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Abstract—The ability to perceive humans is an essential re-
quirement for safe and efficient human-robot interaction. In real-
world applications, the need for a robot to interact in real time
with multiple humans in a dynamic, 3-D environment presents
a significant challenge. The recent availability of commercial
color-depth cameras allow for the creation of a system that
makes use of the depth dimension, thus enabling a robot to
observe its environment and perceive in the 3-D space. Here
we present a system for 3-D multiple human perception in
real time from a moving robot equipped with a color-depth
camera and a consumer-grade computer. Our approach reduces
computation time to achieve real-time performance through a
unique combination of new ideas and established techniques. We
remove the ground and ceiling planes from the 3-D point cloud
input to separate candidate point clusters. We introduce the novel
information concept, depth of interest, which we use to identify
candidates for detection, and that avoids the computationally
expensive scanning-window methods of other approaches. We
utilize a cascade of detectors to distinguish humans from objects,
in which we make intelligent reuse of intermediary features in
successive detectors to improve computation. Because of the high
computational cost of some methods, we represent our candidate
tracking algorithm with a decision directed acyclic graph, which
allows us to use the most computationally intense techniques only
where necessary. We detail the successful implementation of our
novel approach on a mobile robot and examine its performance in
scenarios with real-world challenges, including occlusion, robot
motion, nonupright humans, humans leaving and reentering the
field of view (i.e., the reidentification challenge), human-object
and human-human interaction. We conclude with the observation
that the incorporation of the depth information, together with
the use of modern techniques in new ways, we are able to create
an accurate system for real-time 3-D perception of humans by a
mobile robot.

Index Terms—3-D vision, depth of interest, human detection
and tracking, human perception, RGB-D camera application.

I. Introduction

EFFICIENT and robust detection and tracking of humans
in complicated environments is an important challenge in

a variety of applications, such as surveillance, human-machine
interaction, and robotics. In human-robot teams [1] especially,
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people can perform key functions; therefore, endowing robots
with the ability to detect and track humans is critical to safe
operation and efficient robot cooperation with humans. In this
paper, we address the task of human detection and tracking in
complex, dynamic, indoor environments and in realistic and
diverse settings, using a color-depth camera on a mobile robot.

Using a vision system to perceive humans is not an easy
task. First, a human’s appearance can vary significantly, since
humans can be a wide range of sizes, wear different clothes,
change poses, face arbitrary directions, and interact with other
humans or with objects. Second, a human can be completely
or partially occluded by objects, other humans, and even him
or herself. Third, visual human perception must deal with
common vision problems, such as illumination changes.

Visual human detection and tracking with a moving robot
introduces additional challenges to the perception problem.
First, a moving camera leads to a dynamic background, for
which traditional segmentation-based [2] or motion-based [3]
perception approaches are no longer appropriate. Second, a
moving robot leads to frequent changes in viewing angles
of humans (e.g., front, lateral or rear positions), and causes
camera oscillations that introduce additional noise into visual
data. Lastly, perceiving humans with a robot adds additional
temporal constraints, such as the need to perceive humans and
react to human movements as quickly and safely as possible.

This need in our application dictates the definition of
real-time performance. Some works in machine vision have
identified 4–5 frames per second (FPS) as real time [3], [4].
From a human’s perspective, human reaction time is around
0.25 seconds [5], meaning perception greater than 4 FPS is
sufficient to detect reactions to a robot’s action. Based upon
these considerations and the needs of our application, we
consider 5 FPS as the minimum frame rate to constitute real-
time perception for our system, which allows a robot to behave
with similar reaction time to humans.

