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Abstract

We present a framework for learning cross-modal video
representations by directly pre-training on raw data to
facilitate various downstream video-text tasks. Our main
contributions lie in the pre-training framework and proxy
tasks. First, based on the shortcomings of two mainstream
pixel-level pre-training architectures (limited applications
or less efficient), we propose Shared Network Pre-training
(SNP). By employing one shared BERT-type network to
refine textual and cross-modal features simultaneously, SNP
is lightweight and could support various downstream appli-
cations. Second, based on the intuition that people always
pay attention to several “significant words” when under-
standing a sentence, we propose the Significant Semantic
Strengthening (S3) strategy, which includes a novel masking
and matching proxy task to promote the pre-training perfor-
mance. Experiments conducted on three downstream video-
text tasks and six datasets demonstrate that, we establish
a new state-of-the-art in pixel-level video-text pre-training;
we also achieve a satisfactory balance between the pre-
training efficiency and the fine-tuning performance. The
codebase are available at https://github.com/alipay/Ant-
Multi-Modal-Framework/tree/main/prj/snps3 vtp.

1. Introduction
Owing to successful applications of pre-training meth-

ods in NLP [7, 43] and CV [5, 22], more and more re-
searchers attempt to explore this “Pre-training & Fine-
tuning” paradigm in the video-text field [25, 33], which has
achieved remarkable performance gain in various down-
stream video understanding tasks, such as video-text re-
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Figure 1. Comparison of mainstream pixel-level pre-training
architectures: a) Twin-tower-based, b) Three-fusion-based, and c)
the proposed Shared Network Pre-training (SNP) methods.

trieval [10, 38, 53], video question answering [44, 55, 59],
and video reasoning [6, 15, 42, 54, 57]. There are two
mainstream paradigms in current video-text pre-training
methods: the feature-level paradigm and the pixel-level one.

Compared with feature-level pre-training methods [24,
31, 47] that employ off-the-shelf visual and textual fea-
tures extracted by frozen models, pixel-level pre-training
methods [3, 14, 21] treat raw visual pixels and text tokens
as inputs, which could optimize the cross-modal learning
ability in an end-to-end manner. Thus, the pixel-level
paradigm tends to achieve better performance and has been
widely followed. There are two mainstream pixel-level
pre-training architectures, i.e., twin-tower-based [3, 11, 14]
in Figure 1a and three-fusion-based [13, 21, 23] in Figure
1b. Twin-tower-based models are usually lightweight and
time-efficient; however, since they do not generate cross-
modal video representations, their applications are limited
mainly in the cross-modal retrieval task. Three-fusion-
based models usually contain three separate encoders to
embed visual, textual, and cross-modal features. Though
they could support various downstream video understand-
ing applications, they usually contain massive training
parameters, leading to computational inefficiency and high
cost of GPU memory.

Towards this end, we propose a new architecture that
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Figure 2. Comparison of two widely-employed masking and
matching proxy tasks (MLM-1 and GVTM-2) and our improved
version (MSSM-3 and LVWM-4).

not only supports various video-text tasks like three-fusion-
based models, but also as lightweight as twin-tower-based
ones. Based on the thorough investigation, we observe that:
1) the text and cross-modal encoder in conventional three-
fusion-based models [13, 21, 23] are mainly BERT-type
transformers; 2) the inputs and outputs of both encoders
are token-type features; and 3) as CLIP4Clip [30] pointed
out, it is hard to find suitable parameters to initialize the
cross-modal encoder, leading to sub-optimal pre-training
performance. Therefore, we propose the Shared Network
Pre-training (SNP) method. As shown in Figure 1c, SNP
employs a shared BERT-type network to refine textual and
cross-modal features simultaneously, combining the advan-
tages of twin-tower-based and three-fusion-based methods.

In order to promote the cross-modal interaction for better
performance, current video-text pre-trained models would
set several proxy tasks, where Masked Language Modeling
(MLM) and Global Vision-Text Matching (GVTM) are
two widely-employed ones. However, for the conventional
MLM, some masking words could be easily filled according
to grammar without reviewing the image. E.g., given a
sentence “[?] boy in red [?] sitting [?] a skateboard”, one
can directly refer to “a”, “is” and “on”. Thus, it seems that
conventional MLM could hardly benefit the cross-modal
interaction. For GVTM that aims to model the cross-modal
alignment, current methods usually take pair-wised visual
features and global-pooling textual features (refer to the
hidden state of the token [cls]) as inputs. However, global-
pooling textual features focus on the sentence level, which
would omit the local information of some informative
semantics at the word level, leading to limited performance.

Intuitively, humans usually capture several “significant
words” when understanding a sentence. I.e., some words
(e.g., verbs and nouns) would provide significant informa-
tion while others (e.g., prepositions and conjunctions) only
play the role of “lubricants” to make the sentence fluent and

vivid. In order to improve the cross-modal interaction, we
hope pre-trained models would lay their emphasis on those
significant words rather than other trivial ones. Therefore,
we propose the Significant Semantic Strengthening (S3)
strategy, leading pre-trained models to automatically find
and emphasize these significant semantics within the input
sentence. As shown in the third and fourth parts of Figure
2, S3 includes two novel proxy tasks for better cross-modal
interaction: 1) Masked Significant Semantic Modeling
(MSSM) masks out informative words to force models to
resume these clozes from textual and visual information,
replacing the conventional MLM. 2) Local Vision-Word
Matching (LVWM) learns the cross-modal interaction at the
word level, which is a complementary to existing GVTM.

Our contributions are summarized in three-folds:

• We propose Shared Network Pre-training (SNP),
which is a lightweight pixel-level pre-training method
and could support various downstream video-text
applications.

