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Agent-Centric Relation Graph for Object Visual
Navigation

Xiaobo Hu, Youfang Lin, Shuo Wang, Zhihao Wu and Kai Lv

Abstract—Object visual navigation aims to steer an agent
toward a target object based on visual observations. It is highly
desirable to reasonably perceive the environment and accurately
control the agent. In the navigation task, we introduce an Agent-
Centric Relation Graph (ACRG) for learning the visual repre-
sentation based on the relationships in the environment. ACRG
is a highly effective structure that consists of two relationships,
i.e., the horizontal relationship among objects and the distance
relationship between the agent and objects. On the one hand,
we design the Object Horizontal Relationship Graph (OHRG)
that stores the relative horizontal location among objects. On the
other hand, we propose the Agent-Target Distance Relationship
Graph (ATDRG) that enables the agent to perceive the distance
between the target and objects. For ATDRG, we utilize image
depth to obtain the target distance and imply the vertical location
to capture the distance relationship among objects in the vertical
direction. With the above graphs, the agent can perceive the
environment and output navigation actions. Experimental results
in the artificial environment AI2-THOR demonstrate that ACRG
significantly outperforms other state-of-the-art methods in unseen
testing environments.

Index Terms—Object visual navigation, Relation graph, Depth
estimation, Reinforcement learning.

I. INTRODUCTION

V ISUAL navigation aims to guide the agent to the tar-
get object based on visual observations from its first

perspective. To solve this problem, it is critical to perceive
the environment and control the agent. Thus, building object
relationships in the environment and designing a navigation
policy are two important issues in the navigation task. In
this paper, we mainly focus on the problem of perceiving the
environment and building robust and suitable relationships for
the navigation policy.

Previous works [1]–[3] explicitly or implicitly learn relation
graphs that reflect the object relationships. Mayo et al. [1]
utilize a novel attention mechanism for navigation to preserve
objects’ semantic and spatial information. Du et al. [2] propose
an object relation graph to learn concurrence relationships
among object classes from different environments. Puig et al.
[4] introduce a possible location distribution for each presup-
posed object. The above works only consider the relationship
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Fig. 1. Illustration of the relationships in our method. The green
arrow represents the horizontal direction, the blue arrow represents the
vertical direction, and the yellow arrow denotes the depth distance. The
symbol hi represents the horizontal relationship between the target object
“CoffeeMachine” and other objects. And d denotes the depth value from the
target to the agent. The symbol vi represents the vertical relationship helping
the agent to perceive the different distances among objects. Our model would
capture the horizontal relationship among objects and the distance relationship
between the agent and objects.

between environmental objects while ignoring the relationship
between the agent and the target. However, it may be helpful
to perceive the relationship between the agent and the target.
Moreover, their method of establishing the relationship be-
tween objects is rough, and they should specifically analyze the
role of the different direction relationships (horizontal, vertical,
and depth) for navigation.

In this work, we specifically analyze the impact of object
relationships in different directions and propose an agent-
centric model ACRG that consists of two relationships, i.e.,
the horizontal relationship among objects and the distance
relationship between the agent and objects. As shown in Fig. 1,
our model can utilize the horizontal coordinates (in Green) to
capture the horizontal relationship among objects. Moreover,
our method can utilize the relationship in the vertical direction
(in Blue) and the target depth value in the depth direction (in
Yellow) to perceive the distance relationship. The construction
of the above relationships is similar to the human navigation
process. For example, to “look for a television”, humans
usually perceive the target location based on the objects in
the environment. As visual navigation is performed in an
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environment that contains many objects, it is reasonable to
determine the rough position based on the rest of the objects,
even if the target is not yet visible. The horizontal relationship
of objects can assist in this conjecture process. In addition,
when humans approach the target, they also need to perceive
the distance relationship with the target object. We argue that
the vertical relationship of objects and the depth between the
agent and the target help the agent to perceive the distance
relationship. Different vertical coordinate values represent
different distances from the center of the field of view. Visual
navigation is a target-driven task, and the relationships in
different directions all play a crucial role in guiding the agent
to approach the target.

To build the horizontal relationship among objects in the
environment, we propose the Object Horizontal Relationship
Graph (OHRG) that only stores relative horizontal locations.
Note that previous work [2] both builds horizontal and vertical
relationships. However, we argue that using only one graph to
establish two relationships simultaneously is inappropriate and
cannot make each relationship play the greatest role. In visual
navigation tasks, the process of finding objects typically does
not involve vertical height. The agent can locate the target
object by searching on the two-dimensional plane.

Specifically, in searching for the target object, the agent
needs to focus more on the horizontal left-right relationship
among the objects on the 2D plane. We utilize OHRG to
represent the horizontal relationship among objects through an
online graph network. Specifically, we embed the horizontal
positions of the detected bounding boxes to graph nodes and
learn the adjacency matrix adaptively. However, the previous
approaches [5], [6] build maps using offline experience and
do not generalize well. In this work, the agent with OHRG
can adaptively capture the horizontal relationship of objects
from each observation and utilize it to guide movement in the
scene.

To build the distance relationship between the agent and
objects, we propose the Agent-Target Distance Relationship
Graph (ATDRG) that enables the agent to perceive the distance
to the target. ATDRG focuses on building the distance rela-
tionship centered on the agent. Firstly, we utilize a pre-trained
depth estimation model to obtain the depth map D from
visual observation. We employ the depth map to emphasize
the distance perception of the agent from the target. Secondly,
the vertical relationship provides auxiliary information that can
help the agent perceive the distance relationship among ob-
jects. Generally speaking, objects with different height pixels
tend to have implicit different distance relationships. Taking
human vision as an example, objects at different viewing
positions often implicit different distances from themselves.
When viewing a room in front view, objects near the viewing
edge are closer, while objects near the viewing center are
farther away. Specifically, we utilize ATDRG to represent the
distance relationship between the agent and objects using a
graph network for adaptive learning. In each node of the
graph, we embed the vertical position of the detected bounding
boxes and the estimated depth to learn the adjacency matrix.
ATDRG can help the agent perceive the layout relationship in
the vertical direction, estimate the distance among objects and
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Fig. 2. Overview of our navigation framework. Specifically, we perform
feature extraction on observations through a visual perception module and
then utilize a policy learner to map the features to policy actions. We also
imply pre-training to accelerate the learning of the visual perception module.

emphasize the precise distance value of the target. With the
ATDRG, the target can more accurately approach the target.

The overall model architecture is shown in Fig. 2. The
agent extracts features from the observation through a par-
tially pre-trained visual perception module, then utilizes the
policy learner module to map the specific policy actions. In
the visual perception module, we propose the Agent-Centric
Relation Graph (ACRG) that includes OHRG and ATDRG
to establish relational features from observations. We utilize
a transformer [7] to establish associations between graph
representations and image regions to obtain the final visual
representation. In the policy learner module, we implement
Long Short-Term Memory (LSTM) [8] to integrate previous
states and utilize a standard Asynchronous Advantage Actor-
Critic (A3C) architecture [9] to learn navigation policy. The
reward signal is utilized for training the policy learner and
visual perception simultaneously. In addition, to facilitate the
training convergence of the visual perception module, we pre-
train the transformer and SARPN [10] model. The transformer
is utilized to fuse features, and SARPN is implemented to
generate depth value in ATDRG. The experimental results
in AI2-THOR [11] demonstrate the superior performance of
our method. In RoboTHOR [12], the results demonstrate the
validity of our method in multiple environments.

