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End-to-End Human Instance Matting
Qinglin Liu, Shengping Zhang, Quanling Meng, Bineng Zhong, Peiqiang Liu, and Hongxun Yao

Abstract—Human instance matting aims to estimate an alpha
matte for each human instance in an image, which is extremely
challenging and has rarely been studied so far. Despite some
efforts to use instance segmentation to generate a trimap for
each instance and apply trimap-based matting methods, the
resulting alpha mattes are often inaccurate due to inaccurate
segmentation. In addition, this approach is computationally
inefficient due to multiple executions of the matting method.
To address these problems, this paper proposes a novel End-
to-End Human Instance Matting (E2E-HIM) framework for
simultaneous multiple instance matting in a more efficient
manner. Specifically, a general perception network first extracts
image features and decodes instance contexts into latent codes.
Then, a united guidance network exploits spatial attention and
semantics embedding to generate united semantics guidance,
which encodes the locations and semantic correspondences of
all instances. Finally, an instance matting network decodes the
image features and united semantics guidance to predict all
instance-level alpha mattes. In addition, we construct a large-
scale human instance matting dataset (HIM-100K) comprising
over 100,000 human images with instance alpha matte labels.
Experiments on HIM-100K demonstrate the proposed E2E-HIM
outperforms the existing methods on human instance matting
with 50% lower errors and 5× faster speed (6 instances in a 640
× 640 image). Experiments on the PPM-100, RWP-636, and P3M
datasets demonstrate that E2E-HIM also achieves competitive
performance on traditional human matting.

Index Terms—Human Instance Matting, End-to-End Matting,
Instance Segmentation.

I. INTRODUCTION

HUMAN matting aims to estimate the alpha matte (opac-
ity) of the humans (usually only one person) in an

image, which has many potential applications, such as image
editing [6], [7] and video post-production [8], [9]. According
to whether auxiliary guidance such as a trimap (specifying the
foreground, background, and transition regions in an image) is
used or not, existing matting methods can be roughly grouped
into two categorizations: trimap based matting [10], [11], [3],
[12], [13], [5], [14], [15] and automatic matting [6], [16], [15],
[17], [18]. Due to the extensive labor of annotating trimaps,
automatic matting methods have been attracting increasing
attention, which automatically generate trimaps based on in-
stance segmentation [1], [4] or directly estimate alpha mattes
in an end-to-end manner [19], [16], [17], [20], [18].

The rapid development of live streaming and short video
applications has created a growing demand for personal-
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ized editing of human instances. Various personalized editing
tasks, such as body shape modifications [21], [22] and skin
toning [23], [24], require the alpha matte of each human
instance in the image. However, traditional interactive matting
methods [3], [14], [25], [26], [27] rely on extensive manual
intervention, which makes them time-consuming and labor-
intensive when dealing with a large number of images and
videos. This paper focuses on automatically solving this prob-
lem, which we refer to as human instance matting. Formally,
let I ∈ R3×H×W be an input image with X human instances,
where H and W are the height and width of the image,
respectively. Human instance matting aims to estimate alpha
mattes A = {A1,A2, . . . ,AX}, where Ax ∈ RH×W is the
alpha matte for the x-th instance such that

I =

X∑
x=1

Ax ⊙ F x + (1−
X∑

x=1

Ax)⊙B (1)

where F x ∈ R3×H×W and B ∈ R3×H×W are the foreground
for the x-th instance and background. ⊙ is the broadcasted
element-wise multiplication.

Compared with traditional human matting that estimates
the alpha matte of all humans in an image, human instance
matting estimates the alpha matte of each human instance,
which is more challenging and has rarely been studied so
far. To perform instance-level matting, several efforts [1], [4]
have been devoted to exploiting instance segmentation [2] to
first generate a trimap for each instance and then individually
execute an existing trimap-based matting method [3], [5], [28]
for each human instance. However, such a two-stage solution
has several disadvantages. First, existing instance segmenta-
tion methods [2], [29], [30] usually generate low-resolution
segmentation masks (e.g., 112 × 112 by Transfiner [31],
160 × 160 by SOLO [29]), which are not accurate enough
to distinguish fine-grained details (e.g., curved limbs) and
therefore causes the generated trimaps to be very coarse, espe-
cially in complex poses. Second, the generation of the trimaps
and estimation of alpha mattes are independently performed,
which cannot be jointly optimized and therefore limit the
matting performance. As shown in Figure 1, once the trimaps
generated from segmentation are coarse, the obtained human
instance alpha mattes are not accurate. Third, the matting
method is performed individually for each human instance,
which leads to expensive computational consumption (e.g., the
scheme [4] that combines Mask R-CNN and FBAMatting [5]
to infer a 640×640 image with 6 instances costs 1,500 GFlops
and 0.5 seconds on an Nvidia RTX 2080Ti GPU).

To address these problems, this paper proposes a novel End-
to-End Human Instance Matting (E2E-HIM) framework for
simultaneously estimating all instance-level alpha mattes in
a more efficient way, which contains three jointly optimized
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(a) (b) (c) (d) (e)

Fig. 1. Results of instance-level alpha mattes estimated by the proposed E2E-HIM and two state-of-the-art methods. (a) Input images. (b) Alpha mattes
estimated by our E2E-HIM.(c) Alpha mattes estimated by ISSMatting [1] (Mask R-CNN [2] + DIM [3]). (d) Alpha mattes estimated by InstMatt [4] (Mask
R-CNN + FBAMatting [5]). (e) Trimaps used by ISSMatting and InstMatt, which are generated from the instance segmentation of Mask R-CNN.

sub-networks: a general perception network, a united guidance
network, and an instance matting network. Specifically, a
general perception network adopts a hybrid transformer to
first extract image features and then decode instance con-
texts into latent codes. To help aggregate image features for
instance matting, a united guidance network exploits spatial
attention and semantics embedding to generate the united
semantics guidance, which encodes both the locations and
semantic correspondences of all human instances. To perform
instance matting, an instance matting network dynamically
decodes the image features and united semantics guidance
to simultaneously predict all instance-level alpha mattes. In
addition, we construct a large-scale Human Instance Mat-
ting (HIM-100K) dataset, which contains more than 100,000
images with about 326,000 human instances. Each human
instance in an image has three annotations including the alpha
matte, segmentation mask, and bounding box. Experiments on
the HIM-100K dataset demonstrate that the proposed E2E-
HIM outperforms existing human instance matting methods.
In particular, E2E-HIM using the ResNet-50 [32] backbone
achieves 50% error reduction and 5× faster speed while only
consuming 305 GFlops to estimate all instance-level alpha
mattes in a 640 × 640 image. Experimental results on PPM-
100 [17], RWP-636 [28], and P3M [20] show that E2E-HIM
also achieves competitive performance on human matting. The
contributions of our work can be summarized as follows:

• We propose the first End-to-End Human Instance Mat-
ting (E2E-HIM) to our best knowledge, which jointly
optimizes instance context extraction and matting in a
unified network and therefore significantly improves the
performance while achieving faster speed compared with
instance segmentation based two-stage matting methods.

• We introduce a united guidance network to encode both
the locations and semantic correspondences of all human
instances to obtain a united semantics guidance, which
discriminates human instances and facilitates the predic-
tion of instance-level alpha mattes simultaneously.

• We collect a large-scale human instance matting dataset,
named HIM-100K, containing more than 100,000 human
images with about 326,000 human instances. Each in-
stance has three annotations including the alpha matte,

segmentation mask, and bounding box, which is valuable
for future research in human matting.

• Experimental results on HIM-100K demonstrate the pro-
posed method outperforms the state-of-the-art human in-
stance matting methods. Moreover, experiments on PPM-
100, RWP-636, and P3M also demonstrate that E2E-HIM
achieves competitive performance on human matting.

II. RELATED WORK

In this section, we review the instance segmentation meth-
ods and image matting methods that are related to our work.
Instance Segmentation. Instance segmentation aims to predict
the category and mask of each object in an image. Existing
methods can be roughly categorized into three groups: top-
down, bottom-up, and direct methods.

Traditional top-down methods use Mask R-CNN [2] and
PANet [33] to predict the candidate regions and then estimate
the instance segmentation inside the regions. Newly emerging
methods [28], [34], [35], [36], [37], [38], [29], [39] predict the
masks without extracting the object regions. YOLACT [34],
[36] predict candidate masks and then use anchors to predict
the bounding box and mask weights for cropping and mixing
masks to obtain the instance mask. SOLO [29] generates a
dynamic convolution kernel for each instance and then adopts
dynamic convolutions to estimate the instance mask. Top-down
methods have been extensively studied in the past. However,
such methods usually require hand-crafted post-processing to
refine the results and therefore are difficult to implement.