• We propose the Significant Semantic Strengthening
(S3) strategy, including two novel proxy tasks (MSSM
and LVTM), which is model-agnostic, parameter-free,
and could facilitate the cross-modal interaction.

• Experiments conducted on three downstream video-
text tasks and six datasets indicate the superiority of
our proposed method, which establishes a new state-
of-the-art in the field of video-text pre-training.

2. Related Work
Video-Text Pre-training and Fine-Tuning.
Inspired by superior performance of Transformers [12,
32, 49] and BERT [9, 18, 52], video-text pre-training has
attracted increasing interest in recent years, which could
be roughly divided into feature-level pre-training meth-
ods [24, 29, 47] and pixel-level ones [3, 21, 60]. Since
the former approaches employ offline visual and textual
features extracted from frozen models(e.g., S3D [45] and
DistillBert [34]), they would limit the fine-tuning perfor-
mance as there remain domain gaps between pre-training
datasets and frozen feature extractors. While for pixel-
level video pre-training methods, they attempt to learn
cross-modal representations from raw visual pixels and text
tokens in an end-to-end manner, whose frameworks are
mainly twin-tower-based [3, 11, 39] architectures or three-
fusion-based [13, 21, 23] ones. However, both architectures
have their limitations: Twin-tower-based methods could
hardly support various downstream video understanding
tasks like the latter. In contrast, three-fusion-based methods
contain more parameters and are not as lightweight as the
former. Due to the high cost of GPU memory, conventional
three-fusion-based methods mainly pre-train their models



on large-scale image-text datasets, and fine-tune them on
downstream video-text tasks.

In this work, we propose Shared Network Pre-training,
which is a lightweight pixel-level pre-training architecture
and could support various downstream video-text tasks.
Significant Element Mining in Video Pre-Training.
Recently a few video-text pre-training methods have started
to consciously recognize and emphasize the “significant
elements” in various proxy tasks for better fine-tuning
performance. 1) For masking tasks, MERLOT [58] and
VIOLET [13] propose the Attended Masking (AM) strat-
egy, which optimizes conventional MLM by masking out
50% of tokens with high attention weights calculated from
a language-only transformer (MERLOT) or a cross-modal
encoder (VIOLET). Different from those methods, we opti-
mize conventional MLM by explicitly leveraging the Parts-
of-Speech (POS) tags within a sentence. 2) For matching
tasks, TACo [51] proposes a token-level contrastive loss
based on the maximum dot-products of visual and textual
token features. However, TACo may still omit some
local information as it only takes one token embedding
into computation like conventional GVTM. Besides, 3)
some innovative proxy tasks that leverage those significant
elements have been proposed, e.g., Multiple Choice Ques-
tions (MCQ) [14] first builds several questions by erasing
verb/noun phrases of a sentence. It then forces the model to
select right answers from several candidates.

Based on these successful explorations, we attempt to
leverage the “Significant Elements” for better cross-modal
interaction in both masking and matching proxy tasks.

3. Methodology

We propose SNP-S3, which is a pixel-level video pre-
training method following the conventional protocol that
first pre-trains on large-scale image-text datasets and then
fine-tunes on downstream video-text tasks. Moreover, we
report the results pre-trained on video-text datasets in the
EXPERIMENT section for fair comparison. To achieve a
satisfactory balance between the pre-training efficiency and
the fine-tuning performance, we simplify the conventional
framework and propose two novel proxy tasks.

3.1. Pre-training on Image-Text Datasets

Given a mini-batch (denoted asB) of images {Ii}|B|
i=1 and

their corresponding descriptions {Si}|B|
i=1, pixel-level pre-

training methods would first extract visual features {vi}|B|
i=1

and textual features {tclsi }
|B|
i=1 from raw data, and then

generate cross-modal video representations {mcls
i }

|B|
i=1 to

facilitate various downstream video-text tasks (Note that
twin-tower-based methods would skip this step).

3.1.1 Three-fusion-based Pre-training Architecture

As shown in Figure 1b, conventional three-fusion-based
pre-training methods usually contain a visual encoder Evis,
a text encoder Etxt, and a cross-modal encoder Emul.
Given an image-text pair (I , S), we first employ a BERT
embedder EB to process the sentence S into fixed-length to-
ken embeddings W = [wcls,w1,w2, · · · ,wNt−1], where
W ∈ RNt∗d, Nt is the length of tokens, and d is the
embedding dimension. Notably, each element in W except
the special tokens (e.g., [cls]) could be treated as a word
embedding. We then employ Evis and Etxt to obtain image
features v ∈ R1∗d and textual features T ∈ RNt∗d from raw
image pixels I and token embeddings W. Afterwards, we
concatenate these two features into [T, v], and feed them
into Emul to obtain cross-modal features M ∈ R(Nt+1)∗d.
This forward process could be formulated as follows:

M = Emul([Etxt(EB(S)), Evis(I)]), (1)

where M = [mcls,m1,m2, · · · ,mNt ] and [·, ·] denotes
the concatenation operation. Notably, we treat the first [cls]
features mcls as global-pooling video representations.