In summary, this paper makes the following main points.

• We establish a horizontal object relationship in the envi-
ronment and propose the Object Horizontal Relationship
Graph (OHRG). The horizontal relationship is critical in
finding the target.

• We build the relationship between the agent and ob-
jects. We propose the Agent-Target Distance Relationship
Graph (ATDRG) by utilizing the depth map and the
vertical position of the visual observations.

• We analyze the different roles of object relationships in
different directions for navigation and build an Agent-
Centric Relation Graph (ACRG) by merging the above
relationships.

• Our method achieves new state-of-the-art accuracy on the
commonly used indoor navigation simulator AI2-THOR
and surpasses the existing methods by large margins.
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II. RELATED WORK

A. Traditional Visual Navigation

Some traditional methods in visual navigation tasks [13]–
[16] divide navigation into three parts: mapping, positioning,
and path planning. Thrun et al. [16] describe an approach
that combines both paradigms, i.e., the grid-based and the
topological. Cummins et al. [14] describe a probabilistic
framework for navigation using only appearance data. In
their framework, the model obtains the similarity of two
observations by learning a generative appearance model. These
works require additional information and treat navigation as a
purely geometric problem. Oriolo et al. [17] present a practical
method of online building maps automatically by fusing laser
and sonar data. Kidono et al. [18] propose a navigation strategy
that requires user assistance to make an environment map.
Other methods [15], [19]–[21] utilize Simultaneous Localiza-
tion And Mapping (SLAM) [22] to infer scene layout and
agent locations. However, environmental maps are not always
available, and even if the map is constructed, these methods
are not suitable for the previously unseen environments.

B. Visual Navigation with RL

In recent years, many approaches [23]–[27] have solved
the visual navigation problem through Reinforcement Learn-
ing (RL). Generally speaking, those methods utilize visual
observations as input and directly predict moving actions.
Mirowski et al. [28] introduce prediction and loop closure
classification tasks to improve navigation performance in 3D
maze environments. Pathak et al. [29] stack several LSTM
modules in a policy network to enhance the temporal memory,
but the training process is relatively long. Oh et al. [27]
present a representation learning approach considering both
state and action as inputs. Kahn et al. [30] propose a method
to build a model of the environment by a self-supervised
method. Meanwhile, the works [31], [32] implement an in-
trinsic collision reward with an additional collision detector
module to avoid collisions. Other works [33], [34] introduce
more information from the environment to improve navigation
performance. For example, Chen et al. [33] utilize additional
topological guidance of scenes for navigation. In [35]–[38],
natural language instructions are introduced to guide the agent.
Tang et al. [39] introduce an auto-navigator to design a
specialized network for visual navigation. Wu et al. [40]
customize a Bayesian relational memory to explore the spatial
layout among rooms. Zhang et al. [38] design a cross-modal
grounding module to track the correspondence between textual
and visual modalities. Shen et al. [41] utilize multiple visual
representations to generate multiple actions and then fuse those
actions for obtaining an effective agent action.

C. Target-oriented Visual Navigation

The target-oriented visual navigation model aims at steering
an agent to search for different kinds of objects in an environ-
ment. Based on the current observation and a given a specific
target class, Zhu et al. [42] employ a reinforcement learning
method to generate an action. With the semantic segmentation

and detection masks, Mousavian et al. [43] propose to fuse
them into the policy network for navigation. Wortsman et
al. [44] exploit Glove embedding [5] to represent target
objects and simulate the reward function for navigation in
unseen environments. Yang et al. [45] implement relationships
among object categories for navigation by utilizing an external
knowledge database. Veličković et al. [46] propose a graph
convolutional network to exploit the relationship between
the object categories. However, the works [45], [46] require
external knowledge databases, making them unpractical in
unseen environments. In this paper, we dynamically explore
the different layout relationships of objects.

Sscnav [47] explicitly models scene priors using a
confidence-aware semantic scene completion module to com-
plete the scene and guide the agent’s navigation planning.
Trans4Map [48] is an end-to-end one-stage Transformer-based
framework for mapping and finally forms a semantic map of
the scene. Compared with these RGB-D models, firstly, our
model does not require RGB-D data but only ordinary RGB
images. We utilize a depth estimation model to estimate the
depth value of objects from images. RGB data is obviously
easier than depth data to obtain in real model scenes. In the
method of using depth information, we only use the depth
value of the object to capture the distance information and do
not need to build a complete semantic map of the entire scene.
Secondly, the above two schemes construct a semantic map
and then guide the navigation planning learning. However,
our method is dynamic learning of the policy and inferring
the target’s location through the relation graph.

ORG [2] and VTNet [3] are proposed to solve the visual
navigation task and greatly improve performance. ORG estab-
lishes a rough object relationship graph for navigation. How-
ever, our method specifically analyzes the influence of the re-
lationship between objects in different directions. Specifically,
our method builds an Agent-Centric Relation Graph (ACRG),
which includes the horizontal relationship among objects
and the distance relationship between the target and objects.
Our graph can help agents perceive the environment more
meticulously and improve navigation performance. VTNet
adopts a transformer module to fuse spatially-enhanced local
descriptors and position-encoded global descriptors through
the transformer, allowing the agent to learn the relationship
between instances and observation regions. Our method uti-
lizes a well-designed ACRG to establish object relationships,
i.e., horizontal and distance relationship. ACRG makes the
agent aware of the various direction relationships between
objects and better realize the search and navigation actions.
Although we also utilize the transformer module, the kernel
of our agent is ACRG. In our method, the transformer module
is only an auxiliary module to associate the object relation and
the observation regions. Compared with VTNet, we obtain a
more informative feature representation than simply detecting
features from visual observation.

III. PROPOSED METHOD

A. Task Definition
Given a target object category, such as Television, visual

navigation utilizes visual observations to navigate the agent to
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Fig. 3. Overall framework of the proposed method ACRG. ACRG mainly involves two different relationship graphs, i.e., the Object Horizontal Relationship
Graph (OHRG) and Agent-Target Distance Relationship Graph (ATDRG). On the one hand, we utilize the horizontal direction coordinates to establish OHRG.
On the other hand, we imply the target’s depth value and the vertical direction coordinates to build ATDRG. After constructing the two relational graphs
and fusing the ACRG, we utilize the detection appearance feature to obtain the ACRG representation. Then, the transformer is used to associate the ACRG
representation and the global image region obtaining the final visual representation F̂ .

the target object. The agent obtains only visual observations
during navigation and does not involve additional inputs, e.g.,
scene topology map or 3D layout information. The agent
takes action based on the current observation input. There
exist 6 types of actions in the environment, i.e., MoveAhead,
RotateLeft, RotateRight, LookUp, LookDown, and Done. In
this work, the step size of MoveAhead is 0.25 meters, and the
angles of turning left/right and looking up/down are 45◦ and
30◦, respectively. We define an episode as a success when (1)
the agent takes the Done action, (2) the agent can observe the
target in the current observation, and (3) the distance between
the target and the agent is less than 1.5 meters.

