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Abstract—Video coding is a video compression technique that com-
presses the original video sequence to produce a smaller archive file
or reduce the transmission bandwidth under constraints on the visual
quality loss. Rate control (RC) plays a critical role in video coding.
It can achieve stable stream output in practical applications, especially
real-time video applications such as video conferencing or game live
streaming. Most RC algorithms either directly or indirectly characterise
the relationship between the bit rate (R) and quantisation (Q) and then
allocate bits to every coding unit so as to guarantee the global bit rate and
video quality level. This paper comprehensively reviews the classic RC
technologies used in international video standards of past generations,
analyses the mathematical models and implementation mechanisms of
various schemes, and compares the performance of recent state-of-the-art
RC algorithms. Finally, we discuss future directions and new application
areas for RC methods. We hope that this review can help support the
development, implementation, and application of RC for new video coding
standards.

Index Terms—Video coding, rate control, AVC, HEVC, VVC

I. INTRODUCTION

V IDEO coding is a technology for converting uncompressed
digital video signals into standardised and decodable formats

that consume less space. As the speed supported by internet in-
frastructures, including fixed broadband, mobile networking and
Wi-Fi, has increased, video traffic has come to dominate global
data traffic; video transmission currently represents approximately
82% of all traffic, and this percentage is still rising [1]. However,
uncompressed videos occupy a large quantity of bits, and this high
data volume greatly limits various video applications if suitable
coding or compression is not applied [2]. To address this issue,
multiple generations of video coding standards have been succes-
sively proposed through collaboration among several international
standards-setting organisations, e.g., the International Telecommu-
nication Union Telecommunication Standardization Sector (ITU-T)
Video Coding Experts Group (VCEG) and the International Or-
ganization for Standardization (ISO)/International Electrotechnical
Commission (IEC) Moving Picture Experts Group (MPEG). The most
well-known recent standards are the Advanced Video Coding (AVC)
standard [3], the High Efficiency Video Coding (HEVC) standard
[4] and the Versatile Video Coding (VVC) standard [5]. Throughout
the history of video standards, each generation of standards has
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offered significantly improved rate–distortion performance [6], with
the main objective of either reducing the coding bit rate as much as
possible while ensuring a certain video quality or reducing the coding
distortion as much as possible while maintaining a certain coding
bit rate limit. Usually, the original image is divided into multiple
square blocks of pixels [7], which are processed in sequence, followed
by intra-frame/inter-frame prediction [8], transformation and inverse
transformation [9], quantisation and inverse quantisation [10], loop
filtering [11], and entropy coding [12] to finally obtain a video stream.

Rate control (RC) is a mechanism for determining how many bits
are to be transmitted during the encoding process, which is useful
because the available bandwidth for video transmission is usually
limited. To support the effective transmission of video data while
guaranteeing the playback quality of the video service under the
condition that all relevant channel bandwidth and transmission delay
constraints are met, an RC mechanism selects a series of encoding
parameters so as to simultaneously ensure that the bit rate of the
to-be-encoded video satisfies the required rate limit and that the
encoding distortion is as low as possible. The coding parameters
usually include partition models, prediction models and quantisation
parameters (QPs). Since a large number of intra-frame and inter-frame
prediction techniques are applied in video compression algorithms,
the levels of rate–distortion performance achieved for the numerous
coding units are interdependent, and the QP of each coding unit is
directly determined in accordance with rate–distortion optimisation
(RDO) technology. The complexity of obtaining straightforward
closed-form solutions for the coding parameters is extremely high.
Therefore, an actual RC scheme is usually divided into two steps.
First, bits are assigned to each basic coding unit so as to achieve
the minimum distortion in accordance with the total bit budget;
this process is called bit allocation. Second, in accordance with the
relationship model between the coding rate and the QP, the QP is
independently determined for each coding unit in accordance with
its target number of bits. Because an RC module is a necessary
component of any video encoder, all video coding standards have
their own recommended RC models, such as TM5 [13] of MPEG-2,
TMN8 [14] of H.263, JVT-G012 [15] of H.264/AVC, JCTVC-H0213
[16] and JCTVC-K0103 [17] of H.265/HEVC, and JVET-K0390 [18]
of H.266/VVC.

From the perspectives of mathematical models and realisation
mechanisms, various possible RC schemes have been extensively
explored. These schemes have essentially been developed to explore
the relationship between rate (R) and distortion (D); that is, different
models are based on different R-D curves. Based on the assumption
that the encoder can determine the target bit rate by choosing
a suitable Q, R-Q-based RC involves estimating the relationship
between R and D in the QP domain; hence, these schemes are called
Q-domain RC schemes. Many works have followed this idea. Liu
et al. [19] proposed an accurate linear R-Q model to characterise
the relationship between the total R for both texture and nontexture
information and the QP. Hu et al. [20] proposed a frame-level RC
algorithm that employs bit information in the RDO process instead
of the mean absolute deviation (MAD) of the residuals to predict the
complexity of each frame and uses a self-adaptive exponential R-Q
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Fig. 1: History of the main proposals for RC methods.
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Fig. 2: Flowchart of the classic RC scheme in HEVC.

model to apply RC. Choi et al. [16] proposed a unified R-Q (URQ)
model that can be employed for RC at any level (groups of pictures
(GOPs), frames, or basic units) because it captures the relationship
between the target rate R and the QP value for a pixel. R-Q-based
RC algorithms are widely used in AVC. However, an investigation
of JCTVC-I0426 [21] has revealed that the slope λ of the R-D curve
is more important than the QP for bit rate determination. Therefore,
Li et al. [17] proposed a λ-domain RC method and implemented
it in the HEVC standard. Karczewicz et al. [22] proposed an R-λ-
based RC scheme for intra frames/slices based on the sum of absolute
transformed differences (SATD) rather than the mean square error
(MSE). Fang et al. [23] proposed an R-λ-based RC method with a
preencoding process. There is also another kind of RC algorithm that
builds an association between R and the percentage of zeros among
the quantised transform coefficients (ρ). He et al. [24] estimated an
R-D function with low computational complexity in the ρ domain
and proposed an encoder-based rate-shape-smoothing algorithm. Liu
et al. [25] proposed a new linear model to obtain the QP at the
frame level, for which the model parameters in the ρ domain can
be adaptively estimated from temporal or interlayer information.
Additional milestone papers and studies are also represented in Fig.
1. We can observe that R-Q models are applied most frequently in
H.264, whereas R-λ models are widely adopted in H.265 and H.266,
reflecting the superiority of the latter. Another observation is that RC
methods are usually implemented at the frame or block level based
on considerations regarding the effectiveness and complexity of the
encoding process.

In this paper, we provide a comprehensive review and survey of
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Fig. 3: Flowchart of the classic RC scheme in VVC.

RC schemes, from the most widely used methods in engineering
to the latest research directions in academia. Moreover, a variety
of mathematical models of the relationship between R and Q are
introduced and analysed to explore their advantages and disadvan-
tages. Different kinds of RC algorithms are also compared in terms
of coding efficiency and time consumption. Finally, recent advances
in RC research and future research directions are considered.

The remainder of this paper is organised as follows. Section II
introduces and analyses RC models from different perspectives. In
Section III, the performance comparison of different RC schemes is
discussed. Section IV surveys recent and future RC techniques, and
Section V concludes the paper.

