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B-CANF: Adaptive B-frame Coding with
Conditional Augmented Normalizing Flows

Mu-Jung Chen, Yi-Hsin Chen, and Wen-Hsiao Peng, Senior Member, IEEE

Abstract—Over the past few years, learning-based video com-
pression has become an active research area. However, most
works focus on P-frame coding. Learned B-frame coding is
under-explored and more challenging. This work introduces a
novel B-frame coding framework, termed B-CANF, that exploits
conditional augmented normalizing flows for B-frame coding.
B-CANF additionally features two novel elements: frame-type
adaptive coding and B*-frames. Our frame-type adaptive coding
learns better bit allocation for hierarchical B-frame coding
by dynamically adapting the feature distributions according to
the B-frame type. Our B*-frames allow greater flexibility in
specifying the group-of-pictures (GOP) structure by reusing the
B-frame codec to mimic P-frame coding, without the need for an
additional, separate P-frame codec. On commonly used datasets,
B-CANF achieves the state-of-the-art compression performance
as compared to the other learned B-frame codecs and shows com-
parable BD-rate results to HM-16.23 under the random access
configuration in terms of PSNR. When evaluated on different
GOP structures, our B*-frames achieve similar performance to
the additional use of a separate P-frame codec.

Index Terms—Neural video coding, conditional coding, B-
frame coding.

I. INTRODUCTION

THE great success of learned image compression has
spurred a new wave of research and development for

learned video compression. Most existing methods [1]–[7]
address low-delay P-frame coding based on hybrid-based
coding architecture, which comprises uni-directional temporal
prediction followed by deep residual coding. Ladune et al. [8]
recently show that residual coding is sub-optimal from the
information-theoretic perspective, proposing to condition the
variational autoencoder (VAE)-based deep compression on
motion-compensated frames [8], [9] with the aim of reaching
the lower conditional entropy.

In contrast to the rapid progress in learned P-frame coding,
learned B-frame coding, which allows bidirectional referenc-
ing for higher coding efficiency, is an under-explored topic.
The coding of B-frames usually involves frame interpola-
tion with explicit motion modeling and coding. Residual or
conditional coding may then follow to achieve inter-frame
prediction. Table I dissects some notable B-frame coding
schemes in terms of their strategies for motion and inter-
frame coding, to give an overview of recent developments in
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this area. As shown, most of the existing approaches [10]–
[13] adopt residual-based inter-frame coding, while many
still use intra motion coding (e.g. encoding optical flow
maps as individual images). Notably, the first B-frame coding
scheme [14] already adopts conditional inter-frame coding,
although its motion coding is still an intra-based approach.
Built on top of [8], the more recent VAE-based conditional
coding framework [9] features both conditional motion and
inter-frame coding. However, its compression performance is
inferior to the two state-of-the-art methods [12], [13], both
adopt residual-based inter-frame coding. We argue that the
full potential of conditional coding is yet to be seen. How it is
implemented can make a big difference in coding performance.

Inspired by our previous work [15], we propose a novel
learned B-frame coding framework, termed B-CANF, that
exploits conditional augmented normalizing flows (CANF) for
B-frame coding. We choose CANF as the coding backbone
because of its generality and reversibility. It is shown in [15]
that CANF is able to achieve greater expressiveness by stack-
ing multiple conditional VAE encoders and decoders.

B-CANF extends [15] and differs from most prior works
(e.g. [1]–[7], [16]–[18]) in several significant ways:

• B-CANF addresses primarily B-frame coding rather than
P-frame coding. Similar to [15], it adopts conditional mo-
tion and inter-frame coding. However, the way in which
the motion and inter-frame predictors are formulated has
been adapted to B-frame coding.

• B-CANF newly introduces frame-type adaptive coding
that learns better bit allocation for hierarchical B-frame
coding.

• B-CANF newly proposes a special type of B-frame,
called B*-frame, to mimic P-frame coding. This tool
feature allows greater flexibility in specifying the group-
of-pictures (GOP) structure, without the need for an
additional, separate P-frame codec.

The non-trivial application of these novel elements—
namely, CANF, frame-adaptive coding, and B*-frame—to B-
frame coding achieves higher compression performance. To
our best knowledge, B-CANF is also the first learned B-
frame coding scheme that shows comparable PSNR results to
HM-16.23 under the random access configuration with intra-
period 32 and GOP size 16. Furthermore, this work presents a
comprehensive study on B-frame coding, the results of which
are not reported in our previous work [15] for P-frame coding.
These facts distinct this work from [15] and highlight its
contributions to advancing B-frame coding.

Copyright © 2023 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

ar
X

iv
:2

20
9.

01
76

9v
2 

 [
ee

ss
.I

V
] 

 2
 A

ug
 2

02
3



2

TABLE I
DISSECTION OF SOME NOTABLE B-FRAME CODING SCHEMES.

Publication Motion Coding
for B-frames

Inter-frame Coding
for B-frames

Modules with
Shared Param.

[14] ECCV’18 VAE-based Intra Cond. VAE-based No
[10] ICCV’19 VAE-based Intra VAE-based Residual I, B

HLVC [11] CVPR’20 VAE-based Intra & DIRECT VAE-based Residual No
[9] ICLRW’21 One-stage, Cond. VAE-based Cond. VAE-based I, P, B

B-EPIC [12] ICCV’21 VAE-based Intra VAE-based Residual B, P
LHBDC [13] TIP’22 VAE-based Residual VAE-based Residual No

B-CANF (Ours) - Cond. ANF-based Cond. ANF-based B, B*

It is to be noted that this work is an expanded version of
our conference publication [19], which adopts CANF for B-
frame coding but focuses specifically on YUV 4:2:0 content,
as opposed to RGB content in this work. Moreover, this work
includes extensive ablation studies and complexity analyses,
which are not covered in [19].

The remainder of this paper is organized as follows: Sec-
tion II reviews learned video compression and the basics
of ANF-based image compression (ANFIC [20]). Section III
elaborates the design of B-CANF. Section IV compares B-
CANF with the state-of-the-art methods and presents ablation
experimental results. Finally, we provide concluding remarks
in Section V.

II. RELATED WORK

A. Learned P-frame Coding

End-to-end learned video compression has recently attracted
lots of attention. Most prior works [1], [3]–[7], [11], [16],
[21]–[25] focus on low-delay, P-frame coding, where a tar-
get frame is coded based on information propagated from
the past decoded frames. In common, they share a similar
temporal predictive coding architecture to the conventional
codecs [26], [27]. As such, improving temporal prediction
is one of the central research themes. In this aspect, there
have been schemes such as motion-compensation networks [1],
scale-space warping [3], one-stage motion estimation [7],
feature-domain warping [21], multi-hypothesis prediction [4],
compound spatiotemporal representation [17], and recurrent
autoencoding [22], [23]. Because temporal prediction often
relies on explicit motion modeling, some research efforts are
dedicated to reducing motion overhead by predictive motion
coding [4], incremental flow map coding [6], resolution-
adaptive flow coding [5], [25] and coarse-to-fine motion
coding [25]. Other notable P-frame coding techniques include
the temporal prior [7], [22] that leverages a recurrent neural
network to propagate causal, temporal information for en-
tropy coding, adaptive residual skip coding [24], [25], and
transformer-based autoencoders [28].

