2306.12048v3 [cs.CV] 17 Jan 2024

arxXiv

Online Unsupervised Video Object Segmentation
via Contrastive Motion Clustering

Lin Xi, Weihai Chen*, Xingming Wu, Zhong Liu, and Zhengguo Li,

Abstract—Online unsupervised video object segmentation
(UVOS) uses the previous frames as its input to automatically
separate the primary object(s) from a streaming video without
using any further manual annotation. A major challenge is that
the model has no access to the future and must rely solely on
the history, i.e., the segmentation mask is predicted from the
current frame as soon as it is captured. In this work, a novel
contrastive motion clustering algorithm with an optical flow as its
input is proposed for the online UVOS by exploiting the common
fate principle that visual elements tend to be perceived as a
group if they possess the same motion pattern. We build a simple
and effective auto-encoder to iteratively summarize non-learnable
prototypical bases for the motion pattern, while the bases in
turn help learn the representation of the embedding network.
Further, a contrastive learning strategy based on a boundary
prior is developed to improve foreground and background feature
discrimination in the representation learning stage. The proposed
algorithm can be optimized on arbitrarily-scale data (i.e., frame,
clip, dataset) and performed in an online fashion. Experiments on
DAVIS s, FBMS, and SegTrackV2 datasets show that the accuracy
of our method surpasses the previous state-of-the-art (SoTA)
online UVOS method by a margin of 0.8%, 2.9%, and 1.1%,
respectively. Furthermore, by using an online deep subspace
clustering to tackle the motion grouping, our method is able
to achieve higher accuracy at 3x faster inference time compared
to SoTA online UVOS method, and making a good trade-off
between effectiveness and efficiency. Our code is available at
https://github.com/xilin1991/ClusterNet.

Index Terms—Object segmentation, image motion analysis,
unsupervised learning, self-supervised learning, optical flow,
clustering methods.

I. INTRODUCTION

HEN looking around in a dynamic scene, visual ele-

ments moving at the same speed and/or direction tend
to attract human attention as part of a single stimulus. This
principle is called common fate and is theorized by Gestalt
psychology [1]. A common example is a BMX rider going
through dirt jumps. If the rider and the BMX bike have the
same trajectory, they are perceived as the same motion group.
The background, which has a different trajectory than the
BMX rider, does not appear to be part of the same group,
as shown in Fig. 1.
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Fig. 1: Motion grouping. (a) The RGB image with ground
truth; (b) the optical flow visualized by the inset color wheel;
(c) the motion segmentation using our proposed prototypical
subspace clustering framework (clusters k=5). According to
the prototypical subspace bases, we clustered different motion
patterns (i.e., A-red, B- , C-grey, D-cyan, and E-dark
red). sim(-) is the similarity of different motion patterns and
is normalized to [0, 1].

According to the Gestalt principle of common fate, objects
should share a common destination, moving together consis-
tently throughout the scene. Therefore, the motion of objects
can serve as an important cue for video object segmentation
(VOS). In computer vision, the pixel-wise motion in the scene
can be obtained from an optical flow estimation and used
to determine, segment, and learn the objects. In the recent
literature of VOS, many learning-based models [2]-[17] have
been proposed to learn more discriminative objectness by
leveraging motion information. While such models through su-
pervised learning require massive pixel-wise annotations, they
are limited to a small range of object categories predefined in
the datasets. To reduce the cost of data labeling, numerous un-
supervised approaches [18]-[24] have been proposed that use
the motion cues. However, traditional physics-optimization-
based approaches incur significant computational costs due to
the optimization process over the entire video. Unsupervised
methods [25]-[27] based on deep neural networks have gained
significant advantage by learning a deep representation on a
video dataset. Although those methods achieve good perfor-
mance, they cannot handle streaming video because they work
offline and require the entire video to be processed before
making predictions.

Unlike unsupervised video object segmentation (UVOS) in
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the offline setting, a major challenge for online UVOS is that
the inference is performed solely on observations of the past,
without utilizing the information from video frames in the
future. While processing video online is beneficial for many
applications, such as video compression [28]-[31], analysis
[32]-[36], and editing [37]. Tokmakov et al. [38] proposed
an end-to-end network to map the optical flow to motion
segmentation, followed by an object proposal model [39] to
extract the candidate objects. Similarly, Zhou et al. [40] pro-
posed a method based on salient motion detection and object
proposals which were directly predicted by a pre-trained model
[41] without fine-tuning to obtain final CRF refined results.
While these methods require training on a large dataset or
object masks, they incur computational cost in the optimization
(training) and inference process. In addition, some online
UVOS methods suffered from another shortcoming: inappro-
priate use of motion cues. For example, Taylor et al. [42] used
long-term temporal information to initialize the target object
on a few frames for online unsupervised framework. However,
uninformative history frames cause error accumulation during
the propagation, which degrades the performance of online
UVOS. Perazzi et al. [43] employed a salient detection method
without considering the object information and motion cues
of video content, which is a limitation in UVOS where the
segmented object was defined as the main object in the scene
with a distinctive motion.