3.1.2 SNP: Shared Network Pre-training

Based on the thorough investigation of twin-tower-based
(Figure 1a) and three-fusion-based (Figure 1b) architec-
tures, we aim to absorb their advantages and overcome their
shortcomings for better pre-training performance. There-
fore, we propose the novel Shared Network Pre-training
(SNP) architecture. As illustrated in Figure 1c, we simplify
the three-fusion-based paradigm by employing a shared
BERT-type transformer to embed textual and cross-modal
features for three reasons: 1) Unlike the visual encoder
that usually incorporates pyramid structures (e.g., Resnet
[16] and PVT [41]), the text and cross-modal encoder are
both BERT-type transformers, whose difference only lies
in the number of transformer blocks; 2) The inputs of the
text and cross-modal encoder are both token-type embed-
dings/features (W and [T, v]). Besides, we hypothesize
that the visual features extracted by visual encoders could
be treated as high-level semantic tokens as text embeddings;
And 3) it is difficult to find a suitable weight initialization
for training the cross-modal encoder, which would decrease
the pre-training performance as discussed in CLIP4Clip
[30]. In this way, SNP is as lightweight as twin-tower-based
models, and could support various downstream video-text
tasks like three-fusion-based ones, achieving a satisfactory
balance between pre-training efficiency and performance.

As illustrated in the left part of Figure 3, we denote the
shared BERT-type encoder as Esnp, where textual features
T and cross-modal features M can be calculated as:
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datasets, and 2) fine-tune on downstream video-text tasks. We also
report the results pre-trained on video-text datasets in Section 4.3.

{
T = Esnp(EB(S)),

M = Esnp([(EB(S)), Evis(I)]).
(2)

3.2. Limitations of Conventional MLM and GVTM

Proxy tasks directly determine the pre-training
objectives, where Masked Language Modeling (MLM) and
Global Vision-Text Matching (GVTM) are two widely-
employed ones. MLM first masks out a certain percentage
of words in a given sentence, and then forces the model
to restore these clozes according to visual and textual
cues. However, some masking words like prepositions and
conjunctions could be easily predicted only by grammar
without reviewing the image, which may contribute little
to the cross-modal interaction. GVTM aims to learn the
cross-modal interaction from image features and global-
pooling textual features. However, we believe that global
features of a sentence and local information of some inner
informative words are equally important, while GVTM
only emphasizes the former but omits the latter.

Intuitively, not all words contribute equally to under-
standing a sentence. Specifically, some words like verbs and
nouns are more significant as they provide rich information,
while others only act as “lubricants” to make the pale
description “somebody do something” more fluent and
vivid. Based on this intuition, we aim to capture these
informative words rather than trivial ones to promote the
cross-modal interaction. Towards this end, we propose
the Significant Semantic Strengthening (S3) strategy, which
includes a novel masking task (MSSM) and a matching one
(LVWM) for better pre-training performance.

Algorithm 1: Offline Significant Semantic Mining.
Input: BERT vocabulary list LBERT ,
All captions within datasets {Capi}

Ndata
i=1 ,

Pre-defined num Kss.
Output: Significant semantic vocabulary LspaCy .

1 Set LPOS = [ 0 ] * len(LBERT )
2 for i← 1 to Ndata do
3 Tspacy = spaCy.tokenize(Capi) ;
4 Pspacy = spaCy.POS(Capi) ;
5 for j ← 1 to len(Tspacy) do
6 if Tspacy[ j ] in LBERT then
7 if Pspacy[ j ] in [Verb, Adjective, Noun]

then
8 label = BERT.tolabel(Tspacy[ j ]) ;
9 LPOS [ label ] += 1 ;

10 end
11 end
12 end
13 end
14 Set NumK = Get-Maximum-K(LPOS ,K

ss) ;
15 Set LspaCy = [ 0 ] * len(LBERT ) ;
16 for i← 1 to len(LspaCy) do
17 if LPOS [ i ] ⩾ NumK then
18 LspaCy[ i ] = 1 ;
19 end
20 end

Algorithm 2: Online Significant Semantic Mining.
Input: BERT vocabulary list LBERT ,
Significant semantic vocabulary LspaCy ,
Caption Cap.
Output: Significant semantic chosen list Lss.

1 Set Lss = [] ;
2 TBERT = BERT.tokenize(Cap) ;
3 for i← 1 to len(TBERT ) do
4 label = BERT.tolabel(TBERT [ i ]) ;
5 if LspaCy[ label ] == 1 then
6 Lss+ = [ i ]
7 end
8 end

3.3. Significant Semantic Mining Algorithm

We simply define VERBs, NOUNs and ADJECTIVEs as
significant semantics since they provide essential informa-
tion for understanding a sentence. Then the question is how
to distinguish these informative words from other trivial
ones efficiently. We first attempt to select these significant
words by an open-source NLP toolkit spaCy * during the

*Official Website of spaCy: https://spacy.io/
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pre-training in an end-to-end manner. Unfortunately, it is
infeasible for two reasons: 1) The inference time of spaCy
is unaffordable, which would slow down the pre-training
obviously. And 2) the dictionary of spaCy is quite different
from BERT, whose results could not be processed into
BERT-type token embeddings directly.

Towards this end, We design a direct and efficient
mining algorithm with the open-source NLP toolkit spaCy
to find those informative words, and organize them into the
significant semantic chosen list Lss. Specifically, we first
maintain an offline significant semantic vocabulary LspaCy

according to the BERT vocabulary by employing spaCy to
review all the captions within pre-training datasets, and then
leverage this offline vocabulary LspaCy to build the online
significant semantic list Lss according to the input sentence
during the pre-training. The workflow is summarized
in Algorithm 1 and Algorithm 2, where len(·) obtains
the length of the given list, spaCy.tokenize(·) splits the
given caption into tokens, and spaCy.POS(·) obtains the
parts-of-speech tag of each word by employing spaCy;
BERT.tolabel(·) translates the given BERT token into
the corresponding label number and BERT.tokenize(·)
tokenizes the given sentence according to the BERT vo-
cabulary; Get-Maximum-K(·,K) aims to find the Kth

maximum number in the given list. We choose the Top
2000 (Kss) vocabs whose parts-of-speech tags are nouns,
verbs, or adjectives according to their frequency to build the
significant semantic vocabulary Lspacy . We then leverage it
to obtain the significant semantic chosen list Lss.

