
£, with clearly visible spatial dependence among each node.
The middle-right column is the visualization of the residual
#() that captures the unpredictable component of £(). We
can observe that +(*) consists of a large number of noisy
points, which demonstrates the i.i.d. nature of #(*) in equation
(I2). The rightmost column is the visualization of predictable
component £f(!) that captures the sibling dependence of £,

occupancy visualization distance
code -8
@ 11110000 Forod 0.0
(240) , P
e
®) 11100000 #-reg 0.0161
(224) e
v
() 11000000 Forog 0.0353
(192) P PR
* B
@ oooottt sf-i—-_q{_; 0.0430
(15) e
&---¢

Fig. 13. Analysis on occupancy embedding module. The left column is the
occupancy code of octree nodes. The middle column is the visualization of
the octree node. The right column is the Euclidean distance of the feature of
octree nodes from the octree node 11110000 (240) in feature space.

thus we can observe stronger spatial correlation than fO. The
visualization indicates that the residual coding successfully
captures the dependence of high-scale data into a low-scale
variable, and guarantees the i.i.d. nature of the remaining
information.

Figure [T2] shows the bit rate consumption to encode the
latent variable and occupancy, and the effect of the latent
variable on encoding occupancy. The bit rate of the latent
variable increases slowly with the overall bit rate, accounting
for less than 10%. However, the benefit of introducing latent
variables as side information is significant. The bit rate of
encoding the occupancy is reduced by more than 40% due
to the latent variable. Note that the network autonomously
balances the bit rate of each part via end-to-end training, with
the final bit rate as the optimization goal.

D. Analysis on Occupancy Embedding Module

To validate the effectiveness of the occupancy embedding
module, we compute the feature embedding of different occu-
pancy codes. In Figure[T3] we compare the Euclidean distance
of three occupancy codes from the base occupancy code
11110000 (240). Note that the input occupancy codes are
one-hot vectors whose distance is one between each other.
However, after being converted by the embedding module,
occupancy codes that are geometrically closer are similar in
the feature space, demonstrating that the occupancy embed-
ding module learns the geometric semantics of the occupancy
codes.

VII. CONCLUSION

This paper proposes an end-to-end, fully-factorized LiDAR
point cloud compression framework based on the hierarchical
decomposition of the octree entropy model. The network
utilizes a latent variable to encapsulate the sibling and ancestor
dependence, through which the sibling nodes are conditionally

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 8, JAN 2023 11

independent to be decoded in parallel. We further propose a
residual coding framework for the entropy coding of the latent
variable. The latent variable is hierarchically downsampled
to capture the deeper spatial correlation, and the residual is
modeled by a factorized entropy model. We propose to use soft
addition/subtraction to substitute ordinary addition/subtraction
for the flexibility of the network. The experiment result
shows that our framework achieves state-of-the-art perfor-
mance among all the LPC compression frameworks. It is
noted that our framework also shows superior time complexity,
saving more than 99.8% decoding time compared with the
previous state-of-the-art framework.

ACKNOWLEDGMENT

This paper is supported in part by National Natural Science
Foundation of China (61971282, U20A20185). The corre-
sponding author is Yiling Xu(e-mail: yl.xu@sjtu.edu.cn).

REFERENCES

[11 Y. Xu, K. Zhang, L. He, Z. Jiang, and W. Zhu, “Introduction to point
cloud compression,” ZTE Communications, vol. 16, no. 3, p. 8, 2018.

[2] W. Zhu, Z. Ma, Y. Xu, L. Li, and Z. Li, “View-dependent dynamic
point cloud compression,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 31, no. 2, pp. 765-781, 2020.

[3] W. Zhu, Y. Xu, D. Ding, Z. Ma, and M. Nilsson, “Lossy point cloud
geometry compression via region-wise processing,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 31, no. 12, pp. 4575-
4589, 2021.

[4] A. Akhtar, B. Kathariya, and Z. Li, “Low latency scalable point cloud
communication,” in 2019 IEEE International Conference on Image
Processing (ICIP). 1EEE, 2019, pp. 2369-2373.