Bottom-up methods first extract features for each pixel and
then generate the masks of objects by performing clustering.
SDLF [40] trains the network with the metric learning loss
to generate pixel feature representations and then uses mean-
shift to cluster pixels with similar features to obtain instance
segmentation. SSAP [41] first uses CNN to extract features
and then uses graph partition to cluster the pixels and generate
instance masks. Bottom-up methods cluster pixels based on
the affinity between pixels, which are mostly designed for un-
supervised instance segmentation and have poor performance
on the supervised datasets. Meanwhile, these methods need to
process the pixel features to obtain the segmentation without
category information, which lacks application value.
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Fig. 2. Architecture of the proposed E2E-HIM. The general perception network first extracts image features and instance latent codes. The united guidance
network then utilizes the extracted image features and instance latent codes to generate the united semantics guidance. Finally, the instance matting network
decodes the image features and united semantics guidance to estimate all instance-level alpha mattes.

Direct methods extract features to directly predict the mask
of each object. QueryInst [42] uses dynamic convolutions
to predict the mask of instances on the basis of Sparse-
RCNN [43]. ISTR [44] uses a transformer encoder to refine
features and then designs a mask decoder to predict instance
segmentation. SOLQ [30] proposes a DCT mask decoder to
predict instance segmentation. MaskFormer [45] proposes to
use the hidden state estimated to perform pixel-wise instance
segmentation decoding. Direct methods do not rely on non-
maximum suppression to refine the predictions and are suitable
for predicting the masks of adjacent human instances. How-
ever, these methods usually use high-level features to predict
the masks, which results in inaccurate object boundaries.
Image Matting. Image matting aims to predict the alpha matte
of the foreground object. There are mainly two types of image
matting methods: trimap-based and automatic methods.

Trimap-based methods require a trimap indicating known
foreground and background regions to estimate alpha mattes.
Currently, deep learning based methods [3], [46], [47], [12],
[5], [48] have achieved good performance in this field. DIM [3]
presents the first large-scale image matting dataset and for the
first time uses the CNN to estimate the alpha matte with the
trimap guidance. With the image matting dataset, subsequent
matting methods focus on improving the performance. GCA-
Matting [13] uses the context module of the in-painting meth-
ods to integrate context information to improve the matting
accuracy. Deep Matte Prior [49] uses the image and matte
priors to unsupervisedly train matting networks. ATNet [50]
proposes to use both the object-related details and the high-
level semantics to estimate the alpha mattes. FBAMatting [5]
predicts the foreground, background, and alpha matte at the
same time, which improves the accuracy of predicting the
alpha matte. MGMatting [14] expands the kinds of auxiliary
information, using coarse segmentation to help the network
estimate the alpha matte. LFPNet [48] uses long-range features
to predict the alpha matte of high-resolution images. ELGT-

Matting [51] presents Global MSA and Window MSA to use
wide correlations to estimate the alpha mattes. Trimap-based
methods can estimate the alpha matte of arbitrary objects, but
the reliance on auxiliary inputs limits their application.

Automatic methods directly estimate the alpha matte of the
foreground object in the input image without auxiliary inputs
and have recently received much attention from researchers.
Hattmatting [52] uses hierarchical attention to aggregate se-
mantic features to refine the boundaries. MODNet [17] pro-
poses a self-supervised strategy to optimize the network’s
generalization ability on real-world data. P3MNet [20] pays
attention to privacy protection in the matting task and proposes
a matting method that is robust to face occlusion. SPA-
MattNet [53] adopts a two-stage network with dual-attention
modules to first estimate the trimap and then estimate the alpha
matte. RGB-D Human Matting [54] first estimates the coarse
alpha matte from the depth map and then combines the RGB
image to refine the predictions. ISSMatting [1] uses Mask R-
CNN to generate instance-level trimap and then exploits DIM
to estimate the alpha mattes. InstMatt [4] uses Mask R-CNN
and MGMatting to estimate instance-level alpha mattes and
use a refinement network to refine predictions. Most automatic
methods only estimate the alpha matte of all instances, which
limits their applications in instance-level editing.

III. PROPOSED APPROACH

Given an input image I with multiple human instances, the
proposed E2E-HIM aims to simultaneously predict all alpha
mattes of individual human instances in the image. To this
end, we design an end-to-end human instance matting network
including three sub-networks: a general perception network, a
united guidance network, and an instance matting network as
shown in Figure 2. Specifically, the general perception network
first uses a semantic encoder to extract image features from I ,
and then adopts a perception decoder to decode instance con-
texts into latent codes. The united guidance network devises a
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Fig. 3. Structure of the united guidance network. A spatial attention module and a semantics embedding module are adopted to generate the guidance that
identifies both the locations and semantic correspondences of the instances in the image.

spatial attention module and a semantics embedding module
to generate the united semantics guidance that identifies the
locations and semantic correspondences of the instances in the
image. The instance matting network fuse and refine the image
features and united semantics guidance, then dynamically
constructs decoders to predict all instance-level alpha mattes.

A. General Perception Network

The general perception network aims to extract image
features and then decode the instance contexts into latent
codes. To distinguish individual human instances, it is nec-
essary to introduce detection or segmentation supervision.
However, previous object detection [55], [56], [57], [58] and
instance segmentation [2], [34], [29] frameworks predict many
candidate instances and then use non-differentiable manual
strategies to remove repetitive instances, which are infeasible
to be integrated into a united network for end-to-end train-
ing. Recently, transformer-based detection and segmentation
frameworks such as DETR [59] and MaskFormer [45] use
matching-based supervision to estimate the set of instances in
a differentiable way, which facilitates the design of a united
network for end-to-end training. Inspired by these transformer-
based methods, we formulate the decoding of instance latent
codes as a set prediction problem and present a hybrid trans-
former network with matching-based instance segmentation
supervision to solve the problem.
Semantic Encoder. To extract semantic features for generating
latent codes, we first adopt a CNN-transformer based semantic
encoder. Specifically, we adopt a deep stem to extract low-
level image features from the input image I . To stabilize
network training, we also use the group norm to improve the
network performance under a small batch size. A ResNet-
50 [32] backbone and a transformer encoder [60] are then
used to extract high-level image features and perform con-
text aggregation. The context features F c ∈ RC× H

16×
W
16 of

the transformer encoder are then processed by a perception
decoder to generate the latent code for each human instance,
where C is the channel number of the feature maps.
Perception Decoder. To decode the instance contexts into
latent codes, F c is first flattened into a feature tensor F f ∈
RC×H×W

256 . Then, we define N query features, where N
is larger than the instance number X , and use a 6 layer

transformer decoder network to extract instance contexts from
the flattened features F f and decode them into latent codes.
Given a learnable query tensor Q ∈ RN×C that encodes N
query features, the multi-head self-attention of the transformer
decoder first enhances the difference of each query feature.
Then, the multi-head cross-attention and feed-forward network
of the transformer decoder use the affinity between the query
features and the features F f to extract the instance contexts
and then decode them into a latent code X ∈ RN×C .

To train the general perception network, we introduce the
auxiliary segmentation head and classification head (not shown
in Figure 2) to perform matching-based instance segmentation
supervision. Specifically, we use a multi-layer perception
(MLP) to generate the segmentation convolution kernel kseg ∈
RN×C×1×1 and segmentation bias bseg ∈ RN×1×1 from the
latent code X as kseg = MLP(X) and bseg = MLP(X),
where MLP is the MLP layer. Then, we use the upsampling
and convolution layers to build a feature decoder, which
combines the image features from the CNN backbone and
context features F c to generate the detailed context features
F dc ∈ RC×H

8 ×W
8 . Next, we use the segmentation convolution

kernel kseg with the segmentation bias bseg to convolve
detailed context features F dc to obtain the human instance
mask Mpred

Mpred = Conv(F dc,kseg) + B(bseg) (2)

where B(·) is the broadcast function. Additionly, we use MLPs
to estimate the category cpred ∈ RN×2 (background or human
instance) from the latent code X . Finally, we select ground-
truth categories and masks that match the predicted categories
and masks as labels to train the general perception network.

B. United Guidance Network

The united guidance network is to generate the united
semantics guidance that facilitates simultaneous instance-level
matting. As shown in Figure 3, the united guidance network
consists of a spatial attention module and a semantics em-
bedding module. These components work together to encode
the spatial locations and semantic correspondences of all the
human instances in the image.
Spatial Attention. To locate each human instance in the
image, we propose a spatial attention module to exploit the
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Algorithm 1: Guidance generation procedure.
Data: Detailed context features F dc, and latent codes

X .
Result: United semantics guidance GAll.

