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Decomposed Guided Dynamic Filters for Efficient
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Abstract—RGB-guided depth completion aims at predicting
dense depth maps from sparse depth measurements and corre-
sponding RGB images, where how to effectively and efficiently ex-
ploit the multi-modal information is a key issue. Guided dynamic
filters, which generate spatially-variant depth-wise separable
convolutional filters from RGB features to guide depth features,
have been proven to be effective in this task. However, the
dynamically generated filters require massive model parameters,
computational costs and memory footprints when the number of
feature channels is large. In this paper, we propose to decompose
the guided dynamic filters into a spatially-shared component
multiplied by content-adaptive adaptors at each spatial location.
Based on the proposed idea, we introduce two decomposition
schemes A and B, which decompose the filters by splitting the
filter structure and using spatial-wise attention, respectively. The
decomposed filters not only maintain the favorable properties of
guided dynamic filters as being content-dependent and spatially-
variant, but also reduce model parameters and hardware costs,
as the learned adaptors are decoupled with the number of
feature channels. Extensive experimental results demonstrate
that the methods using our schemes outperform state-of-the-art
methods on the KITTI dataset, and rank 1st and 2nd on the
KITTI benchmark at the time of submission. Meanwhile, they
also achieve comparable performance on the NYUv2 dataset.
In addition, our proposed methods are general and could be
employed as plug-and-play feature fusion blocks in other multi-
modal fusion tasks such as RGB-D salient object detection.

Index Terms—depth completion, range sensing, guided dy-
namic filter, multi-modal, feature fusion

I. INTRODUCTION

DENSE and accurate depth is essential for various applica-
tions, such as obstacle avoidance [1], virtual reality [2],

and autonomous driving [3]. However, current depth sensors
are unable to satisfy the requirement for both indoor and
outdoor scenes. For example, the RGB-D cameras cannot
handle transparent and weakly textured areas, and the depth
acquired by LiDAR is too sparse to be applied directly.
Therefore, depth completion has been widely studied, which
can predict accurate and dense depth maps from available
sparse depth measurements. Since RGB images contain rich
structure and semantic cues that are critical for filling unknown
depths, using RGB images to guide depth completion (RGB-
guided) has become a common paradigm [4]–[11]. However,
the dense RGB images and sparse depth measurements belong
to different modalities [12], [13]. How to effectively and
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Fig. 1: Analysis of GuideNet [8] using different feature fusion
methods on the KITTI test dataset, the methods using our
decomposition schemes A and B achieve superior performance
with smaller model parameters and hardware costs.

efficiently utilize the multi-modal information is a key issue
for the RGB-guided depth completion methods.

Although existing deep learning-based RGB-guided depth
completion methods [4]–[7], [14] have achieved considerable
success by employing diverse network structures, most of
them adopt the concatenation or addition operation to fuse the
features from the sparse depth and RGB images, which fail
to fully utilize the ability of RGB images as guidance [8].
Inspired by the guided image filtering [15] and dynamic
filters [16], GuideNet [8] proposes to dynamically generate
content-adaptive convolution filters at each spatial location
based on the RGB features, and then applies them to guide
corresponding depth features, we refer to it as Guided Dy-
namic Filters in this paper. This approach effectively integrates
the RGB and depth information and facilitates training by
preventing the gradient from closing to zero [17]. However,
generating pixel-wise filters requires prohibitive model pa-
rameters, computational costs and memory footprints, which
can only be employed in either tiny networks or one layer
of networks. Although this problem can be alleviated by
convolution factorization [18] that factorizes the spatially-

ar
X

iv
:2

30
9.

02
04

3v
1 

 [
cs

.C
V

] 
 5

 S
ep

 2
02

3



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

RGB Fe
atu

res

Dep
th 

Fe
atu

res

Fu
se

d F
ea

tur
esfilter application

NN

spatially-variant 

X

depth-wise stage

spatially-invariant 
cross-depth stage

spatially-variant 
convolution filters

Factorize

(a) Guided Dynamic Filters

RGB Fea
tures

Dep
th 

Fe
atu

res

Fuse
d Fea

tures

Adaptors

Component

NN

filter application

X

Factorize
spatially-variant 
depth-wise stage

(b) Our Decomposed Guided Dynamic Filters

Fig. 2: Comparison between guided dynamic filters [8] and our proposed decomposition schemes. We remove the
cross-depth stage of guided dynamic filters and further factorize the depth-wise stage into content-adaptive adaptors and a
spatially-shared component. The adaptors are decoupled with the feature channels to make our method more efficient.

variant convolution operation into two stages, a spatially-
variant depth-wise stage and a spatially-invariant cross-depth
stage, the model parameters and hardware costs required by
the generated filters still significantly rise with the increase
of the number of feature channels. It will cause an inevitable
problem as feature maps in modern networks have hundreds
or even thousands of channels [19].

In this paper, we propose Decomposed Guided Dynamic
Filters (DGDF) to effectively and efficiently exploit the multi-
modal information. The design of our methods is inspired
by the following observations. Firstly, the spatially-variant
depth-wise stage of guided dynamic filters predicts a complete
depth-wise convolution filter at each spatial location, which
is an obvious over-parameter expression due to the massive
spatial redundancy in the images [20]. Secondly, the spatially-
invariant cross-depth stage of guided dynamic filters requires
massive parameters, but its effect is very limited. As shown
in Fig. 1, guided dynamic filters without this stage, denoted
by Guided Dynamic Filters∗, obtain comparable performance
to the original method with smaller model parameters and
computational costs. Therefore, we propose to remove the
spatially-invariant cross-depth stage of guided dynamic fil-
ters and further decompose the spatially-variant depth-wise
stage into a combination of content-adaptive adaptors and a
spatially-shared component. Specifically, as shown in Fig. 2,
we generate the adaptors from the guidance RGB features
across the spatial position. The dimensions of adaptors are
decoupled with the number of feature channels and signifi-
cantly lower than the standard depth-wise filters. The compo-
nent is randomly initialized and learned by gradient descent.
Our decomposed guided dynamic filters not only maintain
the favorable properties of guided dynamic filters as being
spatially-variant and content-adaptive, but also significantly
reduce model parameters and hardware costs, which are more
friendly to mobile devices.