More recently, conditional coding [8], [15], [29], [30]
achieves a breakthrough in inter-frame coding. It conditions
the inter-frame autoencoder on the motion-compensated frame
in forming a non-linear prediction of the target frame, as
opposed to subtracting the motion-compensated frame from
the target frame for residual coding, which is shown to be sub-
optimal from the information-theoretic perspective [8]. Lately,

Mentzer et al. [31] take an interesting approach to conditional
coding, utilizing transformers [32] to model the dependencies
between the latents of video frames for entropy coding. It has
the striking feature of not requiring motion coding and warping
operations. Although its initial idea dates back to [14], research
on conditional coding remains very active.

B. Learned B-frame Coding
In comparison with learned P-frame coding, learned B-

frame coding [9]–[14], which is the main focus of this paper
and targets higher coding efficiency by allowing temporal
prediction from both the future and past decoded frames,
is relatively under-explored. Its process normally involves
frame interpolation with explicit motion modeling and coding,
followed by inter-frame residual coding [10]–[13] or condi-
tional coding [9], [14]. Due to the needs for bi-directional
temporal prediction, B-frame coding usually incurs more mo-
tion overhead than P-frame coding. VAE-based intra motion
coding [10], [11], [14], which encodes (bi-directional) optical
flow maps as individual images, is very common. To minimize
motion overhead, several strategies are proposed. Yang et
al. [11] reuse the motion of a future or a past reference frame
in a way similar to the DIRECT mode in [33]. Yılmaz et
al. [13] adopt motion residual coding, with the predicted flow
maps derived from the two reference frames. Ladune et al. [9]
introduce one-stage, conditional motion coding, where the
flow maps are estimated directly from and coded conditionally
on the two reference frames without the use of optical flow
estimation networks. Pourreza et al. [12] reuse the P-frame
codec for B-frame coding, sending for each B-frame only one
flow map that characterizes the motion between the target B-
frame and its predicted frame interpolated by a pre-trained
network. Efforts have also been made to share networks for
coding different types of frames, e.g. I-frame, P-frame and
B-frame [9], [12].

Table I contrasts the differences between our B-CANF and
some notable learned B-frame coding schemes. Extending
from our previous work [15] for P-frame coding, this paper
introduces a conditional coding framework that exploits CANF
for B-frame coding. As opposed to the other conditional
coding schemes [9], [14], our method applies conditional
coding to both motion and inter-frame coding. Moreover, it
features frame-type adaptive coding, which adapts the coding
process to the B-frame type. We also introduce a special type
of B-frame, called B*-frame, which mimics P-frame coding
by reusing the B-frame codec.
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Fig. 1. Illustration of (a) the unconditional ANF for image coding in
ANFIC [20] and (b) the proposed conditional ANF for B-frame coding, where
M signals the B-frame type for frame-type adaptive coding.

C. Augmented Normalizing Flows for Image Compression

B-CANF and our previous work [15] are a sequel to the
augmented normalized flow (ANF)-based image compression,
also known as ANFIC [20], which adopts ANF [34] as the
compression backbone. To ease the understanding of our B-
CANF, this section reviews the basics of ANFIC [20]. Fig. 1(a)
illustrates its coding architecture. Shown on the left are the
three inputs of ANFIC [20]: the image to be encoded x and
the two augmented inputs ez, eh; accordingly, the compressed
outputs are a nearly zero image y2 ≈ 0, the quantized latent
code ẑ2, and the hyperprior ĥ2.

Encoding: The encoding process proceeds from left to right.
The input pair (x, ez) with ez = 01 is transformed into the
output pair (y2, ẑ2), where y2 is regularized to approximate
a zero image, by two autoencoding transforms (A1, S1) and
(A2, S2) arranged in the form of additive coupling layers.
A1, A2 are VAE-based analysis transforms, while S1, S2 are
VAE-based synthesis transforms. In symbols, the intermediate
states y1, z1 after the first autoencoding transform (A1, S1) are
given by

A1(xt, ez) = (xt, ez + µA1
(xt)) = (xt, z1), (1)

S1(xt, z1) = (xt − µS1
(z1), z1) = (y1, z1), (2)

where µA1
, µS1

are two neural networks that output element-
wise additive transform parameters. The second autoencoding
transform (A2, S2) that converts y1, z1 into y2, ẑ2 follows
a similar definition, except that z2 is additionally predicted

1ANF [34] is initially designed to be a generative model, where the
augmented noises are meant to induce a complex marginal on the input xt

and the entropy rate of the latents is not a concern. In ANFIC [20], the latents
z2 must be quantized and compressed to achieve low entropy. Injecting noise
at ez will increase the entropy of z2. ANFIC [20] shows that having ez = 0
can still achieve good compression performance.

TABLE II
COMPARISON OF B-CANF, ANFIC [20], AND CANF-VC [15].

Codec Type Frame-type
Support

Frame-type
Adaptive Coding

ANFIC [20] ANF-based I N
CANF-VC [15] CANF-based I, P N
B-CANF (Ours) CANF-based I, B, B* Y

from the hyperprior and quantized as ẑ2. Here Ha, Hs serve
as the hyperprior autoencoder [35], which encodes the latent
code z2 into ĥ2 for entropy coding. The reader is referred to
[20] for network details. By doing so, ANFIC transforms the
information from xt into the augmented space ẑ2, ĥ2, which
have much lower resolution than the original image and allow
for more efficient coding.

Decoding: The decoding proceeds in reverse order by
decoding first the hyperprior ĥ2, followed by the decoding
of ẑ2 to update y2 (initialized as 0) successively from right
to left. During training, eh ∼ U(−0.5, 0.5) simulates the
additive quantization noise of the hyperprior. Remarkably,
the conventional VAE-based compression is a special case of
ANFIC by retaining only the autoencoding transform (A2, S2).
In this sense, ANFIC is able to achieve superior expressive-
ness to VAE-based compression systems by cascading more
autoencoding transforms.

Table II summarizes the differences of ANFIC [20], our
previous work CANF-VC [15], and B-CANF. Both CANF-
VC [15] and B-CANF adopt CANF as the coding backbone,
whereas ANFIC uses ANF. CANF differs from ANF in that it
learns conditional distributions of video frames rather than un-
conditional distributions of images (Section III-B). Moreover,
B-CANF distinguishes from CANF-VC [15] by the support of
B-frames and B*-frames (Section III-C); additionally, it incor-
porates frame-type adaptive coding (Section III-D). Extensive
experimental results and ablation studies on B-frame coding
reported in this paper are not seen in [15].

III. PROPOSED METHOD

A. System Overview

We begin this section with an overview of our B-frame
coding framework. Specifically, we target the two common
hierarchical Group-of-Pictures (GOP) prediction structures
shown in Fig. 2, where Fig. 2(a) depicts the case with an intra-
period of the same size as the GOP and Fig. 2(b) the other
case having multiple GOPs in one intra-period. In the latter
case, we introduce a special type of B-frame, known as B*-
frame, the coding of which reuses the same framework as for
regular B-frames (including both reference and non-reference
ones). Our B*-frames are conceptually similar to generalized
B-frames [36], which allow the two reference frames to be
both from the past (and even the same) decoded frames. The
use of B*-frame is to mimic P-frame coding with our B-
frame coding framework, an approach that is in direct contrast
to [12], which uses P-frame coding for B-frames. We remark
that B-frame coding is more flexible and general than P-frame
coding.
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Fig. 2. Illustration of the GOP structures supported in our scheme. The GOP
size is set to 4 for illustrative purposes. (a) Hierarchical B-frame coding. (b)
Hierarchical B-frame coding with multiple GOPs in an intra-period. In both
cases, reference and non-reference B-frames are coded recursively.