Although a large number of sophisticated approaches have
been proposed to detect and track humans using color cameras
[6], they do not make use of one important piece of informa-
tion that is now available—depth. Since humans act in the 3-D
space, depth can be utilized along with color information to
develop a more reliable and robust human perception system.
Thanks to the emergence of affordable commercial color-
depth cameras such as the Microsoft Kinect and Asus Xtion
Pro LIVE RGB-D cameras [7], it is now much faster, easier
and cheaper to deploy a 3-D vision system on a robot. The
additional depth dimension generates more useful information,
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Fig. 1. Description of the major steps in our multiple human detection and tracking system. Starting with the input 3-D point cloud sequences, the system:
1) identifies the ground and ceiling planes, and removes them from the point cloud, 2) applies DOIs along with a cascade of detectors to identify a set
of candidates, and 3) associates candidates with tracked humans or detected objects, tracks humans, and feeds depth information back to guide candidate
detection. Our system outputs tracking information for each human, such as a 3-D bounding cube and the human’s centroid.

such as height and volume, which enables a robot to better
observe its environment and localize in the 3-D space.

In this paper, we introduce a new, real-time human percep-
tion system to detect and track multiple humans in dynamic
indoor environments, using a mobile robot that is equipped
with a color-depth camera. Our system creates a new inter-
leaved tracking-by-detection framework. To improve detection
performance, the new concept of depth of interest (DOI) is
introduced that enables us to efficiently obtain a set of possible
human candidates in 3-D point clouds. Then, a cascade of
detectors is used to reduce the candidate set by rejecting
nonhuman objects. The remaining candidates are handled by
a decision process using a directed acyclic graph (DAG) to
further distinguish between humans and objects and maintain
object detection and human tracking information. Detection
and tracking are interleaved in the sense that the tracking
model utilizes a fine detector to classify new objects and
humans, while the depths of tracked humans are fed back to
the detection module to better allocate DOIs.

A. System Overview

An algorithmic overview of our multiple human perception
system is depicted in Fig. 1, which clarifies our methodology
by breaking it down into logical blocks. Our system takes
3-D point clouds as input, which are acquired from a color-
depth camera mounted on a robot, and outputs human tracking
information. The major procedures for human perception are:

1) Ground and ceiling plane detection and removal: After
the 3-D cloud points are preprocessed, the ground and
ceiling planes are detected based on a prior-knowledge
guided plane fitting algorithm. Then, all points belong-
ing to the planes are removed from the point cloud.

2) Multiple human detection: We first estimate the distri-
bution of depth values in the point clouds and extract
DOIs that are likely to contain humans but also may
contain objects. Then, a set of candidates is identified
by segmenting point clusters within each DOI. Finally,
a cascade of detectors is applied to reject as many
nonhuman candidates as possible.

3) Multiple human tracking: We use a decision DAG-based
algorithm to efficiently handle the detected candidates.
Candidate association with humans and nonhuman ob-
jects is achieved using a two-layer matching algorithm.
Then, humans are tracked with extended Kalman filters.
The depth values of tracked humans are also fed into
the next detection step to guide candidate detection.

B. Contributions

Our system combines several novel and previously uncom-
bined techniques to create a system that is capable of real-time
tracking of multiple human targets and objects from a mobile
robot. The contributions of this paper include:

1) The introduction of the new DOI concept for detecting
humans in color-depth images, which allows us to avoid
using the computationally expensive window scanning
over the entire image and speeds up processing to help
us achieve real-time performance;

2) The new single-pass, decision DAG-based framework
that incorporates human-object classification, data asso-
ciation, and tracking, which allows us to apply the most
computationally expensive techniques only to the most
difficult cases. This framework saves processing time
and further makes our system perform in real time;

3) The use of a detector cascade followed by the decision
DAG over 3-D point clouds provides an approach that
explicitly addresses the previously unaddressed combi-
nation of human-human interaction, human-object in-
teraction, humans assuming nonupright body configu-
rations, and reidentification of tracked humans.

Together, our DOI concept, the use of a cascade of de-
tectors, and our decision DAG-based framework allow us to
construct a multiple human perception system that is robust to
occlusion and illumination changes and operates in real time,
on mobile platforms equipped with standard, consumer-grade
computation capability and an RGB-D camera.

The remainder of the paper is organized as follows.
Section II overviews literature in the area of human percep-
tion. Section III introduces our approaches to ground/ceiling
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plane removal and detection and tracking of multiple humans
in preprocessed 3-D point clouds. Experimental results are pre-
sented in Section IV. Finally, Section V concludes this paper.