[5] G.Zhang, Q. Ma, L. Jiao, F. Liu, and Q. Sun, “Attan: Attention adversar-
ial networks for 3d point cloud semantic segmentation,” in Proceedings
of the Twenty-Ninth International Conference on International Joint
Conferences on Artificial Intelligence, 2021, pp. 789-796.

[6] Y. Yu, W. Zhang, G. Li, and F. Yang, “A regularized projection-based
geometry compression scheme for lidar point cloud,” IEEE Transactions
on Circuits and Systems for Video Technology, pp. 1-1, 2022.

[7]1 L. Li, Z. Li, S. Liu, and H. Li, “Frame-level rate control for geometry-
based lidar point cloud compression,” IEEE Transactions on Multimedia,
2022.

[8] H. Houshiar and A. Niichter, “3d point cloud compression using
conventional image compression for efficient data transmission,” in
2015 XXV International Conference on Information, Communication
and Automation Technologies (ICAT). 1EEE, 2015, pp. 1-8.

[9] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509-517,
1975.

[10] O. Devillers and P.-M. Gandoin, “Geometric compression for interactive
transmission,” in Proceedings Visualization 2000. VIS 2000 (Cat. No.
00CH37145). 1IEEE, 2000, pp. 319-326.

[11] R. Schnabel and R. Klein, “Octree-based point-cloud compression.”
PBG@ SIGGRAPH, vol. 3, 2006.

[12] D. Meagher, “Geometric modeling using octree encoding,” Computer
graphics and image processing, vol. 19, no. 2, pp. 129-147, 1982.

[13] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou,
R. A. Cohen, M. Krivokuca, S. Lasserre, Z. Li et al., “Emerging mpeg
standards for point cloud compression,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 9, no. 1, pp. 133-148,
2018.

[14] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image
compression,” in 5th International Conference on Learning Representa-
tions, ICLR 2017, 2017.

[15] J.Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational
image compression with a scale hyperprior,” in International Conference
on Learning Representations, 2018.

[16] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, “Dvc: An
end-to-end deep video compression framework,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 11006-11015.

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[34]

[35]

[36]

[37]

(38]

[39]

Z. Hu, G. Lu, and D. Xu, “Fvc: A new framework towards deep
video compression in feature space,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
1502-1511.

Z. Hu, G. Lu, J. Guo, S. Liu, W. Jiang, and D. Xu, “Coarse-to-
fine deep video coding with hyperprior-guided mode prediction,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 5921-5930.

J. Li, B. Li, and Y. Lu, “Deep contextual video compression,” Advances
in Neural Information Processing Systems, vol. 34, pp. 18 114-18 125,
2021.

L. Huang, S. Wang, K. Wong, J. Liu, and R. Urtasun, “Octsqueeze:
Octree-structured entropy model for lidar compression,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 1313-1323.

S. Biswas, J. Liu, K. Wong, S. Wang, and R. Urtasun, “Muscle: Multi
sweep compression of lidar using deep entropy models,” Advances in
Neural Information Processing Systems, vol. 33, pp. 22170-22 181,
2020.

Z. Que, G. Lu, and D. Xu, “Voxelcontext-net: An octree based frame-
work for point cloud compression,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
6042-6051.

C. Fu, G. Li, R. Song, W. Gao, and S. Liu, “Octattention: Octree-based
large-scale contexts model for point cloud compression,” in Proceedings
of the AAAI Conference on Artificial Intelligence, 2022, pp. 625-633.
C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE mobile computing and communications review, vol. 5,
no. 1, pp. 3-55, 2001.

A. Van Den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel
recurrent neural networks,” in International conference on machine
learning. PMLR, 2016, pp. 1747-1756.

T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “Pixelcnn++:
Improving the pixelcnn with discretized logistic mixture likelihood and
other modifications,” arXiv preprint arXiv:1701.05517, 2017.

C. Choy, J. Gwak, and S. Savarese, “4d spatio-temporal convnets:
Minkowski convolutional neural networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 3075-3084.

