
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY XXX, VOL. XX, NO. X, XX 2023 1

A Unified Object Counting Network with Object
Occupation Prior
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Abstract—The counting task, which plays a fundamental role
in numerous applications (e.g., crowd counting, traffic statistics),
aims to predict the number of objects with various densities.
Existing object counting tasks are designed for a single object
class. However, it is inevitable to encounter newly coming data
with new classes in our real world. We name this scenario as
evolving object counting. In this paper, we build the first evolving
object counting dataset and propose a unified object counting
network as the first attempt to address this task. The proposed
network consists of two key components: a class-agnostic mask
module and a class-incremental module. The class-agnostic mask
module learns generic object occupation prior by predicting a
class-agnostic binary mask (e.g., 1 denotes there exists an object
at the considering position in an image and 0 otherwise). The
class-incremental module is used to handle new classes and
provides discriminative class guidance for density map prediction.
The combined outputs of the class-agnostic mask module and
image feature extractor are used to predict the final density map.
When new classes arrive, we first add new neural nodes to the
last regression and classification layers of the class-incremental
module. Then, instead of retraining the model from scratch,
we utilize knowledge distillation to help the model retain and
consolidate what it has previously learned. We also employ a
support sample bank to store a small number of typical training
samples for each class, which are used to prevent the model from
forgetting key information from old data. With this design, our
model can efficiently and effectively adapt to new classes while
maintaining good performance on already-seen data without
large-scale retraining. Extensive experiments on the collected
dataset demonstrate favorable performance. The dataset and
code will be available at: https://github.com/Tanyjiang/EOCO.

Index Terms—Object counting, Incremental learning, Classifi-
cation, Convolution neural network.

I. INTRODUCTION

IN order to analyze crowded scenarios, object counting aims
to automatically estimate the number of targets in an image
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or a video frame [1], [2]. The importance of this task has
grown as congested scenarios have become more prevalent and
the need for automation has increased across industries. This
task has gained widespread attention in both academia and
industry, and its applications span a wide range of domains,
including traffic management, smart agriculture, and public
safety monitoring.

Crowd counting, as a specific application of object counting,
has been extensively studied due to the prevalence of high-
density scenes in public areas, gatherings, and events. In
particular, the outbreak of COVID-19 in recent years has high-
lighted its importance and practicality [3]. To accurately pre-
dict the number of targets, it is important to overcome various
challenges, including extreme occlusion, scale variation, and
cluttered background. To address these issues, Zhao et al. [4]
leveraged heterogeneous auxiliary tasks, including attentive
crowd segmentation, distilled depth prediction, and crowd
count regression, to assist crowd counting. Zhao et al. [5]
addressed scale variation of pedestrians in a crowd image with
the help of depth-embedded convolutional neural networks.
Jiang et al. [6] investigated several methods for incorporating
the object/non-object mask into the regression of the density
map. Jiang et al. [7] used high-level semantic information to
provide effective guidance for generating high-quality density
maps. Lw-Count [8] proposed an effective counting network
with a lightweight design in the encoding and decoding phases.
These studies have considerably increased the performance of
network prediction, which has accelerated the development of
this field.

Actually, the need for counting objects in practical scenarios
is common. For instance, Zhang et al. [9] proposed an FCN-
rLSTM network to estimate vehicle density and number; Sun
et al. [10] detected multi-scale and dense wheat heads in
a wild environment with data augmentation; and Zhou et
al. [11] developed an Android-based neural network to detect
kiwifruits for yield estimation. These examples demonstrate
that the class of object counting in real-world applications
is dynamically changing. However, exploring class-specific
counting incrementally is challenging. Training all classes
together can accurately predict each class, but it requires
significant hardware resources and costs when data grows ex-
ponentially. An alternative solution is fine-tuning. It facilitates
the learning of new tasks by building upon previously learned
knowledge. While this can lead to improved accuracy, it may
also result in forgetting previously learned classes, especially
as the number of classes to be learned increases. This raises
the question of how to gradually learn extended classes of
object counts while retaining old knowledge.
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To address this challenge, we propose a unified object
counting network that can handle a continuous stream of data
with varying classes occurring at different time. The network
comprises three modules: a base net, a class-incremental
module, and a class-agnostic mask module. This design allows
the network to learn new data with new classes dynamically
while also enhancing its prediction capabilities by leveraging
object occupation prior. We avoid the need to retrain the
network from scratch by training it with newly added data
that contains new classes. Additionally, we use knowledge
distillation and support sample bank to mitigate the issue of
catastrophic forgetting. We carry out extensive experiments
to show the validity of our suggested solutions, and we attain
cutting-edge performance compared to other existing methods.
The key contributions of our work are as follows:

(1) We propose a novel unified network framework for
evolving object counting that, to our knowledge, is the first
attempt to incrementally learn different classes of this task. To
achieve this challenging task, we collected a sizable evolving
object counting dataset called EoCo, which includes 6885
samples.

(2) A class-incremental module is put forward that dynam-
ically expands the final regressor layer of the class-related
density map based on the newly added class. This module
enables the regressor to optimize its own parameters and select
the density map while receiving guidance from the incremental
classifier.