We argue that an online UVOS model must predict frame-
level segmentation in correlation to what happened hitherto,
and as efficiently as possible for the online setting. Therefore,
an online UVOS model should satisfy the following criteria:
(i) frame-by-frame manner, (ii) relatively fast optimization and
inference, and (iii) short-term temporal dependence.

In this paper, a novel online UVOS algorithm is proposed by
using an efficient and accurate online deep subspace clustering
for motion grouping, which directly factorizes the optical flow
into k groups corresponding to k subspaces. The proposed
algorithm processes one video frame at a time without any
additional pre/post-processing (i.e., [44], [45]), and the results
for the frame is depend only on the previous frame. A
simple video auto-encoder model is designed to summarize
a set of subspace prototypes from the latent space, where
the deep auto-encoder is optimized on each individual video
sequence and does not require training on a large dataset.

Specifically, the motion segmentation problem is addressed by
training a generative model that is used to learn an embedded
representation Z of the optical flow. The Z is then combined
with the centers of each segment, i.e., the prototypes, to
construct the subspace affinity vector S for pixel assignments.
Each pixel is assigned to the nearest prototype without relying
on additional learnable parameters. The prototypes are formed
by clustering nearby points in the embedding space. They
represent motion groups following the common fate principle.
The network structure of the proposed method is illustrated
in Fig. 2. In order for the auto-encoder to effectively learn
the discriminative features between the foreground and back-
ground, we further exploit an important scene prior [46], i.e.,
the optical flow at the boundary of an image is significantly
different from the motion direction of the object of interest,
to design a pixel-level contrastive learning strategy.

Overall, our main contributions are: 1) a novel online deep
subspace clustering method for the online UVOS by exploiting
the motion cue; 2) an effective optimization approach for the
online clustering that can handle an arbitrary video indepen-
dently without being trained on large datasets; and 3) a pixel-
level contrastive learning strategy that significantly improves
the foreground and background feature discrimination for the
auto-encoder. To validate these contributions, the proposed
method is evaluated on three public benchmarks (i.e., DAVISys,
FBMS, and SegTrackV2); the proposed algorithm outperforms
state-of-the-art (SoTA) online UVOS models, while being
faster to optimize and infer.

II. RELATED WORKS

Motion segmentation is to identify and segment indepen-
dently moving objects in a video, that is, to solve the problem
of motion grouping. Many approaches tackle the issue from a
motion clustering point of view. Shi et al. considered motion
segmentation as a spatio-temporal image clustering problem
[47]. To increase robustness, some methods use motion cues,
such as point trajectories [48]-[51] or optical flow [19], [52]
accumulated over multiple frames, to segment moving objects.
Luo et al. [24] proposed a complexity awareness framework
that exploits local clips and their relationships for motion
segmentation. Kumar et al. proposed an algorithm to obtain
the initial estimate of the model by dividing the scene into
rigidly moving components to solve a grouping problem to
associate pixels into a number of motion clusters [53]. Brox et
al. defined pairwise distances between point trajectories from
adjacent frames for the motion clustering [54]. Ochs and Brox
[55] adopted the spectral clustering on hypergraphs which is
a similarity map obtained from a third motion vector, instead
of pairs [54] to segment point trajectories.

It is worth noting that Xie et al. [56] also inserted motion
clustering into their object segmentation problem pipeline.
However, under the premise of a supervised setting, this
method introduces a pixel-trajectory recurrent neural network
that learns the trajectories of foreground pixels and clusters
pixels over time. In contrast, the proposed algorithm learns
motion patterns only using the optical flow without requiring
any manual annotation. In addition, our resulting feature
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Fig. 3: The overview optimization diagram for our proposed method with the optical flow as our input. Given an optical flow
X, we utilizes auto-encoder to embed it into a p-dimensional embedding feature Z and outputs its corresponding reconstruction
X. During the optimization phase, we iteratively summarize non-learnable prototypical bases for the motion pattern, while the
bases are constrained by our proposed contrastive learning strategy to help shape the feature space. To obtain the final cluster
labels, we use the proposed subspace clustering algorithm with a hard assignment to group each pixel to the prototypical bases.

representations which are optimized on individual videos give
us a global dependence over entire videos.

Unsupervised video object segmentation aims to automati-
cally identify and segment the most visually prominent objects
from the background in sequences, unlike semi-supervised
[57]-[61] and referring [62]-[64] video object segmentation
which involves human inspection. Recently, many approaches
[21, [3], [38], [65], [66] have been proposed to tackle the
offline UVOS. Although the term “unsupervised” is used here,
in practice there are some differences from fully unsupervised
settings. In general, many popular algorithms [4], [6]-[17]
require supervised training on large-scale datasets to obtain the
segmentation masks. Alternatively, a number of works [25]-
[27] based on the offline setting employ a deep neural network
to discover the objects of interest from the perspective of
completely unsupervised concepts in the traditional methods.
Lu et al. [67] proposed a unified framework for unsupervised
learning, aimed at object segmentation through the exploitation
of the inherent consistency across adjacent frames in unlabeled
videos. Similar to our work, Yang et al. [26] used slot attention
[68] to learn to segment objects in a self-supervised manner,
and also took the optical flow as the input of the auto-encoder,
which is a type of generative model (e.g., VAEs [69] and
GANSs [70], [71]), but slot attention and binding graph neural
networks (GNN) rely on large-scale datasets for training.
DyStaB employs static and dynamic models to learn object
saliency from motion in a video, which can then be applied at
inference time to segment objects, even in static images [25].
Deformable Sprites (DeSprites) [27] are a type of video auto-
encoder model that is optimized on each individual video. Our
work also optimizes an auto-encoder on a specific sequence
in an unsupervised manner. Unlike the SoTA offline UVOS
method DeSprites, our goal is to cluster the points that share
motion patterns in the embedding space, which significantly

improves the effectiveness of the optimization and reduces the
inference time for online UVOS.