II. Related Work

A large number of human detection and tracking methods
have been proposed in the past few years. We begin with an
overview of approaches using 2-D cameras to detect humans
in outdoor environments in Section II-A. Then, Section II-B
reviews previous work in human tracking. Finally, 3-D-based
human perception approaches are discussed in Section II-C.

A. 2-D-Based Pedestrian Detection

Nearly all state-of-the-art human detectors are dependent on
gradient-based features in some form. As a dense version of
the SIFT [8] features, histogram of oriented gradients (HOG)
was introduced by Dalal and Triggs [9] to perform whole body
detection, which has been widely accepted as one of the most
useful features to capture edge and local shape information [6].
Other detectors to identify humans in 2-D images include:

1) Shape-based detectors: Wu et al. [10] designed the
edgelet features, which use a large set of short curve
segments to represent local human shapes;

2) Part-based detectors: Bourdev et al. [11] developed
poselet features, which employ a dictionary of local hu-
man parts with similar appearance and pose to represent
pedestrians;

3) Motion-based detectors: Dalal et al. [12] proposed the
histogram of optical flow (HOF) features that apply
motions modeled by an optical flow field’s internal dif-
ferences to recognize moving pedestrians. Dollár et al.
[6] performed a thorough and detailed evaluation and
comparison of these 2-D-based detectors.

Pedestrian detectors generally assume that pedestrians are
upright, which we do not require to be true in our ap-
plication; we allow for humans to perform actions with a
wide variety of body configurations. In addition, pedestrian
detectors typically follow a sliding window paradigm, which
applies dense multiscale scanning over the entire image. This
paradigm generally has a high computational complexity, and
is therefore not suitable for the real-time requirement in our
application. This paper addresses real-time human perception
tasks using a color-depth camera on a moving platform in
indoor environments with a complicated dynamic background.

B. Multiple Target Tracking

Many target tracking approaches [13] from stationary cam-
eras exist that are based on background subtraction [14].
However, in applications with a moving camera, the tracking
task becomes considerably harder, as it becomes extremely
difficult to subtract the background reliably and efficiently. In
these cases, tracking-by-detection appears to be a promising
methodology to track multiple objects and is widely used by
many state-of-the-art tracking systems [15]. In the tracking-by-
detection framework, objects are first detected independently
in each frame. After per-frame detection is performed, data
are associated across multiple temporal adjacent frames, and

targets are typically tracked using classic tracking algorithms,
including mean-shift tracking [16] and dynamic Bayesian
filters [17], such as Kalman filters [18] and particle filters [19].

Several other approaches have also reported better tracking
performance. Okuma et al. [20] combined mixture particle
filters with AdaBoost, and Cai et al. [21] further improved
this method by applying independent particle sets to increase
multiple tracking robustness. Zhang et al. [22] designed a
graph-based formulation that allows an efficient global so-
lution in complex situations. Ess et al. [23] developed a
probabilistic graphical model to integrate different feature
modules. To reduce drift, data association can be optimized
by considering multiple possible associations over several
time steps in multihypothesis tracking [24], or by finding
best assignments in each time point to consider all possible
associations in joint probabilistic data association filters [25].
Several recently proposed methods also explicitly deal with
occlusions. Partial occlusion was addressed by a part-based
model [26], and full occlusion was handled with approaches
based on tracklet matching [27], visible and occluded part
segmentation [28], or an explicit occlusion model [22].

We introduce a new tracking-by-detection framework using
a one-pass decision DAG, which is able to run in real time and
address previously unaddressed issues, for example, tracking
occluded humans who are interacting with other humans or
objects.

C. 3-D-Based Human Detection and Tracking

Several human detection and tracking approaches based on
3-D sensing systems have also been discussed, which can be
categorized in terms of depth sensing technologies.

1) 3-D lasers: Spinello et al. [29] suggested a pedestrian
detection system using 3-D laser range data that involves
dividing a human into parts with different height levels
and learning a classifier for each part.

2) Stereo cameras: A dense stereo vision system [30]
was designed to detect pedestrians using HOG features
and Support Vector Machine (SVM) classifiers, and a
different system was suggested in [31] to use Kalman
filters with color features to track moving humans.