The key issue of our decomposed guided dynamic filters is
how to model the adaptors and the component. To address
this issue, we first propose the decomposition scheme A,
which employs content-adaptive bases as the adaptors and

expansion coefficients as the component. The decomposition
scheme A can be easily implemented by two convolution
layers. Meanwhile, it substantially reduces model parameters
and computational costs while achieving satisfactory perfor-
mance. However, its intermediate feature maps between two
convolution layers cost extra memory footprints. Therefore, we
further propose an attention-style decomposition scheme B to
address this problem, which utilizes the standard depth-wise
convolution filters as the component and employs the spatial-
wise attention as the adopters. Comprehensive experiments on
the KITTI depth completion dataset and NYUv2 dataset verify
our methods. In addition, we conduct extended experiments on
the RGB-D salient object detection (SOD) task to demonstrate
that our proposed methods are also effective in other multi-
modal fusion tasks as plug-and-play feature fusion blocks.

Our contributions can be summarized as follows:
• We propose to decompose the guided dynamic filters

into a combination of content-adaptive adaptors and a
spatially-shared component, which effectively and effi-
ciently exploit the multi-modal information.

• Two decomposition schemes are proposed to achieve sat-
isfactory accuracy with a significant reduction of model
parameters, computational costs, and memory footprints.

• The methods using our schemes outperform state-of-the-
art methods on the KITTI dataset, and rank 1st and 2nd
on the KITTI benchmark at the time of submission. They
also achieve comparable performance on the NYUv2
dataset. Furthermore, our proposed methods are also
effective in other multi-modal fusion tasks.

II. RELATED WORK

A. Depth completion

Depth completion predicts dense depth maps from sparse
depth maps, with optional corresponding RGB images. RGB-
guided depth completion methods usually obtain better per-
formance since they can take advantage of the rich texture
and semantic information of the RGB images. Gansbeke et
al. [4] propose a two-branch network based on RGB images
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guidance and uncertainty, which achieves precise depth pre-
dictions. Qiu et al. [5] consider the low correlation between
the RGB images and the depth maps. They propose a method
that consists of the surface normal guidance branch and the
RGB guidance branch. The proposed method first predicts the
surface normal from RGB images and combines the results
of two branches by learned confidence maps to obtain final
dense depth maps. Tang et al. [8] propose guided dynamic
filters to effectively fuse the features from RGB images and
sparse depth. Due to the position displacement between the
LiDAR and the camera, projecting LiDAR point clouds to
the image plane will inevitably cause some foreground and
background points to overlap [21]. Therefore, some geometry-
aware methods [22]–[24] are proposed to obtain better spatial
structure information. In addition, to address the problem
that the dense depth maps predicted by end-to-end networks
are blurred at the boundaries of objects, a series of spatial
propagation networks [9], [25]–[28] are proposed to improve
the results.

B. Dynamic filters networks

Dynamic filters networks, which can adjust their structures
or weights to different inputs, have been proven to be ef-
fective in several tasks [29], [30]. Dai et al. [31] propose
a deformable convolution to adjust receptive fields according
to the learned offsets. Jia et al. [16] introduce dynamic filter
networks that predict the filter values by a separate network.
Recent works such as CondConv [32], DynamicConv [33],
and WeightNet [34] generate the dynamic filters by combining
several fixed filters. The generated filters are based on the input
features and are shared spatially. Since not all spatial locations
contribute equally to the final predictions, DRNet [35] first
predicts several candidate filters according to the input fea-
tures, and then dynamically selects the most appropriate filter
for different spatial locations. However, spatial or regional
shared filters usually lead to sub-optimal results for pixel-wise
prediction tasks, as the optimal gradient direction at different
pixels may be the same [36]. Several works [16], [37] propose
to predict a complete convolution filter at each spatial location,
but they are restricted by prohibitive model parameters and
hardware costs. To address this issue, many adaptive con-
volution filters [36], [38], [39] are proposed. However, these
filters are usually used to improve the convolution operation,
and their prospects in the multi-modal domain are not fully
exploited.

III. PRELIMINARY

A. Standard convolution

The standard convolution operation consists of two steps,
namely, neighborhood sampling and aggregation. Given the
input and output feature representations X,Y ∈ Rh×w×c,
where h and w are the height and width of the feature map,
and c indicates the number of feature channels. The output
feature Ypi,λ at a spatial position pi ∈ R2, and the channel

λ ∈ [1, c] can be written as a linear combination of the input
features around the location pi:

Ypi,λ =

c∑
λ′=1

∑
d

Wdλ′λXpi+d,λ′ + b(λ), (1)

where d is the deviation in a k × k sampling grid centered
at the position pi and λ′ is the channel index of the input
feature X. The parameters of the standard convolution, the
filter Wdλ′λ ∈ Rk2×c×c and the bias b ∈ Rc, are shared
across all spatial locations and different inputs.

B. Dynamic convolution

Compared with the standard convolution, the dynamic con-
volution can adaptively adjust filter values at each spatial
location pi according to the input feature X. Specifically, the
dynamic convolution employs an extra network to generate the
spatially-variant convolution filter Wpidλ′λ ∈ Rhw×k2×c×c

based on the input feature X, while the standard convolution
utilizes fixed parameters at different spatial locations. Then,
the dynamic convolution applies the generated pixel-wise filter
back to the input feature, the operation is expressed as:

Wpidλ′λ = F(X,Θ), (2)

Ypi,λ =

c∑
λ′=1

∑
d

Wpidλ′λXpi+d,λ′ , (3)

where F is the filter generation network parameterized by Θ.
We ignore the bias for convenience of description. Compared
to the standard convolution, the filter Wpidλ′λ is related to
the inputs and variants at different locations.