Fig. 3(a) illustrates our B-frame coding framework. Con-
sider the coding of a B-frame xt, where the subscript indicates
the time index, given its two reference frames x̂t−k, x̂t+k,
i.e., the previous and subsequent decoded reference frames
at higher hierarchical levels, respectively. Our first step is
to interpolate a predicted frame x̂c

t through bidirectional
motion compensation in pixel domain. To this end, we es-
timate and signal two optical flow maps me

t→t−k,m
e
t→t+k

for bidirectional backward warping. Our main focus here
is on reducing motion overhead through conditional coding.
To obtain the conditioning signals, we introduce a motion
prediction network that derives the (predicted) optical flow
maps mp

t→t−k,m
p
t→t+k from observing the two reference

frames x̂t−k, x̂t+k without having access to xt. Our second
step is to code the B-frame xt efficiently by conditioning the
inter-frame coding on the predicted frame x̂c

t . Our framework
is comprised of the following major components:

• Motion estimation network (ME-Net) estimates the
backward flow maps me

t→t−k,m
e
t→t+k between xt and

the two reference frames x̂t−k, x̂t+k, respectively. In this
work, we adopt SPyNet [37] for motion estimation.

• Motion prediction network predicts two optical flow
maps mp

t→t−k,m
p
t→t+k, which serve jointly as the con-

dition for coding me
t→t−k,m

e
t→t+k, from observing the

two reference frames x̂t−k, x̂t+k without having access
to xt. We follow [38] in using a convolutional neural
network to generate mp

t→t−k,m
p
t→t+k in a coarse-to-fine

fashion.
• CANF-based motion codec, conditioned on the pre-

dicted flow maps mp
t→t−k,m

p
t→t+k, encodes the flow

maps me
t→t−k,m

e
t→t+k jointly to output the recon-

structed flow maps m̂t→t−k, m̂t→t+k (Section III-B).
• Frame synthesis network synthesizes the predicted

frame x̂c
t by GridNet [39], which takes as inputs

the motion-compensated reference frames and their
features generated based on the reconstructed flows
m̂t→t−k, m̂t→t+k.

• CANF-based inter-frame codec encodes the target
frame xt, conditioned on the predicted frame x̂c

t (Sec-
tion III-B).

B. CANF-based Inter-frame and Motion Codecs

Fig. 1(b) presents the architecture of our CANF-based
codec. Both our inter-frame and motion codecs adopt a similar
design. To keep the notation uncluttered, we take the inter-
frame codec as an illustrative example.

CANF-based inter-frame codec seeks to learn the condi-
tional distribution p(xt|x̂c

t) of the B-frame xt, given the bidi-
rectionally predicted frame x̂c

t . As compared to ANFIC [20],
which employs an unconditional ANF to learn the image distri-
bution p(xt) for image compression, our CANF-based inter-
frame codec introduces two novel elements: (1) conditional
autoencoding transforms and (2) conditional entropy coding
with the combined hyperprior and temporal prior.

From Fig. 1(b), the conditional autoencoding transform
is designed to transform the B-frame xt into the latent y2,
which in the present case is regularized to approximate the
predicted frame x̂c

t instead of a zero image as with ANFIC [20]
(cp. Fig. 1(a)). In the course of transformation, the latent ẑ2
encodes the information necessary for instructing the transfor-
mation from xt to x̂c

t and vice versa, while the hyperprior ĥ2

is utilized to model the distribution of ẑ2 for entropy coding.
Taking {A1, S1} in Fig. 1(b) as an example, we have

A1(xt, ez|x̂c
t) = (xt, ez + µA1

(xt, x̂
c
t)) = (xt, z1), (3)

S1(xt, z1) = (xt − µS1
(z1), z1) = (y1, z1), (4)

where µA1
, µS1

are two neural networks that output element-
wise additive transform parameters. It is worth noting that the
encoding process µA1 is conditioned on x̂c

t by concatenating
x̂c
t , xt to form the encoder input. The rationale behind the

design is to ease the transformation from xt to x̂c
t by supplying

the target x̂c
t as an auxiliary signal. This process is repeated by

taking the resulting y1, z1 as inputs to the next autoencoding
transform {A2, S2}.

The conditional entropy coding is achieved by the hier-
archical autoencoding transform {Ha, Hs}, which estimates
the conditional distribution of z2 given the hyperprior ĥ2 and
the interpolated frame x̂c

t for entropy coding. Its operation is
governed by

Ha(z2, eh) = (z2, eh + µHa(z2)) = (z2, ĥ2), (5)

Hs(z2, ĥ2|x̂c
t) = (⌊z2 − µHs(ĥ2, Hp(x̂

c
t))⌉, ĥ2) = (ẑ2, ĥ2),

(6)

where ⌊·⌉ (depicted as Q in Fig. 1(b)) denotes the nearest-
integer rounding at inference time for coding z2 in a lossy
manner. In particular, ĥ2 = eh+µHa

(z2) denotes the quantized
hyperprior and is entropy coded by a learned factorized
distribution [40], with eh ∼ U(−0.5, 0.5) simulating additive
quantization noise applied to the hyperprior latent µHa(z2).
µHs

(ĥ2, Hp(x̂
c
t)) models the mean of the latent z2, which is

assumed to follow a Gaussian distribution with the standard
deviation determined by another output σ(ĥ2, Hp(x̂

c
t)) tied

to the same backbone network as µHs
. We remark that the

combination of ĥ2, x̂
c
t in deriving the coding probabilities for

z2 exerts a combined effect of the hyperprior and temporal
prior.

In Fig. 1(b), another conditioning factor M is utilized
to signal the frame type of xt–namely, reference B-frames,
non-reference B-frames, or B*-frames–and to adapt feature
distributions for frame-type adaptive coding (Section III-D).

CANF-based motion codec follows a similar design to
our CANF-based inter-frame codec. The changes include (1)
replacing the coding B-frame xt with the concatenation of the



5

(a)

(b)

Fig. 3. Illustration of the proposed B-frame codec configured for coding (a) B-frames (reference and non-reference) and (b) B*-frames. xt represents the
current coding frame and x̂t−k, x̂t+k are the previously reconstructed reference frames. ME-Net estimates the optical flow maps me

t→t−k,m
e
t→t+k between

xt and its reference frames x̂t−k, x̂t+k , respectively. The motion prediction network outputs the predicted optical flow maps mp
t→t−k,m

p
t→t+k , which

serve as the conditioning signals for the motion codec. The frame synthesis network fuses the reference frames using the reconstructed optical flow maps
m̂t→t−k, m̂t→t+k to generate the predicted frame x̂c

t , which acts as the conditioning signal for the inter-frame codec. M indicates the frame type (reference
B, non-reference B, B*-frame).

two optical flow maps {me
t→t−k,m

e
t→t+k} to be coded, and

(2) replacing the interpolated frame x̂c
t with the concatenation

of the two predicted optical flow maps {mp
t→t−k,m

p
t→t+k}. It

is important to note that {me
t→t−k,m

e
t→t+k} are coded jointly

based on the predicted flows {mp
t→t−k,m

p
t→t+k}, allowing the

motion codec to exploit correlations between these flow maps
for reducing motion overhead.