3) Time-of-flight cameras: A method using relational depth
similarity features [32] was proposed to detect humans
by comparing the degree of similarity of depth his-
tograms in local regions, and Xu et al. [33] developed
a method based on a depth split and merge strategy to
detect humans.

4) RGB-D cameras: Salas [34] designed a method that
combines appearance-based detection and blob tracking
to detect upright pedestrians in an indoor environment
with a static background, Xia et al. [35] created another
human detector by identifying human heads from depth
images acquired by a static camera, and Luber et al. [36]
detected pedestrians indoors using an off-line a priori
detector with on-line boosting and tracked humans with
a multihypothesis Kalman filter.

The work most closely related to ours was conducted by
Choi et al. [37], which proposed a particle filter-based method
to fuse observations from multiple independent detectors,
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Fig. 2. Installation of Asus Xtion Pro LIVE RGB-D camera on a Pioneer
3-DX robot.

and track humans with a Kinect camera on a mobile robot.
However, the detection in this research was based on a sliding
window technique over 2-D images, which is highly com-
putationally expensive. In addition, in human-robot teaming,
the ability to reidentify humans and discriminate in human-
human and human-object interaction scenarios is of significant
importance, as robots often must work with a group of
coworkers who can repeatedly leave and enter the robot’s view
and interact with each other and objects. We address all of
these issues which were not incorporated in the previous work.

III. Multiple Human Detection

As discussed above, our objective in this paper is to develop
a robust human perception system, with an ultimate goal of
allowing a mobile robot to efficiently interact and cooperate
with humans in human-robot teaming. Our human perception
system is based on the methodology of tracking-by-detection.
We begin the discussion by describing 3-D point cloud prepro-
cessing procedures, and a guided sample consensus approach
to identify and remove the ground and ceiling planes. Then,
we discuss our interleaved tracking-by-detection approach to
efficiently track humans in real time. Finally, we describe our
system’s implementation.

A. Camera Calibration and Pixel-Level Preprocessing

We use an Asus Xtion Pro LIVE color-depth camera to
acquire 3-D point clouds. The color-depth camera is installed
on top of a Pioneer 3-DX mobile robot, as depicted in Fig. 2.
Before acquiring 3-D point cloud data, the color-depth camera
must be calibrated to obtain its intrinsic parameters, such
as focal distances, distortion coefficients and image centers.
Because RGB-D cameras acquire color and depth information
separately, the camera must be calibrated to accurately map
between depth and color pixels. Then, a 3-D point cloud is
formed using the color and depth information. Fig. 3 depicts
a 3-D point cloud along with its color and depth images.

The raw color and depth images acquired by the Xtion
camera have a resolution of 640×480. To reduce computation

Fig. 3. Example 3-D point cloud with corresponding color and depth images,
which are obtained from the RGB-D camera on a mobile robot moving in a
hallway. (a) 3-D point cloud. (b) Color and depth images.

costs, each 3-D point cloud is first downsampled to a smaller
size by resizing color and depth images to 320×240. The Xtion
camera captures depth by projecting infrared (IR) patterns
on the scene and measuring their displacement. Due to the
limitations of this depth sensing technology, the depth data
is very noisy, and contains a significant amount of null or
missing values, which can result from the occlusion of the IR
camera’s point of view or the absorption of the IR light by
objects. The points without depth information and the noisy
points, i.e. those with few neighbors, are removed from the
3-D point cloud. Then, histogram equalization is applied to the
color pixels to remove the effect of sudden intensity changes
resulting from the auto white balancing technology.

B. Ground and Ceiling Plane Removal

We assume humans and robots exist and operate on the same
ground plane, and that a ceiling plane is viewable above them.
Since our color-depth camera is installed on a mobile robot at
a small tilt angle, these planes generally consist of a significant
amount of points that gradually change depth. The points on
the ground usually connect objects that are located on the floor.
In order to eliminate this connection, ground plane detection
and removal is an important operation to separate candidate
objects with similar depth values. Using the same technique,
the ceiling plane is likewise detected and removed to increase
processing speed.