At the beginning of each episode, the agent starts from
a random initial state S = (x, y, θr, θh) in a random room
and defines a target object T ∈ {Television, · · · , Sink}. x
and y represent the layout coordinates of the agent, while
θr and θh represent the rotation and horizontal angles of
the agent camera. At time t, the agent obtains the current
observation input Ot and the previous state ht−1, then takes
action according to the policy π(at|Ot,ht−1) to achieve the
maximum value of the cumulative reward R =

∑Ne

t=0 γ
trt.

The state ht−1 the previous environment state in reinforcement
learning and has Markov properties. The above at and rt
denote the action distribution of the agent and the reward given
by the environment at time t, respectively. γ is the discount
factor, and Ne denotes the episode length.

B. Learning Visual Representation

For the navigation task that controls an indoor agent, it is
essential to learn informative visual representation. To obtain
this representation, as shown in Fig. 3, we propose an Agent-
Centric Relation Graph (ACRG) that consists of two parts:
Object Horizontal Relationship Graph (OHRG) that perceives
the horizontal layout relationship among objects on the planar
map and Agent-Target Distance Relationship Graph (ATDRG)
that captures the distance relationship between the agent and
objects. After getting the above graph representations, we
concatenate them to get the ACRG that contains the two rela-
tionships. Then, we utilize the attention mechanism to make
the agent associate the object relation and the observation
regions. Based on this idea, we utilize a transformer to process
the ACRG representation and the global feature.

1) Object Detection and Depth Estimation:
Object Detection. To learn the relationship between the
agent and the objects, we need to detect the objects from
the observation. In this paper, we utilize DETR [49] as the
detector to acquire object locations. Given an input image,
DETR locates all objects of interest and converts N encoded
feature from the same layer to N detection results through a
feed-forward network. Each detection feature FD includes a
bounding box [h1, v1;h2, v2], a confidence value c, a semantic
label s, and a extracted detection feature f ∈ R1×256. Then,
(h1, v1) and (h2, v2) are the coordinates of the upper left
corner and lower right corner, respectively.

Depth Estimation. To build the relationship between the
agent and the target, an intuitive method is to perceive their
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distance and direction. However, the distance cannot be ob-
tained from observation directly in visual navigation. In this
work, we utilize a pre-trained depth estimation model and
introduce depth to represent the distance. Following SARPN
[10], we extract the depth map from the current visual obser-
vation. Then, we approximate the object depth value d using
the mean value of the depth map D within the bounding box
[h1, v1;h2, v2].

2) Agent-Centric Relation Graph:
Based on the detection and depth estimation results, we utilize
the graph network G = (V,A) to establish the agent-centric
relationship, as shown in Fig. 3. X ∈ RN×C is the input of
all nodes. |X| = N is the number of the nodes; in this paper,
the N is constant and equal to 100. C denotes the dimension
of the input feature. Gh = (Vh,Ah) represents OHRG that
captures the horizontal relationship among the objects, and
Gd = (Vd,Ad) denotes ATDRG that is designed to perceive
the distance relationship between the agent and objects.

Object Horizontal Relationship Graph. To establish
OHRG, we define a graph Gh = (Vh,Ah), where Vh and
Ah represent the nodes and edges, respectively. Note that
the edge ah ∈ Ah located between two nodes expresses a
horizontal direction relationship. The input of all nodes Vh

is Xh ∈ RN×Ch , including the object horizontal coordinates
[h1;h2], the confidence c and the semantic label s. Ch denotes
the dimension of the input feature. Note the node input
Xh depends on the N-dimensional detection features of the
observed image. Like DETR, if the objects’ number in the
observation is less than N, the detector output the rest null
nodes as 0.

To learn a layout relationship representation Zh ∈ RN×N

of all object nodes in the horizontal direction, all the nodes
Xh are input to the graph convolutional network (GCN)
[46]. At this step, each input node is embedded by matrix
Wh ∈ RCh×N . Then we embed all the nodes according to
the adjacency matrix Ah ∈ RN×N with each node encoding
Xh · Wh to obtain the layout relationship Zh. OHRG repre-
sentation is expressed as:

Zh = ReLU(Ah ·Xh ·Wh), (1)

where · is the matrix multiplication operation.
Specifically, the adjacency matrix Ah is learned adaptively

rather than predefined. We treat the matrix Ah as an N ×N
fully connected layer network parameter to adaptively learn,
like Wh. We feed the node input Xh to the fully connected
layer to achieve the effect of matrix multiplication between
Xh and adjacency matrix Ah. We then feed the matrix product
XhWh to the fully connected layer with parameter Ah and
obtain the final graph convolution representation Zh.

Agent-Target Distance Relationship Graph. To establish
ATDRG, we define the graph as Gd = (Vd,Ad), where Vd

represents the nodes, and Ad denotes the edges. The edge
denotes the distance relationship between all the nodes. We
argue that the coordinates [v1; v2] in the vertical direction is
conducive to learning the distance relationship among objects,
and the depth value d in the depth direction can emphasize the
distance of the target. Different pixel heights in the observation
image represent different distances from the agent, so we
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Fig. 4. Policy Learner Architecture. The navigation policy learner adopts
standard A3C architecture and utilize the LSTM to consider historical states.
Policy learner outputs the action probability distribution and evaluate-value to
control the movement of the agent.

introduce the vertical coordinates [v1; v2] to model the distance
relationship among objects. To perceive the depth distance
between the agent and the target, we employ a depth estimation
module to approximate the depth value d of the target. Note
that only the target node has a real estimated depth value d,
and the depth values of other nodes are set to 0. This setting
can emphasize the distance judgment of the agent to the target
and prevent the interference of other task-independent objects.
The node input Xd ∈ RN×Cd contains four parts: the object
vertical coordinates [v1; v2], the depth value d, the semantic
label s, and the label confidence c.

Then, Xd also input to the GCN to learn the distance
relationship representation Zd ∈ RN×N between the target
and objects. Wd ∈ RCd×N , and Ad ∈ RN×N are the matrix
and the adjacency matrix, respectively. ATDRG representation
Zd can be written as:

Zd = ReLU(Ad ·Xd ·Wd), (2)

Map Attention and Transformer. After obtaining the
graph representations Zh and Zd, we utilize a simple yet
effective method to fuse these two representations and form
the final graph representation Zt. Specifically, we concatenate
Zh and Zd, then use a linear layer to encode the merged
features.

Zt = ReLU(FC(|Zh,Zd|)), (3)

where |·, ·| denotes concatenate operation, and FC(·) is a fully
connected layer that compresses the stack graph representa-
tions. To make the agent pay more attention to the object
appearance, we apply Zt as the attention map to the DETR
appearance feature f ∈ R100×256. This process can be written
as follows:

F = Zt · f . (4)

Finally, we utilize a transformer to associate the graph
representation F with the image regions. Specifically, we
implement the ResNet18 [50] pretrained on ImageNet [35]
and positional embedding to generate the position-encoded
global feature Gp ∈ Rh×w×Cg of the observation Ot. The
h, w is the size of the feature map, and Cg is the feature
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dimensions. Then, Gp is reshaped into a matrix-based rep-
resentation Gp ∈ Rhw×Cg for the convenience of attention.
We feed the F into the transformer as keys and values by
employing multi-head self-attention, and the position-encoded
global feature Gp is the query in the decoder. The attention
function of the transformer is as follows:

Attention(Gp,F ) = SoftMax(
Gp(F )

′√
Cg

)F . (5)

After the processing of the transformer, we obtain the final
informative visual representation F̂ . We also conduct sufficient
experiments in Section IV-E to verify various methods of mod-
eling the three object relationships, i.e., horizontal, vertical,
and depth. The results prove that the visual representation
F̂ ∈ RCn×Cf obtained by our proposed method is most bene-
ficial to navigation tasks. Cn and Cf are the model’s number
of feature channels and feature dimensions, respectively.