The major differences between the CANF-based codecs of
our B-CANF and [15] are summarized as follows:

• Bidirectional joint motion coding: B-CANF addresses
B-frame coding. There are two optical flow maps (rather
than one in [15]) to be coded. Instead of encoding these
flow maps independently, they are concatenated as the
input to our CANF-based motion codec for joint coding.
Likewise, the motion prediction module outputs two flow
map predictors. They are also concatenated as the joint
conditioning signal. This allows our CANF-based motion
codec to best use the contextual information from both
flow map predictors for joint coding. As a result, the
channels of the input, conditional input, and output are
twice as many as those of their counterparts in [15].

• Frame-type adaptive coding: B-CANF additionally in-
corporates a frame-type adaption module in every con-

volutional layer of the CANF-based motion and inter-
frame codecs, in order to adapt the feature distributions
for frame-type adaptive coding. We will discuss this in
Section III-D.

• Network configuration: The network settings, such
as the number of input/output channels, kernel size,
and stride, for the CANF-based motion and inter-frame
codecs have been changed in this work, in order to strike
a better balance among coding efficiency, model size, and
computational complexity. More details will be provided
in the released code.

C. B*-frame Extension

B*-frames allow to support multiple GOPs in an intra-
period as depicted in Fig. 2(b), to strike a balance between
coding performance and latency. A straightforward approach
is to encode P-frames periodically using an additional P-frame
codec. In doing so, however, the total model size is increased.
To address this issue, we propose B*-frames, which reuse our
CANF-based B-frame codec to mimic P-frame coding.

To encode a video frame xt in B* mode, we create a
predicted frame from the past decoded frame xt−k just like
coding a vanilla P-frame. To this end, the flow map me

t→t−k
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between xt and xt−k is estimated and coded. As shown in
Fig. 3(b), the main inputs to our conditional motion codec
should ideally comprise two optical flow maps. We generate
the other ”virtual” input by flipping the sign of me

t→t−k

(i.e. −1 × me
t→t−k), in order to match the characteristics

of me
t→t+k (for ordinary B-frame coding). Because only one

reference frame xt−k is used, we disable motion prediction
network and set the predicted flow maps to constant 0. This
reduces our motion coding scheme for B*-frames to intra-
based motion coding. Although it is possible to use a motion
extrapolation network to generate a flow map predictor from
previously coded B*-frames, this calls for long-term motion
extrapolation. It is to be noted that B*-frames are usually
temporally distant from each other or may even be coded
only once in an intra-period as with the HM randomaccess
configuration [41]. The predicted frame x̂c

t is then synthesized
from the reference frames based on the coded me

t→t−k and
its virtual counterpart (after sign reversal), which are found
empirically to be similar but not exactly the same (see ablation
experiments in Section IV-D). As such, the B*-frame is by
definition a bi-prediction frame.

Our ablation experiments in Section IV-D show that B*-
frames have similar compression performance to P-frames,
which require an additional, separate P-frame codec.

D. Frame-type Adaptive Coding

Frame-type adaptive coding aims to achieve adaptive coding
according to the reference types of B-frames. In traditional
codecs, the reference B-frames are usually coded at higher
quality than the non-reference B-frames by operating the same
B-frame codec in different modes2. Following a similar strat-
egy, we weight more heavily the distortions of the reference
B-frames and B*-frames during training (Section III-E). In
addition, we observe that using a fixed, shared B-frame codec
for coding all the types of B-frames is unable to achieve frame-
type adaptive coding. On the other hand, training separate
models for different B-frames as with [14] is prohibitively
expensive.

We tackle this issue by introducing a frame-type adaptation
(FA) module to every convolutional layer, aiming to share the
convolutional layers between B-frames while adapting their
features to the B-frame type. Specifically, according to the
B-frame type (namely, reference B-frames, non-reference B-
frames, or B*-frames), our FA module applies a channel-
wise affine transformation to the output features of every
convolutional layer. Take as an example the analysis transform
in Fig. 4. The FA module is inserted between the convolutional
layer and the generalized divisive normalization (GDN) layer.
It takes B-frame type M (in one-hot vector) as input and
generates the affine transform parameters γ and β for feature
F adaptation by

FA(F |M) = γ(M)⊙ F ⊕ β(M) (7)

2The reference B-frames refer to those B-frames which serve as reference
frames for the subsequent frames in coding order, whereas the non-reference
B-frames are not used for reference.

Fig. 4. Illustration of the analysis transform (A1) with the frame-type
adaptation (FA) module. The symbol ′ indicates that the activation function
(i.e. GDN) is omitted. Conv(N, K, S) stands for a convolutional layer with
the number of output channels N, kernel size K, and stride S.

where ⊙, ⊕ are channel-wise multiplication and addition. The
FA modules appear in the autoencoding transforms and the hy-
perprior models. They are trained end-to-end together with the
other networks. Note that similar feature adaptation techniques
are widely used in computer vision tasks [42], [43] and are
also adopted in end-to-end learned image compression [44].
Unlike these prior works, which take a set of feature maps as
inputs to perform element-wise affine transformation, our FA
module performs channel-wise affine transformation to adapt
feature distributions with respect to a scalar indicating the
input frame’s type.

Section IV-D shows that frame-type adaptive coding im-
proves bit allocation because our B-frame codec is able to
adapt feature distributions on a frame-by-frame basis. In
passing, this tool feature is to be distinguished from training
separate models for different rate points, which is still the case
in all the experiments.

E. Training

The model training is done on 5-frame training sequences
(with their frames denoted by x0, x1, . . . , x4). In coding every
training sequence, we follow the GOP-1 structure in Fig. 2(b),
which encodes x0 as an I-frame by a pre-trained image
codec [20] (not included for training), x4 as a B*-frame, and
x2 as a reference B-frame. Moreover, we randomly choose
between x1 and x3 for coding, in order to have a balanced
distribution over B-frame types. Assuming that x3 is chosen,
we formulate our training objective as follows:

L = λ1 ×D +R+ λ2 × F, (8)

where

D = d(x4, x̂4) +
1

αr
d(x2, x̂2) +

1

αnr
d(x3, x̂3), (9)

R =

4∑
t=2

r(x̂t), (10)

F = f4 +
1

αr
f2 +

1

αnr
f3, (11)

with D denoting the weighted sum of frame distortions
{d(xt, x̂t)}4t=2, R the accumulated bits {r(x̂t)}4t=2 consumed
by both the conditional motion and inter-frame coding, and
F the sum of regularization losses {ft = ||y2 − x̂c

t ||22}4t=2

requiring that y2 in Fig. 1 (b) should approximate their
respective conditions, i.e. {x̂c

t}4t=2. This regularization loss is
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TABLE III
SETTINGS OF THE COMPETING METHODS.

I-frame codec Coding Intra- GOP(PSNR-RGB/MS-SSIM-RGB) structure period
x265 (veryslow) - IPPP... 32 32
HM (LDP) - Hierarchical P 32 8
HM (randomaccess) - Hierarchical B 32 16
VTM (randomaccess) - Hierarchical B 32 32
DCVC [29] cheng2020 [47]/hyperprior [35] IPPP... 32 32
DCVC (ANFIC) ANFIC [20]/ANFIC IPPP... 32 32
CANF-VC [15] ANFIC/ANFIC IPPP... 32 32
Sheng’22 [30] cheng2020 [47]/cheng2020 IPPP... 32 32
Sheng’22 (ANFIC) ANFIC [20]/ANFIC IPPP... 32 32
Li’22 [48] Li’22 [48]/Li’22 IPPP... 32 32
Li’22 (ANFIC) ANFIC [20]/ANFIC IPPP... 32 32
LHBDC [13] mbt2018-mean [47]/- Hierarchical B 32 16
LHBDC (ANFIC) ANFIC/- Hierarchical B 32 16
B-CANF (Ours) ANFIC/ANFIC Hierarchical B 32 16

TABLE IV
BD-RATE COMPARISON WITH INTRA-PERIOD 32. THE ANCHOR IS X265 IN VERYSLOW MODE. THE BEST PERFORMER IS MARKED IN RED AND THE

SECOND BEST IN BLUE.