1 Initialize set← ∅;
2 for i← 1 to S do
3 Compute the affinity kernel and affinity bias as

ka = MLP(X), ba = MLP(X);
4 Compute the spatial features and context-based

background weight as F sp = CNN(F dc),
W b = CNN(F dc);

5 Compute the spatial attention map as
W sa = Concat(W b,Conv(F sp,ka) + B(ba));

6 Compute the instance semantics features as
F rep = MLP(X);

7 Upsample the instance semantics features as
F urep = Upsample(F rep);

8 Compute the context-based background features as
F bf = CNN(F dc);

9 Compute the guidance
Gi = Sum(Softmax(W sa, 1)⊙
Concat(F bf ,F urep), 1);

10 set← set ∪Gi;
11 end
12 Generate the united semantics guidance as

GAll = Concat(G1,G2, ...GS);

affinity between the context features and instance latent codes
to automatically generate the instance-level homogeneous re-
gions. Specifically, we first adopt MLPs to generate the affinity
kernel ka ∈ RN×C×1×1 and affinity bias ba ∈ RN×1×1

from the instance latent code X . Then, we use convolution
layers to generate the spatial features F sp ∈ RC×H

8 ×W
8 and

context-based background weight W b ∈ R1×H
8 ×W

8 from the
detailed context features F dc as F sp = CNN(F dc) and
W b = CNN(F dc), where CNN is the convolutional layer.
Finally, the spatial attention map W sa is obtained as

W sa = Concat(W b,Conv(F sp,ka) + B(ba)) (3)

where Concat(·) denotes the concatenate function. Each chan-
nel of the spatial attention map represents the affinity of the
pixels to the human instances or background. To facilitate the
subsequent processing, we reshape the attention map W sa to
a tensor with the shape of (N + 1)× 1× H

8 ×
W
8 .

Semantics Embedding. To generate the united semantics
guidance that identifies both the locations and semantic cor-
respondences of all instances for alpha matte estimation,
we propose the semantics embedding module to embed the
instance semantics that is generated from the latent codes
into the spatial attention map. Inspired by the non-overlapping
nature of the regions of instances, we embed the instance
semantics by modulating the instance semantics with the
spatial attention map. Specifically, we first use the softmax
activation to sparsen the spatial attention map, which makes
each location associated with the most relevant instance. Then,
we use MLPs to generate the instance semantics features

(a) (b) (c) (d)

Fig. 4. Visualization of the learned guidance. (a) Input image. (b) Context
features from the General Perception Network. (c) Features of the first
guidance head. (d) Features of the second guidance head.

F rep ∈ RN×C from the latent code X . We upsample F rep to
the same shape of F dc and generate the upsampled instance
semantics features F urep ∈ RN×C×H

8 ×W
8 . Next, we use

convolution layers to generate the context-based background
features F bf ∈ R1×C×H

8 ×W
8 from the detailed context

features F dc as F bf = CNN(F dc). Finally, we use the
attention map W sa to modulate the instance semantics F rep

and features F bf to embed the instance semantics into the
untied semantics guidance G as

G = Sum(Softmax(W sa, 1)⊙Concat(F bf ,F urep), 1) (4)

where Softmax(T , i) denotes the softmax activation function
computed along the i-th dimension of the input tensor T .
Sum(T , i) denotes the function that computes the sum of
elements across the i-th dimension of the tensor T . The em-
bedded instance semantics indicates the regions corresponding
to each instance, which helps to guide instance-level matting.
Guidance Generation. To generate the guidances that focus
on different regions of each instance, we adopt a multi-head
guidance design as described in Algorithm 1. Specifically, we
define the combination of a spatial attention module and a
semantics embedding module as a guidance head. Then, we
build the united guidance network with S guidance heads to
generate S temporary guidances G1,G2, ...GS . Finally, the
united semantics guidance GAll is obtained by concatenating
all temporary guidances as

GAll = Concat(G1,G2, ...GS) (5)

To facilitate the understanding of the united guidance network,
we provide visualizations of the guidances generated from the
context features in Figure 4. As evident from the visualiza-
tions, the features of two guidance heads exhibit improved
discrimination between human-human and human-background
regions compared to the original context features. Specifically,
the combination of the features of the first guidance head helps
in discriminating different human instances, facilitating the
estimation of human instance contours. The combination of the
features of the second guidance head helps in discriminating
human regions, background regions, and boundary regions,
improving the estimation of alpha mattes at the boundaries.
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C. Instance Matting Network

The instance matting network aims to decode the image
features and the united semantics guidance to simultaneously
estimate all instance-level alpha mattes. As shown in Figure 2,
we first propose a feature fusion and a refiner to aggregate the
features for each instance and recover the low-level image
features. Then, we utilize the latent codes to dynamically
construct the instance alpha matte decoder to estimate instance
alpha mattes. Due to the highly imbalanced distribution of
foreground regions, background regions, and unknown regions
(boundary), directly training the network to predict alpha matte
fails to converge. Therefore, we construct two decoders to in-
dependently estimate the instance-level trimaps and boundary
alpha mattes, which stabilizes the network training.
Feature Fusion and Refiner. The image features from the
CNN backbone of the general perception network are not well-
aggregated and lack low-level image features, which are not
feasible for alpha matte estimation. To aggregate the features
for each instance and recover the low-level image features,
we adopt fully convolutional networks to construct the feature
fusion and the refiner for feature processing. Specifically, we
first concatenate the image features and the united semantics
guidance to combine the image features with the locations
and semantic correspondences of human instances. Then, we
use a simple U-Net to fuse the information, which utilizes
the guidance to aggregate the image features and generate
the instance-aware image features. Next, we use upsampling
convolution layers to refine the instance-aware image features
with low-level image features from the stem of the general
perception network, which helps to estimate accurate trimaps
and alpha mattes at the boundaries. Finally, we use the refined
instance-aware image features to generate the alpha matte
features F α ∈ RCα×H×W for alpha matte decoding and the
trimap features F tri ∈ RCtri×H

2 ×W
2 for trimap decoding,

where Cα and Ctri are the feature channel numbers.
Instance Alpha Matte Decoder. With the alpha matte features
F α and trimap features F tri, we construct decoders to predict
instance-level alpha mattes in parallel. Since the distribution
of the foreground regions, background regions, and unknown
regions of the alpha mattes are imbalanced, training the
network to directly estimate the alpha mattes causes overly
smooth estimation in the unknown regions. To tackle this
problem, we construct two kinds of decoders to estimate the
instance-level trimaps and boundary alpha mattes.

To estimate the instance trimaps and alpha mattes, we
use the latent codes to dynamically build instance-level de-
coders for prediction. Specifically, to estimate the trimaps,
we use MLPs to generate the trimap decode kernel ktri ∈
R(N×3)×Ctri×1×1 and bias btri ∈ R(N×3)×1×1 from the latent
code X . We use the trimap kernel ktri and trimap bias btri
to build convolutions to process the trimap features F tri and
obtain the predicted trimap T pred ∈ R(N×3)×H

2 ×W
2 as

T pred = Conv(F tri,ktri) + B(btri) (6)

To facilitate the fusion with the alpha mattes, we upsample
and reshape the predicted trimap T pred to a tensor with the
shape of N × 3×H ×W . To estimate the alpha matte at the

unknown regions of each human instance, we use MLPs to
generate the alpha matte kernel kα ∈ RN×Cα×1×1 and alpha
matte bias bα ∈ RN×1×1 from the latent code X . We use
the alpha matte kernel kα and alpha matte bias bα to build
convolutions to process the alpha matte features F α and obtain
the predicted boundary alpha matte tensor αpred ∈ RN×H×W

as
αpred = Conv(F α,kα) + B(bα) (7)

We further reshape the predicted boundary alpha matte αpred

to a tensor with the shape of N × 1 × H × W . The final
alpha matte tensor αfin is obtained through the matting fusion
processing of trimap-based matting methods [3], [13] as

αfin = αpred ⊙Upred + F pred (8)

where Upred and F pred are the unknown regions and fore-
ground regions in the estimated trimap, respectively.