Subspace clustering is to segment the original data space
into its corresponding subspace. Classical subspace clustering
methods used kernels to transform the original data into a high-
dimensional latent feature space in which subspace clustering
is performed [72]. Recently, there have been a few works
that used deep learning techniques for feature extraction in
subspace clustering. Ji et al. developed a convolutional auto-
encoder network combined with a self-expression module
[73], which showed significant improvement on several image
datasets. Instead of constructing the affinity matrix for sub-
space clustering, Zhang et al. utilized deep neural networks
to iteratively project data into a latent space and update the
k-subspaces [74]. In [75], [76], a k-factorization subspace
clustering was proposed for large-scale subspace clustering,
which effectively reduces the complexity of clustering.

In this paper, we attempt to develop a joint optimization
framework for the online UVOS that can simultaneously learn
feature representation and subspace clustering. Inspired by the
effectiveness of the k-FSC model [75], we combine a powerful
CNN to define £ non-learnable prototypes in the latent space
as the k-subspace of clustering.

Contrastive learning is an attention-grabbing unsupervised
representation learning method that maximizes the similarity
of positive pairs while minimizing the similarity of negative
pairs in a feature space [77], [78]. Li et al. proposed the
contrastive clustering method, which performs dual contrastive
learning at the instance and cluster level under a unified frame-
work [79]. By adopting the foreground-background saliency
prior [46] for contrastive learning, we propose a novel pixel-
level contrastive learning framework without the requirement
of image-level supervision. Features from the foreground are
pulled together and contrasted against those from the back-



ground, and vice versa.

III. METHODS

In our “online unsupervised” setting, an optical flow is taken
as our input and all pixels are assigned into different groups to
predict a segment containing the moving object by an online
deep subspace clustering on top of non-learnable prototypes.
One video frame at a time is processed, and the results for
the frame depend only on the previous frame. The overall
framework of the proposed method is shown in Fig. 3.

Problem Formulation. Ler {X ", iar € REXWXIN
(N € N*) denote optical flow frames from the individual
video, where H x W indicates the spatial resolution of
images. Assume that a pixel point xgiﬂ_m (s € REXW)
in an optical flow frame is drawn from a p-dimensional
subspaces {S;}j=1,... k (i.e., Xgiwm € S;), where k clusters
correspond to k different subspaces. For j = 1, ..., k, the pixel
point xtit LA can be formally represented as:

X:Ei)wrm =g(U;v) te

(D

where one subspace can be expressed by a specific subspace
base U; € RP*™ (p < rj), v € R" denotes a random
variable, ¢ € R? is random noise, and g : RP — R2. Find
k cluster patterns from the r-dimensional latent space U and
p<r.

A. Network Formulation

The auto-encoder is a widely used self-supervised model
and it can embed the raw data into a customizable latent space.
A network architecture consisting of multiple convolutional
layers is adopted to map the optical flow into the r-dimensional
latent sgacew U, and then the p-dimensional embedding features
Z € Re*=*P is denoted by

Z = F(2(X)) + A(F(®(X))), @)
where c is a scale, and a feature multi-layer perceptron (MLP)
which is stacked after the embedding features ®(X) is denoted
by F': R™ — RP (p < r). A spatial attention module A(-),
which is implemented by the sum of max and average pooling
followed by an upsampling layer, is added to improve the
spatial stability.

The embedding features Z are fed into a decoder ¥(-) to
reconstruct the optical flow, and the reconstruction loss £, for
the auto-encoder is formulated as:

1 v 1 s s(s
Lo=2 | X=X [F=5 > Ix =5 3
ses

where X = W(Z) and S is the entire spatial grid. For
simplicity, the subscript ¢t — ¢ + At is omitted for the optical
flow ward in Eqgs. 2 and 3. We only leverage the temporal
information from the previous frames for the optical flow
estimation, hence At < 0 in the online setting.