BD-rate (%) PSNR-RGB BD-rate (%) MS-SSIM-RGB
UVG MCL-JCV HEVC-B CLIC’22 UVG MCL-JCV HEVC-B CLIC’22

HM (LDP) -30.6 -26.4 -23.0 -16.8 -21.6 -17.3 -18.0 -8.8
HM (randomaccess) -53.6 -48.2 -51.4 -41.3 -46.3 -40.8 -53.3 -39.2
VTM (randomaccess) -68.2 -63.6 -66.4 -54.6 -69.6 -65.6 -71.1 -60.9
DCVC [29] -2.3 -7.6 -3.0 28.7 -45.2 -49.5 -53.6 -25.9
DCVC (ANFIC) -3.6 -9.0 -2.3 25.5 -47.7 -51.6 -55.8 -29.0
CANF-VC [15] -28.7 -21.3 -21.4 3.3 -49.8 -50.4 -55.0 -30.3
Sheng’22 [30] -45.7 -38.0 -43.1 -9.5 -63.6 -63.8 -73.9 -58.2
Sheng’22 (ANFIC) -41.8 -38.0 -40.9 -9.9 -63.0 -64.7 -73.3 -57.1
Li’22 [48] -62.4 -54.0 -57.6 -26.9 -73.0 -72.8 -80.4 -67.9
Li’22 (ANFIC) -59.2 -51.2 -54.7 -26.3 -72.1 -71.9 -79.6 -66.6
LHBDC [13] -18.6 -5.3 4.4 38.8 NA NA NA NA
LHBDC (ANFIC) -18.6 -6.7 3.4 38.2 NA NA NA NA
B-CANF (Ours) -47.5 -41.1 -46.9 -33.8 -60.2 -61.2 -67.1 -59.6

to have the latent representations ẑ2, ĥ2 (Fig. 1 (b)) capture
the information needed to signal the transformation between
the coding frame xt and its predicted frame x̂c

t . The hyper-
parameters λ1, λ2 are rate-point dependent, while αr, αnr are
for bit allocation among B-frames. These hyper-parameters are
detailed in Section IV.

IV. EXPERIMENTS

A. Settings

a) Training Details: For training, we use Vimeo-90k sep-
tuplet dataset [45], which includes 91,701 7-frame sequences
of size 448 × 256. The training sequences are randomly
cropped to 256×256, and five consecutive frames are selected.
We adopt Adam [46] optimizer with learning rate 10−4 and
batch size 16. To optimize our models for PSNR-RGB, we
choose λ2 = 0.01λ1 and λ1 = 128, 512, 1024, 2048 to train
separate models for different rate points; likewise, to optimize
them for MS-SSIM-RGB, we choose λ2 = 0.01λ1 and λ1 =
2, 8, 16, 32. For all the experiments, αr = 1, αnr = 2.
These hyper-parameters are chosen to weight more heavily
the quality of reference B-frames (including B*-frames).

b) Evaluation Methodologies: We evaluate our method
on UVG [49], MCL-JCV [50], and HEVC Class B [51].

In addition, we also evaluate on CLIC’22 test dataset [52],
which contains some challenging sequences with characteris-
tics rarely seen in Vimeo-90k training dataset [45]. To compare
fairly with HM (HEVC Test Model Version 16.23) [41] under
the common test conditions, we follow the coding structure
of the encoder randomaccess main configuration. That is,
the intra-period is 32 and GOP size is 16 for all the test
sequences. For every test sequence, we encode most of the
video frames to the extent that the coded sequence contains
the maximum number of intra-periods (32). As an example,
for a 600-frame test sequence, we will encode 577 frames (1
I-frame + 18 intra-periods). Note that the source videos are
in YUV420 format. The traditional codecs operate internally
in YUV420, whereas the learned codecs perform YUV420-to-
RGB444 conversion prior to coding. The reconstructed quality
is measured in PSNR-RGB and MS-SSIM-RGB, and the bit-
rate in bits-per-pixel (bpp). Table III summarizes the settings
of these competing methods.

c) Baseline Methods: The baseline methods include
traditional codecs and learning-based methods. The tradi-
tional codecs are x265 [53] in veryslow mode (zerola-
tency), HM [41] with the encoder lowdelay P main and
encoder randomaccess main configurations, and VTM [54]
with the encoder randomaccess main configuration. The
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Rate-distortion plots on UVG, MCL-JCV, HEVC Class B and CLIC’22 test dataset in terms of PSNR-RGB and MS-SSIM-RGB

TABLE V
BD-RATES OF B-CANF AS COMPARED AGAINST DIFFERENT ANCHORS UNDER THEIR RESPECTIVE SETTINGS.

Anchor I-frame codec Intra-period GOP BD-rate (%) PSNR-RGB BD-rate (%) MS-SSIM-RGB
(PSNR-RGB/MS-SSIM-RGB) UVG MCL-JCV HEVC-B CLIC’22 UVG MCL-JCV HEVC-B CLIC’22

HLVC [11] BPG [55]/ICLR’19 [56] 10 10 -53.7 -55.4 -50.3 -56.9 -44.2 -48.5 -38.7 -44.8
HLVC (ANFIC) ANFIC [20]/ANFIC 10 10 -53.9 -54.9 -50.3 -56.9 -44.7 -49.0 -39.0 -44.1
RLVC [22] BPG/ICLR’19 13 13 -50.6 -49.4 -46.5 -47.8 -36.6 -41.9 -33.6 -48.9
RLVC (ANFIC) ANFIC/ANFIC 13 13 -47.8 -46.9 -44.1 -46.9 -34.0 -39.3 -35.3 -46.1
LHBDC [13] mbt2018-mean [47]/mbt2018-mean 8 8 -33.6 -36.1 -43.1 -41.2 -31.4 - - -
LHBDC (ANFIC) ANFIC/ANFIC 8 8 -30.9 -32.9 -40.7 -39.9 - - - -
B-EPIC [12] NA/NA infinity 12 -32.3 -33.8 -32.5 - -15.5 -21.2 -26.5 -

learning-based methods include CANF-VC [15], DCVC [29]
and two concurrent works, Sheng’22 [30] and Li’22 [48],
which are the state-of-the-art learned P-frame coding schemes.
We also compare B-CANF with LHBDC [13], the state-
of-the-art learned B-frame coding scheme. To align the I-
frame codec, we additionally evaluate their performance using
ANFIC [20] as the I-frame codec. We refer to these variants
as DCVC (ANFIC), Sheng’22 (ANFIC), Li’22 (ANFIC) and
LHBDC (ANFIC), respectively. Results for the baselines and
their variants are produced with the code released by the
authors.

B. Rate-Distortion Performance

When comparing our B-CANF with CANF-VC [15] and
LHBDC [13], we observe that B-CANF surpasses them in
terms of both PSNR-RGB and MS-SSIM-RGB across all the
test datasets. However, B-CANF falls short of achieving the
same level of performance as Li’22 [48], which is considered
the state-of-the-art learned P-frame codec. This discrepancy in
performance can be attributed to the more advanced entropy
coding model employed by Li’22 [48] and the domain shift
issue that arises between the training and testing phases. For
a comprehensive analysis of this domain shift, please refer to
Section IV-C.