IV. METHOD

The core of dynamic convolution is to dynamically adjust
the filter values for different inputs. Notably, the dynamic
convolution can be extended to multi-modal tasks, which
generates convolution filters from the guidance features, and
applies the generated filters to the target features. For example,
in the RGB-guided depth completion task, guided dynamic
filters [8] generate spatially-variant and content-adaptive filters
from the RGB features, and then employ the generated filters
to guide corresponding depth features. The advantages of
guided dynamic filters are two-fold. Firstly, the filters are
spatially-variant, which can not only handle irregular depth
features but also prevent the case where the average gradient
over all pixels from the next layer is zero [17]. Secondly,
the filters are content-adaptive, which can transfer structural
details from the RGB images to the depth maps [15], thus fully
exploiting the ability of RGB images as guidance. However,
the generated pixel-wise filters require massive model param-
eters, prohibitive computational costs and memory footprints.

To alleviate this problem, guided dynamic filters factorize
the spatially-variant convolution operation into two stages, the
spatially-variant depth-wise stage and spatially-invariant cross-
depth stage. Both stages can be implemented by the convo-
lution operation. As shown in Eq. (4), the convolution filters
used in these two stages, denoted as W′

pidλ′ and W′′
λ′λ, are

dynamically generated based on the guidance RGB features
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(b) The two-layer implementation of our scheme A.

Fig. 3: Our decomposition scheme A decomposes the spatially-variant depth-wise filters W′
pidλ′ ∈ Rhw×k2×c into the adaptors

Apidm ∈ Rhw×k2×m and the component Dmλ′ ∈ Rm×c, and it can be simply implemented by a two-layer convolution. The
adaptors are generated from the guidance RGB features, and the component is randomly initialized and learned.

G ∈ Rh×w×c. The filter generation network for W′
pidλ′ ,

parameterized by Θ1, consists of two convolution layers, while
the filter generation network for W′′

λ′λ, parameterized by Θ2,
first employs the global pooling operation, and then uses two
fully connected layers.

W′
pidλ′ ∈ Rhw×k2×c = F(G,Θ1),

W′′
λ′λ ∈ Rc×c = F(G,Θ2).

(4)

Then, guided dynamic filters perform the spatially-variant
depth-wise stage and spatially-invariant cross-depth stage
through two consecutive convolution layers as:

Ŷpi,λ′ =
∑
d

W′
pidλ′Xpi+d,λ′ , (5)

Ypi,λ =

c∑
λ′=1

W′′
λ′λŶpi,λ. (6)

The “spatially-variant” and “spatially-invariant” character-
istics of these two stages are reflected in whether the filters
of two convolution layers vary spatially. Specifically, the
convolution filters W′

pidλ′ of the spatially-variant depth-wise
stage are variant across different spatial locations pi, while the
convolution filters W′′

λ′λ of the spatially-invariant cross-depth
stage are invariant across different locations.

Although the convolution factorization operation reduces
model parameters and hardware costs, the generated filters
W′

pidλ′ ∈ Rhw×k2×c and W′′
λ′λ ∈ Rc×c are linearly and

squarely related to the number of feature channels c. When
the feature dimension increases, the computational costs and
memory footprints will increase dramatically. We observe
that the spatially-invariant cross-depth stage using two fully
connected layers requires massive model parameters, but its
effect is similar to the standard 1 × 1 convolution kernel.
As described in Table II, guided dynamic filters without this
stage perform better than the original method. Moreover, since
the images contain significant spatial redundancy, generating
a complete depth-wise filter at each spatial location also
suffers from this redundancy, resulting in unnecessary waste
of resources. To address this issue, we propose to remove the

spatially-invariant cross-depth stage from the guided dynamic
filters and decouple the spatially-variant depth-wise stage with
the number of feature channels. We name it Decomposed
Guided Dynamic Filters (DGDF).

In this paper, the spatially-variant depth-wise filters are de-
composed into a combination of content-adaptive adaptors and
a spatially-shared component. Specifically, as shown in Eq. (7)
and Eq. (8), the spatially-variant adaptor A is dynamically
generated by a light-weight network from the guidance RGB
features, and the spatially-invariant component D is randomly
initialized and learned by gradient descent.

A = F(G,Θ), (7)
D is randomly initialized and learned. (8)

The decomposed guided dynamic filters maintain the favor-
able properties of guided dynamic filters with smaller model
parameters, computational costs, and memory footprints, as
the spatially-variant and content-adaptive filters can be recon-
structed by multiplying the spatially-shared component with
the content-adaptive adaptors at each spatial location.

A. Decomposition scheme A
Following the proposed idea, we first propose the decom-

position scheme A, which decomposes the spatially-variant
depth-wise filters Wpidλ′ ∈ Rhw×k2×c into the product of
content-adaptive bases with the coefficients. Specifically, at
each spatial location, we employ an auxiliary network to
generate m content-adaptive bases from the guidance RGB
features. The coefficients used in the combination are ran-
domly initialized and then updated by learning. It is worth
noting that these coefficients are shared in the spatial domain.
In our decomposition scheme A, the dynamically generated
bases are used as the adaptors Apidm ∈ Rhw×k2×m, and
the spatially-shared component is used as the component
Dmλ′ ∈ Rm×c. As shown in Fig. 3 (a), the guided dynamic
filters at each spatial location W′

pidλ′ can be reconstructed by
multiplying the adaptors Apidm with the component Dmλ′ .
Compared with the typical guided dynamic filters {W′

pidλ′ ∈
Rhw×k2×c,W′′

λ′λ ∈ Rc×c}, our decomposed guided dynamic
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TABLE I: Comparison of model parameters, computational complexity, and memory footprints among different guided dynamic
filters, where N ≫ C ≫ K2 > M generally.