It takes about half a day to complete the offline sig-
nificant semantic mining step on all pre-training corpus.
Compared with the whole pre-training (usually three days),
this time assumption is acceptable. Moreover, the purpose
of offline mining step is to build the significant semantic
vocabulary, which could be reused after the first building.

3.4. Overall Optimization Objectives

Figure 4 shows all proxy tasks we employed in our
SNP-S3, including Masked Significant Semantic Modeling

(MSSM), Global Vision-Text Matching (GVTM), and Lo-
cal Vision-Word Matching (LVWM).

MSSM is an improved version of MLM, which only
masks out the informative words within the significant
semantic chosen list Lss. Note that all settings (e.g., the
masking rate) except the chosen masked tokens remain the
same as the conventional MLM protocol. We calculate
MSSM twice for textual features T (L1) and cross-modal
features M (L2), which can be formulated as follows:

L1 =
1

|Q|
∑
q∈Q
LCE(y

q, tq), (3)

L2 =
1

|Q|
∑
q∈Q
LCE(y

q,mq), (4)

whereQ denotes the masked token set, |·| denotes the length
of a given set, yq denotes the ground-truth token label, and
LCE is the regular Cross-Entropy cost function.

GVTM aims to model the cross-modal interaction by
employing visual features and global-pooling textual fea-
tures (refer to the hidden state of the first [cls] token).
Following the conventional paradigm [51], we set two
GVTM tasks to align visual and textual features in a
parameter-free (L3) and parameter-employed (L4) way:

L3 = −
|B|∑
i=1

log
exp⟨vi,t

cls
i ⟩

exp⟨vi,tclsi ⟩ +
∑

j ̸=i exp
⟨vj ,tclsi ⟩

, (5)

L4 = −
|B|∑
i=1

log
expΘ(mcls

i,i )

expΘ(mcls
i,i ) +

∑
j ̸=i exp

Θ(mcls
j,i )

, (6)

where |B| is the length of a mini-batch, ⟨·, ·⟩ denotes the ma-
trix multiplication operation, Θ is a Multi-Layer Perception
(MLP), and mcls

j,i is the global-pooling cross-modal features
of the image-text pair (Ij , Si). Since v, tcls ∈ R1∗d, L3

counts similarity score matrices without introducing any
parameters.

LVWM is a complementary to GVTM as it focuses on
modeling several informative semantic features at the word
level rather than the sentence level. We first build the local
significant semantic feature set T̂ = {t̂i | t̂i ∈ T}NL

i=1 from
textual features T according to the list Lss, which contains
NL significant token features by either random-sampling (if
len(Lss) > NL) or over-sampling (if len(Lss) < NL).
Then we calculate LVWM loss (L5) as follows:

L5 = −
|B|∑
i=1

log

∑NL

l=1 exp
⟨vi,t̂

l
i⟩∑NL

l=1(exp
⟨vi,t̂li⟩ +

∑
j ̸=i exp

⟨vj ,t̂li⟩)
.

(7)
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Ultimately, the objective function of the proposed SNP-
S3 is the combination of Eqs. (3)-(7), which is defined as:

L = L1 + L2 + L3 + L4 + L5. (8)

3.5. Pre-training on Video-Text Datasets

We pre-train our SNP-S3 on large video-text datasets to
pursue better performance. As a video could be treated as
a group of images (frames) in time streams, we sparsely
(and randomly) sample NV frames from a given video
(NV is usually much smaller than the total number of
frames of this video), and set their position embeddings
to zero following CLIP4Clip [30]. Therefore, the video
features V = [v1,v2, · · · ,vNV ] could be processed by
the visual encoder Evis. The forward propagation step
and optimization objectives (proxy tasks) remain the same
as the protocol pre-trained on image-text datasets. I.e.,
first replacing image features vi with video features V =
{vk

i }
NV

k=1, and then repeating operations of Eqs. (2)-(8).

3.6. Fine-tuning on Downstream Video-Text Tasks

We fine-tune our model on three downstream video-
text tasks to evaluate the performance of SNP-S3, the fine-
tuning details are illustrated in Figure 5. Similar to the
pre-training protocol in Section 3.5, we randomly sample
several frames from raw videos to serve as visual inputs.

Text-to-Video Retrieval (TVR) aims to retrieve the
most relevant video according to the input text query. We
fine-tune our pre-trained model by reusing two Global
Vision-Text Matching objectives L3 (Eq.5) and L4 (Eq.6).

Video Question Answering (VQA) aims to answer
natural language questions according to the given videos.
In the field of video understanding, VQA is essentially a
classification task rather than a generation one. Thus, we
add a classifier Θa on top of the global-pooling cross-modal
features mcls in the last layer of the model. We fine-tune it
by calculating the Cross-Entropy loss LV QA as follows:

LV QA = LCE(ya,Θa(m
cls)), (9)

where ya is the label of the ground-truth answer.
Multi-Choice Video Question Answering (MC-VQA)

aims to align each video with one out of several candidate

answers. Currently, this task is only supported by MSR-
VTT multi-choice test set [56] without available training
data. We directly employ the best model in TVR fine-tuning
and traverse this test set once during evaluation, which
could be treated as a zero-shot classification task.