Table V further compares our method with HLVC [11],
RLVC [22], LHBDC [13], and B-EPIC [12] following their
suggested settings. All the baseline methods adopt or support
B-frame coding. In this experiment, these baseline methods
are used as anchors for BD-rate evaluation. In addition, we
note that the codes for B-EPIC [12] are unavailable. We thus
copy the results from their paper in evaluating BD-rates.

In HLVC [11], a three-level hierarchical coding structure
with P- and B-frames is used for encoding GOP’s of size 10.
We follow exactly the same coding structure as HLVC [11]
to perform encoding with B-CANF, except that we use B*-
frames to replace P-frames. Recall that B*-frames are used to
mimic P-frames. In RLVC [22], a bidirectional P-frame coding
structure is proposed to take advantage of the past and future
frames for better coding efficiency. For the same purpose, our
B-CANF proposes B-frame coding. To demonstrate the best
achievable performance of B-CANF, we adopt hierarchical B-
frame coding for encoding GOP’s of size 13 in comparing
with RLVC [22]. In LHBDC [13], a hierarchical B prediction
structure with GOP 8 and intra-period 8 is proposed. In
comparison with B-EPIC [12], which adopts a GOP size
of 12 with an infinite intra-period (only one I-frame in the
beginning), our B-CANF uses the same GOP size. However,
we set the intra-period to 12 (instead of infinity) to mitigate
the temporal error propagation. Despite that this leads to
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TABLE VI
BD-RATE COMPARISON UNDER DIFFERENT INTRA-PERIODS:

INTRA-PERIOD 32 (I32) AND INTRA-PERIOD 8 (I8). THE ANCHOR IS OUR
PROPOSED METHOD, B-CANF, UNDER THE RESPECTIVE INTRA-PERIODS.

NEGATIVE NUMBERS INDICATE RATE SAVINGS AS COMPARED TO
B-CANF, WHILE POSITIVE NUMBERS INDICATE RATE INFLATION.

BD-rate (%) PSNR-RGB
UVG MCL-JCV HEVC-B

I32 I8 I32 I8 I32 I8
B-CANF (ANFIC) 0.0 0.0 0.0 0.0 0.0 0.0
Sheng’22 (ANFIC) 14.6 20.4 9.2 13.6 14.0 22.1
Li’22 (ANFIC) -14.3 4.0 -13.7 -4.3 -12.6 7.5

more frequent coding of I-frames, its advantages outweigh the
temporal error propagation. Under these various settings, our
B-CANF (which adopts ANFIC [20] as the I-frame codec) still
achieves considerable BD-rate reductions over HLVC [11],
RLVC [22], LHBDC [13], and B-EPIC [12]. This is evidenced
by the negative BD-rate numbers in the upper half of Table V.

C. Domain Shift in Training B-frame Codecs

The performance gap between our B-CANF and the works
of Sheng’22 [30] and Li’22 [48] deserves further investigation.
A crucial aspect that is often overlooked when comparing
the compression performance of learned P-frame and B-
frame codecs is the training datasets. Most learned codecs
(P-frame and B-frame) are trained on Vimeo dataset [45],
which consists of short video sequences, each containing only
7 frames. Consequently, we use 5-frame GOPs with 3-level
B-frame coding for training. Notably, these training B-frames
are temporally adjacent to each other.

However, during testing, we employ a large GOP of size
32 (i.e. the intra-period is 32) with 5 hierarchical temporal
levels in most cases. This results in a substantial number
of B-frames being predicted from distant reference frames,
leading to a significant domain shift (i.e. a significant change
in statistics) between the training and test scenarios. This dis-
crepancy can negatively affect the generalization of our ME-
Net, motion prediction network, and frame synthesis network,
especially when dealing with videos featuring substantial
motion. In contrast, learned P-frame codecs like Li’22 [48] and
Sheng’22 [30] have more consistent training and test scenarios
in terms of temporal prediction distance. In P-frame coding,
the domain shift can occur after coding several frames because
the quality of the reference frame often degrades over time.
In B-frame coding, it happens right from the first coding B-
frame, affecting all the subsequent frames. This early domain
shift in B-frame coding has a more immediate and pronounced
impact on compression performance.

To mitigate the domain shift between the training and test
scenarios, we present additional results in Table VI for a
smaller GOP size of 8. In order to ensure a fair comparison,
we utilize ANFIC as the I-frame codec for all the competing
methods. The results demonstrate that our B-CANF performs
comparably to or better than Li’22 [48] under GOP=8, even
without utilizing advanced entropy coding. Note that these
results are not intended to advocate the use of small GOPs
or short intra-periods. Rather, they serve to highlight the

Fig. 6. Profiles of the per-frame PSNR’s and the per-frame bit rates averaged
over GOPs on UVG dataset, with and without frame-type adaptive (FA) coding
at high rates (λ1 = 2048). Frame 0, 32 are coded as I-frame, Frame 16 is
coded as B*-frame, and the odd-numbered frames are non-reference B-frames
while the even-numbered frames are reference B-frames.

limitations of Vimeo dataset [45] in training B-frame codecs
and demonstrate the potential of B-CANF.

D. Ablation Experiments

We conduct ablation experiments with GOP 16 and intra-
period 32. Unless otherwise specified, the BD-rates are re-
ported against x265 (veryslow) in terms of PSNR-RGB.

a) Conditional vs. Residual Coding: Table VII analyzes
the impact of our conditional coding scheme on compression
performance. We test four variants, switching between residual
and conditional coding for motion and inter-frame coding.
When residual coding is selected, we use ANFIC [20] to code
flow map or frame prediction residuals. Comparing variants
A and D, turning both motion and inter-frame codecs into
residual-type ones results in a considerable performance drop.
In particular, our conditional coding scheme is seen to benefit
inter-frame coding more than motion coding (from D to B
vs. from D to C). A breakdown analysis of the bitstream
composition explains that the motion part represents only 5-
15% of the entire bitstream. Interestingly, the gains of our
conditional coding in improving motion coding and inter-
frame coding are nearly additive.

b) Frame-type Adaptive Coding: As mentioned in Sec-
tion III-D, there are two mechanisms that contribute to the
better bit allocation of our B-CANF. The first is to weight
differently the distortions of different types of B-frames during
training. The second is the FA module, which allows both
the conditional motion and inter-frame codecs to behave
differently according to the input frame’s type. Table VIII
presents an ablation study to shed lights on how they contribute
to the rate-distortion performance. Comparing setting A (our
B-CANF) with setting B, we see that turning off the FA
module leads to a significant rate-distortion performance loss.
In this case, the same (amortized/average) motion and inter-
frame codecs are used to process different types of B-frames.
Likewise, in comparison with the full model (setting A),
having only the FA module without weighting the distortions
according to the frame type (setting C) during training is sub-
optimal too. These results suggest that they both contribute
significantly to the resulting rate-distortion performance.
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TABLE VII
ABLATION STUDY OF CONDITIONAL CODING. SETTING A IS OUR PROPOSED B-CANF MODEL.