Naive Guided Dynamic Filters Guided Dynamic Filters [8] Our decomposition scheme A Our decomposition scheme B

Generation
Params. C3K2 C2K2 + σC2 + σC3 CK2M CK2

Comput. 2NC3K2 2NC2K2 + 2σ(C2 + C3) 2NCK2M 2NCK2

Memo. NC2K2 NCK2 + σC + C2 NK2M NK2

Application
Params. - - CM CK2

Comput. 2NC2K2 2NCK2 + 2NC2 2NCK2M + 2NCM 3NCK2

Memo. - - NCM -

Summary
Params. C3K2 C2K2 + σC2 + σC3 CK2M + CM 2CK2

Comput. O(NC3K2) O(NC2K2) O(NCK2M) O(NCK2)
Memo. O(NC2K2) O(NCK2) O(NCM) O(NK2)

filters {Apidm ∈ Rhw×k2×m,Dmλ′ ∈ Rm×c} significantly
reduce the number of model parameters and their accompa-
nying hardware costs, as m ≪ c and Dmλ′ is not generated
by the network. In addition, Fig. 3 (b) demonstrates that our
proposed decomposition scheme A can be easily implemented
by a two-layer convolution, where the depth features are first
convoluted with m adaptors channel by channel, and then
convoluted with the component.

B. Decomposition scheme B
Although the proposed decomposition scheme A effectively

exploits the RGB images and sparse depth information with
small model parameters and computational costs, the inter-
mediate feature map in its two-layer implementation has cm
channels. When the number of feature channels c is large,
it still costs heavy memory footprints. To address this issue,
we further propose an attention-style decomposition scheme
B. We observe that the spatially-variant depth-wise filters
W′

pidλ′ ∈ Rhw×k2×c is equivalent to applying a spatially-
variant spatial attention map to a standard static depth-wise
filter at each spatial location. As shown in Fig. 4, the pro-
posed decomposition scheme B employs spatial-wise attention
maps as the adaptors, namely Apid ∈ Rhw×k2

, which are
dynamically predicted by an extra network based on the
guidance RGB features. A standard static depth-wise filter is
used as the component Ddλ′ ∈ Rk2×c of the decomposition
scheme B. Different from the decomposition scheme A, our
decomposition scheme B can be implemented through one-
layer convolution with spatial-wise attention. It does not con-
tain intermediate feature maps, which can further reduce the
memory footprints. It is worth noting that the decomposition
scheme B is actually a special case of the decomposition
scheme A. When the decomposition scheme A uses only one
base as the adaptor and expands the coefficients to pixel-wise,
the decomposition scheme A is equal to the decomposition
scheme B.

C. Complexity analysis

In this subsection, we compare the model parameters, com-
putational complexity, and memory footprints among different
feature fusion methods, including guided dynamic filters with
and without the convolution factorization operation, and our
decomposition schemes A and B. We denote guided dynamic

X

X

For each spatial location
Spatial-share

Adaptorsspatially-variant 
depth-wise filters

Component

Factorize

Factorize

Fig. 4: Our decomposition scheme B decomposes the
spatially-variant depth-wise filters W′

pidλ′ ∈ Rhw×k2×c by
applying spatial-wise attention maps Apid ∈ Rhw×k2

to a
static depth-wise filter Ddλ′ ∈ Rk2×c at each spatial location.

filters without the convolution factorization operation as naive
guided dynamic filters. Suppose the shape of all used feature
maps is H×W×C, where H and W are the height and width,
and C is the number of feature channels. N = H ×W is the
number of pixels, K is the size of the guidance filter, σ is the
squeeze ratio used in the convolution factorization operation,
and M is the number of bases in our decomposition scheme
A.

All methods involved in the comparison consist of two
modules, generating filters or adaptors from the guidance
features, and applying the generated or reconstructed filters to
the target features. For simplicity, we assume all the generated
networks adopt a convolution layer with a 1×1 filter size. For
example, the naive guided dynamic filters generate a complete
convolution filter C2K2 at each spatial location, which re-
quires C3K2 model parameters and 2NC3K2 floating-point
operations (FLOPs), and the generated filters cost NC2K2

memory. Guided dynamic filters split the convolution opera-
tion into two stages, whose filters are of shape NCK2 and C2.
Among them, the second stage using a squeeze-and-excitation
layer [40] has σC2 parameters for the squeeze layer and σC3

parameters for the excitation layer, which takes 2σ(C2 +C3)
FLOPs.

For the filter application module, naive guided dynamic
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Fig. 5: The depth completion network architecture used by our proposed method, which consists of two sub-networks, RGBNet
and DepthNet. The multi-scale RGB features and depth features are fused through our proposed methods.

filters and guided dynamic filters can directly employ the
generated filters to the target features. They do not require
additional parameters, while our decomposition schemes need
to employ their respective components to reconstruct the
spatially-variant filters. The component parameters contained
in our decomposition schemes A and B are CM and CK2,
respectively. In this module, naive guided dynamic filters using
the standard convolution operation take 2NC2K2 FLOPs,
and guided dynamic filters using the depth-wise separable
convolution operation [18] costs 2NCK2 + 2NC2 FLOPs.
Our decomposition scheme A is implemented by two-layer
convolution, which takes 2NCK2M + 2NCM FLOPs, and
the intermediate feature costs NCM memory. Our decom-
position scheme B employs the depth-wise convolution with
spatially-variant attention, which takes 3NCK2 FLOPs.

The comparison results shown in Table I demonstrate that,
compared to guided dynamic filters with and without the
convolution factorization operation, our proposed decomposed
guided dynamic filters significantly reduce the model param-
eters, computational complexity, and memory footprints.