4. Experiments
4.1. Datasets

4.1.1 Pre-training Datasets

We pre-train our SNP-S3 on three large-scale image-text
datasets: COCO [26], Visual Genome [19] (VG), and
Conceptual Captions [37] (CC), which contain more than
0.59M, 5.4M, and 3.1M image-text pairs, respectively.

Besides these image-text datasets, we also pre-train our
SNP-S3 on WebVid [3], a large-scale video-text dataset
including 2.5M video-text pairs, to pursue better fine-tuning
performance on three downstream tasks.

4.1.2 Fine-tuning Datasets

We fine-tune our pre-trained model on three downstream
video-text tasks, including six corresponding datasets.

Text-to-Video Retrieval : 1) MSR-VTT [48] contains
10K video clips associated with 200K sentences. There
are two widely-employed validation splits, one takes 7K
videos for training and randomly selects 1K videos from
the remaining ones for testing (7K-1K split), while the other
uses 9K videos for training and the remaining 1K for testing
(9K-1K split). In this paper, we report the fine-tuning
results on these two splits. 2) DiDeMo [2] contains 10K
Flickr videos associated with 40K sentences. 3) MSVD [4]
contains 2K video clips associated with 80K descriptions.

Video-Question Answering: 4) MSRVTT-QA [46] is
built upon MSR-VTT and contains 10K videos with 243K
open-ended questions and 1.5K answer classes. 5) MSVD-
QA [46] is built upon MSVD and contains 2K videos with
50K open-ended questions and 2.4K answer classes.

Multi-Choice Video Question Answering: 6) MSR-
VTT Multi-Choice Test Set [56] contains 3K videos. Each
video has five candidates with one correct answer.

Metrics: For TVR, we employ Recall@K (R@K) and
Median Rank (MdR) to measure the text-to-video retrieval
performance. For VQA and MC-VQA, we employ Accu-
racy (Acc) to evaluate the answering correctness.

4.2. Experimental Settings

4.2.1 Pre-training Implementation Details

We employ three types of visual encoders, namely Resnet-
50 (R50) [16], Pyramid Vision Transformer (PVT) [41], and
Video Swin Transformer (VST) [28]. We initialize these
three modules with the parameters pre-trained on ImageNet



Model R@1/5/10 ↑
CE 9.9 / 29.0 / 41.2

CLIPBERT (p) 22.0 / 46.8 / 59.9
HERO∗ (f) 16.8 / 43.4 / 57.7

CoCoBERT∗ (f) 22.0 / 48.3 / 61.6
TACo∗ (f) 24.5 / 52.8 / 65.5
VLM∗ (f) 28.1 / 55.5 / 67.4

SNP-S3-PVT 26.6 / 55.5 / 67.7
SNP-S3-VST∗ 31.5 / 61.3 / 73.2

(a) MSRVTT Retrieval (7K-1K split).

Model R@1/5/10 ↑
Frozen (p) 25.5 / 54.5 / 66.1

VIOLET (p) 23.5 / 50.5 / 63.9
SNP-S3-PVT 28.9 / 57.0 / 69.4

MMT 24.6 / 54.0 / 67.1
TACo∗ (f) 28.4 / 57.8 / 71.2

Frozen∗ (p) 32.5 / 61.5 / 71.2
VIOLET∗ (p) 34.5 / 63.0 / 73.4
SNP-S3-VST∗ 33.6 / 65.8 / 75.1

(b) MSRVTT Retrieval (9K-1K split).

Model R@1/5/10 ↑
CLIPBERT (p) 20.4 / 48.0 / 60.8

VIOLET (p) 22.8 / 51.2 / 62.0
SNP-S3-PVT 26.6 / 57.3 / 69.1

CE 16.1 / 41.1 / 54.4
MCQ∗ (p) 37.0 / 62.2 / 73.9
Frozen∗ (p) 31.0 / 59.8 / 72.4

VIOLET∗ (p) 32.6 / 62.8 / 74.7
SNP-S3-VST∗ 34.2 / 64.2 / 75.9

(c) Didemo Retrieval.

Model R@1/5/10 ↑
CE 19.8 / 49.0 / 63.8

HERO∗ (f) 19.2 / 47.4 / 61.8
SSML∗ (f) 20.3 / 49.0 / 63.3

CoCoBERT∗ (f) 21.3 / 50.0 / 63.6
Frozen∗ (p) 33.7 / 64.7 / 76.3

SNP-S3-PVT 33.1 / 64.5 / 73.7
SNP-S3-VST∗ 35.1 / 70.3 / 80.9

(d) MSVD Retrieval.

Model Acc
HCRN 35.6

CLIPBERT (p) 37.4
SSML∗ (f) 35.1

JustAsk∗ (f) 41.5
ALPRO∗ (p) 42.1
SNP-S3-PVT 42.0
SNP-S3-VST∗ 43.1

(e) MSRVTT-QA.

Model Acc
DualVGR 39.0
SSML∗ (f) 35.1

CoMVT∗ (f) 42.6
JustAsk∗ (f) 46.3
ALPRO∗ (p) 45.9
SNP-S3-PVT 46.2
SNP-S3-VST∗ 47.1

(f) MSVD-QA.

Model Acc
JSFusion 83.4

CLIPBERT (p) 88.2
MERLOT∗ (f) 90.9

VLM∗ (f) 91.6
VIOLET∗ (p) 91.9
SNP-S3-PVT 92.3
SNP-S3-VST∗ 96.5

(g) MSRVTT MC-VQA Set.