II. BRIEF OVERVIEW OF RATE CONTROL

Before we begin exploring recent advances in RC, we introduce
the RC structures used in HEVC and VVC. In HEVC, the RC process
begins with parameter initialisation; then, bit allocation is performed
at three main levels, namely, the GOP level, the frame level and the
coding tree unit (CTU) level. The parameters are updated when the
features of the coding units change. In particular, QP determination
is an important step in RC [4]. Compared with HEVC, the skip mode
at the CTU level is modified in VVC [5]. More details are shown
in Fig. 2 and 3. This section provides a brief introduction to RC
models, divided into six parts: R-Q models, exponential R-λ models,
R-ρ models, deep learning models, scalable video coding and other
types of models.
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TABLE I: REPRESENTATIVE METHODS BASED ON R-Q MODELS

Author Category Year Key idea

Lee et al. [26] Macroblock 2000 Proposed a scalable RC scheme with a more accurate second-order R-D model

He et al. [27] Frame level 2003 Proposed an LRC algorithm for the JVT encoder combined with a simple frame-level
statistical acquisition scheme

Jiang et al. [28] Frame level 2004 Used the MAD ratio as a measure of global frame coding complexity

Xu et al. Frame level 2004 Assigned different bits to different modes to avoid the regime of poor behaviour of quadratic R-D models

Li et al. [29] Basic unit 2004 Taking a macroblock, slice or frame as the basic unit, used a linear model to solve the chicken-and-egg
problem for RC in H.264

Ma et al. [30] Frame level and
macroblock 2005 Using a newly proposed R-D model, developed an RC scheme with tuneable complexity

Yuan et al. [31] Frame level 2006 Proposed an adaptive coding feature prediction method using spatiotemporal correlation
to improve R-D modelling accuracy

Kwon et al. [32] Macroblock 2007 Proposed an RC scheme for H.264 video coding using an enhanced R-D model

Liu et al. [19] Macroblock 2007 Established an exact linear R-Q model to describe the relationship between the total number
of bits of texture and nontexture information and the QP

Wang et al. [33] Macroblock 2008 Proposed a joint R-D optimisation RC algorithm for H.264

Tsai et al. [34] Intra frame 2010 Proposed the use of Taylor series rate–QS and scene-change-aware models to determine
the QPs of general intra frames and scene-change frames

Hu et al. [20] Frame level 2010 Proposed an RC model based on an adaptive exponential R-Q model

Hu et al. [35] Region-based 2012 Studied inter-frame information to objectively divide a frame into regions based on
the R-D behaviour of the frame

Liang et al. [36] CTU level 2013 Proposed an R-Q model for the approximate logarithmic relationship between the rate and QP in HEVC

Wang et al. [37] Frame level 2013 Proposed a frame-level RC algorithm with the RPS mechanism for HEVC

Tian et al. [38] Frame level 2014 Proposed an RCQ algorithm for HEVC intra-frame RC

Wu et al. [39] CTU level 2016 For LD video coding, proposed an RC scheme for HEVC

Hosking et al. [40] Frame level 2016 Proposed an improved intra RC method to produce more accurate predictions

Mao et al. [41] Frame level 2020 Proposed a dependency factor describing the relationship between a reference frame and a frame to be encoded

Helmrich et al. [42] Frame level 2021 Derived two-pass coding parameters based on a new two-step R-Q model

A. R-Q methods

The RC algorithms for H.264 adopt a variety of techniques, includ-
ing the adaptive basic unit layer (ABUL) approach, the fluid traffic
model (FTM), a linear MAD model, and a quadratic rate–distortion
model [68]. A hierarchical bit rate control strategy considering the
GOP level, the frame level and the basic unit level is adopted. In the
Joint Video Team (JVT)’s proposal, the JVT-G012 bit rate control
algorithm is adopted. This algorithm introduces the concept of a basic
unit, which is used to divide each frame into several basic units. The
basic unit may be a macroblock, a row of macroblocks, a field or
a frame. In frame-level bit rate control, the target number of bits
per frame is allocated based on the network bandwidth, buffer usage,
buffer size, and remaining bits. In basic-unit-level bit rate control,
the target bits are averaged based on the remaining target bits for the
frame. The quadratic R-Q model adopted in the JVT-G012 algorithm
for H.264 is as follows:

R = MAD ×
(
X1/Qstep +X2/Q

2
step

)
(1)

where R represents the number of coding bits required by the
encoding quantisation coefficient and Qstep denotes the quantisation
step size of the basic units. X1 and X2 are the model coefficients.
The MAD is predicted through the following linear prediction model:

MADcb = a1 ×MADpb + a2 (2)

where MADcb and MADpb denote the MADs for the current
basic unit and the corresponding position in the previous frame,
respectively, and a1 and a2 are model coefficients, which are updated
through linear regression during the processing of the last macroblock
of each basic unit. Following the emergence of quadratic models,
the authors of [26], [29], [31] further developed models of this
kind to increase their coding efficiency. Lee et al. proposed a
scalable RC scheme with a more accurate second-order R-D model.
Xu et al. first offered a solution to the chicken-and-egg problem

between RC and RDO in H.264 and assigned different numbers
of bits to different modes accordingly to avoid the regime of poor
behaviour of quadratic R-D models. Yuan et al. presented an adaptive
coding feature prediction method using spatiotemporal correlations to
improve the accuracy of R-D modelling. The works in [27], [30] were
both developed based on linear models. He et al. presented a linear
RC (LRC) algorithm for the JVT encoder combined with a simple
scheme for collecting frame-level statistics. Ma et al. proposed a new
R-D model using the real quantisation step size and, on this basis,
proposed an improved RC scheme for the H.264/AVC encoder. With
the development of R-Q models, the works in [20], [28], [32] took the
complexity of the frame content into consideration in R-Q modelling.
Jiang et al. mitigated video distortion due to strong motion or scene
changes by using statistics from previously encoded frames to more
accurately predict frame complexity. Kwon et al. developed an RC
algorithm under a constant bit rate constraint for the H.264 baseline
profile encoder. Hu et al. first adopted a two-stage RC scheme to
decouple RDO and RC, then used bit information to predict the
frame complexity in the mode decision process for RDO, and finally
proposed an adaptive exponential R-Q model for RC. The works in
[33], [35] used adaptive coding methods. Wang et al. proposed an
R-D-optimised RC algorithm with adaptive initialisation for H.264.
In contrast to traditional RC, the area-based RC method proposed
by Hu et al. can adaptively control the rate in accordance with the
content to attain better subjective and objective quality. Tsai et al.
proposed determining the QPs of general intra frames and scene-
change frames by means of a rate–quantisation step size (QS) model
and a scene-change-aware model based on Taylor series [34].

For HEVC, the work in [36] proposed a logarithmic model
to describe the relation between distortion and rate. Liang et al.
determined that the rate and QP approximately obey a logarithmic
relation and proposed a logarithmic R-Q model for HEVC. The works
in [39], [69] mainly considered the low-delay (LD) case. Wu et
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TABLE II: REPRESENTATIVE METHODS BASED ON EXPONENTIAL R-λ MODELS

Author Category Year Key idea

Wang et al. [43] Three joint layers 2009 Considered optimisation from the GOP level to the CTU level to improve video quality

Lee et al. [44] Frame level 2013 Incorporated texture and nontexture factors into frame-level RC to build a λ-domain model

Li et al. [45] Frame level and CTU level 2014 First proposed an exponential R-λ model for HEVC

Meddeb et al. [46] Frame level and CU level 2014
Developed an advanced algorithm for video coding that separates the video content into regions

of interest and regions of noninterest and increases the bit allocation for regions of interest
while maintaining the overall bit rate

Yang et al. [47] Frame level and CTU level 2014 Adjusted the R-D model to correct for buffer overflow and underflow issues at low latency

Zhou et al. [48] CTU level 2014 Adjusted the R-D model by replacing the distortion calculated based on the MSE with a SSIM-based
distortion related to visual quality

Wang et al. [49] Frame level 2015 Took the complexity at the intra-frame level into consideration to design a GRL model

Zeng et al. [50] CTU level 2015
Incorporated human visual acuity into the video coding process by separating the input video into
perceptually sensitive areas and less perceptually sensitive areas and increasing the bit allocation

for perceptually sensitive areas

Zhou et al. [51] CTU level 2016 Incorporated video complexity into the model at both the intra-frame and inter-frame levels

Li et al. [52] CTU level 2016 Improved the CTU-level λ-domain model by optimising bit allocation

Wang et al. [53] CTU level 2016 Designed an RC model for the LD case that can adapt to rapid variations in coding
efficiency

Sanchez et al. [54] Frame level and CU level 2018 Proposed a context-based model that incorporates predictive coding technology and uses
a piecewise linear function to approximate the R-D curve