Setting Motion coding Inter-frame coding BD-rate (%) PSNR-RGB
Residual Conditional Residual Conditional UVG MCL-JCV HEVC-B CLIC’22

A ✓ ✓ -47.5 -41.1 -46.9 -33.8
B ✓ ✓ -41.8 -36.3 -42.2 -30.0
C ✓ ✓ -33.4 -26.8 -34.6 -23.0
D ✓ ✓ -28.2 -22.8 -30.3 -20.0

TABLE VIII
ABLATION STUDY OF THE DISTORTION WEIGHTING AND THE FRAME-TYPE ADAPTATION (FA) MODULE. SETTING A IS OUR PROPOSED B-CANF MODEL.

Setting Distortion weighting FA module BD-rate (%) PSNR-RGB
UVG MCL-JCV HEVC-B CLIC’22

A ✓ ✓ -47.5 -41.1 -46.9 -33.8
B ✓ -39.4 -32.1 -41.0 -28.7
C ✓ -39.3 -35.4 -38.1 -25.0
D -32.0 -30.4 -36.3 -22.1

TABLE IX
ABLATION STUDY OF FRAME-TYPE ADAPTIVE CODING. SETTING A IS OUR PROPOSED B-CANF MODEL.

Setting Frame-type adaptive coding BD-rate (%) PSNR-RGB
Motion codec Inter-frame codec UVG MCL-JCV HEVC-B CLIC’22

A ✓ ✓ -47.5 -41.1 -46.9 -33.8
B ✓ -41.6 -32.7 -40.6 -28.4
C ✓ -42.3 -35.9 -43.2 -30.9
D -39.4 -32.1 -41.0 -28.7

Fig. 6 further visualizes how the proposed FA module may
impact the bit allocation among B-frames in a GOP and their
decoded quality. In this and the following experiments, the
distortion weighting is enabled during training. We see that
disabling the FA module (i.e., setting B in Table VIII) will
learn an ”average” codec that tends to allocate more bits to
the non-reference B-frames. As a result, the PSNR distribution
becomes more smooth and less hierarchical.

Table IX further presents BD-rate results by turning on and
off frame-type adaptive coding in the motion and/or inter-
frame codecs. Interestingly, when applied to either the inter-
frame codec (from D to C) or the motion codec (from D to
B) alone, it is not as effective as the case when it is enabled
for both codecs (from D to A).

To gain insights into this observation, Fig. 7 analyzes the
bit allocation between motion coding and inter-frame coding
for B-frames. Comparing setting C with setting D, we observe
that enabling frame-type adaptive coding for the inter-frame
codec only is able to reduce effectively the bit rate of inter-
frame coding (green) while keeping the motion bit rate (red)
relatively untouched. Likewise, the comparison of settings
B and D shows that applying it to the motion codec only
reduces effectively the motion bit rate (red). In this case, the
slightly increased bit rate of inter-frame coding (green) may
be attributed to the use of a shared inter-frame codec, which is
unable to adapt to the changes in the inter-frame correlation
that result from frame-type adaptive motion coding. Turing
on frame-type adaptive coding for both codecs allows the
greatest degree of flexibility in allocating bits to different parts,
achieving a synergy effect.

c) Coded Flow Maps for B*-frames: Figs. 8(b) and (c)
visualize the two coded flow maps for B*-frames. As shown

Fig. 7. Comparison of PSNR-RGB and bit allocation by turning on and off
frame-type adaptive coding in the motion and/or inter-frame codecs at high
rates (λ1 = 2048). The PSNR-RGB and bit-allocation results are averaged
over B-frames of the test sequences in UVG dataset. FA refers to frame-type
adaptive coding. Setting A is our B-CANF model.

in Fig. 8(d), they are seen to disagree slightly with each
other around object boundaries. Table X presents BD-rate
results for three variants of motion compensation. Both refers
to using two hypotheses, i.e. the coded flow map m̂e

t→t−k

and its virtual counterpart after sign reversal, for motion
compensation, whereas First or Second refers to using solely
one of them. We see that using solely m̂e

t→t−k (First) or its
virtual counterpart (Second) for motion compensation leads
to less rate saving than using both simultaneously. This may
be attributed to the fact that the input flow map is usually
less reliable in boundary regions. Performing multi-hypothesis
prediction with slightly different motion estimates in these
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TABLE X
ABLATION STUDY OF THE NUMBER OF HYPOTHESES USED FOR MOTION
COMPENSATING B*-FRAME UNDER INTRA-PERIOD 32 AND GOP SIZE 4.

Hypothesis BD-rate (%) PSNR-RGB
UVG MCL-JCV HEVC-B CLIC’22

Both -40.6 -34.6 -39.4 -18.7
First -35.0 -31.0 -35.1 -14.3

Second -35.2 -30.9 -35.1 -14.7

(a) (b)

(c) (d)

Fig. 8. Visualization of (a) a coding frame overlaid with its reference frame,
(b) the coded flow map m̂e

t→t−k (cp. Fig. 3(b)), (c) its virtual counterpart
after sign reversal, and (d) the differences between (b) and (c). White color
represents zero motion.

regions is an effective means of mitigating the reliability issue.
d) B*-frame vs. Separate P-frame Coding: Table XI in-

vestigates the effectiveness of B*-frame coding as a substitute
for P-frame coding under various GOP sizes. The former
reuses the B-frame codec while the latter needs to train end-
to-end a separate, dedicated P-frame codec together with the
other components of B-CANF. In most cases, our B*-frame
mechanism is seen to achieve similar BD-rate results to the
use of a separate P-frame codec. In particular, under GOP size
4, it performs even better than P-frame coding. Recall that B*-
frames are essentially a multi-hypothesis prediction technique.

e) GOP Size vs. Rate-distortion Performance: We eval-
uate the effect of GOP size on the performance of B-CANF.
A number of GOP sizes, including 4, 8, 16, are tested with
intra-period 32. The BD-rates are summarized in Table XI
(see the results w/o a separate P-frame codec). The corre-
sponding rate-distortion curves on UVG dataset are presented
in Fig. 9. From Fig. 9, the rate-distortion performance of B-
CANF is seen to improve with the increased GOP size. The
improvement is most obvious at low rates. Like P-frames, our
B*-frames suffer more from temporal error propagation with
smaller GOP sizes (in which cases, B*-frames are sent more
frequently), especially at low rates where poor reconstruction
and motion quality is expected. Increasing GOP size decreases
the frequency of B*-frames, thereby reducing temporal error
propagation.

f) The Number of Autoencoding Transforms: Table XII
compares the BD-rates between 2-step and 1-step B-CANF to
explore the effect of the number of autoencoding transforms
on compression performance. The 1-step B-CANF is obtained
by skipping the first autoencoding transform {A1, S1} in

TABLE XI
THE EFFECT OF GOP SIZE ON B-CANF WITH AND WITHOUT A SEPARATE

P-FRAME CODEC UNDER INTRA-PERIOD 32.

GOP
BD-rate (%) PSNR-RGB

UVG MCL-JCV HEVC-B CLIC’22
w/o w/ w/o w/ w/o w/ w/o w/

16 -47.5 -46.4 -41.1 -41.1 -46.9 -47.7 -33.8 -36.5
8 -45.7 -44.8 -39.5 -39.3 -45.1 -46.3 -29.7 -30.8
4 -40.6 -34.7 -34.6 -31.7 -39.4 -37.2 -18.7 -12.5

Fig. 9. Rate-distortion comparison of GOP sizes 4, 8, 16 on UVG dataset
under intra-period 32.