Table 1. Performance comparison of different methods on three downstream video-text tasks and six corresponding datasets. The
superscript “*” denotes that the method is pre-trained on large-scale video datasets (e.g., WebVid). p and f denote the methods belong
to pixel-level pre-training and feature-level ones. The suffix “PVT” and “VST” represent the model whose visual encoder is based
upon PVTv2-B2 (pre-trained on COCO+VG) and VideoSwin-B (pre-trained on CC+WebVid). Note that some methods only conduct
experiments on a certain range of datasets. Thus, Baselines on different datasets may vary a lot.

No.
Model Parameters

Losses
MSRVTT (7K-1K split) MSVD

Name Count R@1/5/10 ↑ (MdR ↓) QA: Acc R@1/5/10 ↑ (MdR ↓) QA: Acc
A1 P3E-R50 205.5M 18.3 / 46.0 / 58.8 (7) 40.40 24.5 / 49.8 / 64.2 (6) 40.99
A2 SNP-R50 160.4M (-22.0%) MLM, 21.7 / 47.8 / 61.4 (6) 40.96 22.8 / 53.9 / 66.1 (5) 43.63
A3 P3E-PVT 206.2M GVTM 22.7 / 48.0 / 62.5 (6) 40.76 26.4 / 54.6 / 67.8 (4) 43.83
A4 SNP-PVT 161.1M (-21.9%) 25.0 / 52.3 / 64.1 (5) 41.44 28.2 / 58.7 / 70.8 (3) 44.71

Table 2. Ablation study of the conventional three-fusion-based pixel-level pre-training paradigm (P3E) and our proposed version (SNP)
that includes a shared BERT-type encoder on two downstream video-text tasks (TVR and VQA) of two datasets (MSRVTT and MSVD).
“R50” and “PVT” represent that the model utilizes Resnet-50 and PVTv2-B2 as the basic visual encoder.

[8]. For the shared BERT-type network that processes
textual and cross-modal features, we utilize the BERT-Base
version with 12 layers of transformer blocks. We initialize
this BERT-type module with the parameters pre-trained
on BookCorpus [61] and English Wikipedia. Note that
SNP-R50 and SNP-PVT are pre-trained on COCO+VG
(5.6M image-text pairs), while SNP-VST is pre-trained on
CC+WebVid (5.5M image/video-text pairs).

For hyper-parameters, we set the length of text tokens
Nt = 30, and the dimension of the hidden state d = 768.
For the proposed MSSM task, the masking rate is 15%. For
the proposed LVWM task, we set the number of the chosen
significant tokens NL = 3. We sparsely sample 4 frames
from raw videos when pre-training on video-text datasets.

We pre-train our SNP-S3 by the Adam optimizer with
a momentum of 0.9. The total pre-training stage lasts for
200,000 steps with a batch size of 128. The initial learning

rate is 5e-5 and is decayed by a factor of 10 after 110,000
iterations. The whole pre-training takes about 3 days to
complete on 8 NVIDIA V100 GPUs.

4.2.2 Fine-tuning Implementation Details

For all three downstream video-text tasks, the optimizer
and hyper-parameters remain the same as the pre-training
configuration. Following [21], we sparsely sample 16
frames from input videos for fine-tuning and testing. The
total fine-tuning stage lasts for 15,000 steps. The batch size
is set to 32. The initial learning rate is set to 1e-5.

4.3. Performance Comparison

We compare our SNP-S3 with various state-of-the-art
baselines, including the following methods:
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Figure 6. Visualization results of losses and evaluation performance towards masking (L2) and matching (L4) objectives in TensorBoard.
The smoothing rate is 0.9, and we visualize the first 100K steps of the pre-training.

No.
Model Masking Matching MSRVTT (7K-1K split) MSVD
Name Loss Loss(es) R@1/5/10 (MdR) QA: Acc R@1/5/10 (MdR) QA: Acc

B1 MLM GVTM 21.7 / 47.8 / 61.4 (6) 40.96 22.8 / 53.9 / 66.1 (5) 43.63
B2 SNP MSSM GVTM 20.9 / 49.3 / 63.3 (6) 41.21 24.6 / 55.4 / 67.5 (4) 44.42
B3 R50 MLM GVTM, LVWM 21.2 / 49.3 / 62.8 (6) 41.22 24.9 / 55.8 / 69.1 (4) 44.22
B4 MSSM GVTM, LVWM 23.7 / 51.2 / 64.6 (5) 41.47 27.3 / 56.9 / 70.2 (4) 44.87
B5 MLM GVTM 25.0 / 52.3 / 64.1 (5) 41.44 28.2 / 58.7 / 70.8 (3) 44.71
B6 SNP MSSM GVTM 27.2 / 53.2 / 65.7 (5) 41.74 31.0 / 59.0 / 71.8 (3) 45.69
B7 PVT MLM GVTM, LVWM 25.5 / 52.4 / 64.7 (5) 41.72 30.3 / 60.5 / 71.2 (3) 45.31
B8 MSSM GVTM, LVWM 26.6 / 55.5 / 67.7 (4) 42.00 33.1 / 64.5 / 73.7 (3) 46.18
B9 SNP MLM GVTM 28.7 / 59.4 / 71.1 (4) 42.52 33.4 / 66.7 / 78.5 (3) 45.42

B10 VST MSSM GVTM, LVWM 31.5 / 61.3 / 73.2 (3) 43.09 35.1 / 70.3 / 80.9 (2) 47.15

Table 3. Ablation study of employing different combinations of masking and matching losses. The proposed S3 strategy includes a novel
masking loss (Masked Significant Semantic Modeling, MSSM) and a matching one (Local Vision-Word Matching, LVWM).

• Methods without pre-training: MMT [17], CE [27],
HCRN [20], DualVGR [40], and JSFusion [56].