B. Non-learnable Prototypical Subspace Clustering

Suppose PTX = X, where X = [X, Xy, -, X}]
and P is an unknown permutation matrix. According to the
assumption in the proposed Problem Formulation, once U;
is obtained from Eq. 1, the correct clusters are then identified.
This implies that the Uj is not explicitly determined. Instead, a
neural network is exploited to replace Eq. 1 by approximating
x(*), which yields the following formulation:

%) = §(U,v(®), (4)

where z(%) = ﬁjv(s) (z®) € L©)), z() refers to the em-
bedding feature associated with pixel x(*), and L) indicates
the true cluster to which x(*) should be assigned. There
exists a direct correspondence between the spatial positions
of embedding features and pixels, establishing a one-to-one
relationship between z(®) and x(®), In fact, it is difficult to
determine L) directly. Now the embedding feature z(*) is £,
normalized so that it lies on the surface of a unit hypersphere,
as shown in Fig. 4. A new variable P € RP** is introduced
as the subspace prototypes, where P = [Py, Pa, - -, Px] and
| P; I|I=1, 5 = 1,---,k, and p is the dimension of each
prototype. The function of P; is to summarize the subspace
Sj,j=1,-- k. Thus | P,/ P; || is assumed to be small

enough for all i # j, ie.,
I PP 1< T, i #J, (5)

where 7 is a small constant.
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Fig. 4: The simplified diagram of p — 1 dimensional unit
hypersphere, where each subspace corresponds to the surface
area of the unit hypersphere centered on different prototypes,
denoted as P;. When || P,/ P; || is sufficiently small for all
i # 7, it means that each prototype P; on the unit hypersphere
is situated at a greater distance, enabling the identification of
a suitable boundary for clustering.

The embedding feature z(*) of a data sample is compared
with P; (j =1,---, k) to obtain the winning prototype as
(6)

-
o) = argmax || 28 P; || .
j

It is assumed that

s =) 2Py

T
|>> max || Z(S) PJ ||’ 5:17”' aSa

PG
(7)



where 5(*%) denotes the affinity. In other words, maximizing
the likelihood of Eq. 6 is assigning z(*) to one of P with a
probability distribution:

(s,)
p(oz(s) |Z(S)) - M. (8)

Sk exp(s(+))

An online clustering strategy is adopted to update a(®) so
that the pixels with the same motion pattern are assigned to
the prototype P; belonging to that subspace S; according to
s(%7) 1t can be known from the permutation matrix P that
the mapping 7' that assigns the pixel x(*) to the prototypes is
related to it as

T'PTZxPTX, 9)

where the column of T € R**P is the one-hot assignment
vector of pixel x(*) over k prototypes. In other words, each
pixel is assigned to a single prototype, and the sum of pixels
matched by all the prototypes is equal to all pixels in the frame.
Thus, the augmented assignment T' now has the following
constraints:
%1]67
where 1, denotes the vector of all ones of k£ dimensions.
The mapping T can be optimized by maximizing the
probability distribution p(a(*)|z(*)) (Eq. 8) between the pixel
embedding Z and the prototypes P. The solution of the above
optimization problem corresponds to the optimal transport

[80]:

T'1, =15 and T1g = (10)

max Tr(T'P"Z)+ skh(T),
TerS*F

(11
s.t. Tle = 15, T].S = %lk,

where h(T') is an entropy, and x > 0 is a parameter that
controls the smoothness of the distribution. The efficient solver
on GPU of Eq. 11 can be given as the Sinkhorn algorithm
[81], [82]. Our online subspace clustering involves few matrix
multiplications, so it is computed by few steps of iteration.

With Eq. 6, the prototype P; is estimated from the pixel-
wise feature embeddings that are with the highest confidence
of clusters 5 (5 = 1,---,k). Specifically, for all pixels
assigned to subspace j, the prototype P; can be derived as
the average of the pixel-wise embeddings, which is the center
of the pixel embedding within segment j.

The proposed online subspace clustering method is per-
formed as follows: pixels with the same motion pattern are
first assigned to the prototype P; belonging to that subspace
S;, and then the prototypes are updated according to the
assignments. It is natural to derive a training objective for
pixel assignment from Eqs. 5 and 7 as

S
1 T
Lpe =5 > (-2 P,

s=1

(12)

where L. indicates the prototypes’ discrinimitiveness, and

.
exp(z®) P)
exp(35_, 20 P)

L. is the cluster contrastive loss.

1 S
Loo==5) lo . a3)

s=1

C. Contrastive Learning based on a Boundary Prior

Considering the fact that the motion of the foreground object
is different from that of the background [46], a pixel-level
contrastive learning strategy is introduced to improve the fea-
ture discrimination between the foreground and background.
A core design philosophy for this strategy is that the average
motion m of the boundary pixel is compared with all pixels
x(*) (s € R"*W) in the optical flow frame, so as to judge
the similarity between the pixels and the boundary motion
to determine whether it belongs to the background region.
The cosine similarity between each pixel x(*) and m is first
computed as:

s =1 x() m (14)
[ [

To determine the background region, a threshold § is set
to binarize the similarity map derived by Eq. 14. After then,
the foreground and background sets are obtained by K+ =
{x)|s() < 6} and K= = {x(7)|s(*) > 4}, respectively.
Thus, the foreground region K" and the average motion m;y
of the foreground pixels are treated as a pair. And the same is
true for the background region X~ and the average motion my
of the background pixels. Our contrastive learning framework
aims to maximize the distance between the foreground and
background representations. The final saliency contrastive loss
is formulated as:

Lsc =

exp(x™) T my)

— T k- log (15)

exp(x(=) Tmyp)+exp(x(—) "my)
exp(x(™) 'my)

- |VC1+H Z)C+ log

exp(x) Tmy) fexp(x(H) Tmy)

When the contrastive loss L. is applied to pull close and push
apart the representations in positive and negative pairs, the
motion pattern of the foreground object and the background
in the optical flow are gradually separated.