D. Implementation details
Network architecture. As shown in Fig.5, our depth com-
pletion network employs a double encoder-decoder structure,
which consists of two sub-networks, RGBNet and DepthNet.
Our proposed decomposed guided dynamic filters are inserted
into the network as a plug-and-play feature fusion block.
Specifically, the RGB images are fed into the RGBNet to
learn multi-scale RGB features and then utilized to guide the
corresponding scale depth features extracted by the DepthNet.
Loss function. We employ an L2 loss as:

L(dpred) = ∥(dpred − dgt)⊙ 1{dgt>0}∥2, (9)

where dpred is the predicted dense depth map, dgt is the
ground truth depth map. Since the ground truth depth maps
are usually semi-dense, we only supervise the available parts,
1{dgt>0} indicates whether there is a value in the ground truth,
⊙ denotes the element-wise multiplication.

Training details. Our method is implemented by PyTorch and
trained on 2×2080Ti GPUs for 30 epochs. All experiments
are conducted by the AdamW optimizer with β1 = 0.9, β2 =
0.999. The size of the mini-batch is 8 and the initial learning
rate is 10−3. The learning rate is then reduced by 50% every
5 epochs.

V. EXPERIMENTS

A. Datasets and Metrics

KITTI Dataset [41]. The KITTI dataset [41] is a large real-
world autonomous driving dataset, which consists of sparse
depth maps obtained by a Velodyne 64-line LiDAR and
corresponding RGB images. The ground truth depth maps
are created by aggregating 11 consecutive LiDAR scans into
one. Same as existing methods, we employ 86k images for
training and evaluate the performance on 1k selected validation
images. The dataset also provides 1k images without ground
truth that need to be tested on the KITTI online benchmark
for a fair comparison. Since the top of the sparse depth map
does not have valid LiDAR points, we crop the input images
to 256× 1216 for both training and inference as [4], [8].
NYUv2 Dataset [42]. The NYUv2 dataset consists of RGB
images and depth maps obtained from 464 different indoor
scenes. The depth maps are acquired by a Microsoft Kinect
camera. Following the same setting of previous depth com-
pletion methods [5], [7], [25], we train the model with 50K
images uniformly sampled from the training set and test it on
654 officially labeled images. As a pre-processing, the depth
images are in-painted by the official toolbox to fill in the
missing values. For both train and test datasets, the original
images of size 640 × 480 are downsampled to half and then
center-cropped to 304× 228.
Evaluation metrics. Following exiting depth comple-
tion methods, we employ the root mean squared error
(RMSE[mm]), mean absolute error (MAE[mm]), root mean
squared error of the inverse depth (iRMSE[1 / km]), mean
absolute error of the inverse depth (iMAE[1 / km]), relative
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TABLE II: Performance comparison of GuideNet [8] using different feature fusion methods on the KITTI validation dataset.
Guided dynamic filters∗ represent the guided dynamic filters without the spatially-invariant cross-depth stage. The decomposition
scheme B using the channel attention map is denoted as “our decomposition B channel”. “5 × 5” represents the kernel size
of the guided dynamic filter, and the default kernel size of other guided dynamic filters is 3× 3.

Feature Fusion Methods RMSE[mm] MAE[mm] iRMSE[1/km] iMAE[1/km] Parameters[Million] Memory[MB] Speed[s]

Add 791.2 220.3 2.4 1.0 18.4M 1595M 0.03s
Concatenation 785.4 221.9 2.3 1.0 21.1M 1687M 0.03s

Guided dynamic filters [8] 776.0 219.0 2.2 1.0 73.5M 1885M 0.08s
Guided dynamic filters* 772.0 219.0 2.3 1.0 34.9M 1735M 0.08s
Our decomposition A 761.4 218.9 2.3 1.0 22.5M 2003M 0.05s
Our decomposition B 762.2 216.0 2.2 1.0 22.6M 1631M 0.06s

Our decomposition B channel 765.9 215.7 2.2 1.0 22.8M 1791M 0.06s
Our decomposition A (5×5) 763.0 217.2 2.2 1.0 22.6M 2861M 0.05s
Our decomposition B (5×5) 763.5 215.0 2.2 1.0 22.6M 1874M 0.06s

absolute error (REL), and δ inlier ratios (maximal mean
relative error of δτ = 1.25τ for τ ∈ 1, 2, 3) for quantitative
evaluation. Eq. (10) shows their detailed definitions, where dgt

denotes the ground truth, dpred denotes the predicted dense
depth map, and V is the set of the available points in the
ground truth.

RMSE [mm] :

√
1

|V|
∑
v∈V

∣∣∣dgtv − dpredv

∣∣∣2,
MAE [mm] :

1

|V|
∑
v∈V

∣∣dgtv − dpredv

∣∣ ,
iRMSE [1/km] :

√
1

|V|
∑
v∈V

∣∣∣1/dgtv − 1/dpredv

∣∣∣2,
iMAE [1/km] :

1

|V|
∑
v∈V

∣∣1/dgtv − 1/dpredv

∣∣ ,
REL :

1

|V|
∑
v∈V

∣∣(dgtv − dpredv

)
/dgtv

∣∣ ,
δτ [%] : max

(
dgtv

dpredv

,
dpredv

dgtv

)
< τ.