Policy Learner. After obtaining the final visual representa-
tion F̂ , we utilize a basic reinforcement learning architecture
to learn the navigation policy, as shown in Fig. 4. Considering
the associations of the feature and action, we encode the
previous action embedding at−1 ∈ R1×64 and concatenate it
onto the visual representation F̂ . Then we implement LSTM to
integrate the above representation and previous states Ht−1 ∈
R4×512, producing a state representation FS ∈ R1×512 for
policy learning. The process can be written as follows:

FS ,Ht = LSTM(|F̂ ,at−1|,Ht−1) (6)

The Ht, Ht−1 represent the hidden state of LSTM at different
times, respectively.

The A3C is utilized to learn navigation policy and outputs
the action distribution and values. In each worker of A3C,
the policy function is called Actor, and the value function is
called Critic. The Actor proposes a probability distribution
over actions the agent can take based on the given state.
The Critic evaluates the expected return for an agent acting
according to a particular policy. The agent selects the action
with the highest probability value output by the Actor and
executes it in the simulation environment.

3) Pretraining Networks:
The pretraining process is mainly divided into two parts, as
shown in Fig. 5. At first, we pretrain the depth estimation
model SARPN [10] to obtain the depth map D of the obser-
vation. We find it difficult for the depth estimation module to
converge if training the depth estimation model and navigation
model simultaneously. In our method, it would provide huge
noise if we utilize the above unconverged depth feature when
training ATDRG, thus degrading the accuracy of the decision-
making process. Therefore, we use offline ground truth data
to pretrain the SARPN model and generate a pseudo depth
dataset for offline scene data in AI2-THOR. With this model,
ATDRG can be fed with pseudo-accurate observation depth
maps.

Secondly, we pretrain the transformer in this work. Accord-
ing to [3], directly feeding the decoded representation from
the transformer to a navigation network would fail to learn a
successful navigation policy. The main reason is that training
a deep transformer is very difficult, especially when a weak

ActionOptimal
Action

Supervision

1 × 6

Ground Truth Depth Map

Supervision

PredictObservation

SARPN

DETR

ResNet18
Transformer

Predict

Fig. 5. Pre-training Architecture. We utilize supervise learning to pre-train
the two modules, i.e., transformer and SARPN. The transformer module is
implied to associate the detection features with global features. The SARPN
is a depth estimation module and implemented to generate the depth map.

reward from reinforcement learning is given as the supervision
signal. Therefore, the decoded feature might be uninformative
and confuse the agent. In this paper, we pretrain the trans-
former network to solve the difficulties of the transformer
failing to converge. Specifically, we utilize Dijkstra’s Shortest
Path First algorithm to generate expert actions and then skip
the graph module to directly incorporate global features into
the transformer for learning visual representation. Then, expert
actions are as supervised signals, thus guiding the transformer
to learn a better representation.

IV. EXPERIMENT

A. Dataset and Evaluation

Dataset. We train and evaluate our models under AI2-
THOR [11], which is an artificial indoor simulation environ-
ment. AI2-THOR contains 4 different types of scenes, i.e.,
bedroom, kitchen, living room, and bathroom. Each scene
contains 30 rooms, and each room has its unique furniture
placement and object types. Similar to [2], [3], we choose 22
categories as our target categories and ensure that there are at
least four potential targets for each room category. The agent
randomly initializes a state from more than 2000 states in
the environment. We adopt the same training and evaluation
protocols as [1]–[3], [44] in the following experiments. We
choose 80 out of 120 rooms as the training set and utilize
the remaining 40 rooms as the test set. Simultaneously, we
introduce the RoboTHOR [12] to verify the extended per-
formance of the ACRG and SOTA models. RoboTHOR is a
more complex environment than AI2-THOR and adds a lot of
compartments to make objects less visible.

Evaluation metrics. We choose Success Rate SR and
Success Weighted by Path Length (SPL) given in [51] as
evaluation indicators. The SR measures the effectiveness of
navigation trajectories. It is formulated as 1

Ne

∑Ne

n=0 Sn, where
Ne represents the total number of episodes, Sn is a binary indi-
cator that defines the success of the nth episode. Specifically,
1 represents a successful episode, while 0 denotes that this
episode fails. SPL represents the efficiency of navigation tra-
jectories and is defined as 1

Ne

∑Ne

n=0 Sn
Lopt

max(Ln,Lopt))
, where
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TABLE I
COMPARISON WITH OTHER NAVIGATION MODELS. WE REPORT THE SUCCESS RATE (SR), SUCCESS WEIGHTED BY PATH LENGTH (SPL), AND THEIR

VARIANCES BY REPEATING EXPERIMENTS FIVE TIMES ARE INDICATED IN BRACKETS. THE RESULT DEMONSTRATES THAT OUR ACRG HAS OPTIMAL
NAVIGATION PERFORMANCE.

Method ALL Lopt ⩾ 5
SR SPL SR SPL

Random 8.0(1.3) 0.036(0.006) 0.3(0.1) 0.001(0.001)
WE [5] 33.0(3.5) 0.147(0.018) 21.4(3.0) 0.117(0.019)
SP [45] 35.1(1.3) 0.155(0.011) 22.2(2.7) 0.114(0.016)
SAVN [44] 40.8(1.2) 0.161(0.005) 28.7(1.5) 0.139(0.005)
ORG [2] 65.3(0.7) 0.375(0.008) 54.8(1.0) 0.361(0.009)
ORG+TPN [2] 69.3(1.2) 0.394(0.010) 60.7(1.3) 0.386(0.011)
ORG (DETR) [2], [49] 69.3(0.4) 0.389(0.008) 58.0(0.8) 0.369(0.005)
ORG+TPN (DETR) [2], [49] 70.5(0.2) 0.401(0.004) 60.8(0.7) 0.390(0.007)
VTNet [3] 72.2(1.0) 0.449(0.007) 63.4(1.1) 0.440(0.009)
VTNet+TPN [3] 73.5(1.3) 0.440(0.009) 63.9(1.5) 0.440(0.011)
ACRG (Ours) 77.6(1.1) 0.439(0.012) 71.0(0.5) 0.423(0.007)
ACRG+TPN (Ours) 78.2(0.9) 0.457(0.007) 70.4(1.4) 0.447(0.011)

TABLE II
COMPARISON WITH STATE-OF-THE-ART MODELS FOR DIFFERENT OPTIMAL PATH LENGTHS. WE REPORT SR, SPL, AND THEIR VARIANCES ARE

INDICATED IN BRACKETS. THE RESULT DEMONSTRATES THAT OUR ACRG STILL HAS THE OPTIMAL PERFORMANCE ON TASKS WITH LONGER OPTIMAL
PATHS.