(3) The class-agnostic mask module enhances the network’s
ability to perceive both interest targets and background regions
by disregarding class information. This module introduces a
generic object occupation prior to the network, which makes
density regression less challenging.

(4) Extensive experiments are conducted on the EoCo
dataset to validate the effectiveness of our proposed strategies,
and we achieve superior performance compared to recent
existing methods.

II. RELATED WORK

Object Counting. Object counting aims to accurately pre-
dict the number of objects in images with varying densities.
This is a valuable technology for public safety management,
traffic flow monitoring, and smart agriculture [12], [13]. To
better understand the progress made in this field, we can
trace the evolution of the task from the perspective of crowd
counting. Crowd counting models can generally be categorized
into two types: traditional methods and deep learning-based
methods.

Traditional methods for crowd counting include detection-
based approaches [14], [15] and regression-based ap-
proaches [16], [17]. For example, in [18], a two-step approach
was proposed for estimating the number of people in crowded
scenes using perspective transformation. The method involved
first recognizing the head-like contour and then estimating the
crowd size. Meanwhile, Felzenszwalb et al. [19] developed
mixtures of multiscale deformable part models for robust
object detection. Differently, Chan et al. [17] utilized Gaussian
process regression to learn a mapping between the extracted

features and the number of people per segment of the crowd.
However, traditional methods rely heavily on handcrafted
features that may not generalize well to different contexts.

Convolutional neural networks (CNNs) have shown excel-
lent performance in image classification, leading to several
efforts to extend their applications in crowd counting [20].
One of the earliest CNN-based works in this field was [21],
which trained a deep model to predict crowd density and
count using a switchable learning procedure. However, the
difficulties in network optimization arise when the crowd is too
dense, making direct linear regression challenging. To address
this issue, MCNN [22] used the density map generated by a
Gaussian kernel instead of directly estimating the number of
individuals in the crowd. They also designed a multi-column
CNN with different receptive fields to handle scale variation.
Additionally, CP-CNN [23] aimed to produce high-quality
crowd density and count estimation by deliberately combining
global and local contextual information.

CSRNet [24] explored a straightforward and efficient single-
column structure in contrast to the more complex multi-
column network designs. It used a pre-trained VGG-16 [25] as
the backbone and stacked dilated convolutions as the backend.
Zooming mechanisms for crowd counting in low- to high-
density scenarios were studied by [26]. P2PNet [27] exploited
a purely point-based network framework for joint crowd
counting and individual localization instead of predicting a
density map. CCTrans [28] employed a vision transformer as
the backbone with multi-scale receptive fields for predicting
the final results. More recently, CDANet [29] built a cross-
domain attention network to explore the unlabeled domain
on both unsupervised synthetic-to-realistic and realistic-to-
realistic crowd counting. Meanwhile, FLCB [30] studied a
counting task that continuously learns from new domain data
in real scenarios, rather than fitting to only one domain.

Counting various types of objects is a commonly used tech-
nique, especially in transportation and agriculture, in addition
to crowd counting. For instance, Zhang et al. [9] proposed a
residual learning method that combines CNNs with long short-
term memory to jointly estimate the density and count of vehi-
cles. In agriculture, Nellithimaru et al. [31] used deep learning
models and conventional 3D processing techniques to develop
a pipeline for fast and accurate simultaneous localization and
mapping for counting grapes. Lins et al. [32] utilized an image
processing-based method to automatically count and classify
Rhopalosiphum padi. After that, Wang et al. [33] proposed a
semantic segmentation regression network for counting wheat
ears in remote images. These studies highlight the significance
of object counting in diverse fields and the fact that target
classes vary constantly in real-world applications. However,
these methods usually learn a mapping for a single class,
requiring the network parameters to be retrained or knowledge
transfer when classes change. As a result, these methods are
unable to learn the counting of dynamic object classes online,
which restricts the flexibility and universality of deep-learning
models.

More recently, class-agnostic counting (CAC) models have
been proposed which aim to learn a unified counting model
based on a few labeled exemplars. For instance, FamNet [34]
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was the first work to achieve this task which extracts vi-
sual features from a few exemplars and matches them with
those of the query image. The similarity matching outcomes
are utilized as an intermediate representation to infer object
counts. However, this method is severely affected by noise
matching, and thus, BMNet [35] proposed a unified similarity-
aware framework that attempts to jointly learn the target
representation and similarity metric. While the motivation
of these methods is somewhat similar to ours, they mainly
differ in three respects. Firstly, these methods rely on pre-
annotated exemplars, even during the testing phase, and the
accuracy of the annotations, especially box annotations, is
critical for the network to reason accurately. In contrast, we
do not rely on any annotation during the inference stage.
Secondly, we prioritize the counting class information of the
samples, whereas the CAC models tend to ignore this crucial
information, which is more important in practical applications.
Thirdly, the challenges faced by the two tasks are different.
In other words, our model needs to learn the newly coming
data of new classes without forgetting old knowledge, while
the CAC models mainly focus on how to design effective
similarity matching strategies.