(10)

B. Ablation studies

To verify the effectiveness of various components in our
proposed method, we conduct extensive ablation studies on
the KITTI validation dataset. Specifically, we first compare
the performance of the RGB-guided depth completion method
using different feature fusion schemes. Then, we verify the
robustness of our methods under various input depth densities.
In addition, we investigate the effectiveness of the full-scale
feature fusion and stochastic depth training strategy. We denote
the depth completion methods that use our decomposition
schemes A and B as DGDF-A and DGDF-B, respectively.
Comparison of feature fusion methods. We use the network
architecture of GuideNet [8] as the backbone. In Table II, we
compare the method using different feature fusion modules in
terms of performance, model parameters, memory footprints,
and speed. For a fair comparison, we only replace the feature
fusion block of the network and maintain other network
components and settings unchanged. The experimental results
demonstrate that, compared with the element-wise addition

(denoted as Add), the channel-wise concatenation (denoted
as Concatenation) achieves better results, as Concatenation
is generally considered to be more appropriate for fusing
homogeneous features. Guided dynamic filters, consisting of
a spatially-variant depth-wise stage and a spatially-invariant
cross-depth stage, effectively improve the performance of
the method. However, it suffers from heavy model param-
eters, computational costs, and memory footprints. Mean-
while, we observe that guided dynamic filters without the
spatially-invariant cross-depth stage (denoted as guided dy-
namic filters∗) perform better with smaller model parameters
and hardware costs. Since the gradient of a spatially-invariant
filter is more likely to be close to zero [8], [17], the spatially-
invariant stage may adversely affect the training process,
which impairs the performance of the guided dynamic filters.

In this paper, we propose two decomposed guided dynamic
filters A and B to efficiently exploit dense RGB images
and sparse depth maps. Our method removes the spatially-
invariant cross-depth stage from the guided dynamic filters
and decomposes the spatially-variant depth-wise stage into
the combination of content-adaptive adaptors and a spatially-
shared component. The results demonstrate that, compared to
guided dynamic filters, our decomposition scheme A improves
the RMSE accuracy by 14.6mm, with the model parameters
decreasing 51M and the speed decreasing 0.03s respectively.
Meanwhile, the proposed decomposition scheme B signifi-
cantly reduces the memory footprints while maintaining the
performance, which uses spatially-variant channel attention
maps to a standard static depth-wise filter at each location.

In addition, we also show the results of the decomposition
scheme B using the spatially-variant channel attention maps,
which is denoted as “our decomposition B channel”. The
results illustrate that the decomposition scheme B using the
channel attention map obtains comparable results with the
decomposition scheme B using the spatial attention map, but
requires more model parameters and memory footprints. In
this paper, the kernel sizes of all guide dynamic filters are
set to 3 × 3 by default. We enlarge the kernel size of our
decomposed guided dynamic filters A and B to 5×5 to verify
whether enlarging the kernel size of the guide dynamic filters
will bring the performance gains. The results demonstrate
that the guided dynamic filters with larger kernel size do not
improve the results, but consume more model parameters and
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TABLE III: Ablation studies on KITTI validation dataset. Stochastic depth means the stochastic depth training strategy.

Methods Multi-scale Fusion Scheme
Stochastic depth

RMSE
[mm]

MAE
[mm]

iRMSE
[1/km]

iMAE
[1/km]

full-scale 1/2-scale 1/4-scale 1/8-scale

Our DGDF-A ✓ ✓ ✓ 761.4 218.9 2.3 1.0
Our DGDF-B ✓ ✓ ✓ 762.2 216.0 2.2 1.0
Our DGDF-A ✓ ✓ ✓ ✓ 754.2 208.0 2.1 0.9
Our DGDF-B ✓ ✓ ✓ ✓ 752.4 210.8 2.1 0.9
Our DGDF-A ✓ ✓ ✓ ✓ ✓ 746.5 206.0 2.2 0.9
Our DGDF-B ✓ ✓ ✓ ✓ ✓ 739.6 205.2 2.1 0.9

(a) RGB images

(b) The adaptors of decomposition scheme  

(c) The adaptors of decomposition scheme            

Fig. 6: Visualization of the learned adaptors that are spatially-variant and content-adaptive.

hardware costs. We consider that selecting the kernel size of
the guided dynamic filters is a trade-off, the large kernel size
increases the receptive field while more likely to introduce
irrelevant information. Therefore, we still set the kernel size
of our decomposed guided dynamic filters A and B to 3× 3.

To verify whether the adaptors of our decomposed guided
dynamic filters are spatially-variant and content-adaptive, we
visualize them in Fig. 6. Since the adaptors have multiple
channels, we add up the values of all channels and scale
the sum to 0-1. We observe that the adaptors predicted by
our proposed decomposition schemes A and B are spatially
different and correlate with the RGB image content, which
demonstrates our method maintains the favorable properties
of guided dynamic filters.
Robust to different input depth densities. The sparse depth
maps of the KITTI dataset [41] are obtained by a 64-line
LiDAR. However, in many practical applications, only 32-line
or 16-line LiDAR will be employed due to the cost constraint,
which only provides more sparse input depth maps. Therefore,
it is crucial to analyze the performance of the proposed meth-
ods on sparse depth maps with different sparsity levels. By
randomly sampling input sparse depth maps, we generate more
sparse depth maps according to different ratios of density.
Our method also uses the network of GuideNet [8] as the
backbone. Fig. 7 compares the performance of our approaches
with S2D [7] and GuideNet [8] under different sparsity levels
on the KITTI validation dataset. The results demonstrate that
the performance of all methods drops dramatically with the
depth density decreasing. Our DGDF-A performs better than
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Fig. 7: Performance comparison in term of RMSE[mm] under
different levels of input depth density.

S2D and GuideNet except when the density ratio is 0.1, while
our DGDF-B outperforms other methods at all density ratios.
Experimental results illustrate that our methods have powerful
robustness for depth maps with different levels of sparsity.
Full-scale feature fusion. The multi-scale feature fusion
scheme has been proven to be effective in GuideNet [8]. How-
ever, guided dynamic filters require massive model parameters
and hardware costs, GuideNet only employs the feature fusion
method to fuse small-scale RGB and depth feature maps,
such as the feature maps of 1/2-scale, 1/4-scale and 1/8-scale.
Since the proposed decomposed guided dynamic filters are
more effective and efficient, they can not only fuse small-
scale feature maps well, but also be used to fuse full-scale
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Fig. 8: Qualitative comparison with state-of-the-art methods on the KITTI test dataset. From top to bottom are RGB images,
sparse input depth maps, the dense depth maps predicted by GuideNet [8], CSPN [25], ACMNet [23] and our DGDF-A and
DGDF-B, respectively. We zoom in some representative areas for detailed comparison.

feature maps with limited resources. Table III demonstrates
that the full-scale feature fusion scheme effectively improves
the performance of the method, as the full-scale feature map
contains more detailed structures.
Stochastic depth training strategy. The stochastic depth
training strategy [43] is proposed to improve the training speed
and method performance. It randomly deactivates some layers
in the network as the Dropout, so that the final model is a
combination of models with different depth. We adopt the
stochastic depth strategy to train our models as [28]. The
experiment results in Table III demonstrate that the training
strategy effectively improves the performance of the method.