To perform this task, we use a random sample consensus
(RANSAC) approach [38], which is an iterative method to
estimate the parameters of a mathematical model from a set
of observations that contains outliers. We also combine the
RANSAC algorithm with our prior knowledge: 1) the ground
and ceiling planes should be at the bottom and top of the 3-D
point cloud, and 2) each plane’s surface norm is a vertical
vector. Because the physical oscillations of the moving robot
cause slight changes in each plane’s location in the 3-D point
clouds, the plane’s parameters should be reestimated for each
point cloud. We also observe that, because there is only a slight
change between temporally adjacent point clouds, previous
parameters can be used to guide parameter estimation in the
current point cloud. Considering this knowledge, we introduce
a new extension of the standard RANSAC algorithm, shown
in Algorithm 1, that is very robust and efficient.
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Algorithm 1: Prior-knowledge guided RANSAC

Input : Imax, ε, εmax, Xt , and At−1

Output: At = [at, bt, ct, dt]

Extract a set of 3-D points belonging to the initial plane:1

C0 = {x ∈ Xt : dis(x, At−1) ≤ εmax};
for i ← 1 to Imax do2

Randomly select three points that are not on a line:3

{x1, x2, x3} ∈ Ci−1;
Estimate the parameters At

i with {x1, x2, x3};4

Extract a set of points belonging to the plane:5

Ci = {x ∈ Xt : dis(x, At
i) ≤ ε};

if |Ci| < |Ci−1| then Set Ci = Ci−1;6

end7

Estimate At that best fits all points in CImax
;8

return At
9

Fig. 4. Resulting 3-D point cloud with corresponding color and depth images
after removing ground and ceiling planes. (a) 3-D point cloud. (b) Color and
depth images.

Given distance tolerance ε, maximum tolerance εmax, maxi-
mum iterations Imax, and the plane’s previous parameters At−1

that are estimated from previous 3-D point cloud at t − 1,
Algorithm 1 estimates the parameters of the current plane,
that is, At = [at, bt, ct, dt], from prior knowledge and current
observations X. The parameter εmax is a predefined maximum
distance tolerance used to select search regions of the plane
in order to compensate for robot oscillations. Then, all points
satisfying dis(x, At) ≤ ε are defined to belong to the plane,
where the distance between a point to the plane in the 3-D
space is computed by

dis(x, A) =
|ax + by + cz + d|√

a2 + b2 + c2
. (1)

The initial parameters A0 of the ground and ceiling planes
are computed using the robot’s geometric information. Then,
all points in these planes are removed from the current
observation for further processing. As an example, given the
input point cloud as shown in Fig. 3, Algorithm 1 is applied
to detect the ground and ceiling planes, and the resulting point
cloud, with these planes removed, is illustrated in Fig. 4.

Fig. 5. Depth distribution of the point cloud in Fig. 4(a) with four extracted
DOIs. The density is estimated using the Parzen window method with
Gaussian kernels.

Fig. 6. Candidates detected from the 3-D point cloud in Fig. 4(a), using the
DOIs shown in Fig. 5. (a) DOI 1. (b) DOI 2. (c) DOI 3. (d) DOI 4.

C. Candidate Detection

Our human detection approach is based on a new concept
called DOI. Analogous to the concept of region of interest
(ROI), which is defined as a highly probable rectangular
region of object instances [39], a DOI is defined as a highly
probable interval of human or object instances in the 3-D
point cloud depth distribution. A DOI is identified by finding a
local maximum in the depth distribution and selecting a depth
interval centered at that maximum. The correctness of DOI is
supported by the observation that any object in a point cloud
includes a set of points with similar depth, or several spatially
adjacent sets. Each DOI has a high probability to contain
objects that we are interested in, which can correspond to
humans or nonhuman objects. Since 3-D point clouds captured
by color-depth sensors can contain multiple objects located at
various depth ranges, the depth distributions of different clouds
generally have different shapes with a different number of local
maximums. Because the underlying density form is therefore
unknown, a nonparametric method is required. To estimate the
depth distribution, a 3-D point cloud is first downsampled to a
small size (for example, 500 points). Then the nonparametric
Parzen window algorithm [40] is applied on the downsampled
cloud. Our estimate is based on a Gaussian kernel function
[40] with a bandwidth of 0.15 meters, which we tuned
through empirical testing. As an example, the estimated depth
distribution of the 3-D point cloud in Fig. 4 is depicted in
Fig. 5.