Class-incremental Learning. Incremental learning refers to
a system that can continuously learn new classes from fresh
samples while retaining previously learned knowledge. How-
ever, a significant challenge in dynamic learning is catastrophic
forgetting, which refers to the inability to recall prior knowl-
edge while acquiring new skills. Various techniques have been
developed to address this issue from different perspectives,
including regularization, knowledge replay, and parameter
isolation. For example, LwF [36] used a regularization strategy
that imposes constraints on the loss functions of new tasks to
prevent knowledge from interfering with them. In contrast,
iCaRL [37] replayed old knowledge by reviewing a small
number of representative exemplars, selected close to the class
center. Additionally, parameter isolation methods [38] aim to
prevent knowledge forgetting by employing unique sets of
parameters for each task. While most of these techniques focus
on tasks such as classification [37] and segmentation [39], they
are rarely applied to regression tasks like object counting.

III. PROBLEM FORMULATION

This section introduces the problem of class-incremental
learning for object counting. Before that, we will first go
through a specific class, crowd counting, to better comprehend
the main objective. There is a dataset D = {xi, yi, i =
1, 2, ...,m}, where xi and yi denote the input image and its
corresponding dot-annotation label, respectively. The label yi
is then transformed to a density map via Gaussian kernel as
the newly generated image label [22]. To learn the mapping
between inputs and labels, a network model Net(x, θ) is
constructed with learnable parameters θ, comprising a feature
extractor f(x, ϑ) and a regressor g(γ|ϑ) with θ = {ϑ, γ}. The
network parameters are optimized by minimizing the mean
squared error (MSE) loss function.

L =
1

2n

n∑
i=1

∥Net(xi, θ)− yi∥22, (1)

The aim of this study is to investigate how to effectively
count inputs from a new class while still retaining previously
learned information without significant degradation. In other
words, the objective is to develop a well-trained network
that strikes a better balance between stability and plasticity.
Without losing generality, assume that there is a dataset Dtotal

with Dtr for training and Dtest for test, each of which is
a member of the class set C = {c0, c1, ..., ck}. The dataset
is composed of k counting classes, with a background class
represented by c0. This design is intended to ensure that
samples that do not belong to any of the k counting classes
are classified as the background class.

In the given setting, the network has been trained on the
sub-datasets from Dtr

1 to Dtr
t−1 after acquiring knowledge of

the first t − 1 classes. The earlier t − 1 classes are referred
to as old classes while learning the tth class. It is worth

noting that (
t−1⋃
i=1

Dtr
i )

⋂
Dtr

t = ∅, which means that there is

no overlap between the training sets of the old classes and the
new class. Additionally, the background samples are trained
in conjunction with those of the first class. Upon completing t
rounds of training, the network is expected to accurately count
any samples belonging to the learned classes.

IV. OUR MODEL

On incremental tasks such as image classification and
semantic segmentation [40], [41], the labels all provide explicit
class information. However, object counting labels do not
have such information, making it more challenging to perform
class-incremental learning for this task. As a result, adapting
existing incremental learning models to address this challenge
is not a straightforward process. To overcome this difficulty,
we propose a unified network framework for evolving object
counting, termed EoCNet.

Fig. 1 provides an overview of the k-th incremental step of
EoCNet for object counting. To extract features, we employ
the first ten layers of VGG-16 as our network backbone. To
ensure robust incremental learning at step t, we design three
key components: a class-incremental module, a class-agnostic
mask module, and a support sample bank.

A. Class-incremental Module

This module aims to dynamically extend the feature rep-
resentation to be compatible with the growing number of
classes. To achieve this, we use a dynamically expandable 1×1
convolutional learning representation that builds additional
convolution kernels as new classes are encountered. At each
step t, we build t + 1 convolution kernels. The first t kernel
parameters are initialized using the parameters learned from
the t − 1 old classes (including the background), while the
parameters of the new kernels are randomly initialized. This
approach allows us to dynamically expand the prediction of
density maps so that different classes have independent count
outputs. If a class does not exist, it will be classified as
background. However, we face a challenge that is distinct from
the conventional incremental classification task. Although we
explicitly sort the density map by class, there may be values
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Fig. 1. Overview of the k-th incremental step of EoCNet for object counting. The network consists of three main components: the base net, the class-agnostic
mask module, and the class-incremental module. The base net is responsible for extracting discriminative features from the inputs. The class-agnostic mask
module serves as an object occupation prior, enhancing the feature expression capability and allowing for better regression of the density map. The class-
incremental module is designed to facilitate incremental learning of class-related regressors, which is guided online by the incremental classifier. This allows
the network to adapt and learn new classes over time while alleviating forgetting previously learned ones. CE loss, BCE loss, and MSE loss denote cross
entropy loss, binary cross entropy loss, and mean squared error, respectively.

in different channels of the predicted density maps if network
predictions are influenced by noise. As a result, it can be
difficult to determine which density map should be the output
of the image.