Method Lopt ⩾ 10 Lopt ⩾ 15 Lopt ⩾ 20 Lopt ⩾ 25
SR SPL SR SPL SR SPL SR SPL

ORG [2] 34.6 0.229 12.37 0.084 6.15 0.040 0.00 0.000
(0.41) (0.010) (0.32) (0.010) (0.52) (0.017) (0.000) (0.000)

VTNet [3] 44.21 0.277 17.92 0.103 6.18 0.038 2.40 0.014
(0.723) (0.019) (0.654) (0.022) (1.021) (0.012) (1.432) (0.021)

ACRG(Ours) 55.8 0.351 32.3 0.203 21.2 0.141 9.33 0.067
(0.556) (0.003) (0.917) (0.003) (1.700) (0.009) (1.886) (0.008)

Ln represents the step length of the current episode, and Lopt

represents the optimal path length of the current episode.

B. Training Details

In extracting the visual representation, we utilize a two-stage
training strategy, i.e., pretraining components and Learning
Agent-Centric Relation Graph. In pretraining the depth esti-
mation model, we follow the work [10] with supervised data.
In pretraining the transformer, we follow VTNet [3] and fine-
tune the DETR model in the AI2-THOR scene. Specifically,
we pretrain VTNet with a learning rate of 10−5 and adopt
a learning rate decay strategy [3], starting from the initial
learning rate Lint = 10−4. To achieve better performance,
we choose the head number of transformer equals 8, and the
attention layer equals 1. In Learning the Agent-Centric Rela-
tion Graph (ACRG), we train the navigation policy using 16
asynchronous agents with 2 million episodes. We implement
the Adam optimizer [52] to update the policy network with
a learning rate of 10−4, and the maximum episode length is
50. When the agent gets a successful episode, it receives a
full reward 5. When the agent takes action in each episode, it

receives a negative reward −0.01, which motivates the agent
to use fewer actions to reach a success state.

The average time for a single agent to process each image
is 0.07 seconds, and it can process 13 images in one second.
We conduct model training and testing under the Unbutu
20.04.1 system. The CPU version is Hygon C86 7151 16-core
Processor, and the CPU refresh rate is 120GHZ. The graphics
card we use is NVIDIA RTX A4000, the driver version is
470.82.00, and the Cuda version is 11.4. During the training
process, we use 16 agents to train a total of 2 million rounds,
each agent process occupies 2077MiB of memory, and the
total training time is 43 hours.

To achieve detection results from visual observations, we
adopt DETR [49] as the detector. The reason why we choose
DETR rather than Faster RCNN [53] is explained in [3].
Compared with Faster RCNN, the feature of DETR is more
conducive for the agent to perform visual navigation. The fea-
ture output by the DETR detector is embedded with position-
encoded global context information, which is more suitable
for feature fusion operations. In addition, the DETR detector
aligns the feature, which is output from the penultimate layer,
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Fig. 6. Visualization results of different models in the test environment. We compare the proposed method with the existing SOTA algorithms. The
target object is highlighted with blue bounding boxes, and the starting point is marked with a yellow dot. The green line represents the best case, the orange
line represents the sub-optimal case, and the red represents the failed case. We show four room categories and target objects, then label the room number
and target category on the left side of each row. In most instances, SAVN cannot complete the task, ORG and VTNet takes more steps. Our model has the
optimal navigation effectiveness and efficiency

making DETR feature more robust to scale.
In RoboTHOR, we modify the maximum episode length

to 100 and the number of training episodes to 500k. Other
training details are consistent with AI2THOR settings.

C. Comparison Methods

Random strategy denotes that the agent selects actions
based on the average action probability. In this strategy, the
agent moves randomly in the environment.

Word Embedding (WE) [5] uses GloVe embedding to
represent the target category instead of DETR detection feature

Scene Priors (SP) [45] learns the category relationship
among the objects from the external knowledge data FAstText
[54] and employs scene prior knowledge to navigate.

SAVN [44] is a meta-reinforcement learning method that
allows the agent to quickly adapt to the unseen environment.
Specifically, SAVN utilizes WEs to associate the target ap-
pearance and concept.

ORG [2] directly utilizes Faster RCNN [53] detection
feature as graph nodes to establish object relationship graphs.
ORG+TPN introduces the Tentative Policy Network (TPN)

module to escape from deadlocks. ORG (DETR) implies
DETR as the detection module, and ORG+TPN (DETR) does
the same.

VTNet [3] introduces a visual transformer that leverages
two newly designed spatial-aware descriptors and fuses them
to achieve the final visual representation. VTNet+TPN denotes
that VTNet utilizes the TPN module to improve navigation
effectiveness.

D. Comparison with Related Arts

Quantitative Results. We demonstrate the results of the
proposed method and 8 comparison methods in Table I.
Compared with the existing algorithms, our model increases
the SR to 77.6% and achieves competitive results on SPL.
Furthermore, we also introduce the TPN module to improve
our navigation policy. The result proves that ACRG+TPN
achieves the optimal model effect regardless of SR or SPL.
These experimental results denote that our model achieves
better visual representation, thus obviously increasing the
effectiveness and efficiency of navigation.
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Fig. 7. Visualization results compared to VTNet. The left side results show that our model can handle complex object layouts and eliminate obstacles
compared to VTNet. The right shows a more accurate perception of the target distance of our model than VTNet.

As shown in Table I, our method outperforms SP and SAVN.
SP aims to employ category relationships and uses external
knowledge to encode category relationships. Different from
SP that utilizes external knowledge data, ACRG only relies
on visual observation to establish graph relationships. The
comparison of experimental results also reflects that our graph
relationship based on visual inputs has a better SR and SPL
in navigation. SAVN introduces meta-reinforcement learning,
utilizes word embedding as the target indicator, and directly
connects features from various modalities to generate visual
representation. Unlike SAVN, our method utilizes the agent-
centric relationship graph representation, making the agent
perceive the scene accurately and outperform SAVN by a large
margin in terms of SR and SPL.

Although the ORG model also attempts to build rela-
tionships among objects, our method has better navigation
performance on both metrics. ORG directly utilizes the de-
tection results as the feature of the graph nodes and only
considers perceiving the objects by building the relationship
among objects in the environments. However, ORG ignores
the distance relationship between the agent and the target
and does not specifically analyze the association relationships
in different directions. Unlike ORG, our method considers
the two relationships when perceiving the environment. The
comparison results of ORG and our method clearly show that
the relationships built by ACRG are more robust. Compared
with ORG+DETR, better detection features can improve the
effect of ORG. However, using the same object detection
model DETR, the navigation performance of ORG is still not
as good as VTNet, and our ACRG also outperforms ORG by
a large margin in terms of SR and SPL.

As a SOTA algorithm, VTNet employs a transformer to
decode the position-encoded global feature descriptor and the
spatially enhanced local descriptor, thereby obtaining a vi-
sual representation with rich feature information. Our method

also adopts a transformer, and the main difference between
our method and VTNet is that we utilize a different visual
representation derived from a graph network. In addition,
in VTNet, only the detection and global features are used
to indicate visual observations without introducing any ob-
ject relationships. These experimental results also show that
building relationships between objects is important for visual
navigation.