D. Loss Function

To train the proposed network, we construct loss func-
tions for the outputs of the general perception network and
the instance matting network. Specifically, we first follow
MaskFormer [45] to obtain the sorted ground truth labels
corresponding to the latent codes with minimum-cost bipartite
matching. The matching cost Cmatch for the i-th latent code
to the x-th instance is composed of the class matching cost
Cmcls, focal segmentation matching cost Cmfocal, and dice
segmentation matching cost Cmdice as

Ci,xmatch = Cimcls + C
i,x
mfocal + C

i,x
mdice (9)

The class matching cost Cmcls measures the negative proba-
bility of classifying a latent code as a human instance, which
is defined as

Cimcls = −
exp (ci,2pred)

exp (ci,1pred) + exp (ci,2pred)
(10)

where cpred is the categories predicted by the perception
decoder. The focal segmentation matching cost Lmfocal mea-
sures the focal cross entropy between the predicted instance
masks Mpred and ground truth instance masks Mgt, which
is defined as

Ci,xmfocal = BCEfocal(M
i
pred,M

x
gt) (11)

where BCEfocal(·) denotes the focal binary cross entropy
function [61]. The dice segmentation matching cost Lmdice

measures the dice similarity coefficient between the predicted
instance masks Mpred and ground truth instance masks Mgt,
which is defined as

Ci,xmdice = Dice(M i
pred,M

x
gt) (12)

where Dice(·) denotes the dice function [62]. With the match-
ing costs, we adopt 2D rectangular assignment to obtain
the instance indexes corresponding to the latent codes and
then generate the sorted ground truth categories csort, masks
M sort, trimaps T sort, and alpha mattes αsort according to
the ground truth labels.
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After obtaining the sorted ground truths, we construct the
loss functions used to train the network. Specifically, to
supervise the general perception network, we construct the
perception loss as

Lp = λcLcls + λsLseg (13)

where Lcls and Lseg are the classification loss and segmenta-
tion loss, respectively. λc and λs are the weights to balance
the two losses. The classification loss Lcls measures the cross
entropy between the predicted categories cpred and sorted
ground truth categories csort, which is defined as

Lcls =
1

N

N∑
i=1

wiCE(cipred, c
i
sort) (14)

where CE(·) denotes the cross entropy function. wi is the cat-
egory weight. The segmentation loss Lseg measures the focal
binary cross entropy and dice similarity coefficient between
the predicted instance masks Mpred and sorted ground truth
instance masks M sort, which is defined as

Lseg =
1

|Ω|
∑
i∈Ω

λbBCEfocal(M
i
pred,M

i
sort)

+
1

|Ω|
∑
i∈Ω

λdDice(M i
pred,M

i
sort)

(15)

where Ω denotes the set of the indexes of the latent codes that
have the corresponding human instances. λb and λd are the
weights to balance the two losses. To supervise the network
to estimate the trimap and alpha matte, we define the matting
loss as

Lm = λtLtri + λαLα (16)

where Ltri and Lα are the trimap loss and alpha matte loss,
respectively. λt and λα are the weights to balance the two
losses. The trimap loss Ltri measures the focal cross entropy
between the predicted trimaps T pred and sorted ground truth
trimaps T sort, which is defined as

Ltri =
1

|Ω|
∑
i∈Ω

CEfocal(T
i
pred, T

i
sort) (17)

The alpha matte loss Lα measures the mean absolute errors
between the predicted boundary alpha mattes αpred and sorted
ground truth alpha mattes αsort, which is defined as

Lα =λpu
1∑

i∈Ω |U i
pred|

∑
i∈Ω

∑
j∈Ui

pred

|αi,j
pred − αi,j

sort|

+ λgu
1∑

i∈Ω |U i
sort|

∑
i∈Ω

∑
j∈Ui

sort

|αi,j
pred − αi,j

sort|
(18)

where λpu and λgu are the weights to balance the two losses.
αi,j
pred andαi,j

sort are the predicted boundary alpha mattes and
ground truth alpha mattes for the latent code Xi in pixel j.
U i
pred and U i

sort are the predicted and ground truth unknown
regions for the latent code Xi. The overall loss of the network
is defined as

L = λpLp + λmLm (19)

where λp and λm are the weights to balance the two losses.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
E2E-HIM1 on both our collected HIM-100K dataset and three
traditional human matting datasets.

A. Datasets

1) HIM-100K: To train and evaluate human instance mat-
ting methods, we construct a large-scale human instance
matting dataset (HIM-100K). Specifically, we first collect real-
world human images from a variety of sources. These sources
include existing datasets such as MHP [63], Dinstinctions-
646 [52], and supervisely [64], each adhering to their respec-
tive license constraints. Additionally, we collect human images
from the internet (e.g., pexels [65]), which are not permissible
for commercial use. Furthermore, we purchase human images
from a commercial portrait photographer, which are authorized
for commercial application and distribution. To avoid ethical
issues, we meticulously filter out any images that may contain
violent or inappropriate content. Then, we collect human-
free images from the Internet as background images. Next,
we generate the real-world data of HIM-100K by enlisting
image editors to annotate the images using Photoshop with
commercial matting plugins. Finally, we generate the synthetic
data of HIM-100K by composting the annotated real-world
human images with the collected background images.

To facilitate related research, each human instance in an
image is annotated with three labels including the alpha
matte, bounding box, and segmentation. Specifically, HIM-
100K contains 47,980 real-world human images and 95,597
synthetic human images. The real-world human images vary
from 1,024 to 1,280 on the long side. The synthetic human
images vary from 1,000 to 2,000 on the long side. The training
set of HIM-100K consists of 44,980 real-world human images
and 95,597 synthetic human images, each of which contains
1 to 12 human instances. There are a total of 326,455 human
instances in the training set. The validation set of HIM-100K
consists of 3,200 real-world human images, each of which
contains 1 to 6 human instances. There are a total of 8,624
human instances in the validation set. As shown in Figure 5,
we give examples of the synthetic and real-world human
images in the HIM-100K dataset. The HIM-100K dataset will
be made available to researchers for academic use.

2) PPM-100: The Photographic Portrait Matting dataset
(PPM-100) [17] is a human matting validation set, which
collects 100 real-world portrait images from multiple real-
world scenarios. The images in the PPM-100 dataset have
disturbances such as blur, decorations, and richer postures,
which pose a great challenge for human matting methods. We
use the PPM-100 dataset to evaluate the generalization ability
of E2E-HIM trained on HIM-100K.

3) RWP-636: The Real-world Portrait dataset (RWP-636)
[28] is a human matting validation set, which collects 636
real-world high-resolution portrait images. To ensure that the
dataset can evaluate the performance of methods in real-
world scenarios, the images in the RWP-636 dataset are of

1The demo code is available at https://github.com/QLYoo/E2E-HIM.

https://github.com/QLYoo/E2E-HIM
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(a) Synthetic human images (b) Real-world human images

Fig. 5. Examples of images in the proposed HIM-100K dataset. From top to bottom in the figure are the original images, instance segmentation annotations,
instance bounding box annotations, and instance alpha matte annotations. The human instances in the images are marked in different colors.

different image qualities and the humans in the images are in
diverse poses. We use the RWP-636 dataset to evaluate the
generalization ability of E2E-HIM trained on HIM-100K.

4) P3M: The Privacy-Preserving Portrait Matting dataset
(P3M) [20] is a human matting dataset, which takes into
account the protection of facial privacy. The training set
consists of 9,421 portrait images where the faces are obscured.
The validation set comprises two subsets: P3M-500-P and
P3M-500-NP, each containing 500 portrait images with ob-
scured faces and 500 normal portrait images, respectively. We
follow P3MNet [20] to use the P3M dataset for training and
evaluating E2E-HIM. In addition, we use the P3M-500-NP
validation set to evaluate the generalization ability of E2E-
HIM trained on HIM-100K.

B. Implementation Details

We implement the proposed E2E-HIM using the Py-
Torch [66] framework. Specifically, we adopt a united guid-
ance network with two heads and 20 queries for E2E-HIM.
Our E2E-HIM is trained on four NVIDIA RTX 2080Ti GPUs
with a total batch size of 4 (1 per GPU) for 40 epochs. During
the data preprocessing stage, we first randomly read an image
from the HIM-100K dataset. Then, we follow image matting
methods [13], [5] to randomly composite human instances
in a random image of HIM-100K onto the current image.
Next, we perform data augmentation on the current image by
applying random horizontal flipping, random affine transform,
random contrast transform, random gamma transform, and
random saturation transform. Finally, the current image is
randomly cropped to a 640 × 640 image patch and fed to
the network. To accelerate training the network, we initialize
the Resnet-50 [32] backbone with the weights pre-trained on
ImageNet [67]. The other parameters are initialized with the

Kaiming initializer [68]. To optimize the network weights, we
adopt the AdamW optimizer [69] with the betas of (0.9, 0.999)
and a weight decay of 0.0005. The optimizer is initialized
with a learning rate of 0.00008 and then adjusted using a
cosine annealing schedule. We set the coefficients in the loss
functions as λc = 5., λs = 1., λb = 0.1, λd = 1, λt = 10,
λα = 5, λpu = 3, λgu = 5, λp = 1, λm = 1, wi = 0.1 for
the background category, and wi = 1 for the human category.