Gong et al. [55] Frame level 2017 Considered the influence of temporal layers in the R-λ model to ensure that
pictures in different time-domain layers are given different levels of importance for prediction

Perez-Daniel et al. [56] Block level 2018 Developed the λ-domain model into a multi-R-λ model that considers the
wider range of luma values found in HDR video

Guo et al. [57] Frame level 2018 Improved the frame-level λ-domain model by means of optimised bit allocation

Li et al. [58] CTU level 2018 Developed an advanced λ-domain model by using an intra-CTU RC scheme that considers
the influence of the drift from earlier CTUs to subsequent CTUs in RC

Mir et al. [59] Frame level 2018 Enhanced the λ-QP relation for HDR video coding by solving the
problem of compression performance degradation caused by different coding standards

Zhou et al. [60] CTU level 2019 Considered the issue of visual differences in HDR video and built an R-D model based on this
issue

Lim et al. [61] CTU level 2019 Proposed a perceptual luminance-adaptive single-loop encoding method

Chen et al. [62] CTU level 2019 Introduced the variance into the R-D model with the aim of minimising the distortion
of the CTUs

Zhou et al. [63] CTU level 2020 Adopted a JND factor to build a λ-domain model that
can well describe the distortion of the perceptual field to be used for bit allocation

Hyun et al. [64] Frame level 2020 Adjusted the R-λ model to address textured and nontextured regions simultaneously
in VVC

Chen et al. [65] Frame level 2020 Presented an R-λ relationship that uses a quadratic R-D model for VVC

Li et al. [66] Frame level 2020 Presented an RC model based on the influence of skip blocks and adjusted the parameter
update strategy

Liu et al. [67] CTU level 2021 Researched the relationship between distortion and λ to achieve a balance among
bit rate, distortion and video quality

al. proposed an RC scheme for LD video coding considering the
temporal prediction structure of HEVC. Si et al. proposed frame-
level RC schemes for HEVC designed for LD and random access
(RA) coding individually. Hosking et al. presented an enhanced
intrasymbol RC method that can produce more accurate predictions
and thus reduce the average mismatch rate [40]. Wang et al. proposed
a frame-level RC algorithm for HEVC based on the reference
picture set (RPS) mechanism, leading to specialisation of the QP
determination and RPS mechanisms in HEVC, which considerably
improved the coding efficiency [37]. The works in [38], [70], [71]
considered linear models to describe the relation between distortion
and rate. Yoon et al. combined a linear rate model with an R-Q model
based on the Cauchy distribution. Si et al. modified a linear model to
adjust the QP to the q scale. Tian et al. proposed a rate–complexity–
QP (RCQ) model for HEVC intra-frame RC, which includes linear
distortion quantisation as well as exponential R-Q and linear rate–
complexity models.

For VVC, Mao et al. presented an RC model based on transform
coefficient modelling and derived corresponding R-Q and D-Q mod-
els [41]. Helmrich et al. proposed an RC design based on a two-
step R-Q model and derived the two-pass encoding parameters [42].
Representative R-Q models and their corresponding key ideas are

summarised in table I, which is sorted by the year of publication and
divided into three parts: classic models used in H.264, classic models
used in H.265 and classic models used in H.266. The category column
of this table indicates at which layer the RC algorithm is applied.

B. λ-domain methods

The existing research shows that the slope λ of an R-D model can
be obtained from the hyperbolic R-D function [45] as follows:

λ = −∂D

∂R
= CK ·R−K−1 ≜ αRβ (3)

where α and β are parameters related to the video source. Li et al.
first proposed this type of model for use in HEVC [78]. With the
development of R-λ models, the works in [22], [49], [51] took the
complexity of the frame content into consideration in R-λ modelling.
In JCTVC-M0257, Karczewicz et al. used video content complexity
in a model at the intra-frame/slice level. Wang et al. considered the
complexity at the intra-frame level and designed a gradient-based R-
λ (GRL) model. Building on the previous developments, Zhou et al.
added video complexity to a model for both intra frames and inter
frames. Wen et al. [79] proposed an R-λ-based RC algorithm with
preencoding that improves encoding performance by means of two
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TABLE III: REPRESENTATIVE METHODS BASED ON R-ρ MODELS

Author Category Year Key idea

He et al. [72] Frame level 2001 Proposed a frame-level RC algorithm for discrete cosine transform (DCT) video coding

He et al. [73] Frame level 2001 Proposed a source modelling framework by introducing the new concepts of the characteristic rate curve
and rate curve decomposition

Shin et al. [74] Frame level 2004 Proposed a frame-level RC method for the macroblock mode and bit rate using RDO
estimation of the initial QP

Wang et al. [75] GOP level 2013 Introduced a reference atlas to establish a quadtree coding structure and a new reference
frame selection mechanism

Wang et al. [76] Frame level 2013 Targeting the LD configuration problem of HEVC, proposed a frame-level RC algorithm in
the quadratic ρ domain

Biatek et al. [77] CTU level 2014 Proposed a more accurate method of capturing the transform coefficients in HEVC based on a
mixed Laplacian distribution

solutions: one uses only 16x16 coding units (CUs) for preencoding,
while the other uses both a hyperbolic function and an exponential
function as an improvement to the R-λ model. The work in [55]
took the influence of temporal layers into consideration in the R-λ
model to ensure that pictures in different time-domain layers are given
different levels of importance for prediction. The authors of [52], [57]
constructed R-D models on the basis of optimised bit allocation. Li
et al. improved the CTU-level λ-domain model based on optimised
bit allocation, and Guo et al. similarly improved the frame-level
λ-domain model by means of optimised bit allocation. Based on
Lagrangian multiplier (LM) theory, Wang et al. [43] considered
optimisation from the GOP level to the CTU level, thereby improving
the video quality. Tang et al. [80] proposed a generalised rate–
distortion–λ (R-D-λ) optimisation solution for HEVC RC.

The works in [46], [54], [81] addressed optimised RC in accor-
dance with the video content. Sanchez et al. proposed a context-
based model that incorporates predictive coding technology and
uses a piecewise linear function to approximate the R-D curve.
Meddeb et al. developed an advanced algorithm for video coding
that separates the video content into regions of interest and regions
of noninterest and increases the bit allocation for regions of interest
while maintaining the overall bit rate. Li et al. optimised bit allocation
for multiview texture videos based on interview dependency and
spatiotemporal correlation. The works in [56], [59], [60] mainly
considered high-dynamic-range (HDR) video. Mir et al. enhanced
the λ-QP relation for HDR video coding to solve the problem of
compression performance degradation caused by different coding
standards. Perez-Daniel et al. developed a λ-domain model into a
multi-R-λ model that considers the wider range of luma values found
in HDR video. Zhou et al. considered the issue of visual differences
in HDR video and built an R-D model based on this issue. The
works in [50], [61], [63] considered perceptual RC methods. Zeng et
al. incorporated human visual acuity into the video coding process
by separating the input video into perceptually sensitive areas and
less perceptually sensitive areas and increasing the bit allocation
for perceptually sensitive areas. Lim et al. proposed a perceptual
luminance-adaptive single-loop encoding method. Zhou et al. adopted
a just-noticeable distortion (JND) factor to build a λ-domain model
that can well describe the distortion of the perceptual field to be
used for bit allocation. Li et al. developed an advanced λ-domain
model by using an intra-CTU RC scheme [58] that considers the
influence of the drift from earlier CTUs to subsequent CTUs in RC.
Lee et al. incorporated texture and nontexture factors into frame-level
RC to build a λ-domain model [44]. The works in [47], [53], [62],
[82] considered the LD configuration. Wang et al. designed an RC
model for the LD case that can adapt to rapid variations in coding
efficiency. Chen et al. introduced the variance into the R-D model
with the aim of minimising the distortion of the CTUs. Guo et al.
presented a λ-domain frame-level RC scheme. Yang et al. adjusted

the R-D model to correct for buffer overflow and underflow issues
at low latency. Existing RC methods typically optimise the MSE
between the distorted image Zi and the original image Zj , i.e., the
following cost function:

1

P

P∑
p=1

(Zj(p)− aZi(p)− b)2 (4)

In this function, the optimal values of a and b are computed as:{
a∗ =

covZi,Zj

σ2
Zi

b∗ = µZj − a∗µZi

(5)

where covZi,Zj is 1
P

∑
p (Zi(p)− µZi)

(
Zj(p)− µZj

)
. Zhou et

al. adjusted the R-D model by replacing the MSE-based distortion
evaluation in the R-D model with a distortion based on the structural
similarity index measure (SSIM), which is related to visual quality
[48].