As shown in Table I, our proposed method achieves an SPL
of 0.439, and the SPL of VTNet is 0.440. The results show
that our method has a large SR but a competitive SPL. To
further illustrate the effectiveness of our model, we explore the
SPL values under more length optimal path lengths Lopt. As
shown in Table II, the results show that our model can achieve
better SPL on tasks with longer optimal paths. Combining the
results from the case study and RoboTHOR scene, we can
conclude that our method can better perceive object layout in
difficult scenes and achieve the best navigation performance.
In visual navigation, the SR reflects the effectiveness of the
final result, while the SPL represents the efficiency determined
by the number of steps. We argue that the success of the plot
is more important than the nuances of the amount of action.

Qualitative Results. Fig. 6 illustrates trajectories of four
simple navigation tasks proceeded by four models, i.e., SAVN,
ORG, VTNet, and our model. We selected four different
scenes, including kitchen, living room, bedroom, and bath-
room, to fully illustrate the performance of each model.

The action trajectory of the SAVN model shows that this
model tends to issue termination commands within a few
steps of navigation, leading to mission failure or taking more
redundant steps when simply navigating to the target. This
result indicates that SAVN does not extract good features
from the observations and thus cannot learn a good navigation
strategy.

Compared with VTNet and ORG, VTNet and our method
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TABLE III
COMPARISON WITH DIFFERENT COMPONENTS ABLATION. WE REPORT SR, SPL, AND THEIR VARIANCES ARE INDICATED IN BRACKETS. WE

COMPARE ACRG WITH DIFFERENT ABLATIONS, i.e., DIFFERENT COMPONENTS, VARIOUS COMBINATIONS OF RELATIONSHIPS, AND DIFFERENT METHODS
TO MODEL THE TARGET DISTANCE. THE RESULT DEMONSTRATES THAT OUR ACRG IS THE OPTIMAL SOLUTION FOR THE NAVIGATION TASK.

Method ALL Lopt ⩾ 5
SR SPL SR SPL

ATDRG (d./v.) 72.2(1.457) 0.374(0.046) 61.5(1.760) 0.309(0.023)
OHRG (h.) 67.8(1.375) 0.298(0.018) 57.3(0.074) 0.291(0.015)
h.+ d.+ v. 72.8(0.086) 0.382(0.008) 63.6(0.464) 0.375(0.004)
h./v.+ d. 75.1(0.953) 0.421(0.011) 65.9(1.396) 0.407(0.005)
h./d./v. 70.4(0.696) 0.387(0.005) 58.4(1.010) 0.290(0.003)
Multi-depth ACRG 68.8(0.438) 0.376(0.041) 57.9(1.126) 0.325(0.012)
Simple-depth ACRG 71.4(0.956) 0.395(0.010) 60.9(1.153) 0.296(0.121)
ACRG (h.+ d./v.) 77.6(1.124) 0.439(0.012) 71.0(0.450) 0.423(0.007)

are more efficient than ORG, and in more complex tasks.
Specifically, our method and ORG are relationship-based ap-
proaches and require building relationships. The visualization
clearly shows that the ORG agent and our method are inclined
to look around for building relationships before moving ahead.
Our method takes fewer steps than ORG, showing that ours
is more efficient in building relationships than ORG. VTNet
relies on the real-time observations and utilizes a visual
transformer to provide immediate moving actions. When the
navigation path is short, VTNet is similar to ours. However,
when the path is longer and more complex, our agent is more
efficient.

To further illustrate the validity of our model and the
rationality of feature construction, our separate comparative
analysis with VTNet is shown in Fig. 7. The cases on the
left are in more complex environments with obstacles in
the navigation path. The results show that our method can
successfully finish the navigation episode while VTNet cannot
achieve it. In this case, the agent controlled by the VTNet
model is stuck in a deadlock of obstacles and cannot reach
the target object. The main reason for the failure is that
VTNet directly utilizes visual observation to provide moving
direction and cannot perceive the layout relationship between
the remaining objects from visual observations. In other words,
when the target object appears in the observation, the agent
would obtain a MovingAhead action from the VTNet model,
regardless of the obstacles in the path of moving forward.
Thus, VTNet is inclined to fail in a complex environment,
and our method can reach a higher SR. Then the case on
the right demonstrates the rationality of our model in building
the graph. The results show that VTNet fails the task due to
incorrect distance perception of the target. However, our model
can better complete the task because it utilizes the ATDRG
module to perceive the distance between the agent and objects.

E. Ablation Study

In this subsection, we compare ACRG with different com-
ponent ablations and present the results in Table III. ACRG
is the proposed method, and two components are involved in

our method, i.e., the relationship graphs OHRG and ATDRG.
Specifically, we compare the importance of each component
and the method of combining relationship graphs.

Impact of OHRG and ATDRG. To verify the effec-
tiveness of the horizontal and distance relationship modules,
we compared OHRG and ATDRG modules. The results in
Table III show that only building the horizontal relationship
or distance relationship would result in a lower SR and SPL
than our ACRG. Only OHRG is insufficient because the agent
cannot better perceive the distance information among objects.
The representation of ATDRG only perceives the distance
information but ignores the horizontal relationship among
objects. The horizontal relationship is useful for the agent to
move left or right to find the target. Without specific modeling
of this relationship, the agent can only guide rough movement
based on global observation. In addition, the result also shows
that ATDRG can output a better navigation performance than
OHRG. The main reason is that ATDRG has a vertical
relationship among objects and can utilize global observation
to perceive the layout. However, OHRG will not obtain the
distance to the target and cannot accurately determine the
conditions for success.

Impact of combination method. In this section, we dis-
cuss the influence of the combination method on different
layout relationships. Specifically, ATDRG utilizes one graph
to model the relationship in depth and vertical direction, and
the symbol is d./v.. OHRG implies one graph to model
the relationship in the horizontal direction, and the symbol
is h.. Combining the three relationships, we considered the
ACRG (h. + d./v.) using one graph to model the distance
relationship in depth and vertical direction and another graph
to model the horizontal direction relationship. The symbol
h./v.+ d. means utilizing one graph to model horizontal and
vertical and another to model the depth relationship. We also
implement a combination of using three graphs to model the
depth, vertical and horizontal relationship separately, and the
symbol is h. + d. + v.. The combination of only one graph
to model the depth, vertical and horizontal, is h./d./v.. We
have yet to exhaustively search so that better combinations
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Fig. 8. Simple-depth ACRG Architecture.To study the graph modeling
method of distance relationship, we designed Simple-depth ACRG. It doesn’t
utilze graph to model distance relationship and directly inputs a vector of
distance information.

may exist. Based on the above experimental, we propose our
ACRG (h. + d./v.) that integrates three different direction
object relationships, i.e., depth, vertical and horizontal. Our
ACRG has the best performance in both SR and SPL among
many variants.

The results in Table III demonstrate that only one graph
establishing three relationships h./d./v. or three graphs sepa-
rately constructing h. + d. + v. both have poor performance.
Only one graph cannot extract an effective representation from
the three relationships simultaneously. The relationships in
different directions need to be established utilizing different
graphs to prevent mutual interference between relationships.
Moreover, the method that employing three graphs has too
many network parameters, and the captured representation
is too scattered, which is not conducive to the later feature
fusion. Comparing h./v.+d. and ours ACRG (h.+d./v), we
found that using a graph to construct depth and vertical has
a better performance. Analyzing the relationship between the
three directions in detail, we found that the relationship in the
vertical direction can assist the agent in perceiving distance
among objects. Therefore, the vertical and depth direction
relationship has commonalities, which can better guide the
agent’s perception of the scene layout. In this way, our agent
separately perceives the horizontal relationship for finding
targets and the distance relationship for approaching targets.
There are still many possible methods for modeling the three
relationships, and we will analyze this problem in the future.