C. Metrics

To evaluate the performance of the human instance matting
methods, we propose four new metrics: ACC (accuracy), REC
(recall), EMSE (effective mean square error), and EMAD
(effective mean absolute difference), which are defined as

ACCTH =
NTH

Npred

RECTH =
NTH

Ngt

EMSETH =
1

NTH

∑
i∈ΩTH

(
1

|Πi|
∑
j∈Πi

(αi,j
pred − αi,j

gt )
2)

EMADTH =
1

NTH

∑
i∈ΩTH

(
1

|Πi|
∑
j∈Πi

|αi,j
pred − αi,j

gt |)

(20)

where NTH is the number of the predicted alpha mattes
with IoU higher than a threshold TH . Npred and Ngt are
the numbers of the predicted alpha mattes and ground truth
alpha mattes, respectively. ΩTH is the set of indexes of the
predicted alpha mattes with IoU higher than a threshold TH .
Πi is the set of all pixels in the i-th alpha matte. αi,j

pred

and αi,j
gt are the i-th predicted and ground truth alpha mattes

at pixel j. The ACC metric evaluates the ratio of correct
predictions to the total predictions. The REC metric evaluates
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TABLE I
QUANTITATIVE RESULTS OF HUMAN INSTANCE MATTING ON THE HIM-100K DATASET. ∗ AND † INDICATE THE INSTANCE SEGMENTATION METHODS

TRAINED ON THE MS-COCO [70] AND OUR HIM-100K DATASETS, RESPECTIVELY.

Method Segmentation Matting EMSE0.5 EMAD0.5 REC0.5 ACC0.5 EMSE0.75 EMAD0.75 REC0.75 ACC0.75

ISSMatting Mask R-CNN∗ DIM 0.0193 0.0215 0.9526 0.7844 0.0128 0.0148 0.8328 0.6858
InstMatt Mask R-CNN∗ FBAMatting 0.0187 0.0209 0.9549 0.7863 0.0122 0.0142 0.8422 0.6935
InstMatt Mask R-CNN∗ MGMatting 0.0259 0.0311 0.7517 0.6190 0.0131 0.0170 0.5531 0.4554

Mask R-CNN† FBAMatting 0.0171 0.0192 0.9485 0.8446 0.0104 0.0123 0.8367 0.7451
Mask R-CNN† MGMatting 0.0237 0.0288 0.7879 0.7016 0.0123 0.0161 0.5990 0.5334

PointRend† FBAMatting 0.0138 0.0158 0.9632 0.8809 0.0099 0.0118 0.8845 0.8089
PointRend† MGMatting 0.0202 0.0249 0.8508 0.7781 0.0110 0.0146 0.6939 0.6346

Combination SOLO† FBAMatting 0.0122 0.0140 0.9276 0.9873 0.0095 0.0118 0.8780 0.9345
Schemes SOLO† MGMatting 0.0201 0.0251 0.7846 0.8351 0.0120 0.0158 0.6369 0.6778

QueryInst† FBAMatting 0.0102 0.0120 0.9199 0.9834 0.0078 0.0096 0.8799 0.9406
QueryInst† MGMatting 0.0195 0.0244 0.7823 0.8363 0.0111 0.0149 0.6355 0.6794

MaskFormer† FBAMatting 0.0107 0.0122 0.9760 0.9308 0.0084 0.0099 0.9111 0.8688
MaskFormer† MGMatting 0.0142 0.0182 0.8973 0.8557 0.0093 0.0127 0.7795 0.7433

E2E-HIM - - 0.0076 0.0090 0.9856 0.9658 0.0060 0.0074 0.9486 0.9296

the ratio of correct predictions to the ground truths. The EMSE
and EMAD metrics evaluate the errors between the correctly
predicted alpha mattes and ground truth alpha mattes. In this
paper, we adopt the IoU thresholds TH of 0.5 and 0.75 for
evaluation. To evaluate the performance of human matting, we
follow MODNet [17] and P3MNet [20] to adopt SAD (sum
of absolute differences), MSE (mean square error), and MAD
(mean absolute difference) as metrics to evaluate the errors
between the predictions and the ground truths.

D. Results on Human Instance Matting

To validate the effectiveness of the proposed method on
human instance matting, we select two state-of-the-art human
instance matting methods including: ISSMatting [1] (Mask
R-CNN [2] + DIM [3]) and InstMatt [4] (Mask R-CNN
+ FBAMatting [5], and Mask R-CNN + MGMatting [14]).
In particular, the Mask R-CNN used by these methods [1],
[4] is trained on the MS-COCO [70] dataset as described
in their papers. In addition, we implement several com-
binations of exiting instance segmentation methods (Mask
R-CNN, PointRend [71], SOLO [29], QueryInst [72], and
MaskFormer [45]) and matting methods (FBAMatting and
MGMatting [14]). The instance segmentation methods used
by the combinations is trained on the proposed HIM-100K
dataset. We evaluate these methods and summarize the quan-
titative results in Table I. Based on the results, we have two
empirical findings: First, the matting methods (FBAMatting
and MGMatting) have a significant impact on the alpha matte
accuracy of the instance segmentation-based methods. FBA-
Matting significantly reduces the EMSE and EMAD, which
indicates that FBAmatting can estimate the high-quality alpha
mattes with the instance segmentation. However, due to do-
main drift such as the scale difference between the HIM-100K
dataset and the training set of MGMatting (Adobe Composite-
1K [3]), MGMatting performs poorly and has higher EMSE
and EMAD. Second, E2E-HIM has low EMAD and EMSE,
and high REC, which indicates that our methods miss fewer
human instances and predict more accurate alpha mattes than
the instance segmentation-based matting methods. Although

TABLE II
COMPUTATIONAL COMPLEXITY RESULTS. † DENOTES THE

COMPUTATIONAL COSTS THAT EXCLUDE THE MATTING PROCESS. THE
INFERENCE SPEED (FPS) IS CALCULATED ON AN NVIDIA RTX 2080 TI

GPU WITH THE BATCH SIZE OF 1.

Method GFlops Params FPS

Mask R-CNN† [2] 144.5 44.2M 14.0
PointRend† [71] 92.6 60.0M 10.4
SOLO† [29] 111.7 88.7M 13.8
QueryInst† [42] 388.3 170.9M 7.0
MaskFormer† [45] 181.0 39.5M 13.9

E2E-HIM 305.3 100.8M 10.3

SOLO + FBAMatting and QueryInst + FBAMatting have
slightly higher ACC than E2E-HIM, they have much lower
REC, which suggests they miss many human instances.

To qualitatively compare E2E-HIM and other methods, we
visualize the estimated alpha mattes in Figure 6. Specifically,
we present the estimated alpha mattes of Mask R-CNN + FBA-
Matting, PointRend + FBAMatting, SOLO + FBAMatting,
QueryInst + FBAMatting, MaskFormer + FBAMatting, and
E2E-HIM on the challenge images in HIM-100K. Note that the
instance segmentation methods in the presented combinations
are all trained on the HIM-100K dataset. Human instances
often overlap each other in these images, which poses a
huge challenge for human instance matting. As we can see,
instance segmentation-based methods perform poorly when
dealing with such images. The predicted alpha mattes of these
methods often miss limb regions such as the hands and cannot
eliminate limbs of other humans well. On the contrary, E2E-
HIM performs much better and accurately predicts the alpha
mattes of limb parts that are far away from the body and can
eliminate the interference of other humans.

To evaluate the efficiency of E2E-HIM, we summarize
the computational complexity results including calculation
amount, parameter amount, and inference speed (FPS) in
Table II. Since the computational complexity of the matting
procedures of the instance-based segmentation matting meth-
ods varies with the number of human instances in the image,
we only include the computational complexity results of the
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6. Qualitative results of human instance matting on the HIM-100K dataset. The human instances in each image are marked in different colors. (a)
Input image. (b) Mask R-CNN + FBAMatting. (c) PointRend + FBAMatting. (d) SOLO + FBAMatting. (e) QueryInst + FBAMatting. (f) MaskFormer +
FBAMatting. (g) E2E-HIM. (h) Ground Truth. Zoom in for the best visualization.

instance segmentation procedures. For a human instance in
a 640 × 640 image, FBAMatting [5] requires an additional
226 GFlops of computation, 33M of params, and 75ms of
latency, and MGMatting [14] requires additional 86 GFlops
of computation, 84.8M of params, and 41ms of latency. Com-
pared with only the instance segmentation procedures, E2E-
HIM has a similar calculation amount, parameter amount, and
inference speed. However, a complete instance segmentation-
based matting method requires additional matting procedures
to estimate the alpha mattes, which causes them to consume
more computation and be much slower. For example, using
Mask R-CNN and FBAMatting to infer a 640 × 640 image
with 6 instances costs 1,500 GFlops of computation and 0.5s
of latency. Therefore, the proposed E2E-HIM is more efficient
than instance segmentation-based matting methods.