Fig. 1(b). In order to have a similar model size to the 2-
step B-CANF, it has more channels in each autoencoding
transform. Remarkably, the 1-step B-CANF reduces to a
specific implementation of conditional VAE (CVAE). From
Table XII, we observe that the gain of the 2-step B-CANF
over the 1-step B-CANF is obvious across the datasets. The
result justifies our use of CANF rather than CVAE.

E. Subjective Quality

Fig. 10 presents the subjective quality comparison between
HM (randomaccess), LHBDC [13] and our B-CANF. LHBDC
(MSE) and B-CANF (MSE) are trained to optimize PSNR-
RGB while B-CANF (SSIM) is our model trained with MS-
SSIM-RGB. All the schemes are evaluated with GOP 16 and
intra-period 32, and all the learning-based methods use ANFIC
as the I-frame codec. It is seen that our B-CANF (MSE)
achieves comparable or even better subjective quality than
LHBDC (MSE), with its bit rate being nearly one order of
magnitude smaller than that of LHBDC (MSE). Compared
with HM (randomaccess), our B-CANF (SSIM) preserves
more texture details (cf. patterns on fingers in the first row,
pillars in the second row, and textures in the last row) at a
lower bit rate.

F. Complexity Analysis

Table XIII characterizes the complexity of the proposed B-
CANF in terms of runtimes, MACs and model size. We also
measure the memory footprint following [28]. This includes
the size of the decoded picture buffer, which stores decoded
frames, flow maps, and/or context features. The unit of mea-
surement is ”full-res,” where one reconstructed frame occupies
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Ground Truth HM LHBDC (MSE) B-CANF (MSE) B-CANF (SSIM)

PSNR: 37.72 dB PSNR: 37.29 dB PSNR: 37.41 dB
MS-SSIM: 0.9744 dB MS-SSIM: 0.9833 dB

0.0025 bpp 0.0146 bpp 0.0025 bpp 0.0016 bpp

PSNR: 31.72 dB PSNR: 31.21 dB PSNR: 31.47 dB
MS-SSIM: 0.9362 dB MS-SSIM: 0.9437 dB

0.0027 bpp 0.0255 bpp 0.0029 bpp 0.0015 bpp

PSNR: 36.23 dB PSNR: 34.42 dB PSNR: 35.60 dB
MS-SSIM: 0.9668 dB MS-SSIM: 0.9784 dB

0.0016 bpp 0.0282 bpp 0.0023 bpp 0.0018 bpp

Fig. 10. Subjective quality comparison of HM (randomaccess), LHBDC [13] and our B-CANF. The parentheses ”(MSE)” and ”(SSIM)” indicate that the
model is trained with MSE and MS-SSIM, respectively. Zoom in for better visualization.

TABLE XII
ABLATION STUDY OF THE NUMBER OF AUTOENCODING TRASFORMS

Motion and
Inter-frame codecs

BD-rate (%) PSNR-RGB
UVG MCL-JCV HEVC-B CLIC’22

1-step B-CANF (CVAE) -36.7 -30.1 -37.3 -24.9
2-step B-CANF (Ours) -47.5 -41.1 -46.9 -33.8

the equivalent of 3 full-res. The peak memory represents
the maximum buffering requirement for generated features
during compression. The reported numbers in Table XIII were
obtained using an NVIDIA GeForce RTX 2080Ti GPU for the
learned codecs, and an Intel(R) Core(TM) i7-9700K CPU @
3.60GHz for HM [41] and VTM [54]. The experiments were
conducted using 1080p input videos.

For frame-type P/B*, we use the prediction structure
IPPP... under intra-period 32 and GOP size 32. The encod-
ing/decoding times are then averaged over the first 100 P/B*-
frames of Beauty sequence in UVG dataset. For frame-type B,
the encoding/decoding times are averaged over the first 100
B-frames of the same sequence with intra-period 32, GOP size
16, and hierarchical B prediction.

The following observations can be made from Table XIII.

(1) The prolonged runtimes of DCVC [29] are attributed to the
use of an autoregressive model for entropy coding. In contrast,
CANF-VC [15], LHBDC [13] and our B-CANF do not use any
auto-regressive model for motion coding or inter-frame coding.
(2) In comparison with VAE-based coding, DCVC [29] and
LHBDC [13], the larger MAC of CANF-VC [15] and B-CANF
comes from stacking multiple autoencoding transforms. Nev-
ertheless, the comparable encoding/decoding runtimes suggest
that these autoencoding transforms are parallel-friendly. (3)
Our B-CANF has lower buffering requirements and peak
memory when compared to other approaches. (4) With our
B-CANF, the encoding time and MAC of B-frames are seen
to be higher than those of B*-frames (the last two rows
in Table XIII). This is because motion estimation is performed
twice for B-frames, whereas it is carried out only once for B*-
frames (just like P-frames). In contrast, the decoding times
and MAC of both types of frame are quite close, even though
B-frames incur extra computations in the motion prediction
network (Fig. 3(a) vs. Fig. 3(b)). This indicates that the motion
prediction network is not the major computation bottleneck
during decoding. (5) As compared with CANF-VC [15], which
supports only P-frame coding, the B-frame coding in B-
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TABLE XIII
COMPARISON OF THE MODEL COMPLEXITY IN TERMS OF ENCODING/DECODING MACS, RUNTIMES, MODEL SIZE, DECODED PICTURE BUFFER, AND

PEAK MEMORY. ”FULL-RES” STANDS FOR THE SIZE OF INPUT RESOLUTION.

Method Frame-type Encode Decode Model Decoded Peak
Time MACs Time MACs Size Picture Buffer Memory

HM [41] B 33.28s - 0.04s - - - -
VTM [54] B 731.33s - 0.07s - - - -

DCVC [29] P 7.70s 1.16M/pixel 28.97s 0.77M/pixel 8M 3 full-res 128 full-res
CANF-VC [15] P 1.45s 2.45M/pixel 1.07s 1.77M/pixel 31M 13 full-res 64 full-res
Sheng’22 [30] P 0.82s 1.42M/pixel 0.58s 0.92M/pixel 10.7M 67 full-res 128 full-res

Li’22 [48] P 0.83s 1.68M/pixel 0.61s 1.25M/pixel 17.5M 67 full-res 128 full-res
LHBDC [13] B 1.19s 1.70M/pixel 0.73s 1.12M/pixel 23.5M 15 full-res 96 full-res

B-CANF (Ours) B* 1.44s 2.68M/pixel 1.06s 2.01M/pixel 24M 3 full-res 64 full-res
B-CANF (Ours) B 1.69s 3.08M/pixel 1.09s 2.10M/pixel 24M 15 full-res 64 full-res

CANF has higher encoding MAC because motion estimation
is performed twice. In contrast, our B*-frames, similar to P-
frames, have comparable encoding MAC to CANF-VC [15].
The decoding MAC’s of both B-frames and B*-frames are
seen to be comparable to that of CANF-VC [15]. (6) In terms
of model size, B-CANF is similar to LHBDC [13].

V. CONCLUSION

In this paper, we propose a CANF-based B-frame coding
framework, known as B-CANF, that exploits the notion of
conditional coding for both motion and inter-frame coding.
It features B*-frames and frame-type adaptive coding. We
show that (1) B*-frames allow greater flexibility in supporting
various GOP sizes without the need for an extra P-frame
codec, and (2) frame-type adaptive coding improves the bit
allocation among B/B*-frames. Extensive experimental results
confirm the superiority of B-CANF to the other state-of-the-
art B-frame coding schemes. How to achieve even higher
compression performance by addressing the domain shift issue
and reducing the model’s complexity is our future work.
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