D. Optimization

Stochastic gradient descent (SGD) is adopted to learn the
parameters of the model, which consists of an auto-encoder,
a feature MLP, and a spatial attention module.

Now we show how to solve the VOS using our proposed
contrastive motion clustering algorithm. We initialize the pa-
rameters of the auto-encoder by Eq. 3. The prototypes P;
(j =1,--- k) are initialized by a Gaussian distribution and
are normalized to have unit /5 norm.

At iteration ¢, we first obtain the embedding features Z
using the auto-encoder and apply /> normalization. Then, we
assign the label « to each pixel with a posterior probability
as in Eq. 8. In the cluster setting, we use the Sinkhorn
algorithm [81] with hard assignment to group each pixel for
the prototypes P; (j = 1,--- , k), as proposed in Eq. 11. As
the M-step of the Expectation-Maximization (EM) framework,
the prototypes are then updated by accounting for the online
clustering results. The non-learnable prototypes P; are not
learned by SGD, but are computed as the centers of the



Algorithm 1: Contrastive clustering of optical flow for
online UVOS

Input: Optical flow; Number of clusters k; Embedding
dimension r; Subspace dimension p;
Hyperparameters &, d, 17, A1, Ao and As;
Maximum iteration 7.

Output: Cluster labels of pixels.

1 Initialize auto-encoder by minimizing Eq. 3.

2 Initialize non-learnable prototypes from Gaussian
distribution and apply /5 normalization.

while ¢ < T, do

Learn embedded representation Z.

Compute cluster labels by solving Eqs. 8 and 11.

Update non-learnable prototypes according to
cluster labels as in Eq. 16.

7 Compute and binarize the saliency map by Eq. 14

to obtain I and K~ sets, respectively.

8 Update the network parameters by minimizing the

objective function in Eq. 17.

S A W

9 end

10 Use Eq. 6 to obtain the final updated cluster labels.

11 Assign pixel-wise foreground/background labels with
the Hungarian algorithm based on boundary prior.

12 return Foreground/Background labels of pixels.

corresponding feature representations Z. In particular, in each
training iteration, each prototype is updated as:

1
= (s) 1
P; 5 le : (16)

where |S;| is the number of pixels belonging to this subspace
S;, and s denotes the spatial position. Meanwhile, we compute
and binarize the saliency map by Eq. 14 to obtain X+ and
K~ sets for boundary prior-based contrastive learning. The
parameters of our model are directly optimized by minimizing
the combinatorial loss over all training pixel samples from the
each video:

L=LcA MLy + AL+ A3Lse. 17)
After performing each training iteration, the cluster labels are
obtained from the maximum matching formula in Eq. 6. To
guide the object segmentation, we use the boundary motion in-
formation as a prior. We found the optimal assignment between
foreground and background with the Hungarian algorithm,
using the cosine similarity between each prototype P; and
the background region K~ as a cost function with a threshold
of 7. Unlike the foreground region K, the background region
K~ tends to be more robust to noise than it.

For each frame, the online subspace clustering is then
performed to achieve unsupervised motion segmentation. The
whole optimization process is detailed in Algorithm 1. The
proposed method achieves a joint optimization of subspace
clustering and embedded representation learning.

IV. EXPERIMENTS
A. Experimental Setup

Datasets and evaluation metrics. To test the performance of
our online subspace clustering, we carry out comprehensive
experiments on the following three UVOS datasets:

DAVIS s [83] is currently the most popular VOS benchmark,
consisting of 50 high-quality video sequences (30 videos for
the train set and 20 for the val set). Each frame is densely
annotated with pixel-wise ground truth for the foreground
objects. We perform online clustering and evaluation on the
validation set. For quantitative evaluation, we adopt standard
metrics suggested by [83], namely region similarity 7, which
is the intersection-over-union of the prediction and ground-
truth, computing the mean over the val set.

FBMS [84] contains videos of multiple moving objects,
providing test cases for multiple object segmentation. The
FBMS has 59 sparsely annotated video sequences, with 30
sequences for validation.

SegTrackV2 [85] contains 14 densely annotated videos and
976 annotated frames. Each sequence contains 1-6 moving
objects and presents challenges such as motion blur, appear-
ance change, complex deformation, occlusion, slow motion,
and interacting objects.

Following the evaluation protocol in [23], we combine

multiple objects as a single foreground and use the region
similarity 7 to measure the segmentation performance for the
FBMS and SegTrackV2.
Implementation details. The optical flow is estimated by
using the RAFT [86] and FlowFormer [87]. The flows are
resized to the size of the original image [26], with each input
frame having a size of 480854 for the DAVIS s and 480x 640
for the FBMS and SegTrackV2. We convert the optical flow
to 3-channel images with the standard visualization used for
the optical flow and normalize it to [-1, 1], and use only the
previous frames for the optical flow estimation in the online
setting.