To this end, we propose a classifier guided learning strat-
egy to enable the network to learn input classes and select
appropriate outputs dynamically. Specifically, we begin by
constructing a simple classifier. We pass the output of the
feature extractor f(x, ϑ) through an average pooling layer,
and then use a linear layer to make the final prediction. We
optimize this classifier using the cross-entropy loss function:

Lc = − 1

M

M∑
i=1

yi log(pi), (2)

where yi is the ground-truth while pi refers to the correspond-
ing predicted class label generated by the classifier, and M
denotes the number of training samples.

Then the learning of density map with multiple classes is
defined as follows:

Ld =
1

2n

n∑
i=1

t∑
j=1

(p̂i == j)
∥∥∥Net(xi, θ)

j
i − yji

∥∥∥2
2
, (3)

where p̂i = argmax(pi). In this manner, we are able to
dynamically learn and generate density maps based on the

class predictions made by the classifier. It is worth noting that,
whenever a new class is encountered, the last linear layer of
the class classifier is expanded to accommodate the additional
class information.

B. Class-agnostic Mask Module

The class-agnostic mask module is utilized to provide a
generic object occupation prior for all object classes. This
module improves the extraction of regions of interest without
dynamically growing the network, which reduces the com-
plexities of network regression. Another advantage of this
method is that it eliminates the need to incrementally set the
convolution kernels of the module, reducing the tedium of
the process and the complexity of the operations. To achieve
this goal, we use a class-agnostic binary representation of
the density map as supervision. Through a series of convo-
lutional processes, we obtain a transformed feature from the
output of the feature extractor f(x, ϑ). We then use a 1 × 1
convolution and a sigmoid operation to generate a pixel-level
probability prediction. Here, we utilize the binary information
of the density map as the supervision signal to learn semantic
information independent of class. The loss is computed using
the binary cross-entropy loss function:
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La = − 1

m

m∑
i=1

[bi log(qi) + (1− bi) log(1− qi)], (4)

where bi and qi denote the ground-truth and network predic-
tion, respectively, m denotes the total number of pixels. Note
that qi = (yi > δ) where δ is a given threshold.

Despite applying the above supervision signal in this branch,
the output will inevitably suffer from prediction inaccuracy. To
address this issue, we invert the output signal and then learn it
with stacked convolution layers to reduce the impact of errors
and enhance the detection of the foreground and irrelevant
regions of interest. Finally, we integrate the learned features
from this module with the image features to make predictions
about the density map.

C. Support Sample Bank

When learning new classes, the incremental model tends
to prioritize acquiring new knowledge over retaining old
knowledge, leading to catastrophic forgetting. To address this
issue, we build a support sample bank that leverages sample
replay and knowledge distillation to recall and retain previ-
ous knowledge. Inspired by iCaRL, we follow the rehearsal
principle by selecting representative exemplars from previous
classes. Unlike classification-based models, we use features
from intermediate convolution layers in the regressor as the
sample representation. Specifically, we compress the features
into a vector using an average pooling layer to represent the
current sample. For each class ci, we compute a class center
by taking the average of the compressed representations of all
samples. The samples are then sorted in ascending order based
on their distances from their corresponding class centers. The
top K exemplars are chosen from the ranking list and stored as
representative counting memories. It is important to note that
this study uses fixed-size memory, and the number of memory
samples is evenly distributed across all seen classes, including
the background class.

As for knowledge distillation, we utilize a distillation loss
to facilitate density map learning and transfer effective knowl-
edge from the previous stage to the current stage. Specifically,
the distillation loss is expressed as:

Lkd =
1

2ñ

ñ∑
i=1

||zti − zt−1
i ||22, (5)

where zt−1
i and zti denote the predicted density estimation

from the (t− 1)th stage and the tth stage , respectively.
Finally, the overall objective function is given as:

Ltotal = La + Lc + (1− λ)Ld + λLkd, (6)

where λ is a hyper-parameter. It is worth noting that the
distillation loss function Lkd is only employed at incremental
phases.

V. EXPERIMENTS

In this section, we perform extensive experiments to illus-
trate the effectiveness of our proposed network. As a first
attempt, we collected an evolving counting dataset for this
task, dubbed the EoCo dataset. We then conduct ablation
studies to empirically showcase the impact of various factors
or modules on the proposed model. Furthermore, we compare
our method with the existing ones on the EoCo dataset. Before
presenting the major results, we first go over the experimental
settings.

A. Implementation Details

Our network is implemented using Pytorch. To prevent over-
fitting during training, we resize the images to 400× 400 and
utilize data augmentation techniques such as random flipping,
random gamma, and random grayscale. We use the Adam
optimizer with a weight decay of 5e-5 to optimize the network
parameters. For each incremental stage, we train the network
for 300 epochs with a batch size of 8. The initial learning
rate is set to 1e-5 for the base step, while the learning rate is
set to 1e-5 and decreased by a factor of 10 every 100 epochs
for learning new classes. The hyper-parameter λ for the loss
function is set to 0.15. To generate the ground-truth for each
sample, we use a fixed-size Gaussian kernel as proposed by
MCNN [22].

B. EoCo dataset

Fig. 2. Selected examples from EoCo Part A.