The above performance and efficiency results indicate that
the proposed E2E-HIM is more efficient and effective than
instance segmentation-based matting methods. In particular,
E2E-HIM has 50% lower EMSE and EMAD and is 5× faster
(6 instances in a 640× 640 image) than the combination of
Mask R-CNN + FBAMatting in the existing work [4]. The

superiority of E2E-HIM over other methods can be attributed
to two aspects: First, E2E-HIM adopts an end-to-end frame-
work for human instance matting to bridge the gap between
the trimap generation and matting, which improves prediction
accuracy. Second, E2E-HIM introduces a united guidance
network and an instance matting network to incorporate multi-
instance locations and semantic correspondences into a fixed-
size feature map to predict alpha mattes for multiple instances
simultaneously, which improves inference efficiency.

E. Results on Human Matting

To evaluate the performance of E2E-HIM on the traditional
human matting task, we conduct experiments on public human
matting datasets. Specifically, we use PPM-100, RWP-636,
and P3M to evaluate the generalization ability of E2E-HIM
trained on HIM-100K. In addition, we use P3M to train and
evaluate E2E-HIM on human matting.

1) PPM-100: We compare E2E-HIM with human matting
methods such as DIM [3], FDMPA [6], LateFusion [16],
SHM [7], HAttMatting [52], BSHM [73], and MODNet [17]
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TABLE III
QUANTITATIVE RESULTS OF HUMAN MATTING ON PPM-100 [17].

Method MSE MAD

DIM [3] 0.0115 0.0327
FDMPA [6] 0.0101 0.0178
LateFusion [16] 0.0094 0.0160
SHM [7] 0.0072 0.0158
HAttMatting [52] 0.0067 0.0152
BSHM [73] 0.0063 0.0137
MODNet [17] 0.0044 0.0087

E2E-HIM 0.0040 0.0072

TABLE IV
QUANTITATIVE RESULTS OF HUMAN MATTING ON RWP-636 [14].

TRIMAP DENOTES THE METHOD ADOPTS AN AUXILIARY TRIMAP INPUT.

Method Trimap SAD MAD MSE

DIM [3] ✓ 33.90 0.0313 0.0178
GCAMatting [13] ✓ 31.09 0.0255 0.0134
IndexNet [12] ✓ 27.47 0.0223 0.0104
MGMatting [14] ✓ 27.15 0.0207 0.0066

LateFusion [16] × 71.18 0.0556 0.0423
HAttMatting [52] × 53.45 0.0376 0.0234
SHM [7] × 48.95 0.0375 0.0283
MODNet [17] × 42.63 0.0338 0.0227
GFM [18] × 37.93 0.0316 0.0220
P3MNet [20] × 36.47 0.0270 0.0183

E2E-HIM × 30.33 0.0243 0.0165

on the PPM-100 dataset. The quantitative results of all meth-
ods are summarized in Table III. E2E-HIM outperforms all
state-of-the-art human matting methods, which suggests that
E2E-HIM can be applied to the traditional human matting task.

2) RWP-636: We compare E2E-HIM with human matting
methods such as LateFusion [16], SHM [7], HAttMatting [52],
MODNet [17], GFM [18], and P3MNet [20] and trimap-
based matting methods such as DIM [16], GCAMatting [52],
IndexNet [7], and MGMatting [14] on the RWP-636 dataset.
The quantitative results of all methods are summarized in Ta-
ble IV. E2E-HIM demonstrates favorable performance against
all human matting methods, underscoring its powerful gener-
alization ability. However, the trimap-based methods have an
advantage over E2E-HIM due to the additional trimap input.
As a result, E2E-HIM only outperforms DIM and GCAMat-
ting, while failing to outperform IndexNet and MGMatting.

3) P3M: We follow P3MNet to train E2E-HIM using the
P3M dataset. Subsequently, we compare E2E-HIM with hu-
man matting methods such as LateFusion, SHM, HAttMatting,
GFM, and P3MNet, on both the P3M-500-P and P3M-500-NP
validation sets. Additionally, we evaluate the generalization
capability of E2E-HIM trained on HIM-100K using the P3M-
500-NP validation set. Note that, we sum the predictions
of E2E-HIM trained on HIM-100K due to the presence of
multiple instances in the images of the P3M-500-NP validation
set. The quantitative results of all methods are summarized
in Tables V and VI. Our E2E-HIM outperforms all other
human matting methods, demonstrating its robust scalability
on human matting. Moreover, E2E-HIM trained on HIM-100K
also outperforms most human matting methods, showcasing its

TABLE V
QUANTITATIVE RESULTS OF HUMAN MATTING ON P3M-500-P [20].

Method SAD MAD MSE

LateFusion [16] 42.95 0.0250 0.0191
HAttMatting [52] 25.99 0.0152 0.0054
SHM [7] 21.56 0.0125 0.0100
GFM [18] 13.20 0.0080 0.0050
P3MNet [20] 8.73 0.0051 0.0026

E2E-HIM 7.96 0.0046 0.0024

TABLE VI
QUANTITATIVE RESULTS OF HUMAN MATTING ON P3M-500-NP [20]. *

DENOTES THE METHOD IS TRAINED ON HIM-100K.

Method SAD MAD MSE

LateFusion [16] 32.59 0.0188 0.0131
HAttMatting [52] 30.53 0.0176 0.0072
SHM [7] 20.77 0.0122 0.0093
GFM [18] 15.50 0.0091 0.0056
P3MNet [20] 11.23 0.0065 0.0035

E2E-HIM 9.25 0.0054 0.0030
E2E-HIM* 12.50 0.0072 0.0042

good generalization ability.

F. Results on the Real-world Data

To evaluate the generalization ability of E2E-HIM on real-
world data, we apply the proposed E2E-HIM to the real-world
images and videos, and then subsequently generate synthetic
images using the predicted instance-level alpha mattes.

1) Results on the Real-world Images: To validate the gen-
eralization ability of E2E-HIM on real-world images, we apply
E2E-HIM to Internet images for synthesizing new images.
Specifically, we first collect portrait images and background
images from Internet galleries (e.g., pexels). We then use
E2E-HIM to estimate the alpha mattes of human instances in
the collected portrait images. Finally, we use the estimated
alpha mattes to synthesize new images with the portrait
images and background images. As shown in Figure 7, we
present examples of the source images and synthesized portrait
images, which indicates that E2E-HIM can accurately estimate
the alpha mattes of individual instances in the source images
to synthesize natural-looking images.

2) Results on the Real-world Videos: To demonstrate the
performance of E2E-HIM in real-world applications such
as video conferencing and live streaming, we evaluate the
proposed E2E-HIM on Internet videos. Specifically, we first
collect challenging dancing videos from Internet video sites
(e.g., YouTube). Then, we use E2E-HIM to estimate all
instance-level alpha mattes in all frames of the videos. Finally,
we use the estimated alpha mattes to synthesize new videos
with new background images. As shown in Figure 8, E2E-
HIM can accurately extract the human instances in the videos,
which highlights the potential of E2E-HIM in video editing.

G. Ablation study

To evaluate the impacts of the number of guidance heads ,
number of queries, feature fusion, refiner, and backbones on
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Fig. 7. Examples of images synthesized with the instance alpha mattes estimated by our E2E-HIM. The first row shows the input images. The second and
third rows show the images synthesized with the estimated individual instance alpha mattes. Zoom in for the best visualization.