For VVC, the works in [18], [64], [67] introduced some adjust-
ments to λ-domain algorithms. Li et al. proposed a three-part scheme:
splitting skip and nonskip areas at the picture level, changing the
update strategy, and modifying the GOP size to 16. Liu et al. proposed
the use of an adaptive λ ratio estimation algorithm. Hyun et al.
adjusted the R-λ model in VVC to address textured and nontextured
regions simultaneously. Liu et al. researched the relationship between
distortion and λ to achieve a balance among bit rate, distortion
and video quality. The works in [83]–[85] made use of a quality
dependency factor (QDF) to improve the coding efficiency. Liu et al.
used QDF-based bit allocation to improve the coding efficiency. Liu
et al. also proposed an extension of RC to achieve the configuration in
JVET-M0600. Ren et al. proposed an extension of the QDF to a low
frame rate. The works in [65], [66] introduced model modifications in
accordance with the coding structure in VVC. Chen et al. presented
an R-λ relationship using a quadratic R-D model for VVC, and Li
et al. presented an RC model based on the influence of skip blocks
to adjust the parameter update strategy. Representative R-λ models
and their corresponding key ideas are summarised in table II, which
is sorted by the year of publication and divided into three parts:
classic models used in H.264, classic models used in H.265 and
classic models used in H.266. The category column of this table
indicates at which layer the RC algorithm is applied. Notably, for RC
strategies, the selection of a suitable R-D model is crucial. Packetwise
exponential and hyperbolic models are the two most commonly used
models to describe the relationship between bit rate and distortion.
Studies on HEVC RC have proven the hyperbolic model to be the
better option for that standard. However, the R-D relationship has
evolved with the advent of the VVC standard and the integration of
new coding tools, necessitating a new R-D model to determine the
optimal coding QPs.
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TABLE IV: REPRESENTATIVE METHODS BASED ON DEEP LEARNING MODELS

Author Category Year Key idea

Gao et al. [86] CTU level 2017
Extracted features from previous frames and built a more accurate R-D model by means of

machine learning; introduced cooperative game theory into bit allocation to increase the
coding efficiency and quality (JML RC)

Hu et al. [87] CTU level 2018 Adjusted the QP by balancing the relationship between texture complexity and coding rate to obtain
lower distortion at the CTU level with the help of reinforcement learning (RL RC)

Zhou et al. [88] Frame level and CTU level 2020 Adjusted the QP via a deep neural network when processing dynamic video sequences to reduce distortion
and bit rate fluctuations

Wei et al. [89] Tile level 2021 Integrated reinforcement learning and game theory into tile-level bit allocation for 360-degree
streaming to increase the quality and coding efficiency

Raufmehr et al. [90] Frame level 2020 Proposed a video bit rate controller that completely conforms to the constraints of real-time applications

Farhad et al. [91] GOP level 2021 Presented a nonlinear relationship by using a neural network to balance the relationship
among the bit rate, buffer size and QP

Wang et al. [92] Initial intra frame 2021 Extracted four highly descriptive features to capture the relationship between the video content and
the R-D model

TABLE V: REPRESENTATIVE METHODS BASED ON SVC MODELS

Author Category Year Key idea

Xu et al. [93] Spatial layer 2005 Proposed performing RDO for temporal subband image coding only on low-pass subband
images while applying RC to each spatial layer individually

Liu et al. [94] Base layer 2008 Predicted the MAD of the residual texture using the available MAD information from the previous
frame in the same layer and the base layer for the same frame

Pitrey et al. [95] Inter layer 2009 Proposed a simple and attractive bit rate modelling framework in the ρ domain

Hu et al. [96] Frame level 2011 Proposed a frame-level RC algorithm based on a linear R-Q model and a linear D-Q model

C. Models in the ρ domain

The percentage of zero coefficients, ρ, increases monotonically
with the QP when the distribution of the transform coefficients is
known, meaning that there is a one-to-one correspondence between
ρ and the QP. Hence, the relationship between R and the QP can
be established through ρ. Shin et al. modelled the rate–ρ and QP–ρ
relationships and adopted a linear approximation scheme to model
the rate–ρ relationship [74]. Experiments have shown that the ρ of
the quantised transform coefficients has a good linear relation with
the bit rate R [72] [73]:

R(ρ) = θ(1− ρ) (6)

where θ is a constant and ρ is a model parameter that is related
to the video content. The authors of [75] argued that a Laplacian
distribution is not sufficiently precise to capture the true distribution
arising from a quadtree prediction structure. Therefore, a mixed
Laplacian distribution was applied to describe this distribution. The
authors of [77] proposed an RC algorithm of decreased complexity
in the ρ domain, which predicts the encoding parameters for each
collocated CTU. Wang et al. proposed a more accurate mixed
Laplacian distribution to capture the transform coefficients in HEVC
[76]. Representative ρ-domain models and their corresponding key
ideas are summarised in table III, which is sorted by the year of
publication. The category column of this table indicates at which
layer the RC algorithm is applied.

D. Classic methods in deep learning

Deep learning is an effective approach for solving decision-making
problems, and thus, it has recently attracted great interest in the video
coding community. Hu et al. [87] adjusted the QP by balancing the
relationship between texture complexity and coding rate to achieve
lower distortion at the CTU level. Gao et al. [86] extracted features
from previous frames and built a more accurate R-D model using
machine learning. Cooperative game theory has also been introduced
into the bit allocation process to increase coding efficiency and
quality. Zhou et al. [88] adjusted the QP via a deep neural network
when processing dynamic video sequences to reduce distortion and

bit rate fluctuations. Wei et al. [89] integrated reinforcement learning
and game theory into tile-level bit allocation for 360-degree streaming
to increase the quality and coding efficiency.

For VVC, Li et al. presented a convolutional neural network
(CNN)-based R-λ RC approach for intra-frame coding [97] that
reuses the λ-domain model used for inter-frame RC in the VVC
Test Model (VTM) and trained a CNN to simultaneously predict the
two model parameters, alpha and beta. Using a multilayer perceptron
(MLP) neural network [90], Raufmehr et al. presented a video bit rate
controller that completely conforms to the constraints of real-time
applications. Farhad et al. [91] presented a nonlinear relationship by
using a neural network to balance the relationship among the bit rate,
buffer size and QP. Wang et al. designed an RC algorithm [92] that
extracts four highly descriptive features to capture the relationship
between the video content and the R-D model. Representative deep
learning models and their corresponding key ideas are summarised in
table IV, which is sorted by the year of publication and divided into
two parts: classic models used in H.265 and classic models used in
H.266. The category column of this table indicates at which layer the
RC algorithm is applied. With the development of deep learning, Lu
et al. presented the first end-to-end deep video compression model
[98] that jointly optimises all components for video compression.