As there is no specialized dataset for this task, we introduce
an evolving object counting dataset termed EoCo. The dataset
is comprised of two parts, Part A and Part B, and includes
a total of 6885 images, with 2859 images in Part A and
4026 images in Part B. The background set, which consists
of 202 images, is collected from landscape images, such as
grasslands and parks, and does not include any objects to be
counted. Part A is divided into six classes: person, jujube,
cherry, tulip, chicken, and vehicle. Some examples from this
part can be seen in Fig. 2. Among these classes, the training
and test of the person class are from ShanghaiTech Part A [22],
and the remaining samples are collected using web crawlers
or manual shooting. Due to the lack of a validation set in
ShanghaiTech Part A, we randomly select samples from the
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TABLE I
SAMPLE DISTRIBUTION OF EOCO PART A. THE INTEGER NUMBER
DENOTES THE TOTAL NUMBER OF SAMPLES, AND THE NUMBER IN
BRACKETS DENOTES THE AVERAGE DENSITY OF OBJECTS IN THE

CURRENT CLASS.

Class Train Val Test Total
Person 300 (542.36) 59 (545.59) 182 (433.90) 482
Jujube 201 (74.93) 50 (71.12) 248 (72.55) 499
Cherry 258 (40.90) 50 (43.24) 182 (45.24) 490
Tulip 240 (65.19) 40 (69.75) 215 (66.25) 495

Chicken 220 (44.24) 40 (47.17) 182(46.84) 442
Vehicle 231 (35.81) 44 (34.23) 176 (36.68) 451

TABLE II
SAMPLE DISTRIBUTION OF EOCO PART B. THE INTEGER NUMBER
DENOTES THE TOTAL NUMBER OF SAMPLES, AND THE NUMBER IN
BRACKETS DENOTES THE AVERAGE DENSITY OF OBJECTS IN THE

CURRENT CLASS.

Class Train Val Test Total
Face 580 (96.45) 60 (93.62) 234 (98.50) 874

Wheat 858 (54.23) 83 (51.87) 372 (53.24) 1313
Person 400 (123.20) 35 (129.71) 316 (124.08) 716

Penguin 740 (70.98) 63 (79.43) 320 (73.21) 1123

training set for validation. Standard training, validation, and
test parts are provided, ensuring that the density distribution
remains as consistent as possible across all classes. A summary
of the sample distribution in Part A, including the average
density distribution for each class, can be found in Table I.

On the other hand, we reorganize a dataset Part B with a
larger sample size to ensure the applicability and generaliz-
ability of the considered models. All samples in the dataset
are sourced from public datasets or competitions and are
classified into four categories: face [42], wheat [43], person
(ShanghaiTech Part B) [22], and penguin [44]. The dataset
consists of three parts: training, validation, and test, with
the sample distribution presented in Table II. Without losing
generality, we have followed the order of class-incremental
learning as presented in the table.

Table III shows the comparison between our dataset and
other datasets. Our dataset is notable for having a greater
number of classes and a significantly larger sample size,
making it well-suited for testing class-incremental tasks.

C. Evaluation Metrics

Here we employ the mean absolute error (MAE) and the
root mean squared error (MSE) as evaluation metrics. The
definitions of the two metrics are presented as follows:

MAE =
1

N

N∑
i=1

|Zi − Ẑi| (7)

and

MSE =

√√√√ 1

N

N∑
i=1

||Zi − Ẑi||2 (8)

in which Zi is the real number of the ith sample, Ẑi is the
predicted number of the ith sample, and N is the total number
of samples.

D. Ablation study

To gain more insights into our proposed method, we perform
ablation studies on the important elements and components of
our network on EoCo Part A.

Fig. 3. Visualization and comparison.

(1) Effects of the quantity of memory samples
Memory samples play an important role in recovering old

knowledge, of which the quantity can determine the quality
of knowledge replay. Here, we study the effect of the number
of memory samples on incremental learning performance, as
shown in Fig. 3. The results indicate that, as the number of
samples increases from 50 to 150, the performance (measured
in terms of MAE at various incremental stages) noticeably
decreases. At the numbers 100 and 150, the MSE metric shows
some fluctuations from the second stage to the fifth stage, with
the latter producing superior performance at the final stage.
However, when the number of samples is increased to 200,
the performance is not as good as that of the number 150. We
speculate that this could be due to the class-centered sample
selection approach not effectively considering the samples
from different distributions, leading to the knowledge of other
distributions being easily forgotten during subsequent learning.
Consequently, we select 150 memory samples for optimal
performance.

(2) Effects of backbone
We explore the effect of different network backbones on

incremental models, such as MCNN [22], ResNet [46] and
VGG16 [25], as shown in Tables IV and V. Note that
we use a three-fold wider version of MCNN to enrich the
feature representation and aggregate the features from stages
2 and 3 of each ResNet model to enhance the learning of
different scale features. From the tables, we can see that the
performance of the network keeps getting better as the number
of layers deepens, except for VGG16. This supports previous
findings that deeper networks can extract features with more
discriminative information [46]. Notably, the VGG16-based
network achieves superior performance while utilizing 13.84
M fewer parameters than the ResNet34 and ResNet50-based
networks. This experimentally suggests that VGG16 is more
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TABLE III
THE COMPARISON RESULTS OF OTHER COUNTING DATASETS AND EOCO DATASET.