Fig. 8. Examples of video frames synthesized with the instance alpha mattes estimated by our E2E-HIM. Each human instance in the synthesized videos are
marked with a different color. Zoom in for the best visualization.

performance, we perform ablation studies on the HIM-100K
dataset. The quantitative results are summarized in Tables VII
and VIII. Below we will analyze the results in detail.
Guidance. To aggregate the context features for multi-instance
matting, E2E-HIM introduces a united guidance network with
a multi-head design. To evaluate the impacts of different guid-
ance heads, we compare E2E-HIM, E2E-HIM-Var1, and E2E-
HIM-Var2 on the HIM-100K dataset, where E2E-HIM-Var1
has no guidance heads and E2E-HIM-Var2 has 4 guidance
heads. We adopt the ResNet-50 [32] as the backbone for all
compared methods and summarize the results in Table VII.
The E2E-HIM with more heads performs better, which indi-
cates that the united guidance is beneficial for performance.
Number of queries. To decode the instance contexts to
generate latent codes, E2E-HIM follows DETR [59] to intro-
duce the query tensor for the perception decoder. To evaluate
the impacts of the number of queries, we compare E2E-
HIM, E2E-HIM-Var3, and E2E-HIM-Var4 on the HIM-100K
dataset, where E2E-HIM-Var3 has 10 queries and E2E-HIM-

Var4 has 50 queries. We also adopt the ResNet-50 [32] as
the backbone for all compared methods and summarize the
results in Table VII. As the number of queries increases,
the performance of human instance matting improves, which
suggests that a larger number of queries is beneficial to
performance. However, more queries will greatly increase the
computational complexity of the general perception network
and united guidance network.
Feature fusion and refiner. E2E-HIM adopt the feature
fusion and refiner to aggregate the context features of each
instance and recover the low-level information, respectively.
To evaluate the impacts of the feature fusion and refiner, we
compare E2E-HIM, E2E-HIM-Var5, and E2E-HIM-Var6 on
the HIM-100K dataset, where E2E-HIM-Var5 removes the
feature fusion and E2E-HIM-Var6 removes the refiner. We
also adopt the ResNet-50 [32] as the backbone for all com-
pared methods and summarize the results in Table VII. After
removing the feature fusion and refiner, the performance of
E2E-HIM on human instance matting decreases, which verifies
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TABLE VII
ABLATION STUDY ON THE GUIDANCE, QUERY NUMBER, FEATURE FUSION, AND REFINER. ALL METHODS ADOPT RESNET-50 [32] AS THE BACKBONE.

Method Head Number Query Number Fusion Refiner EMSE0.75 EMAD0.75 REC0.75 ACC0.75

E2E-HIM-Var1 0 20 × ✓ 0.00663 0.00799 0.92428 0.90323
E2E-HIM-Var2 4 20 ✓ ✓ 0.00592 0.00732 0.95466 0.92735
E2E-HIM-Var3 2 10 ✓ ✓ 0.00642 0.00779 0.93843 0.91580
E2E-HIM-Var4 2 50 ✓ ✓ 0.00562 0.00691 0.95559 0.94065
E2E-HIM-Var5 2 20 × ✓ 0.00629 0.00765 0.93228 0.91333
E2E-HIM-Var6 2 20 ✓ × 0.00787 0.00944 0.90074 0.88123

E2E-HIM 2 20 ✓ ✓ 0.00602 0.00737 0.94863 0.92955

TABLE VIII
ABLATION STUDY ON THE BACKBONE. ALL METHODS ADOPT THE QUERY NUMBER OF 20. THE INFERENCE SPEED (FPS) IS CALCULATED ON AN

NVIDIA RTX 2080 TI GPU WITH THE BATCH SIZE OF 1.

Backbone EMSE0.5 EMAD0.5 REC0.5 ACC0.5 EMSE0.75 EMAD0.75 REC0.75 ACC0.75 FPS

ResNet-50 0.00758 0.00895 0.98562 0.96580 0.00602 0.00737 0.94863 0.92955 10.3
Swin-Base 0.00601 0.00731 0.99061 0.97234 0.00503 0.00632 0.96846 0.95060 8.9
Swin-Tiny 0.00648 0.00779 0.98864 0.96964 0.00535 0.00665 0.96185 0.94336 22.7
ViTAEv2-S 0.00619 0.00747 0.98875 0.98000 0.00504 0.00631 0.96451 0.95598 9.2

the effectiveness of both modules. In particular, removing the
refiner hurts the prediction accuracy, which indicates that low-
level image features are important to alpha matte estimation.
Backbones. In Section IV-D, we adopt the ResNet-50 [32] as
the backbone of E2E-HIM and compared methods. To verify
the scalability of E2E-HIM, we evaluate the E2E-HIM frame-
work with the ResNet-50 [32], Swin-Tiny [74], Swin-Base,
and ViTAEv2-S [75] backbones on the HIM-100K dataset. The
results are summarized in Table VIII. The proposed E2E-HIM
framework achieves good performance with all four evaluated
backbones. In particular, E2E-HIM based on the Swin-Base,
Swin-Tiny and ViTAEv2-S backbones outperform E2E-HIM
based on the Resnet-50 backbone. In addition, E2E-HIM using
the Swin-Tiny backbone is very fast and can meet the needs
of real-time human instance matting.

V. CONCLUSION

In this paper, we propose a novel End-to-End Human
Instance Matting (E2E-HIM) framework for simultaneous
multiple instance matting in a more efficient way. Specifically,
a general perception network adopts a hybrid transformer to
first extract image features and then decode instance contexts
into latent codes. Then, a united guidance network exploits
spatial attention and semantics to generate the united se-
mantics guidance, which encodes the locations and semantic
correspondences of all human instances. Finally, an instance
matting network decodes the image features and united se-
mantics guidance to predict all instance-level alpha mattes.
To support human instance matting research, we construct
a large-scale human instance matting dataset (HIM-100K),
which will facilitate future human matting research. Extensive
experiments on the HIM-100K, PPM-100, RWP-636, and
P3M datasets and real-world data demonstrate the competitive
performance of the proposed E2E-HIM.
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[5] M. Forte and F. Pitié, “F, B, Alpha Matting,” arXiv preprint
arXiv:2003.07711, 2020. 1, 2, 3, 8, 9, 10

[6] B. Zhu, Y. Chen, J. Wang, S. Liu, B. Zhang, and M. Tang, “Fast Deep
Matting for Portrait Animation on Mobile Phone,” in ACM MM, 2017.
1, 10, 11

[7] Q. Chen, T. Ge, Y. Xu, Z. Zhang, X. Yang, and K. Gai, “Semantic
Human Matting,” in ACM MM, 2018. 1, 10, 11

[8] T. Wang, S. Liu, Y. Tian, K. Li, and M.-H. Yang, “Video Matting via
Consistency-Regularized Graph Neural Networks,” in ICCV, 2021. 1

[9] Y. Zhang, C. Wang, M. Cui, P. Ren, X. Xie, X.-S. Hua, H. Bao,
Q. Huang, and W. Xu, “Attention-Guided Temporally Coherent Video
Object Matting,” in ACM MM, 2021. 1

[10] A. Levin, D. Lischinski, and Y. Weiss, “A Closed-Form Solution to
Natural Image Matting,” TPAMI, vol. 30, no. 2, pp. 228–242, 2008. 1

[11] Q. Chen, D. Li, and C.-K. Tang, “KNN Matting,” TPAMI, vol. 35, no. 9,
pp. 2175–2188, 2013. 1

[12] H. Lu, Y. Dai, C. Shen, and S. Xu, “Indices Matter: Learning to Index
for Deep Image Matting,” in ICCV, 2019. 1, 3, 11

[13] Y. Li and H. Lu, “Natural Image Matting via Guided Contextual
Attention,” in AAAI, 2020. 1, 3, 6, 8, 11

[14] Q. Yu, J. Zhang, H. Zhang, Y. Wang, Z. Lin, N. Xu, Y. Bai, and A. Yuille,
“Mask Guided Matting via Progressive Refinement Network,” in CVPR,
2020, pp. 1154–1163. 1, 3, 9, 10, 11

[15] Z. Yu, X. Li, H. Huang, W. Zheng, and L. Chen, “Cascade Image
Matting With Deformable Graph Refinement,” in ICCV, 2021. 1

[16] Y. Zhang, L. Gong, L. Fan, P. Ren, and W. Xu, “A Late Fusion CNN
for Digital Matting,” in CVPR, 2019. 1, 10, 11

[17] Z. Ke, J. Sun, K. Li, Q. Yan, and R. W. Lau, “MODNet: Real-Time
Trimap-Free Portrait Matting via Objective Decomposition,” in AAAI,
2022. 1, 2, 3, 7, 9, 10, 11

[18] J. Li, J. Zhang, S. J. Maybank, and D. Tao, “Bridging Composite and
Real: Towards End-to-end Deep Image Matting,” IJCV, 2022. 1, 11

[19] X. Shen, T. Xin, H. Gao, Z. Chao, and J. Jia, “Deep Automatic Portrait
Matting,” in ECCV, 2016. 1

[20] J. Li, S. Ma, J. Zhang, and D. Tao, “Privacy-Preserving Portrait Matting,”
in ACM MM, ser. MM ’21, 2021, p. 3501–3509. 1, 2, 3, 8, 9, 11



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[21] J. Ren, Y. Yao, B. Lei, M. Cui, and X. Xie, “Structure-Aware Flow
Generation for Human Body Reshaping,” in CVPR, 2022, pp. 7754–
7763. 1

[22] B. Chen, H. Fu, X. Chen, K. Zhou, and Y. Zheng, “Single-image
Human-body Reshaping with Deep Neural Networks,” arXiv preprint
arXiv:2203.10496, 2022. 1