• Pixel-level pre-training methods: CLIPBERT (5.6M)
[21], Frozen (5.5M) [3], VIOLET (185M) [13], MCQ
(5.5M) [14], and ALPRO (5.5M) [23]. The num-
ber in “()” denotes the volume of video/image-text
pairs within the pre-training corpus. We use 5.6M
image-text pairs in our Resnet/PVT version and 5.5M
image/video-text pairs in our VST version for a fair
comparison.

• Feature-level pre-training methods: HERO [24], VLM
[47], TACo [51], SSML [1], CoMVT [36], JustAsk
[50], MERLOT [58], and CoCoBERT [31].

Table 1 presents detailed experimental results on three
downstream video-text tasks (TVR, VQA, and MC-VQA)
and six corresponding datasets. Note that some methods
only conduct experiments on a certain range of datasets
(e.g., Frozen reports its results on MSRVTT, Didemo,
and MSVD in its paper). Thus, baselines on different

datasets may vary a lot. We report the results of our
methods pre-trained on image-text datasets (SNP-S3-PVT)
and video-text datasets (SNP-S3-VST∗). We have several
observations as follows:

• SNP-S3-VST∗ achieves the best performance among
all pixel-level and feature-level video pre-training
methods. We outperform Frozen [21] by 3.9%, 3.5%,
and 4.6% at R@10 on the TVR tasks of MSRVTT
(9K-1K), Didemo, and MSVD, respectively.

• SNP-S3-PVT outperforms other pixel-level pre-
training methods pre-trained on image-text datasets
by a large margin. On the MSRVTT dataset,
we outperform current SOTA baselines by 7.8%
(CLIPBERT) on R@10 of the 7K-1K split, 3.3%
(Frozen) on R@10 of the 9K-1K split, 4.6%
(CLIPBERT) on the Accuracy of VQA, and 4.1%
(CLIPBERT) on the Accuracy of MC-VQA.

• SNP-S3-PVT that pre-trained on image-text datasets
shows comparable performance with other methods



pre-trained on video-text datasets. E.g., SNP-S3-PVT
outperforms TACo at all metrics on the MSRVTT 7K-
1K split by more than 2.0%.

4.4. Ablation Study of SNP

As aforementioned, the proposed Shared Network Pre-
training (SNP) combines the advantages of two mainstream
pixel-level architectures, which is lightweight and could
support various downstream video-text tasks.

Table 2 compares the fine-tuning performance on sev-
eral downstream video-text tasks between the conventional
three-fusion-based pixel-level paradigm (P3E) and our pro-
posed version (SNP), while Figure 6 compares losses and
evaluation performance during pre-training. Since the only
difference between SNP and P3E is how to build its cross-
modal encoder, where SNP shares the same parameters
with the text encoder while P3E utilizes a separate one, so
we only compare losses and metrics (L2 in Eq.4 and L4

in Eq.6) whose outputs are generated by the cross-modal
encoder. Note that the cross-modal encoder in the P3E
version is actually a three-layers BERT-base transformer
blocks, whose setting follows UniVL [29]. Moreover, we
find that the pre-training would hardly converge under the
setting of employing the original BERT-Base encoder with
12 layers of blocks. As shown in Table 2 and Figure 6, we
have several observations as follows:

• SNP is more lightweight. We count total trainable
parameters in Table 2, both SNP-R50 and SNP-PVT
reduce more than 20% of parameters compared with
their P3E version (about 200M → 160M), which
verifies that SNP effectively simplifies the original
model size.

• SNP is more time-efficient as it takes less time to
reach a comparable performance. As illustrated in
Figure 6, SNP needs fewer steps to achieve the same
performance as P3E for both masking tasks and match-
ing tasks.

• SNP is easier to train and converge. As illustrated
in Figure 6, both masking and matching losses con-
verge faster when equipped with SNP than with P3E.
Besides, SNP avoids possible risks brought by an
improper parameter initialization that P3E needs for
training the separate cross-modal encoder. Moreover,
as can be seen in Table 2 (A1 v.s. A2, A3 v.s. A4), SNP
also shows better fine-tuning performance on several
downstream video-text datasets, proving that SNP is
more powerful than P3E.

For the above three observations, SNP is a lighter, faster,
and stronger pre-training architecture than P3E.

Model Chosen Num Retrieval (7K-1K) VideoQA
NL=1 26.2 / 54.2 / 66.3 41.90

SNP-S3 NL=2 25.5 / 53.2 / 66.8 41.76
PVT NL=3 26.6 / 55.5 / 67.7 42.00

NL=4 26.4 / 54.7 / 67.5 41.94

Table 4. Parameter analysis of the number of the chosen significant
token features (NL). All experiments are evaluated on two tasks
(Retrieval on 7K-1K split and VideoQA) of the MSRVTT dataset
under the backbone of SNP-S3-PVT.

4.5. Ablation Study of S3

As aforementioned, the proposed Significant Semantic
Strengthening (S3) strategy is model-agnostic, parameter-
free, and could evidently promote the fine-tuning perfor-
mance. We conduct several ablation study to verify these
advantages.

Our proposed S3 strategy includes a novel masking loss
(MSSM) and a matching one (LVWM). Table 3 presents
the experimental results of employing different pre-training
objectives. We have several observations as follows:

• Our proposed MSSM is a more powerful masking loss
than conventional MLM. As shown in Table 3 (B1
v.s. B2, B5 v.s. B6), masking significant semantics
rather than other trivial ones could force the model
to predict these clozes according to textual and visual
cues, which benefits the cross-modal interaction and
further promotes the performance.