E. Classic methods in scalable video coding

The aim of scalable video coding (SVC) is to allow partial streams
to be obtained on the decoding side while encoding the video signal
only once. Three types of scalability, namely, temporal scalability,
spatial scalability and quality scalability, are desired to meet different
application requirements in terms of rate or resolution. Hu et al.
introduced a frame-level RC method based on a linear R-Q model
and a linear D-Q model [96]; the formulation can be expressed as
follows:

Qi
step

2θiγi

kimi
= λ, i = 0, . . . , N (7)

where mi is the predicted MAD of the remaining frames at level i and
ki, σi, and γi are parameters. Xu et al. introduced an effective RC
method for a scalable video model (SVM) that inherits features of the
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TABLE VI: REPRESENTATIVE METHODS BASED ON OTHER MODELS

Author Category Year Key idea

Jing et al. [99] Intra frame 2008 Proposed a method for selecting accurate QPs for intra-coded frames based on a target bit rate; by considering a
gradient-based frame complexity measure, the model parameters can be adaptively updated

Liu et al. [100] 4×4 block level 2009 Focusing on RC at the frame and macroblock levels, proposed adjusting the number of bits allocated to each frame
and each macroblock in accordance with the motion saliency

Shen et al. [101] Macroblock 2013 Proposed allocating more bits to visually important macroblocks at the frame level and conversely allocating
fewer bits to unimportant macroblocks

sophisticated hybrid RC schemes of JVT [93]. Liu et al. proposed a
switched model for predicting the MAD of the residual texture using
the MAD information available from the previous frame in the same
layer [94]. Pitrey et al. presented a new RC scheme for SVC based on
a simple yet attractive bit rate modelling framework in the ρ domain
[95]. Representative SVC models and their corresponding key ideas
are summarised in table V, which is sorted by the year of publication
and divided into two parts: classic models used in H.264 and classic
models used in H.265. The category column of this table indicates
at which layer the RC algorithm is applied.

F. Other models

1) Segmented R-Q model: Based on the understanding that the
transformation coefficients obey a Laplace distribution with σ2, the
following segmented model can be obtained [102]:

R(Q) =

 1
2
log2

(
2e2 · σ2

Q2

)
, σ2

Q2 > 1
2e

e
ln 2

· σ2

Q2 ,
σ2

Q2 ⩽ 1
2e

(8)

where σ/Q2 > 1/2e corresponds to the high-bit-rate situation and
σ/Q2 ⩽ 1/2e corresponds to the low-bit-rate situation.

2) D-Q model: Seo et al. proposed a D-Q model to determine the
target distortion for QP generation, as follows [103]:

D = α

NDepth∑
i=0

wi

{(
1− Pi,S

)
 2

λ2
i,NS

+
2Q

λi,NS

(
e−

1
2
λi,NSQ − e

1
2
λi,NSQ

)
+ Pi,S

2

λi,S

} (9)

where D is the MSE for a frame, α is a model parameter that
compensates for the difference between the actual and estimated
distortions, Pi,S is the proportion of CUs at depth i for which the skip
mode is adopted, Q is the q step size, NDepth is the maximum CU
depth, ωi is a weighting factor, and λi denotes the model parameter
for the i-th CU depth.

3) Adaptive R-Q model: The method proposed by Jing et al. aims
to select accurate QPs for intra-coded frames in accordance with a
target R. The parameters of the model can be adaptively adjusted by
considering a gradient-based frame complexity measure [99].

4) Two-pass methods: The general idea of two-pass RC is to
further optimise the QP of each frame in the second encoding pass
in accordance with scene complexity statistics computed in the first
pass. For AVC, Lie et al. [104] proposed performing frame-level rate
allocation in the second pass using content-aware models constructed
in the first pass. For HEVC, Wang et al. [105] proposed a SSIM-
inspired two-pass RC scheme. The algorithm proposed by Ma et al.
[30] consists of a one-pass process and a partial two-pass process at
the frame and block levels. Zupancic et al. [106] further proposed
a two-pass RC method targeting quality improvement for ultrahigh-
definition television (UHDTV) delivery. For VVC, Helmrich et al.
proposed an RC design based on a two-step R-Q model and derived
the two-pass encoding parameters [42].

5) Visual attention models: Liu et al. utilised the mechanism of
human visual attention to guide the RC process by incorporating an
attention model of motion. They calculated multilayer saliency maps
of motion, which were used to adjust the frame-level bit allocation,
resulting in quality improvement [100]. Shen et al. proposed an
innovative R method that considers human visual attention, in which
the stronger the local motion attention is, the greater the R that is
assigned to the frame [101].

6) Multithreaded coding methods: At the frame level, multi-
core systems with a small number of cores can take advantage
of multithreaded coding capabilities, e.g., parallelisation, especially
when there is little or no dependency between images, as in the
case of images in the same temporal layer or even intra frames
[107]. In such cases, parallelisation is simple to implement and
incurs relatively small coding efficiency losses. However, the gain
that can be achieved through frame-level parallelisation is limited
by the GOP size, and such processing increases latency despite
improving the processing frame rate [108]. In addition to frame-
level parallelisation, slice-level parallelisation can be another way
to improve performance [109]. Slices partitioned within a picture
are independent of each other [110], [111], apart from potential in-
loop filtering dependencies that may exist at the slice boundaries.
Slices need not be associated with each other during the execution
of most processes performed during coding, such as prediction and
transformation, which are applied across slices, and slice-level par-
allelisation can enable a dramatic enhancement in coding efficiency
due to motion prediction processing [112]. Nevertheless, among the
RC methods discussed in this article, almost none use the slice-level
RC approach; therefore, we do not present experimental statistics on
it. A more fine-grained, block-level parallelisation technique is most
widely applied [113]–[115]. However, this approach is more difficult
to implement because block-level parallelisation requires a more
elaborate scheduling algorithm to ensure the correct ordering of the
macroblocks due to their multiple spatial dependencies. Furthermore,
wavefront parallel processing (WPP) is a commonly used intra-frame
parallelisation method, although it has the drawbacks of limitations
on the parallelism that can be achieved and unbalanced computational
complexity for RC optimisation. To overcome these drawbacks, Joose
et al. [116] proposed two real-time RC algorithms with parallelisation
techniques, a λ-domain (LD) algorithm and an R-λ model (R-LM)
algorithm. An adaptive intra-frame parallelisation method was also
proposed in [117] that guarantees higher intra-frame parallelism and
more accurate control of parallelisation. A hardware architecture
strategy was additionally explored in [118] to improve the parallel
acceleration of HEVC hardware.

Representative models discussed in this subsection and their cor-
responding key ideas are summarised in table VI, which is sorted by
the year of publication. The category column of this table indicates
at which layer the RC algorithm is applied.

III. PERFORMANCE COMPARISON OF DIFFERENT RC SCHEMES

The bases for measuring the advantages and disadvantages of an
RC algorithm do not solely concern how many bits are saved and how
much the visual quality is improved; coding/decoding complexity is
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TABLE VII: PERFORMANCE COMPARISON OF FRAME-LEVEL RC METHODS

Method Anchor Configuration BD-rate (%) BD-PSNR (dB) RC accuracy (%) Latency reduction (%)

Lee 2013 [44] HM 16.20 LDP -3.11 0.11 89.19 -0.98

Wang 2013 [75] HM 16.20 LDB/LDP/RA -3.13/-4.00/-6.00 0.11/0.13/0.23 99.76/99.77/98.44 -0.34/0.87/2.58

Wang 2013 [37] HM 16.20 [16] LDB-HE/LDP-HE -21.91/-12.03 0.77/0.41 99.45/99.32 1.35/1.62

Xu 2015 [119] HM 16.20 LDP -1.5 0.14 99.33 1.78

Song 2017 [120] HM 16.20 RA/LDP -0.20/-0.20 0.02/0.02 99.97/99.98 2.01/-1.00

Guo 2018 [57] FWA [45] HM 16.20/LDP/LDB -4.70/-4.30 0.21 99.93/99.94 3.22/3.13
AWA [121] HM 16.20/LDP/LDB -2.90/-3.20 0.13 99.92/99.39 2.97/2.66

Hyun 2020 [64] HM 16.20 AI/LDB/RA -0.30/-0.20/-0.30 0.02/0.01/0.02 99.89/99.50/86.33 0.22/0.68/0.91

Raufmehr 2021 [90] VTM 17.0 [18] LDB -3.05 0.11 99.63 36.61

TABLE VIII: PERFORMANCE COMPARISON OF BLOCK-LEVEL RC METHODS

Method Anchor Configuration BD-rate (%) BD-PSNR (dB) RC accuracy (%) Latency reduction (%)