B. Kathariya, L. Li, Z. Li, J. Alvarez, and J. Chen, “Scalable point cloud
geometry coding with binary tree embedded quadtree,” in 2018 IEEE
International Conference on Multimedia and Expo (ICME). 1EEE,
2018, pp. 1-6.

T. Huang and Y. Liu, “3d point cloud geometry compression on deep
learning,” in Proceedings of the 27th ACM International Conference on
Multimedia, 2019, pp. 890-898.

C.R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” Advances in neural
information processing systems, vol. 30, 2017.

L. Gao, T. Fan, J. Wang, Y. Xu, J. Sun, and Z. Ma, “Point cloud geometry
compression via neural graph sampling,” in 202/ IEEE International
Conference on Image Processing (ICIP). 1EEE, 2021, pp. 3373-3377.
A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-
rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.

J. Wang, H. Zhu, H. Liu, and Z. Ma, “Lossy point cloud geometry
compression via end-to-end learning,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 31, no. 12, pp. 4909-4923, 2021.
J. Wang, D. Ding, Z. Li, and Z. Ma, “Multiscale point cloud geometry
compression,” in 2021 Data Compression Conference (DCC). 1EEE,
2021, pp. 73-82.

E. d’Eon, B. Harrison, T. Myers, and A. C. Philip, “8i
voxelized full bodies-a voxelized point cloud dataset,” ISO/IEC
JTC1/SC29 Joint WGI11/WGI (MPEG/JPEG) input document
WG11M40059/WGIM74006, 2017.

L. Charles, C. Qin, O. Sergio, and P. A. Chou, “Microsoft voxelized
upper bodies - a voxelized point cloud dataset,” ISO/IEC MPEG m38673,
2016.

C. M. Bishop, “Latent variable models,” in Learning in graphical
models. Springer, 1998, pp. 371-403.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-first AAAI conference on artificial intelligence, 2017.

Y. Hu, W. Yang, and J. Liu, “Coarse-to-fine hyper-prior modeling for
learned image compression,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 07, 2020, pp. 11013-11020.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 8, JAN 2023

[40]

[41]

[42]

[43]

J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss,
and J. Gall, “Semantickitti: A dataset for semantic scene understanding
of lidar sequences,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 9297-9307.

S. Schwarz, G. Martin-Cocher, D. Flynn, and M. Budagavi, “Com-
mon test conditions for point cloud compression,” Document ISO/IEC
JTC1/SC29/WG11 wl7766, Ljubljana, Slovenia, 2018.

M. Asad Lodhi, J. Pang, and D. Tian, “Point cloud geometry compres-
sion using learned octree entropy coding,” ISO/IEC JTC1/SC29/WG7
m59528, 2022.

E. Bingham and H. Mannila, “Random projection in dimensionality
reduction: applications to image and text data,” in Proceedings of
the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, 2001, pp. 245-250.

	I Introduction
	II RELATED WORK
	II-A Sparse Convolution
	II-B Rule-based LiDAR Point Cloud Compression
	II-C Learning-based Point Cloud Compression
	II-C1 Point-based methods
	II-C2 Voxel-based methods
	II-C3 Octree-based methods

	III Problem Formulation
	IV Network Architecture
	IV-A Occupancy Embedding
	IV-B Encoder Network
	IV-C Soft Subtraction/Addition
	IV-D Decoder Network
	IV-D1 The decoding of x(l)
	IV-D2 The decoding of (l+1)

	IV-E Factorized Deep Entropy Model
	IV-F Loss function

	V Experiments
	V-A Datasets
	V-B Training Strategy
	V-C Baseline Setup
	V-D Evaluation Metrics
	V-E Experiment Results
	V-E1 Results on SemanticKITTI
	V-E2 Results on Ford
	V-E3 Complexity Comparison

	VI Analysis and Ablation Study
	VI-A Ablation study on soft addition/subtraction
	VI-B Ablation study on the Markovian property
	VI-C Analysis on Latent Variable
	VI-D Analysis on Occupancy Embedding Module

	VII Conclusion
	References