We construct our model with a CNN encoder of architecture
[64, MP, 128, MP, 256] and a decoder with deconvolutional
layers (or transposed convolution) [88], [89] that can be
used for learnable guided upsampling of intermediate encoder
representations. Here, MP denotes a max pooling layer with
stride 2. The output dimension of the embedding network ®(-)
is 256, i.e. r=256. In MLP, the number of hidden units is [256,
256] with ReL.U as the activation function for the hidden layer.
The output dimension p is 10. We first initialize our auto-
encoder by pre-training 10 epochs on DAVIS;s val, which
takes about 7 minutes for DAVIS;s with 480x 854 resolution.
The whole network is trained using the Adam [90] optimizer
(81=0.9 and B5=0.999) with a learning rate of 10~3. The
hyper-parameters are set empirically to: k=0.05, 6=0.1, n=0.5,
A1=A2=A3=0.01, and 7T},,x=100. We also discuss the impact
of different values of the hyper-parameters in Section IV-B.

B. Ablation Studies

To demonstrate the influence of each component and hyper-
parameters in our method, we perform an ablation study on the



TABLE I: Comparison of the three different optical flow methods as
the input on the DAVIS;s dataset, measured by the mean . In the
inference step, we employ multi-scale and CRF to improve the final
performance of MG [26].

Flow | Method | MeanJ 1
MG [26] 637

PWC-Net [91] Ours 67.9 (+4.2)
MG [26] 68.3

RAFT [36] Ours 72.0 (+3.7)
MG 70.3

FlowFormer [87] Ou[rs : 75.4 (+5.1)

TABLE II: Ablation study of the spatial attention module on the
DAVIS s dataset, measured by the mean J. We employ an auto-
encoder, which is implemented by directly connecting the encoder
®(-) and the decoder ¥(-) as the baseline for all experiments, denoted
as AE.

Network Variant ‘ Mean J 1
AE (baseline) 72.1
AE w/. max pooling 74.5 (+2.4)
AE w/. average pooling 74.3 (+2.2)
AE w/. A(+) 75.4 (+3.3)

DAVIS ;s val set. The evaluation criterion is the mean region
similarity (7).

Choice of optical flow algorithm. Our model takes only the
optical flow as the input to solve the motion grouping problem.
Table I shows the effect of the quality of different inputs.
With the same optical flow estimation methods (i.e., PWC-
Net [91], RAFT [86], and FlowFormer [87]), our proposed
algorithm outperforms MG [26] by 4.2%, 3.7%, and 5.1%
points, respectively, in terms of mean 7 on the DAVIS;s val
set. The improved optical flow model (FlowFormer) further
enlarges performance gains. Thus, the optical flow estimated
by the FlowFormer is the input to our model.

Effectiveness of spatial attention module. To verify the effect
of the spatial attention module A(-) in Eq. 2, we gradually
remove the spatial attention module A(-), the average pooling,
and max pooling in our auto-encoder, denoted as AE, w/. max
pooling, and w/. average pooling, respectively. This means that
the embedding features Z are directly fed into the decoder
U(-), where we employ AE as the baseline for the ablation
study. The results can be referred to in Table II. Compared
to the baseline, the variants with max pooling and average
pooling can independently boost the performance by 2.4%
and 2.2%, respectively. Based on these high-performance
variants, the spatial attention module A(-), which combines
max and average pooling operations to enhance losing impor-
tant information on the regions of object boundaries, further
improves the performance by 3.3% in terms of mean J. This
demonstrates the superiority of the spatial attention module.
Training objective. We investigate our overall training ob-
jective (Eq. 17). As shown in Table IIla, the model with
L. alone achieves a mean J score of 73.9%. Adding L.
brings a gain (i.e., 0.5%), which shows that it effectively
improves the discriminability of foreground and background.
After applying L, or L. individually, we observe that our
model achieves improvements (i.e., 0.4%/0.2%), and their
combinations further improve the performance by nearly 1.0%.

These facts not only demonstrate the effectiveness of L.
and L.. but also indicate that the contributions of the two
constraints are almost orthogonal. Finally, combining all the
losses together leads to the best performance, yielding a mean
J score of 75.4%. This further confirms the effectiveness of
our training objective.

Initialization of prototypes. We evaluate the different ini-
tialization strategies of the prototypes on the DAVIS;s dataset
to get a better impression of the performance. Table IIIb
shows the results of prototypes initialized by the vector 0, the
vector 1, the orthogonal vectors [93], the uniform distribution
U(0,1), the standard normal distribution A/(0,1), and the
truncated normal distribution A(0, 1). We notice that the pro-
totypes filled with vectors 0 and 1 yield the worst performance
compared to initializing the prototypes randomly. An improper
initialization of the prototypes is problematic, and the constant
initialization cannot guarantee the orthogonality of the proto-
types and prevent all of them from collapsing onto a single
point. It reveals that our method is sensitive to the initializa-
tion. We also compare different random initializations for the
prototypes. We see that the random initialization outperforms
the constant and the Gaussian initialization outperforms all the
strategies. Fig. 5 presents the t-SNE [92] visualization of the
learned embedded representation on the bmx-trees sequence
from the DAVIS)s dataset. In particular, without the random
initialization of the prototypes, the representation learned from
the auto-encoder failed to find a good clustering structure,
leading to a somewhat inferior visualization. In contrast, the
embedded representation leaned from the model with random
initialization becomes significantly discriminative, and the
proposed method can achieve promising performance when
we have a good initialization of prototypes.