Kwon 2007 [32] JM 9.4 Li [68]/LDP -5.40 0.35 97.29 2.50

Liu 2007 [19] JM 9.4 JVT-G012 [15]/LDP -5.10 0.33 90.22 3.07

Wang 2008 [33] JM 9.4 JVT-G012 [15]/LDB -0.63 0.41 93.47 2.10

Liu 2009 [100] JM 9.4 JVT-G012 [15]/LDP -0.12 0.07 95.33 2.80

Li 2016 [52] HM 16.20 Li [45] -5.10 0.15 93.57 0.50

Chen 2019 [62] HM 16.20 LDP -3.30 0.10 97.27 0.10

Zhou 2019 [60] HM 16.20
LDB -4.60 5.40 97.56 2.90
LDP -1.20 1.00 97.38 1.84
RA -2.00 1.90 99.87 2.50

Zhou 2020 [63] HM 16.20
LDB -1.35 0.01 97.08 0.01
LDP -3.30 0.11 94.14 0.07
RA -2.75 0.09 94.89 0.77

TABLE IX: PERFORMANCE COMPARISON OF JOINT-LEVEL RC SCHEMES

Method Anchor Configuration BD-rate (%) BD-PSNR (dB) RC accuracy (%) Latency reduction (%)

Xu 2005 [93] SVM3.0 [122] Default -7.20 1.50 99.50 -3.02

Ma 2005 [30] TM5 Default -2.30 0.20 96.50 -2.22
AVC-TM [123] Default -2.20 0.20 96.70 -2.21

Wang 2009 [43] JVT-G012 [15] LDP -4.20 0.98 95.49 -0.45
Li 2014 [45] HM 16.20 LD(noH)/LD(H)/RA - 3.10/-5.50/-8.90 0.29/0.55/1.08 99.94/99.90/99.80 -3.10/0.10/-3.20

Yang 2014 [47] HM 16.20 LDB -2.20 0.31 99.92 1.30

Zhou 2020 [88] Hu et al. [87] HM 16.20/AI -5.00 0.50 99.95 -114.00 (train)/-1.80 (no train)
Gao et al. [86] HM 16.20/LDB -5.20 0.50 99.86 -1048.20 (train)/-1.20 (no train)

Sanchez 2018 [54] HM 16.20 Default -1.00 0.01 99.93 -1048.20 (train)/-1.20 (no train)

also an essential consideration for some real-time video applications.
Modern encoders, such as AVC, HEVC and VVC, are designed
following a framework of square-block-based hybrid coding, which
provides the opportunity for performance gains on machines with
multithreading capabilities and even multicore processors [124]–
[126]. Usually, the performance gain is calculated as the execution
time of the improved algorithm divided by the execution time of
the original algorithm. Many related techniques have been proposed
in recent video coding standards, some of which are mentioned in
the following. All comparisons were performed under fair and well-
controlled test conditions. In the evaluation, the general sequences
from each class defined in the Common Test Conditions (CTC) [127]
were chosen, with possible coding QPs of [22, 27, 32, 37]. The
total number of test sequences in each class is as follows: Class A1
contains three sequences, Class A2 contains three sequences, Class

B contains five sequences, Class C contains four sequences, Class D
contains four sequences, and Class E contains three sequences [127].
The resolution of the sequences in each class is as follows: Class
A1 has a resolution of 3840×2160, Class A2 has a resolution of
3840×2160, Class B has a resolution of 1920×1080, Class C has a
resolution of 832×480, Class D has a resolution of 416×240, and
Class E has a resolution of 1280×720 [127]. The total number of
frames per sequence is taken to be 300, and for sequences that are
fewer than 300 frames, the results are normalised accordingly with
respect to the actual number of frames. The resolution of the video
sequences varies from the Common Intermediate Format (CIF) to
4K, and the bit depth is 8 bits. The target bit rate was set to the
actual bit rate obtained by compressing the same sequence at a fixed
QP in the non-RC encoding mode. The detailed GOP types used for
the experiments can be found in the evaluation tables. For the AVC,
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HEVC, and VVC RC methods, all other settings were kept the same
as the defaults in JM 9.4, HM 16.20, and VTM 17.0, respectively.

Some terms that appear in the tables in this section may need expla-
nation. The configuration column represents part of the test conditions
[128] recommended by the standardisation group. Its entries represent
three different prediction structures: low delay with B frames (LDB),
low delay with P frames (LDP) and random access (RA). Some
entries have suffixes of H or noH, which indicate whether bits are
allocated hierarchically. Coding efficiency is evaluated in terms of
the Bjøntegaard-delta bit rate (BD-rate) [129], which indicates the
reduction in bit rate at a given quality, while the Bjøntegaard-delta
peak signal-to-noise ratio (BD-PSNR) complementarily represents the
video quality enhancement at a given bit rate. The results in the
Latency reduction column, which measure the coding complexity of
each algorithm, are normalised to the average time taken to encode
a frame. Finally, the RC accuracy, Acc, is an important index for an
RC algorithm that represents the difference between the actual bit
rate and the target bit rate and is calculated as follows:

Acc = 1− |Rr −Rc|
Rc

× 100% (10)

where Rr and Rc are the actual number of bits and the target number
of bits, respectively.

A. Implementations at the frame level

In the vast majority of cases, the working environment of the
encoder is the CPU; accordingly, many optimisations have been
analysed and implemented in modern CPUs. Thus, unless other-
wise mentioned, the following experiments were carried out on
the CPU. More detailed quantitative comparisons are shown in
table VII. When using a CPU, the key to improving performance
lies in reducing data dependencies and operational dependencies to
improve parallelisation, and at the frame level, these requirements
are naturally satisfied. To build an accurate R-Q model, Lee et al.
[44] separately constructed three Laplacian probability models for
low-textured, medium-textured, and high-textured CUs; the BD-rate
of this method is -3.11%, and the BD-PSNR is 0.11 dB (LDP).
Wang et al. [75] considered new coding tools for use in HEVC and
adopted a hierarchical RC architecture to maintain the video quality
of keyframes. In comparisons considering all three configurations,
the BD-rate ranges from -3.13% to -6.00%, with corresponding BD-
PSNR values ranging from 0.11 dB to 0.23 dB. These authors also
proposed D-Q and R-Q models for finding the interframe dependency
between to-be-coded frames and the reference frame. Accordingly, a
mixed Laplacian distribution ρ-domain-based rate–GOP model was
proposed. Wang et al. [37] proposed an efficient hierarchical bit
allocation scheme based on a new mechanism for HEVC, i.e., the
RPS mechanism, which achieves the highest BD-rate among the
compared methods. Moreover, they proposed an innovative header
bit ratio prediction method to improve RC accuracy and used a
quadratic R-Q model to calculate the QP. Xu et al. [119] focused
on video sequences depicting discontinuous scenes and proposed a
novel bit allocation algorithm by building the correlation between
the intensity of a scene change and the bit allocation. A BD-rate of
-1.5% can be achieved in this way, and the BD-PSNR is 0.14 dB.
Song et al. [120] addressed the issue that the RC method used in
AVC is no longer suitable for HEVC due to the differences in the
GOP coding structures; accordingly, they proposed a new GOP-level
bit allocation method that can achieve more accurate RC and lower
bit fluctuation, resulting in slightly better R-D performance, as shown
in table VII. Guo et al. [57] considered the temporal R-D dependency
in GOP-level bit allocation; on this basis, an advanced frame-level
R-D model that can more completely use the information of the