C. Experiments on KITTI dataset

To verify the performance of the proposed methods, we
compare our methods with other state-of-the-art (SOTA) depth
completion methods on the KITTI benchmark [41] qualita-
tively and quantitatively.
Quantitative comparisons. Table IV shows the quantitative
evaluation of our methods and other SOTA methods on the
KITTI leaderboard that ranks all methods according to the
RMSE metric. The experimental results demonstrate that our
methods achieve strong results. Our methods DGDF-A and
DGDF-B outperform other SOTA methods under the primary
RMSE metric. DGDF-B and DGDF-A rank 1st and 2nd
at the time of paper submission, respectively. In addition,

TABLE IV: Quantitative comparison with state-of-the-art
depth completion methods on the KITTI leaderboard. The best
and second-best results are highlighted in red and blue colors,
respectively.

Methods
RMSE
[mm]

MAE
[mm]

iRMSE
[1/km]

iMAE
[1/km]

CSPN [25] 1019.64 279.46 2.93 1.15
S2D [7] 814.73 249.95 2.80 1.21
DepthNormal [44] 777.05 235.17 2.42 1.13
GAENet [24] 773.90 231.29 2.29 1.08
Uncertainty [4] 772.87 215.02 2.19 0.93
DeepLiDAR [5] 758.38 226.50 2.56 1.15
CSPN++ [45] 743.69 209.28 2.07 0.90
GuideNet [8] 736.24 218.83 2.25 0.99
FCFRNet [46] 735.81 217.15 2.20 0.98
ACMNet [23] 732.99 206.80 2.08 0.90
PENet [9] 730.08 210.55 2.17 0.94
GuideFormer [47] 721.48 207.76 2.14 0.97
Our DGDF-A 708.30 205.01 2.04 0.91
Our DGDF-B 707.93 205.11 2.05 0.91

DGDF-A and DGDF-B also achieve comparable performance
under other metrics. Specifically, existing depth completion
methods, such as S2D [7], Uncertainty [4], DeepLiDAR [5]
and PENet [9], employ standard or modified encoder-decoder
structures to regress the sparse depth maps and corresponding
RGB images to the dense depth maps, where the dense RGB
images and sparse LiDAR depth are fused by element-wise
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RGB Depth GuideNet GT DGDF-A DGDF-B

Fig. 9: Qualitative evaluation on the NYUv2 dataset. From left to right are RGB images, sparse input depth maps, the dense
depth maps predicted by GuideNet [8], our DGDF-A and DGDF-B, and the ground truth.

addition or channel-wise concatenation. These simple feature
fusion methods are not able to fully exploit the potential of
RGB images as guidance. Although GuideNet [8] addresses
this issue by guided dynamic filters and achieves good results,
the feature fusion method suffers from heavy model param-
eters and hardware costs. Our methods efficiently integrate
the RGB images and sparse depth maps by the proposed
decomposed guided dynamic filters, they achieve satisfactory
results. Meanwhile, since the sparse depth maps are obtained
by projecting LiDAR point clouds to the image plane, the
position displacement between LiDAR and the camera will in-
evitably cause that some foreground and background points are
overlapped in the depth map. GAENet [24] and ACMNet [23]
address this issue by introducing the geometry information.
Although our methods are agnostic to the geometry, they
still achieve good results, which explicitly utilize the RGB
information to guide depth features in the overlapped areas. In
addition, we also compare our methods with a series of SPN-
based methods that use the spatial propagation network (SPN)
to refine the predicted depth map. Our methods do not employ
additional refine modules, but they still perform better than
some such methods, such as CSPN [25] and CSPN++ [45].
Qualitative comparisons. Fig. 8 compares the dense depth
maps predicted by our DGDF-A and DGDF-B and other state-
of-the-art methods, such as GuideNet [8], CSPN [25], and
ACMNet [23]. As shown in the enlarged areas of the first
column, our DGDF-A and DGDF-B recover better details.
Specifically, the dense depth maps estimated by GuideNet [8]
and ACMNet [23] produce ripples similar to water waves,
and the depth maps predicted by CSPN [25] are shifted at
the boundary of the car. While the results of our DGDF-
A and DGDF-B are more accurate at the object boundaries.

TABLE V: Quantitative comparison with state-of-the-art
depth completion methods on the NYUv2 dataset. The best
and second-best RMSE are highlighted in red and blue colors,
respectively.

Methods
RMSE

[m]
REL δ1.25 δ1.252 δ1.253

TGV [48] 0.635 0.123 81.9 93.0 96.8
Bilateral [49] 0.479 0.084 92.4 97.6 98.9
S2D [7] 0.230 0.044 97.1 99.4 99.8
CSPN [25] 0.117 0.016 99.2 99.9 100.0
DeepLiDAR [5] 0.115 0.022 99.3 99.9 100.0
DepthNormal [44] 0.112 0.018 99.5 99.9 100.0
FCFRNet [46] 0.106 0.015 99.5 99.9 100.0
ACMNet [23] 0.105 0.015 99.4 99.9 100.0
PRNet [50] 0.104 0.014 99.4 99.9 100.0
GuideNet [8] 0.101 0.015 99.5 99.9 100.0
Our DGDF-A 0.099 0.014 99.5 99.9 100.0
Our DGDF-B 0.098 0.014 99.5 99.9 100.0

In addition, we can observe the same results in the enlarged
areas of the second column, the predicted depth maps of our
DGDF-A and DGDF-B present the most accurate contour at
the boundary of the tree.