Name Attributes No.classes No.Samples No.instances Avg.Cnt
ShanghaiTech PartA [22] Free-view 1 482 241,677 501
ShanghaiTech PartB [22] Surveillance-view 1 716 88,488 123

UCF-QNRF [45] Free-view 1 1,535 1,251,642 815
EoCo(Ours) Free-view 9 6,885 692,980 101

TABLE IV
ABLATION STUDY ON BACKBONE IN TERMS OF MAE.

Backbone t0 t1 t2 t3 t4 t5 Param (M)
MCNN 126.03 79.00 75.88 59.94 61.03 55.21 4.95

ResNet18 91.82 58.62 50.26 49.31 49.92 47.33 12.85
ResNet34 85.85 47.01 43.29 41.25 50.86 35.86 18.24
ResNet50 81.75 50.33 38.35 36.76 32.95 34.60 27.14

Ours(VGG16) 71.03 39.29 34.90 34.19 30.42 28.82 13.84

TABLE V
ABLATION STUDY ON BACKBONE IN TERMS OF MSE.

Backbone t0 t1 t2 t3 t4 t5 Param (M)
MCNN 182.18 142.28 140.17 108.82 116.01 110.45 4.95

ResNet18 144.80 114.36 93.59 91.05 92.03 89.73 12.85
ResNet34 131.78 91.58 84.01 77.96 96.66 79.85 18.24
ResNet50 128.33 107.90 85.50 77.62 73.16 70.83 27.14

Ours(VGG16) 110.44 78.94 76.65 69.45 67.61 64.72 13.84

adept at performing feature extraction for this task. Thus, we
choose VGG-16 as the backbone of our network.

(3) Effects of class-agnostic mask module
To show the benefits of the class-agnostic mask module, we

further conduct additional analysis of the major factors in this
module and then establish the following three baselines:

• baseline 1 is a basic backbone that does not include the
class-agnostic mask module. It is used to evaluate the
effectiveness of this module.

• baseline 2 is the variant of the class-agnostic mask
module that operates without any supervisory signals.
Its purpose is to determine whether the performance
enhancement is solely due to an increase in the number
of network parameters.

• baseline 3 utilizes the density map as a supervision signal
instead of the binary mask. This is used to evaluate
how different supervision signals affect the network’s
performance.

• baseline 4 directly removes the convolutional learning
process after mask prediction in this module. This is
done to determine whether the feedback is essential for
facilitating the fusion of the two features.

Table VI presents the comparison results of our method
with the different backbone architectures. Our findings are as
follows: 1) Our method achieves the lowest MAE and MSE at
almost all stages compared to baseline 1. This demonstrates
that learning the generic object occupation prior of different
classes improves the network feature representation and re-
duces the burden of final density regression. 2) Compared
to baseline 2, the performance gain is not solely due to an
increase in the number of network parameters. 3) Interestingly,
baseline 3 shows that using the density map as an alternative to
the binary mask also produces good results. This suggests that

TABLE VI
ABLATION STUDY ON CLASS-AGNOSTIC MASK MODULE IN TERMS OF

MAE.

Model t0 t1 t2 t3 t4 t5
Baseline 1 72.35 43.20 38.64 32.89 33.21 30.12
Baseline 2 76.53 43.59 37.65 38.30 35.53 31.24
Baseline 3 78.36 38.69 33.25 31.66 32.93 28.41
Baseline 4 78.54 39.43 33.75 32.17 34.24 35.86

Ours 71.03 39.29 34.90 34.19 30.42 28.82

the two types of class-agnostic prior information can assist the
network in better identifying targets, which differs from the
findings in [6] for the crowd counting task alone. However, we
note that the robustness of baseline 3 fluctuates, whereas the
mask-supervised solution exhibits a monotonically decreasing
trend as the number of classes increases. 4) Baseline 4
indicates that a single mask-supervised signal can impede
density map regression, possibly due to the task contradiction
between the two signals. The class-incremental module aims
to differentiate between various classes, while this module
maintains consistency in the semantics of different classes.
The feedback of mask prediction bridges the gap between the
two conflicting tasks through simple convolutional learning. In
summary, this module can improve performance through the
rational use of additional signals.

(4) Class-agnostic counting VS Incremental counting
CAC aims to learn a unified model for arbitrary class

counting. To compare these models with our method, we
labeled exemplars with bounding boxes for each image in
the test dataset. To better enable them to learn the crowded
objects in our dataset, we intentionally marked boxes of three
different scales, namely large, medium, and small. Tables VIII
and IX present a comparison of the results. It is evident that
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TABLE VII
ABLATION STUDY ON CLASS-AGNOSTIC MASK MODULE IN TERMS OF

MSE.