coded frames was introduced to further enhance R-D performance.
Then, an equation for bit allocation at the frame level was proposed
for the optimal Lagrange multiplier approach, which can be solved
by employing a recursive Taylor expansion (RTE) scheme. Two
comparative experiments were performed using [45] and [121] as
benchmarks, referred to as fixed-weight bit allocation (FWA) and
adaptive-weight bit allocation (AWA), respectively. The comparison
results show that the BD-rate ranges from -4.30% to -4.70% for FWA
and -2.90% to -3.20% for AWA. As an alternative to traditional
methods that regard the entire RC process as deterministic, some
methods treat the variables and parameters of RC as random variables
to re-examine the RC process. Hyun et al. [64] observed that the
inaccuracy of existing linear rate estimation models causes a decline
in RC performance. Thus, they adopted a method called recursive
Bayesian estimation (RBE) to precisely estimate rates. Performance
comparisons with all three configurations show that the BD-rate
ranges from -0.20% to -0.30%, with slight improvements in the BD-
PSNR. Raufmehr et al. [90] proposed a video bit rate controller to
meet the demands of real-time applications in the VVC standard by
suppressing bit fluctuations and buffer overflow and underflow. The
BD-rate is -3.05%, and the BD-PSNR is 0.11 dB. In this method, the
necessary QP modifications are estimated by using an MLP neural
network at the frame level, which is beneficial for robust buffer
control. Comparisons of the results suggest that each method has
its strengths and weaknesses, depending on the specific application
or situation. Lee et al.’s method is beneficial for building an accurate
R-Q model, while Wang et al.’s method is suitable for maintaining the
video quality of keyframes. Xu et al.’s method is effective for video
sequences depicting discontinuous scenes, while Song et al.’s method
achieves more accurate RC and lower bit fluctuation. Guo et al.’s
method considers temporal R-D dependency and can more completely
use the information of the coded frames, while Hyun et al.’s method
can precisely estimate rates. Raufmehr et al.’s method is suitable for
real-time applications. Due to the elimination of traditional models
and the utilised network structure, the model complexity is lower,
resulting in a large latency reduction. However, these frame-level
methods also have some drawbacks, such as poor scalability or high
memory occupation. Fortunately, block-based implementations can
address these problems [130].

B. Implementations at the block level

RC evaluation at the block level was carried out using the JM
reference software for H.264 and the HM reference software for
H.265. In table VIII, the RC methods proposed by Kwon et al.
[32], Liu et al. [19], Wang et al. [33] and Liu et al. [100] are
all compared and analysed. In the LDP mode of [32], the BD-
PSNR is improved by 0.35 dB over the baseline. In the scheme
of [19], the BD-rate is -5.10%, and the BD-PSNR is 0.33 dB. It
can be seen that the algorithm in [33] can achieve better PSNR
results than JVT-G012 [15], while the bit rate performance of the
two algorithms is similar. In the LDP mode of [100], the BD-rate
is -0.12%, the BD-PSNR is 0.07 dB, and the latency reduction is
2.80% on average. [52] proposed a new scheme named the optimal
bit allocation (OBA) scheme and presented a detailed comparison
based on [45]; the BD-rate of this method is -5.10%, and the BD-
PSNR is 0.15 dB. Compared with the method of HM 16.20, the
average BD-rate of [62] can reach -3.30%, and the BD-PSNR can
reach 0.10 dB. For the method of [60], the BD-rate and BD-PSNR for
LDB/LDP/RA are -4.60%/-1.20%/-2.00% and 5.40 dB/1.00 dB/1.90
dB, respectively, which are much higher than those of the baseline
HM 16.20 coding algorithms. A recently proposed JND-based [131],
[132] perceptual RC method [63] is also included in the comparison,
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and it can be seen that this method effectively reduces the bit rate
without compromising the encoded video quality, as confirmed by
objective metrics such as the PSNR. In addition, in terms of coding
control, the actual R after encoding is closer to the target R. As seen
from these comparisons, different methods are suitable for different
situations. The OBA scheme is appropriate for achieving a lower bit
rate with good quality. The method of [60] is suitable for improving
the BD-rate and BD-PSNR for LDB/LDP/RA, while the JND-based
perceptual RC method is appropriate for reducing the bit rate without
compromising the encoded video quality. Other methods also have
their own advantages in achieving a higher BD-PSNR or lower BD-
rate.

C. Implementations addressing joint layer optimisation

Often, multiple layers can be jointly optimised to improve the
coding efficiency. Recall that the RC process can be divided into
two main parts: one is bit allocation, while the other is determining
how to realise the target bit allocation for a CU through the R-
D model. As shown in table IX, the algorithm proposed by Xu
et al. [93] is simultaneously implemented at the GOP, frame and
basic unit levels, and experiments in SVM3.0 [122] show that the
mismatch between the target R and real R does not exceed 0.5%
and that the BD-PSNR on average is approximately 1.50 dB. The
algorithm proposed by Ma et al. [30] consists of a one-pass process
and a partial two-pass process at the frame and block levels, and
experiments show that compared with TM5 and AVC-TM [123], the
BD-PSNRs are 0.20 dB and 0.20 dB, respectively. The algorithm
proposed by Wang et al. [43] is a joint three-layer (JTL) model
implemented in JM 9.4 [133]. Compared with JVT-G012 [15], the
average BD-PSNR is 0.98 dB, while the average latency reduction
is -0.45%. The algorithm proposed by Li et al. [45] is implemented
at the frame and CTU levels, and testing in HM 16.20 shows that
relative to [16] in the LD(noH), LD(H) and RA configurations, the RC
accuracy gains are 0.06%, 0.10% and 0.20%, respectively; the average
BD-PSNRs are 0.29 dB, 0.55 dB and 1.08 dB, respectively; and
the latency reductions are -3.10%, 0.10%, and -3.20%, respectively.
The algorithm proposed by Yang et al. [47] is implemented at the
frame and CTU levels, and experiments in HM 16.20 in the LDB
configuration show that the bit rate at the same quality is 2.20%
lower than that of the RC algorithm in HM 16.20. The algorithm
proposed by Zhou et al. [88] is implemented at the frame and CTU
levels, and experiments in HM 16.20 show that compared with [87]
and [86] under the all-intra (AI) and LDB coding structures, the RC
accuracies are 99.95% and 99.86%, respectively; the BD-PSNR is
0.50 dB in both cases; and the latency reduction is increased by 114%
and 1048.2%, respectively, when the time needed to train the model
parameters is included and by 1.80% and 1.20%, respectively, when
the time needed to train the model parameters is not included. The
algorithm proposed by Sanchez et al. [54] was also implemented, and
experiments in HM 16.20 show that the RC accuracy is 99.93% with
a slight BD-PSNR increase, while the encoding time is increased if
the training time is included. The above comparisons indicate that the
various algorithms all show improvements in coding efficiency, with
different strengths and limitations. Xu et al.’s algorithm minimises
the mismatch between the target and real R values, while Ma et al.’s
algorithm is effective for one-pass and partial two-pass encoding.
A significant PSNR gain along with a slight latency reduction can
be guaranteed with Wang et al.’s algorithm. Significant gains in RC
accuracy and PSNR can also be seen in Li et al.’s algorithm. Zhou
et al.’s and Sanchez et al.’s algorithms are suitable for non-real-time
encoding solutions.

From the above evaluations, it can be seen that RC modelling
methods have evolved over time, with each model having its own set

of advantages and disadvantages. The simple and widely used R-Q
models cannot accurately reflect the quality for diverse video content.
More accurate R-λ models have been proposed to better reflect the
R-D relationship, but these models require frequent and complex
updates. An R-ρ model, while improving the linear approximation
of the R-D relationship, still establishes only an indirect relation-
ship between R and the QP. Model-free RC methods offer greater
flexibility but require more computational resources and have not
yet been widely adopted. Overall, RC modelling has become more
sophisticated over time, and models should be selected flexibly to
balance coding efficiency and performance.

IV. FUTURE WORKS

As efficient tools for compressing video information, video codecs
allow service providers to compress video files so that they will
occupy minimal storage space and can be efficiently delivered over
a range of networks. The purpose of bit rate control is to achieve
stable and high-quality video compression to the greatest possible
extent under specified bit rate constraints. By removing redundant
information, RC methods aim to maintain the original video quality
while reducing the amount of data sent over the network or occupying
storage space. With the development of virtual and augmented reality
applications, video users have gained the ability to interact with
and influence objects in immersive three-dimensional (3D) simulated
environments that emulate reality with the help of interactive devices,
thereby providing an experience equivalent to that of an objective nat-
ural environment. This situation has driven the further development
of video streaming media in the directions of ultrahigh definition,
high dynamics, high frame rates, and high depth [134]–[136].