Number of clusters. Table IIlc reports the performance of our
approach with regard to the number of clusters k. For k=2,
we directly segment foreground-background into 2 groups.
This baseline obtains a score of 65.6%. We can see that as
k increases, the mean J first increases and then decreases.
Furthermore, when we use more clusters (i.e., k=5), we see a
clear performance boost (65.6%—69.2%). The score improves
further when k=20 or k=30 is allowed; however, increasing k
beyond 30 gives marginal returns in performance. Therefore,
we empirically set k=30 for a better trade-off between the
accuracy and computational cost.

Background threshold. To discriminate the foreground from
the background distractors, we introduce boundary motion
information as prior knowledge and propose a contrastive
loss based on a boundary prior to guide object segmentation.
Fig. 6 shows the t-SNE [92] visualization of the embedded
representation learned by the proposed method on the camel
sequence from the DAVIS;s dataset in different iterations, as
it is important to understand how the representation evolves
during training. In this scenario, when a similar object ditractor
and texture background appears (e.g., the small camel around
the target object), our model fails to capture the primary target
in early iterations. However, with the help of the contrastive
loss based on a boundary prior, we see that the embedded
representation of the foreground object becomes more and
more discriminative as the training iterations increase. For
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Fig. 5: Visualization of the embedded representations Z with t-SNE [92] on the bmx-trees sequence from the DAVIS ;s dataset.
Note that the number of prototypes k is set to 5 for each initialization condition, and we optimize our model for 10 iterations
on each frame. m represents the each prototype P;.
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Fig. 6: Visualization of the distribution of the background region K~ (blue region) and the each prototype P; (square) during
the training iteration. Based on the cosine similarity between each prototype P; and the background region K, we draw a
contour with a threshold of 0.5. A darker color indicates a higher similarity. Based on the observations, the distribution of
prototypes is iteratively refined. The prototype of the foreground objects (m) far away from that of the background center (%) and
the background distractors (e.g., m and m) can be filtered by contrastive learning based on a boundary prior. The segmentation
results of each iteration are shown in the upper left corner of each figure. t-SNE [92] is used to reduce the dimensionality of
the features.

Iteration 80

each video, the background region K~ explicitly maintains
the consistency of the motion across the entire video. We
empirically choose d for the foreground saliency map decision
to evaluate our model. The results are listed in Table IIId. We
can see that when as § increases, the mean J decreases. As
a result, we empirically set =0.1 with the best performance.

C. Comparison with SoTAs

To widely discuss the speed-accuracy trade-offs in online
methods, we show the detailed results in Table IV, with seven
online UVOS methods, e.g., FSEG [4], SAGE [21], SEM [43],
and UOVOS [40], taken from the VOS benchmark.

DAVIS s val. As shown in Table IV, our method achieves the
best performance among all of the online algorithms in terms
of mean [J. Compared to the second-best method UOVOS
[40] which uses the pre-trained Mask R-CNN [41] to remove
the moving background regions, our model achieves a gain of
0.8% in mean J. It is worth noting that our model relies on
an auto-encoder without any other additional neural network
structures to implement online subspace clustering for the
UVOS. In terms of runtime efficiency, SFM [43] is the only
faster online segmentation method implemented in C++. We
achieve a much higher region similarity (22.2%) while being
faster.

We also show qualitative results in Fig. 7. We choose some



TABLE III: Ablation studies of the proposed method on the DAVIS s dataset, measured by the mean 7.

(a) Training Objective £ (b) Initialization of prototypes (c) Number of clusters k (d) Background threshold &

Lc Lsc Lype Lece ‘ Mean J T Init. Method ‘ Mean J T Clusters k ‘ Mean J 1 Threshold 6 ‘ Mean J 1
v 73.9 Vector 0O 444 k=2 65.6 6=0.05 74.4
v v 74.4 (+0.5) Vector 1 435 k=5 69.2 6=0.1 75.4
v v 74.3 (+0.4) Orthogonal [93] 75.1 k=10 73.9 6=0.2 74.6
v v 74.1 (+0.2) Uu(0,1) 74.8 k=20 75.2 6=0.5 73.7
v v v 74.7 (+0.8) N(0,1) 754 k=30 75.4 6=0.7 73.2
v v v v 75.4 (+1.5) Truncated N'(0, 1) 75.3 k=50 74.9 0=0.9 72.9

TABLE IV: Quantitative results on the val set of video object segmentation benchmarks, using the region similarity 7. The best performance
scores are highlighted in bold. The Extra Model in the fifth column denotes the required pre-training model. Runtime excludes the optical
flow computation. OF and RGB represent the optical flow and RGB image, respectively.