• Our proposed LVWM is an effective complementary
matching loss to GVTM. As shown in Table 3 (B1
v.s. B3, B5 v.s. B7), both sentence-level global rep-
resentations (the “[cls]” token) and word-level local
information (token lists of some significant semantics)
are beneficial for understanding a given sentence, and
combining both of them could further facilitate the
cross-modal interaction.

• Our proposed MSSM and LVWM are model-agnostic.
As shown in Table 3 (B1 v.s. B4, B5 v.s. B8, B9
v.s. B10), both MSSM and LVWM are encoder-
independent and could largely promote the fine-tuning
performance.

• Notably, our proposed MSSM and LVWM are both
parameter-free objectives. As shown in Eq.3, Eq.4,
and Eq.7, both MSSM and LVWM do not introduce
new parameters during computation. Therefore, they
would not heavily slow down the speed of pre-training.

For the above four observations, we believe that S3

is a model-agnostic and implementation-friendly strategy,
which could efficiently promote the performance.



Image 6 SNP-Base SNP-S3

A pregnant woman laying in bed reading a book.

Image 5 SNP-Base SNP-S3

A person in a dry area with a sail high in the sky

Image 1 SNP-Base SNP-S3

A small plane is preparing to land on the strip

Image 7 SNP-Base SNP-S3

A giraffe examining the back of another giraffe.

Image 3 SNP-Base SNP-S3

three men smiling holding a wii controller in hands

Image 2 SNP-Base SNP-S3

a surfer riding the waves on a surf board.

Image 4 SNP-Base SNP-S3

Skate boarder hang time streaking though the air.

Image 8 SNP-Base SNP-S3

A girl playing a game system while other kids look on.

Figure 7. Qualitative analysis of the proposed Significant Semantic Strengthen (S3) strategy between SNP-PVT and SNP-S3-PVT. We
visualize the attention localization map of the last convolution layer in PVT by the toolkit Grad-CAM. We use red to mark the informative
words emphasized by SNP-S3-PVT while omitted by SNP-PVT.

4.6. Parameter Analysis

We conduct the parameter analysis towards the number
of chosen significant token features (NL) of the LVWM
loss. As shown in Table 4, the fine-tuning performance
on the MSRVTT dataset first increases when adding more
significant token features in computing the LVWM loss, and
it would reach the peak at NL = 3. It is probably due to
the fact that the significant words (NOUNs, VERBs, and
ADJECTIVEs) in one sentence are limited, so expanding
the chosen number would have a performance upper bound.

4.7. Qualitative Analysis of S3

To get an intuitive perception of the advantages of S3,
we employ Grad-CAM [35], a widely-employed “visual
explanation” toolkit, to visualize the attention location map
of the last convolution layer in PVT. As shown in Figure
7, compared with SNP-PVT, the improved version SNP-S3-
PVT tends to emphasize those informative words, thus the
latter would better model the cross-modal interaction. E.g.,
SNP-PVT wrongly lays its attention on the surroundings
in Image 1, while SNP-S3-PVT correctly emphasizes the
object “plane” and its action “land”. While in Image
2, SNP-S3-PVT successfully recognizes the scene “surfer-
riding-waves”, while SNP-PVT fails to do so.

4.8. Performance Comparison of Related Methods

In Section 2, we have introduced some Significant El-
ement Mining methods, including the Attended Masking
(denoted as MLM-AM) strategy proposed by VIOLET [13]
and the maximum token-level contrastive loss (denoted
as TACo-L2) proposed by TACo [51]. To prove the
superiority of our Significant Semantic Strengthening (S3)
strategy, we reproduce MLM-AM and TACo-L2 based on
the SNP architecture. As illustrated in Table 5, for masking
strategies, MSSM outperforms MLM-AM by 0.4/0.6/1.5
on R@1/5/10 of TVR and 0.30 on the Accuracy of VQA.
While for matching strategies, LVWM outperforms TACo-
L2 by 1.2/0.4/0.6 on R@1/5/10 of TVR and 0.47 on the

No. Losses of SNP-PVT TVR (7K-1K) VQA
C1 MLM-AM, GVTM 26.8/52.6/64.2 41.44
C2 MSSM, GVTM 27.2/53.2/65.7 41.74
C3 MLM, GVTM, TACo-L2 24.3/52.0/64.1 41.25
C4 MLM, GVTM, LVWM 25.5/52.4/64.7 41.72

Table 5. Performance comparison of related Significant
Elements Mining methods and our proposed Significant Semantic
Strengthening (S3) strategy. For masking tasks, we compare the
Attended Masking (MLM-AM) in VIOLET [13] and our MSSM
task. For matching tasks, we compare the maximum token-level
contrastive loss (TACo-L2) in TACo [51] and our LVWM task. All
the experiments are conducted under the SNP-PVT backbone and
evaluated on the MSRVTT dataset.

Accuracy of VQA. One possible reason is that TACo-
L2 only takes one token with the maximum similarity
score into computation, which may also omit some local
information compared with LVWM that employ multiple
informative semantics to model the sentence at the word
level. These comparisons prove that S3 is an effective
strategy to promote the pre-training performance.

5. Conclusion
In this paper, we improve conventional video-text pre-

training methods from two aspects. For the pre-training ar-
chitecture, we propose Shared Network Pre-training (SNP),
a novel paradigm that effectively absorbs the advantages
of two mainstream pixel-level models and overcomes their
shortcomings. For pre-training proxy tasks, we propose
the Significant Semantic Strengthening (S3) strategy to
optimize masking and matching tasks for better cross-
modal interaction. In the future, we plan to employ
a shared encoder to embed visual, textual, and cross-
modal information from raw video data; and design a more
robust Significant Semantic Mining algorithm to promote
the cross-modal interaction.
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