These developments have resulted in ever-increasing demands on
video coding techniques for current applications to achieve higher
compression efficiency, lower computational complexity, and more
intelligent integration into video analysis systems. We believe that
the future directions of related research can be summarised from
six perspectives: RC methods based on machine learning and deep
learning, development from RC methods to quality control methods,
perceptual and depth-aware RC methods, RC methods for various
advanced video sources, RDO and RC in depth coding, and point
cloud RC methods. Future work is expected to focus on topics such
as image integration, video capture, encoding, processing, analysis,
and understanding, with the objective of guiding a new generation
of codecs to effectively and intelligently model the human visual
system. A promising possibility is that through the dynamic selection
of different RC models, such as R-Q, R-λ, or R-ρ models, or model-
free methods in accordance with different video content or coding
conditions, the trade-off between coding efficiency and RC accuracy
can be optimised [137]. For instance, an R-λ model performs best in
terms of coding efficiency and RC accuracy in texture regions of HDR
content, but it may not be suitable for nontexture regions. On the other
hand, an R-Q model, which is relatively simple, may be more appro-
priate for simpler motions or textures. By switching between different
models based on region characteristics or coding conditions, better
RC accuracy and general quality can be achieved while maintaining
high coding efficiency. Therefore, more sophisticated algorithms and
strategies for dynamically selecting and adapting RC models in real-
time video coding applications should be developed. The specific
directions of anticipated future development are discussed as follows.

A. Learning-based visually enhanced RC methods

Machine learning (ML) and deep learning (DL) techniques are
widely acknowledged as important tools for analysing and processing
massive amounts of weakly correlated or high-dimensional data
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[138]–[142]. As new technologies for video applications (e.g., virtual
reality, augmented reality, and point clouds) revolutionise the video
coding industry, the heterogeneity and complexity of the captured
data are presenting increasing challenges for the efficient compression
of these data. Based on the above review of the methods applied to
date for video RC in the ML and DL domains, this paper argues
that future ML and DL techniques can help to achieve smarter video
coding.

Based on the specific requirements of video coding tasks, learning-
based RC methods aim to achieve intelligent RC with low complexity,
high coding efficiency, and high visual quality. First, ML and DL
techniques can be used to combine analysis and recognition tasks
with encoding tasks, enabling intelligent RC through the effective
reuse of video information and reducing the complexity of video
encoding. Second, various learning methods, such as active learning,
reinforcement learning, and transfer learning, can be introduced to
establish self-updating mechanisms in the relevant models to solve
the more complex RC decision-making problems arising in new
generations of video coding standards. Third, for the current ML and
DL methods applied for video RC, there is still a need to solve the
problems of their relatively high computational complexity and cost.
Thus, another important direction of future development for ML and
DL RC methods will be to investigate how to realise low-hardware
and low-cost implementation solutions based on DL.

B. Perceptual and depth-aware RC methods

Perceptual-based video coding that exploits perceptual redundancy
is a promising research area worthy of future consideration [143]–
[145]. Related research aims to realise an optimal RC mechanism
by constructing the relationship between video quality assessment
(VQA) results and the coding rate. When a VQA algorithm is to be
applied to determine the quality target in a video coding module,
it is necessary to adapt the VQA algorithm from image/video-based
assessment to block-based assessment and to rate–distortion theory.
A convenient method is to model the relationship between the VQA
metric of interest and the MSE, given that the MSE is the basis
of RDO. In addition, balancing the uniqueness and particularities
of perceptual redundancy is also a fundamental difficulty that needs
to be overcome. Since the perception of the human visual system
for static, dynamic, stereo, and omnidirectional video varies from
person to person, it is a daunting challenge to implement a general
VQA algorithm suitable for different applications. In addition, the
introduction of VQA makes RC complexity control particularly
challenging. The computational complexity increases substantially
with the adoption of more advanced feature extraction tools and
learning-based classifiers for quality prediction. Frequent calls to
learning-based VQA algorithms in intensely learning-based RDO
schemes can result in extremely complex encoding algorithms. Thus,
it will be worth investigating how to integrate VQA, especially better-
performing learning-based VQA, into video coding while maintaining
a desirable complexity. Future work on perceptual RC will be aimed
at developing an objective visual perception model that is broadly
advantageous in terms of accuracy, complexity, and adaptability.

C. Interoperable end-to-end RC methods for hyperrealistic and high-
dimensional videos

The rapid evolution of immersive video applications, such as
augmented reality (AR), virtual reality (VR) and HDR videos, is
presenting new challenges for end-to-end RC methods. Such im-
mersive applications require calculating the positions and angles of
camera images in real time and generating corresponding artificial
images, with the aim of simulating or supporting interaction with the

real world [146]–[151]. A VR system uses computer simulation to
generate a 3D space, presenting users with a visual and interactive
simulation without restrictions. A much more advanced technology
is mixed reality (MR), which mixes the real-world environment
with AR and VR technologies. This unique experience requires
redefining the perceptual quality indicators used in the video encod-
ing process, implementing end-to-end RDO, and outputting stable
and high-quality code streams while taking viewing interoperability
into consideration. Interoperability can be defined as the ability to
achieve a stable viewing angle bit rate through interaction during
the encoding process, involving the sharing of user viewing data and
encoding information between the client and the server through data
exchange via the head-mounted device (HMD). RC interoperability
for immersive video is closely related to interoperability in broader
human–computer interaction. The need for interoperability between
immersive video delivery systems increases the practical value of
RC coding. This interoperability can be achieved in two ways:
through competition for more network bandwidth and by enabling
data-driven decisions based on users’ viewing habits. The users of
such immersive experiences will also benefit from improved data
quality and a better immersive interactive experience. Therefore,
an important direction of development for hyperrealistic and high-
dimensional video technology will be to implement an R-D model
based on HDR video characteristics in order to improve coding
performance and achieve a globally optimal rate allocation scheme in
the subsequent RC mechanism. In addition, video content prediction
has become very popular in recent years due to its ability to learn
from previous viewing behaviour to construct the forthcoming video.
Such predicted video content can be widely used in decision-making,
autonomous driving, video comprehension, etc. Investigating how
best to achieve RC for this type of video will be very important,
as all of the abovementioned related tasks demand smooth and high-
quality streaming video.

D. Beyond 5G/6G-powered quality control methods

With the popularisation of 5G networking, high-data-rate and low-
latency network connections are increasingly expected to ensure
a smooth and high-quality playback experience for video users
[152]–[154]. Since visual quality is an important aspect of the
user experience in many media applications, high quality must
be guaranteed while pursuing high smoothness. These issues may
become critical as the demand for high-quality video transmission
becomes more widespread. The objective of quality control is to keep
the video quality within a certain high range under the premise of
high bandwidth, which can be achieved by using variable bit rates.
However, most existing techniques may not provide constant visual
quality and/or efficient compression. It will be more critical for future
quality control methods to consider the quality difference between
frames as a measure of frame complexity in order to model the
relationship among the target bit rate, distortion, and QP. Another
essential direction of research will be to pursue the implementation
of a low-latency quality control scheme to achieve quality stability.

V. CONCLUSIONS

This paper comprehensively reviews the latest progress in RC tech-
niques for the H.265/HEVC and H.266/VVC video coding standards
and discusses relevant development prospects. More specifically,
this paper first introduces and compares different kinds of RC
methods based on various R-D models as well as emerging DL-
based schemes. Then, the implementation schemes of RC methods
on different hardware platforms are reviewed. Finally, we discuss
RC methods based on ML and DL, the evolution from RC to quality
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control, RC methods considering human visual perception and depth
perception, RC methods for 360-degree/HDR video, and RC methods
for predicted video content. A comprehensive summary of directions
of future work on topics such as RC methods and RDO in depth
coding is also presented. The aim is to provide valuable guidance
for the improvement, implementation, application, and continuous
development of the current and next generations of RC standards.
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