[23] J. Li, C. Xiong, L. Liu, X. Shu, and S. Yan, “Deep Face Beautification,”
in ACM MM, 2015. 1

[24] S. Velusamy, R. Parihar, R. Kini, and A. Rege, “FabSoften: Face
Beautification via Dynamic Skin Smoothing, Guided Feathering, and
Texture Restoration,” in CVPRW, 2020. 1

[25] T. Wei, D. Chen, W. Zhou, J. Liao, H. Zhao, W. Zhang, and N. Yu,
“Improved image matting via real-time user clicks and uncertainty
estimation,” in CVPR, 2021, pp. 15 374–15 383. 1

[26] S. D. Yang, B. Wang, W. Li, Y. Lin, and C. He, “Unified interactive
image matting,” arXiv preprint arXiv:2205.08324, 2022. 1

[27] H. Ding, H. Zhang, C. Liu, and X. Jiang, “Deep interactive image
matting with feature propagation,” IEEE TIP, vol. 31, pp. 2421–2432,
2022. 1

[28] R. Zhang, Z. Tian, C. Shen, M. You, and Y. Yan, “Mask Encoding for
Single Shot Instance Segmentation,” in CVPR, 2020. 1, 2, 7

[29] X. Wang, R. Zhang, C. Shen, T. Kong, and L. Li, “Solo: A simple
framework for instance segmentation,” TPAMI, vol. 44, no. 11, pp. 8587–
8601, 2022. 1, 2, 4, 9

[30] B. Dong, F. Zeng, T. Wang, X. Zhang, and Y. Wei, “SOLQ: Segmenting
Objects by Learning Queries,” in NeurIPS, 2021. 1, 3

[31] L. Ke, M. Danelljan, X. Li, Y.-W. Tai, C.-K. Tang, and F. Yu, “Mask
transfiner for high-quality instance segmentation,” in CVPR, 2022. 1

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in CVPR, 2016. 2, 4, 8, 12, 13

[33] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path Aggregation Network for
Instance Segmentation,” in CVPR, 2018. 2

[34] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “YOLOACT: Real-Time
Instance Segmentation,” in ICCV, 2019. 2, 4

[35] X. Zhang, H. Li, F. Meng, Z. Song, and L. Xu, “Segmenting beyond the
bounding box for instance segmentation,” IEEE TCSVT, vol. 32, no. 2,
pp. 704–714, 2022. 2

[36] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “YOLACT++: Better Real-
time Instance Segmentation,” TPAMI, vol. 44, no. 2, pp. 1108–1121,
2022. 2

[37] X. Chen, R. Girshick, K. He, and P. Dollár, “TensorMask: A Foundation
for Dense Object Segmentation,” in ICCV, 2019. 2

[38] H. Chen, K. Sun, Z. Tian, C. Shen, Y. Huang, and Y. Yan, “BlendMask:
Top-down meets bottom-up for instance segmentation,” in CVPR, 2020.
2

[39] Y. Sun, L. Su, S. Yuan, and H. Meng, “Danet: Dual-branch activation
network for small object instance segmentation of ship images,” IEEE
TCSVT, pp. 1–1, 2023. 2

[40] B. De Brabandere, D. Neven, and L. Van Gool, “Semantic In-
stance Segmentation with a Discriminative Loss,” arXiv preprint
arXiv:1708.02551, 2017. 2

[41] N. Gao, Y. Shan, Y. Wang, X. Zhao, and K. Huang, “SSAP: Single-Shot
Instance Segmentation With Affinity Pyramid,” in ICCV, 2017. 2

[42] Y. Fang, S. Yang, X. Wang, Y. Li, C. Fang, Y. Shan, B. Feng, and
W. Liu, “QueryInst: Parallelly Supervised Mask Query for Instance
Segmentation,” arXiv preprint arXiv:2105.01928, 2021. 3, 9

[43] P. Sun, R. Zhang, Y. Jiang, T. Kong, C. Xu, W. Zhan, M. Tomizuka,
L. Li, Z. Yuan, C. Wang et al., “Sparse R-CNN: End-to-End Object
Detection with Learnable Proposals,” in CVPR, 2021. 3

[44] Y. Wang, Z. Xu, X. Wang, C. Shen, B. Cheng, H. Shen, and H. Xia,
“End-to-End Video Instance Segmentation With Transformers,” in
CVPR, 2021. 3

[45] B. Cheng, A. G. Schwing, and A. Kirillov, “Per-Pixel Classification is
Not All You Need for Semantic Segmentation,” in NeurIPS, 2021. 3,
4, 6, 9

[46] S. Lutz, K. Amplianitis, and A. Smolic, “AlphaGaN: Generative adver-
sarial networks for natural image matting,” in BMVC, 2018. 3

[47] J. Tang, Y. Aksoy, C. Oztireli, M. Gross, and T. O. Aydin, “Learning-
Based Sampling for Natural Image Matting,” in CVPR, 2019. 3

[48] Q. Liu, H. Xie, S. Zhang, B. Zhong, and R. Ji, “Long-Range Feature
Propagating for Natural Image Matting,” in ACM MM, 2021. 3

[49] Y. Xu, B. Liu, Y. Quan, and H. Ji, “Unsupervised deep background
matting using deep matte prior,” IEEE TCSVT, vol. 32, no. 7, pp. 4324–
4337, 2022. 3

[50] F. Zhou, Y. Tian, and Z. Qi, “Attention transfer network for nature image
matting,” IEEE TCSVT, vol. 31, no. 6, pp. 2192–2205, 2021. 3

[51] L. Hu, Y. Kong, J. Li, and X. Li, “Effective local-global transformer for
natural image matting,” IEEE TCSVT, pp. 1–1, 2023. 3

[52] Y. Qiao, Y. Liu, X. Yang, D. Zhou, and X. Wei, “Attention-Guided
Hierarchical Structure Aggregation for Image Matting,” in CVPR, 2020.
3, 7, 10, 11

[53] Y. Zhou, L. Zhou, T. L. Lam, and Y. Xu, “Sampling propagation
attention with trimap generation network for natural image matting,”
IEEE TCSVT, pp. 1–1, 2023. 3

[54] B. Peng, M. Zhang, J. Lei, H. Fu, H. Shen, and Q. Huang, “Rgb-d human
matting: A real-world benchmark dataset and a baseline method,” IEEE
Transactions on Circuits and Systems for Video Technology, 2023. 3

[55] R. Girshick, “Fast R-CNN,” in ICCV, 2015. 4
[56] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks,” NIPS, vol. 28,
2015. 4

[57] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “SSD: Single Shot MultiBox Detector,” in ECCV. Springer, 2016,
pp. 21–37. 4

[58] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” in CVPR, 2016, pp. 779–
788. 4

[59] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-End Object Detection with Transformers,” in
ECCV, 2020. 4, 12

[60] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention Is All You Need,” NIPS, vol. 30,
2017. 4

[61] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for
Dense Object Detection,” TPAMI, vol. 42, no. 2, pp. 318–327, 2020. 6

[62] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional
neural networks for volumetric medical image segmentation,” in 3DV,
2016. 6

[63] J. Zhao, J. Li, Y. Cheng, T. Sim, S. Yan, and J. Feng, “Understanding
Humans in Crowded Scenes: Deep Nested Adversarial Learning and
A New Benchmark for Multi-Human Parsing,” in ACM MM, 2018, p.
792–800. 7

[64] S. Contributors, “Supervisely person,” https://supervisely.com/, 2021. 7
[65] P. Contributors, “Pexels.com,” https://www.pexels.com, 2023. 7
[66] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in NeurIPS, 2019. 8

[67] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR, 2009. 8

[68] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,” in
ICCV, 2015. 8

[69] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,”
in ICLR, 2019. 8

[70] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in ECCV, 2014. 9

[71] A. Kirillov, Y. Wu, K. He, and R. Girshick, “PointRend: Image segmen-
tation as rendering,” in CVPR, 2020. 9

[72] Y. Fang, S. Yang, X. Wang, Y. Li, C. Fang, Y. Shan, B. Feng, and
W. Liu, “Instances as Queries,” in CVPR, 2021. 9

[73] J. Liu, Y. Yao, W. Hou, M. Cui, X. Xie, C. Zhang, and X.-s. Hua,
“Boosting Semantic Human Matting with Coarse Annotations,” in
CVPR, 2020. 10, 11

[74] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows,” in ICCV, 2021. 13

[75] Q. Zhang, Y. Xu, J. Zhang, and D. Tao, “ViTAEv2: Vision Transformer
Advanced by Exploring Inductive Bias for Image Recognition and
Beyond,” arXiv preprint arXiv:2202.10108, 2022. 13

https://supervisely.com/
https://www.pexels.com