D. Experiments on the NYUv2 dataset

To verify the generalization ability of our methods in
the indoor scenes, we conduct extensive experiments on the
NYUv2 dataset. We generate the sparse input depth maps by
randomly sampling from the dense ground truth. Following the
existing methods, our models are trained and tested under the
setting of 500 sparse LiDAR samples. In addition, for a fair
comparison, we pad the input images to 320×256 but evaluate
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Fig. 10: The RGB-D salient object detection network architecture employed by our proposed method, which extracts multi-
scale RGB features and depth features by two separate networks and fuses them through our proposed methods.

   GTGuided dymaic filtersDepthRGB  Decomposition A  Decomposition B

Fig. 11: Typical examples in the RGB-D salient object detection task. From left to right are RGB images, depth maps, the
results predicted by our RGB-D SOD method using different feature fusion methods, including guided dynamic filters [8] and
our decomposed guided dynamic filters A and B, and the ground truth.

only the valid region of size 304× 228 as GuideNet [8]. The
quantitative results in Table. V demonstrate that our methods
DGDF-A and DGDF-B achieve a consistent improvement over
GuideNet on all metrics and show comparable performance
with other state-of-the-art methods. For the NYUv2 dataset,
although only 0.6% of the pixels in the sparse depth map have
values, which are more sparse than the sparse depth map of the
KITTI dataset (4% of pixels have depth values), our methods
still predict the dense depth maps well by fully exploiting the
ability of RGB images as guidance. The qualitative results
in Fig. 9 demonstrate that, compared with the GuideNet, our
methods preserve tiny structures and depth boundaries better.

E. Extension to RGB-D salient object detection

Our proposed decomposed guided dynamic filters are gen-
eral, which can not only help the RGB-guided depth com-
pletion methods achieve SOTA performance, but also boost
other multi-modal input tasks. In this subsection, we extend
our proposed decomposed guided dynamic filters to the RGB-
D salient object detection (SOD) task [56], [57] to fuse the
features from RGB images and depth maps.

The network architecture of our RGB-D salient object detec-
tion method is shown in Fig. 10. We adopt the ResNet50 [19]
as our backbone, which takes RGB images and depth maps
as input and produces two lists of feature maps fθ1(x

R) =
{tRl }4l=1, fθ2(x

D) = {tDl }4l=1, representing different levels of
the features from the RGB image R and depth map D. Then,
we feed each backbone feature tRl and tDl to a simple con-
volution layer and obtain the new backbone feature {sRl }4l=1

and {sDl }4l=1 of same channel size C = 64. Furthermore, we
perform feature fusion at each level and obtain fused features
{sFl }4l=1. Finally, we employ a UNet [58] decoder to decode
the fused feature and get the saliency prediction. We follow the
implementation and evaluation details as [59]. We compare the
performance between the method not using depth maps and the
methods using different feature fusion methods, including the
element-wise addition (Add), the channel-wise concatenation
(Concatenation), guided dynamic filters [8] and our proposed
decomposed guided dynamic filters A and B. Quantitative
results are reported in Table VI. We observe that the methods
using depth maps present better results, as the depth maps
provide additional useful information. Meanwhile, the methods
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TABLE VI: Performance comparison of our RGB-D SOD method using different feature fusion methods. The best and second-
best results are highlighted in red and blue colors, respectively.

NJU2K [51] SSB [52] DES [53] NLPR [54] LFSD [55]
Method Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓

No Depth .909 .900 .940 .036 .897 .880 .936 .039 .938 .927 .974 .018 .921 .899 .957 .023 .814 .813 .853 .090
Add .912 .904 .941 .035 .901 .883 .938 .038 .939 .929 .977 .015 .923 .902 .959 .023 .829 .823 .866 .084

Concatenation .913 .906 .944 .034 .900 .884 .937 .039 .935 .929 .971 .016 .921 .901 .957 .023 .830 .832 .866 .083
Guide dynamic filters [8] .919 .912 .948 .033 .903 .883 .938 .038 .938 .929 .973 .017 .924 .904 .957 .023 .822 .817 .857 .088

Decomposition A .921 .914 .949 .031 .903 .886 .936 .037 .936 .926 .968 .018 .926 .908 .961 .021 .842 .834 .872 .078
Decomposition B .917 .909 .947 .032 .902 .884 .939 .038 .942 .930 .975 .015 .921 .901 .958 .022 .823 .818 .856 .086

using our proposed decomposed guided dynamic filters A and
B achieve consistent improvement compared with the methods
using other feature fusion methods. In addition, we show
some qualitative results in Fig. 11, which demonstrate that our
methods improve the quality of the salient object detection
results. In summary, both the qualitative and quantitative
experimental results demonstrate that our proposed methods
are also effective in the RGB-D salient object detection task.

VI. CONCLUSION

In this paper, we have proposed the decomposed guided
dynamic filters. Instead of directly generating a complete
depth-wise convolutional filter at each spatial location, our
key insight is to reconstruct the spatially-variant and content-
adaptive filters by multiplying the spatially-shared component
with content-adaptive adaptors. Along this pipeline, we pro-
posed two decomposition schemes A and B. Our proposed
methods are effective and efficient, which significantly reduce
model parameters, computational cost, and memory footprints,
while helping the depth completion methods achieve state-
of-the-art performance. In addition, the proposed methods
could be used as plug-and-play feature fusion blocks to boost
other multi-modal fusion tasks. Extended experiments on the
RGB-D salient object detection task demonstrate that our
methods can effectively integrate the multi-modal information
to improve the performance of the method.
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