Model t0 t1 t2 t3 t4 t5
Baseline 1 113.62 86.41 76.10 72.81 72.85 65.14
Baseline 2 118.72 79.17 74.38 77.80 73.59 67.86
Baseline 3 124.98 79.15 70.69 68.63 73.76 70.30
Baseline 4 124.72 77.37 69.23 70.53 76.70 71.65

Ours 110.44 78.94 76.65 69.45 67.61 64.72

TABLE VIII
COMPARISON RESULTS OF THE CAC METHODS AND OURS IN TERMS OF

MAE ON PART A.

Model t0 t1 t2 t3 t4 t5
FamNet 64.46
BMNet+ 33.24

Ours 71.03 39.29 34.90 34.19 30.42 28.82

our method surpasses the two CAC methods in both metrics.
The performance of FamNet [34] is subpar, possibly due to
the significant influence of noise on the obtained correlation
maps, making it challenging to detect all the targets of each
input. In comparison, BMNet+ [35] exhibits relatively good
performance, demonstrating better robustness and generaliza-
tion on our dataset. Apart from the advantages offered by the
similarity matching method, the utilization of ResNet 50 as
the backbone network plays a crucial role in attaining such
performance. Here, we would like to express again that the
differences between the CAC model and ours mainly lie in
three aspects: (1) The CAC model generally necessitates the
prior annotation of bounding boxes for object representation
during reasoning, whereas our model does not require this.
(2) Our model outputs the class information of the objects
being counted, while the CAC model does not take this into
account. (3) The challenge of our task is to learn newly coming
data with new classes while not forgetting prior information,
whereas the CAC model largely focuses more on how to build
efficient similarity matching strategies.

E. Evaluation on EoCo

In this subsection, we will demonstrate the superiority of
our method by comparing it with some incremental learning
methods. However, since most incremental works are focused
on classification tasks, we will reproduce their methods using
the framework of counting tasks to enable a fair comparison.
The following methods will be used for comparison:

(1) iCaRL [37]. As mentioned previously, iCaRL serves
as our baseline 1, which includes an incremental classifier
as well as knowledge distillation and prototype rehearsal for
representational learning. In addition, our setup includes an
incremental regression layer for density map prediction.

(2) LwF [36]. In contrast to iCaRL, LwF does not have
any memory available. Instead, the new task classifiers and
regression layers are trained using examples from new tasks
during the training phase, and all classifiers and regression
layers are subsequently fine-tuned using the same instances.

(3) Fine-tuning (FT). Following the operation in [47], we
fine-tune the whole network after adding a new FC layer and
a new regression output.

TABLE IX
COMPARISON RESULTS OF THE CAC METHODS AND OURS IN TERMS OF

MSE ON PART A.

Model t0 t1 t2 t3 t4 t5
FamNet 136.25
BMNet+ 80.66

Ours 110.44 78.94 76.65 69.45 67.61 64.72

TABLE X
COMPARISON RESULTS OF INCREMENTAL LEARNING MODELS IN TERMS

OF MAE ON PART A.

Stage t0 t1 t2 t3 t4 t5
FT 78.38 66.04 78.59 76.60 67.86 74.03

LwF 86.89 67.73 75.19 77.70 73.84 57.22
iCaRL 72.35 43.20 38.64 32.89 33.21 30.12
EEIL 75.61 42.47 48.85 39.95 43.13 42.80
BiC 68.77 42.07 39.46 40.36 45.50 32.67
Ours 71.03 39.29 34.90 34.19 30.42 28.82
Joint 71.59 36.97 30.15 26.20 24.31 21.58

(4) EEIL [48]. This work proposed a combination of a
cross-distilled loss and a representative memory component to
maintain knowledge from old classes. Furthermore, a balanced
fine-tuning strategy was introduced to address the issue of
unbalanced training conditions.

(5) BiC [49]. In accordance with the setup outlined in this
work, both the examples from the old class and the samples
from the new class are divided into training and validation
sets. The validation set is then utilized for bias correction.
Due to the limited number of samples in the exemplars, the
training/validation split ratio is set at 2:1.

(6) Joint. Samples from different classes are jointly opti-
mized to train the network parameters, which can be consid-
ered as the upper limit of incremental learning performance.

We perform comparative experiments on the EoCo dataset
using the aforementioned methods. To ensure a fair compari-
son, we set the exemplar number to be 150 for rehearsal-based
methods. The comparison results for Part A are summarized
in Tables X and XI. As indicated, our proposed method out-
performs the existing incremental methods on two evaluation
metrics at nearly every stage. In contrast, LwF and FT do
not perform well, primarily due to their inability to effec-
tively retain old knowledge while focusing on learning new
knowledge. On the other hand, rehearsal-based methods, such
as BiC and iCaRL, are better equipped to resist catastrophic
forgetting by consistently reviewing examples from previous
classes. Although BiC has achieved promising results among
the rehearsal-based methods, it is a two-stage method that
requires more training time.