Training & Input Extra Mean J 1 Runtime |
Method Optimization OF RGB Resolution Model DAVIS;s FBMS  SegTrackV2 | (s/frames)
FSEG [4] . v v 480x 854 - 71.6 - 61.4 7.2
LMP [38] . v 480x 854 - 64.5 - - 18.3
ELM [18] * v v - - 61.8 61.6 - -
SAGE [21] * v - - 42.6 61.2 57.6 0.9
CVOS [42] * v 480x 854 - 514 - - -
SFM [43] * v 480x 854 - 53.2 - - 0.15
UOVOS [40] * v v 480x 854 | Mask R-CNN [41] 74.6 63.9 61.5 0.36
Ours | * | v | 480x 854 | - | 75.4 66.8 62.6 | 0.12

* is fully unsupervised and the model is optimized in a single input frame. o is pre-trained on a video dataset.

»
Motion blur

-

Dynamic background

Occlusion

Fig. 7: Qualitative results of the proposed method on challenging scenarios from the DAVIS;s. From left to right: dynamic
background (breakdance, camel, and drift-chicane), motion blur (bmx-trees, dance-twirl, and motocross-jump), and occlusion
(horsejump-high, kite-surf, and libby). The ground truth is shown in the top row, and our results are shown in the bottom row.

videos from the DAVIS;s dataset with the cases of dynamic
background, motion blur, and occlusion. It can be seen that
our model can handle different challenges. For example,
our method can segment foreground objects when they are
occluded by the background, as shown in the occlusion case
in Fig. 7. When a similar object distractor appears (e.g., the
crowd in breakdance, or the small camel in camel), our method
is able to discriminate a foreground target from background
distractors.

FBMS val. As shown in Table IV, our method significantly
outperforms all previous published works on the FBMS val
set compared to online UVOS methods. For instance, on the
mean J metric, our method surpasses UOVOS [40] by 2.9%
and SAGE [21] by 5.2%. In comparison to the performance
on DAVIS;s, our method has a certain gap (i.e., 8.6%) on
the FBMS dataset. This is because our method relies only
on the optical flow, and some sequences of the FBMS dataset
contain multiple objects in a single video. In these challenging
videos, only a subset of objects are moving, so it is difficult to
determine all the objects by optical flow without considering

other cues.

SegTrackV2 val. We also report the performance of the low-
resolution dataset in Table I'V. Compared to the high-resolution
DAVIS s dataset, it is more difficult to train an accurate
optical flow model on the SegTrackV2 dataset. Our algorithm
outperforms the online methods, i.e., SAGE [21], FSEG [4],
and UOVOS [40], by 5.0%, 1.2%, and 1.1%, respectively,
in terms of mean J, respectively. However, compared to the
high-resolution datasets (i.e., DAVIS;s and FBMS), our method
performs worse on the SegTrackV2 dataset for the following
reasons: 1) we have only grouped the pixels that possess
the same motion pattern based on the optical flow, which
significantly limits the model in segmenting objects when the
flow is incomplete; and 2) some of the low-resolution videos
from the SegTrackV2 dataset affect the performance of our
model, which only uses the optical flow as its input. This
effect is also seen in FSEG [4], SAGE [21], and UOVOS
[40]. In particular, since UOVOS [40] detects the foreground
object based on a salient motion map, using Mask R-CNN on
incomplete optical flow provides little improvement.



D. Runtime Comparison

To further investigate the computational efficiency of our
proposed method, we report the inference time comparisons
on the DAVIS ;s datasets at 480p resolution. We compare our
model with the SoTA online methods that share their codes
or include the corresponding experimental results, including
the SFM [43], and UOVOS [40]. For the inference time
comparison, we run the public code of other methods and our
code under the same conditions on the NVIDIA TITAN RTX
GPU. The analysis results are summarized in the last column
of Table IV.

As shown in Table IV, our algorithm shows a faster speed
than other competitors. For online UVOS settings, model
efficiency is an important metric. Our model achieves a more
favorable accuracy-efficiency trade-off than the existing best
online method UOVOS [40], while achieving higher accuracy.
The main computational cost of UOVOS [40] lies in the
object proposal component, which is based on Mask R-CNN
[41]. However, our model relies on an auto-encoder and
online clustering strategy for the UVOS without any other
additional neural network structures. Compared to the faster
online method SFM [43], our model achieves a 22.2% higher
mean J.

V. CONCLUSION REMARKS AND DISCUSSIONS

In this paper, an efficient contrastive subspace motion clus-
tering is proposed for online unsupervised video object seg-
mentation (UVOS) by exploring an online clustering strategy
for motion grouping. Specifically, non-learnable prototypical
bases are iteratively summarized from the feature space for
different motion patterns, and these bases help to optimize the
feature representation in return. Experimental results demon-
strated that our method outperforms state-of-the-art (SoTA)
online UVOS algorithms.

In real-world scenarios, the performance of our online
UVOS system may be violated due to the presence of low-
resolution input, making it inaccurate for small objects. There-
fore, we can see that our method performs worse on the
low-resolution dataset, i.e., SegTrackV2, compared to the high
quality video data. The saturation of moving objects, such as
white vehicles under sunshine and black vehicles in dim light-
ing conditions, will also affect the proposed UVOS method.
The problem will be investigated by utilizing the results in
[71] and [44], [94], respectively. Furthermore, considering the
significance of real-time aspects in online UVOS, we will
incorporate a light-weighted design [95], [96] in our future
research.
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