Impact of modeling depth methods. In this section, we
analyze different methods of obtaining depth information. In
the setting of ATDRG, we only give the target node real depth
value, and the other node is 0. We compare our ACRG to
Multi-depth ACRG that gives all nodes the real depth value.
The results prove the effectiveness of only giving the depth
value to the target node. In navigation, the distance to the
target is the critical factor that ultimately determines success.
We only give the real depth value to the target, which can
emphasize the importance of the target distance and prevent
the interference of other objects. However, Multi-depth ACRG
learns the depth relationship among objects, causing the agent
to be unable to distinguish.

To investigate the effectiveness of graph modeling in
perceiving distance relationships, we compared ACRG and
Simple-depth ACRG. As shown in Fig. 8, Simple-depth ACRG
omits the use of graphs in modeling distance relationships, in-

TABLE IV
IMPACTS OF THE TRANSFORMER MODULE. WE COMPARE VARIANTS OF

OUR METHOD THAT ASSOCIATE THE GRAPH REPRESENTATION WITH
IMAGE REGIONS, SUCH AS SIAMESE ATTENTION, MULTI-HEAD ATTENTION

(MHA), AND A VERSION WITHOUT THE TRANSFORMER. WE ALSO
COMPARE THE MHA AND TRANSFORMER WITH AND WITHOUT

PRE-TRAINING. THE SYMBOL “W/O” STANDS FOR “WITHOUT,” AND “W.”
STANDS FOR “WITH.” THE RESULTS, REGARDING SR, SPL, AND THEIR

VARIANCES IN BRACKETS, DEMONSTRATE THAT OUR ACRG WITH
PRE-TRAINED TRANSFORMER PRODUCES THE OPTIMAL VISUAL

REPRESENTATION AND PERFORMS BEST.

Method ALL Lopt ⩾ 5
SR SPL SR SPL

siamese attention 60.0(0.262) 0.272(0.004) 47.7(1.802) 0.256(0.006)
MHA (w/o pre-train) 8.9(0.124) 0.052(0.004) 0.0 0.0
MHA (w. pre-train) 62.4(0.351) 0.301(0.002) 49.2(1.103) 0.284(0.003)
transformer (w/o pre-train) 10.2(0.112) 0.054(0.003) 0.0 0.0
w/o transformer 75.1(0.250) 0.426(0.005) 66.9(0.655) 0.403(0.005)

ACRG (Ours) 77.6(1.124) 0.439(0.012) 71.0(0.450) 0.423(0.007)

（a） （b）

Fig. 9. Learning curve of pre-training phase. We compare our model
with and without the pre-training scheme. Orange and blue curves represent
with and without pre-training, respectively. Our model will converge faster
and have a higher navigation performance when using the pre-training phase.
When without pre-training, our model will fail to converge.

stead directly utilizing distance values and vertical coordinates.
Specifically, Simple-depth ACRG takes a vector d̂ as input,
which includes the real depth value of the target d, vertical
coordinates [v1; v2], confidence c, and semantic label s. For
OHRG representation, we apply Zh as the attention map to
the DETR appearance feature f ∈ R1×256. This process can
be written as F = Zh · f . Finally, upon obtaining the OHRG
representation F and the depth feature d̂, we concatenate them
and transform the feature dimension to match the transformer
module. The comparison results demonstrate the necessity
of building a graph for the object distance relationship. Our
model’s ATDRG graph can better integrate vertical and depth
relationships. However, directly using a vector as input cannot
fuse the two relationships and has a relatively poor effect.

F. Variants Study

Impact of Pre-training. To illustrate the effects of pre-
training, we compared the curves of our model with and with-
out the pre-training during training in Fig. 9. Specifically, the
success rate curve is compared in (a), and the average episode
lengths are compared in (b). The results show qualitatively
that the pre-training stage improves model performance and
accelerates parameter convergence. For the success rate curve,
the navigation success rate of our model with pre-training
increases rapidly, while the other one cannot learn an effective
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TABLE V
COMPARISON OF TRANSFORMER HYPERPARAMETERS. WE COMPARED THE RESULTS OF TRANSFORMERS USING DIFFERENT ATTENTION HEADS AND

NETWORK LAYERS. WE REPORT SR, SPL, AND THEIR VARIANCES ARE INDICATED IN BRACKETS. THE BEST PERFORMANCE IS ACHIEVED IN THE
SETTING WHERE THE HEAD NUMBER EQUALS 8 AND THE ATTENTION LAYER EQUALS 1.

Head
number

Attention
Layer

ALL Lopt ⩾ 5
SR SPL SR SPL

4
1 76.7(0.616) 0.451(0.005) 68.6(0.250) 0.439(0.003)
2 76.5(0.205) 0.439(0.005) 67.9(0.141) 0.432(0.002)
4 75.8(0.500) 0.429(0.004) 67.3(0.651) 0.424(0.002)

8

1 77.6(1.124) 0.439(0.012) 71.0(0.450) 0.423(0.007)
2 77.3(1.293) 0.424(0.009) 69.6(0.367) 0.421(0.008)
4 77.5(1.703) 0.421(0.018) 70.2(0.675) 0.416(0.010)
6 77.4(1.045) 0.405(0.015) 70.5(0.731) 0.411(0.005)

TABLE VI
COMPARISON OF COMPUTATIONAL COMPLEXITY. WE SHOW EACH METHOD’S FLOATING POINTS OF OPERATIONS (FLOPS) AND MODEL PARAMETERS

(PARAMS) OF SOME IMPORTANT COMPONENTS. THE DATA ILLUSTRATES THAT OUR MODEL ACRG CONSUMES ONLY A FEW PARAMETERS WHILE
IMPROVING THE NAVIGATION PERFORMANCE.

Method ALL Transformer Graph Policy Other
FLOPs Params FLOPs Params FLOPs Params FLOPs Params FLOPs Params

ORG [2] 13169460 9726464 0 0 1642168 74931 9620544 9612423 1906748 39110
VTNet [3] 103435712 11037696 78879744 1057280 0 0 9751616 9743495 14804352 236921
ACRG (Ours) 72453728 10594549 39464960 528896 14757200 148630 9751616 9743495 8429952 172928

navigation policy. For the episode length curve, the model with
pre-training quickly improves navigation efficiency and speeds
nearly 14 steps per episode in training. In contrast, the model
without the pre-training scheme often fails to reach targets and
stops around 5 steps.

Impact of the transformer module. We conducted exper-
iments to study the influence of the transformer, as shown in
Table IV. We utilize different methods to associate the graph
representation and the image region, i.e., siamese attention,
multi-head attention (MHA) and without transformer. The
siamese attention and MHA are utilized to replace the trans-
former modules. In the method without the transformer (w/o
transformer), we directly change the dimension of the graph
representation and the global feature and perform concatena-
tion operations to obtain the features for policy learning. In
addition, we also compared the impact of pre-training on MHA
and transformer i.e., MHA without pre-train (MHA w/o pre-
train), MHA with pre-train (MHA w. pre-train), transformer
(without pre-training), and our ACRG (with pre-training trans-
former). Comparing our ACRG with the “w/o transformer”
shows that the transformer can effectively help model improve
the performance for associated features. However, the trans-
former only plays an auxiliary role, improving the success rate
from 75% to 77% in formal training. Comparing the other
method shows that too many parameters of attention that have
not been pre-trained will cause the model to fail to converge.
Specifically, the transformer and MHA have larger parameters.
When pre-training is not performed, the model training will be
disturbed, and they cannot learn effective navigation actions.