In Part B, the number of samples in each class has sig-
nificantly increased, making it much more challenging for
networks to retain old knowledge using the same exemplars
from Part A. As shown in Tables XII and XIII, our method
consistently outperforms the other methods in all incremental
training phases. Similar to Part A, FT and LwF perform
poorly in comparison to rehearsal-based methods. Notably,
our method outperforms iCaRL, particularly in the final stage.
This indicates that our method is capable of extracting more
discriminative features and achieving a better balance between
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Fig. 4. Visualization results. The first column shows the raw images from the final incremental stage in Part A. The second column shows the ground truth
of the images in first column. The last two columns are the estimated density map by iCaRL and our method. The oldest class is at the top, followed by the
new class in order.

new knowledge learning and old knowledge retention. In
summary, our method is highly effective for the incremental
learning task of crowd counting.

To further explore the incremental performance of our
model on additional classes, we have employed the model
trained on Part B to continue incremental class learning on
Part A. Here, we exclude the person class from this new
incremental learning process since it is already included in part
B. Our results, which are presented in Tables XIV and XV,
consistently show that our method outperforms iCaRL as we

continue to learn new classes. This indicates that our proposed
method has a robust ability to facilitate continuous learning
and resist forgetting.

In addition, we study the performance of our proposed
method on a domain-incremental task of crowd counting
by selecting three commonly used counting datasets (Shang-
haiTech Part A, UCF-QNRF, and ShanghaiTech Part B) and
learning them in a sequential order. As our proposed method
is not specifically designed for a domain-incremental task, we
remove the class-incremental module from our network and
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TABLE XI
COMPARISON RESULTS OF INCREMENTAL LEARNING MODELS IN TERMS

OF MSE ON PART A.

Stage t0 t1 t2 t3 t4 t5
FT 121.59 133.95 165.01 169.63 151.14 166.15

LwF 137.51 136.87 156.87 175.73 149.75 128.57
iCaRL 113.62 86.41 76.10 72.81 72.85 65.14
EEIL 117.55 77.95 97.27 82.28 86.90 83.77
BiC 111.05 76.26 79.63 78.43 90.28 77.72
Ours 110.44 78.94 76.65 69.45 67.61 64.72
Joint 114.24 70.68 30.15 56.30 55.68 51.66

TABLE XII
COMPARISON RESULTS OF INCREMENTAL LEARNING MODELS IN TERMS

OF MAE ON PART B.

Stage t0 t1 t2 t3
FT 23.24 29.99 25.58 37.58

LwF 28.21 29.15 29.75 44.18
iCaRL 23.62 13.65 12.90 19.24
EEIL 24.57 13.76 17.37 24.98
BiC 24.13 14.66 23.49 27.04
Ours 23.73 13.15 12.25 16.97
Joint 24.08 12.38 11.65 12.83

employ a single regression head. As shown in Table XVI, our
method outperforms iCaRL, demonstrating the effectiveness
of our method for this visual task.

F. Visualization

To provide additional evidence for the effectiveness of
our method, we compare the estimated density maps of our
approach to iCaRL at the last incremental stage, as illustrated
in Fig. 4. The results demonstrate that our method produces a
more accurate count estimation than iCaRL. For instance, in
the first image, our method provides a more precise count es-
timate for extremely dense crowds compared to iCaRL, which
may struggle to retain old information. This observation is
also evident in other classes. Overall, these results suggest that
our approach exhibits higher memory retention and learning
capacity.

Additionally, we present some negative results and identify
potential factors contributing to these outcomes, as demon-
strated in Fig. 5. The figure reveals that the network tends
to overestimate counts at low densities, while underestimating
them at higher densities. We attribute this issue to two primary
factors. On the one hand, catastrophic forgetting during the
incremental process can degrade the prediction performance
of existing categories. On the other hand, the limited feature

TABLE XIII
COMPARISON RESULTS OF INCREMENTAL LEARNING MODELS IN TERMS

OF MSE ON PART B.

Stage t0 t1 t2 t3
FT 55.59 79.01 53.16 73.17

LwF 64.25 64.95 54.44 82.65
iCaRL 55.86 41.09 30.01 37.37
EEIL 57.85 38.63 33.76 41.31
BiC 55.75 36.87 41.94 47.84
Ours 57.37 40.27 28.91 31.67
Joint 56.78 35.80 29.76 28.55

extraction capability of the backbone network may make the
model less resilient to challenges such as severe occlusions
and complex backgrounds.

Fig. 5. Negative results of our method at the final incremental stage.

VI. CONCLUSION

In this study, we introduce a novel unified evolving object
counting network for counting evolving objects. The network
comprises three components: the base net, the class-agnostic
mask module, and the class-incremental module. The base
net extracts discriminative features from the inputs, while the
class-agnostic mask module serves as an object occupation
prior to enhancing the feature expression capability, thereby
enabling better regression of the density map. The class-
incremental module implements incremental learning of class-
related regressors, guided online by the incremental classifier.
We also employ the knowledge distillation and support sample
bank to better retain old knowledge at feature and image levels,
respectively. To evaluate our method, we collected a new class-
incremental dataset called EoCo, covering a range of density
scenarios. Extensive experiments demonstrate the efficacy of
our proposed method.
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