Impact of transformer hyperparameters. We compare the

effect of transformer hyperparameters on model performance
in Table V. We vary the number of heads in multi-head self-
attention and the number of layers in the transformer. We have
yet to do an exhaustive search so that better combinations
may exist. The model fails to converge to an optimal policy
when the transformer layers become too deep. The effect of
the model increases when increasing the number of attention
heads. The highest success rate is achieved when our model
contains eight heads and one network layer.

G. Complexity Analysis

We show the computational complexity of the whole frame-
work and some important components in Table VI, including
floating points of operations (FLOPs) and model parameters
(Params). The result demonstrates that our whole parameter
quantity is larger than ORG but smaller than VTNet. Specif-
ically, the main modification of these three models is the
method to learn visual representations, so their policy learning
modules have a consistent number of parameters. Compared
with ORG, our model has an additional transformer module
and constructs a more refined representation of relational
graphs with more parameters and calculations. Moreover, more
than half of the computational complexity comes from the
transformer. Compared with VTNet, although we all utilize the
transformer module, the transformer architecture is different.
We chose the hyperparameters of 8 heads and 1 layer with
fewer parameters, while VTnet chose 4 heads and 2 layers.
Overall, our model increases a small computational complexity
and leads to a huge improvement in navigation performance.
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Fig. 10. Visual results of failure cases. The target object is highlighted with
green bounding boxes, and the starting point is marked with a yellow dot.
The red curve represents the failure trajectory of our agent. Our agents fail
to reach targets due to large obstacles and mirrors interference.
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Fig. 11. Visualization of attention map. Green bounding boxes highlight the
target objects (i.e., Sink, GarbageCan, LightSwitch), and others are highlighted
in red. The highlighted area in the figure represents the high attention value.
Our agent associates the perceived object relationship representations with
the global image region. In (a) and (b), the agent directly observes the target
object and continuously moves toward the target object. In (c), although the
agent cannot directly observe the target, it infers the target’s position from
the other objects.

H. Failure Cases

As demonstrated in Fig. 10, our model fails to reach
targets due to the large obstacles and specular reflections.
In Fig. 10.(a), the agent lacks the perception of the bed
surface and mistakenly regards it as a possible movable area.
Our model cannot effectively perceive movable regions of
indoor scenes. Therefore, when the field of view of the agent
is full of the appearance of large objects, it is impossible
to effectively distinguish the object’s surface from the floor
texture. For Fig. 10.(b), since the mirror reflects the room
layout information, the agent finds the targets and movable
paths in the mirror. Specifically, due to the lack of perception
of the mirror space, the agent only wants to reach the area
displayed in mirrors based on the observation and constantly
moves to mirrors. There are often specular reflections in the
home environment, and the ability to discriminate specular
reflection is an important part of indoor navigation tasks based
on visual observations.

I. Visualization of Attention

Fig. 11 demonstrates the attention maps and identifies our
method can better perceive the target. For the case in lines (a)
and (b), the object is visible, and our agent directly detects
the instances of interest and then attends to the image regions.
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Fig. 12. Comparison of the attention maps between VTNet and ACRG.
The highlighted area in the figure indicates high attention values. The results
demonstrate that ACRG pays more attention to the object regions and has
more precise attention to target objects than VTNet.

Guided by the observation attention map, the agent selects
actions to approach the targets. In contrast, when the target
object is invisible, in the case of line (c), our model can
infer the approximate position of the target and attend to the
regions in the image observation. The regions corresponding
to the moving direction is the potential direction where the
target may exist. The attention map illustrates that our model
can obviously perceive the possible or precise location of the
object in the observation image and then move toward it.

Furthermore, we compared the attention maps of VTNet
and ACRG to assess their performance, as shown in Fig.12.
In the first two cases where the agent cannot observe the
target object, ACRG focuses more on the object regions in the
observed images. In contrast, VTNet emphasizes the movable
free area in the scene. This difference is mainly attributed to
the fact that ACRG emphasizes understanding the scene layout
through the object relationship graph in different directions,
while VTNet directly relies on visual input to map to optional
actions. Moreover, in the last two cases, when the target object
is visible, ACRG’s prediction of the target object’s location is
more accurate than that of VTNet.

J. Results in RoboTHOR

In this section, we discuss the performance of the navi-
gation approaches on RoboTHOR [12]. The baseline model
is provided by the RoboTHOR ObjectNav 2021 Challenge.
This model utilizes RGB-D data as input and learns the policy
through the DD-PPO [55] algorithm. As shown in Fig. 13 and
Table VII, we compare the learning curve in the training and
the results in the testing.
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Fig. 13. Learning curve in RoboTHOR. We compare the learning curves
of different training models on the RoboTHOR environment. The results
demonstrate the effectiveness of our ACRG method.

TABLE VII
COMPARISON OF MODELS ON ROBOTHOR ENVIRONMENT. WE

REPORT SR, SPL, AND THEIR VARIANCES ARE INDICATED IN BRACKETS.
THE RESULT ILLUSTRATES THE EFFECTIVENESS OF OUR ACRG IN MORE

COMPLEX ENVIRONMENT.

Method SR SPL

Baseline 3.88 (0.209) 0.0367 (0.002)
ORG 9.97 (0.676) 0.0577 (0.008)
VTNet 10.4 (0.346) 0.0655 (0.001)

ACRG (Ours) 12.5 (0.372) 0.0687 (0.003)

As shown in Fig. 13, ACRG performs better than other
models on the training set. Specifically, the Baseline takes a
lot of time to reach its expected performance. However, ORG,
VTNet, and ACRG can learn effective policies faster. We
can consider the three models efficacious in the RoboTHOR
environment. In the test, as shown in Table VII, ACRG out-
performs in SR and SPL. As ORG lacks a pretraining process,
its performance is slightly worse. Then, VTNet has a lower
SR and SPL than ACRG. Specifically, as the RoboTHOR
environment contains many clapboards, the target is always
invisible. VTNet cannot perceive the target position directly
through a single observation in this complex environment,
while ACRG can utilize two relationship graphs, i.e., object
horizontal relationship graph and agent-target depth relation-
ship graph, to perceive the target position.

V. CONCLUSION

This paper proposed a robust and effective Agent-Centric
Relation Graph (ACRG) to solve the visual navigation task.
In ACRG, we establish two relationships, i.e., the relationship
among objects and the relationship between the agent and
the target. Specifically, ACRG consists of two graphs: Object
Horizontal Relationship Graph (OHRG) and Agent-Target Dis-
tance Relationship Graph (ATDRG). Benefiting from ACRG,
the agent can better understand the position of objects based
on visual observation. The ACRG architecture makes the
agent more effective and robust than state-of-the-art navigation

models in a complex environment. Experiments demonstrate
that our method achieves the highest performance.
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