To efficiently generate candidates from a 3-D point cloud,
the following procedures are conducted in parallel at each
DOI.

1) Depth filtering: The 3-D point cloud is filtered along
the depth dimension by selecting all points within each
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Fig. 7. Computation of the height and centroid of an occluded object.
(a) Shows a raw 3-D point cloud. The height of an occluded object is defined
as the distance between the highest point to the ground, as shown by the
height of the bounding cube in (b). The object centroid is drawn with a red
dot in the center of the bounding cube in (b). When the object’s point cluster
is projected to a 2-D color image of size 96 × 64, the object is placed in
the center of the image according to its real size, instead of the blob size, as
shown in (c).

DOI, and a depth image is computed from the filtered
cloud.

2) Connected component detection: A binary mask is com-
puted from the depth image to indicate whether a depth
pixel is within each DOI. Then, connected components
are detected using a connectivity of eight. Each con-
nected component is then given a unique index.

3) Candidate generation: Each cluster of 3-D points, whose
depth pixels belong to the same connected component,
is extracted to form a candidate.

To reduce false negatives, depth values of all currently tracked
humans are fed back from the tracking to the detection module.
If a depth value being examined does not exist in the current
DOIs, a new DOI is created, centered on the depth value, and
the candidate generation process above is applied to the new
DOI to generate additional candidates. Using this DOI-based
candidate generation process drastically reduces the number
of candidates and avoids the need to scan the entire cloud,
greatly saving processing time in our real-time system.

To preserve the 3-D point clusters that contain only human
candidates, a cascade of detectors is used to reject candidates
that contain only nonhuman objects. In the detector cascade
framework [3], simple detectors are first applied to reject
the majority of candidates before more complex detection is
performed. A positive result from the first detector triggers
the evaluation with a second detector. Cascades of detectors
have been shown to greatly increase detection performance
by lowering the false positive ratio, while radically reducing
computation time [3]. Moreover, the detector cascade can
be applied in parallel on each candidate to further reduce
computation time. Thus, using a cascade of detectors not only
improves the accuracy of our system, but also makes it more
able to function in real time. In our system, we use a sequence
of heuristic detectors and a HOG-based detector to form a
detector cascade in order to reject most of the nonhuman
candidates. Our detector cascade includes the following.

1) Height-based detector: The height of a candidate point
cluster is defined as the distance between the point with
the largest height value and the ground plane, which can
be computed using (1). Fig. 7b illustrates the definition
of the height feature. A candidate is rejected if its height

is smaller than a min-height threshold, or larger than a
max-height threshold.

2) Size-based detector: The size of a candidate point cluster
can be estimated with: s(d) = n(d)/k(zDOI), where n(d)
is the number of points in candidate d, zDOI is the
average depth value of the DOI that contains d, and k(·)
is the conversion factor in units of points/m2, which is a
function of depth and is used to take into account visual
linear perspective, that is, an object contains more points
when it gets closer to the camera. A candidate is rejected
if its size is greater than a max-size threshold. However,
it should be noted that in order to allow for occlusion,
our system does not reject small-sized candidates.

3) Surface-normal-based detector: This detector is used to
reject planes, such as walls and desk surfaces. Given
three randomly selected points in a candidate point clus-
ter: {x1, x2, x3} ∈ d, a 3-D surface normal v = [x, y, z]
of the candidate can be computed by

v(d) = (x2 − x1) × (x3 − x1). (2)

If v(d) is in the x-z plane, that is, y ≈ 0, then the
candidate is detected as a vertical plane, for example, a
wall. If v(d) is along the y-coordinate, for example, x ≈
0 and y ≈ 0, then it is detected as a supporting plane,
for example, a table or desk top. The surface normal
of a candidate is computed multiple times with different
points, and majority voting is used for a robust decision.

4) HOG-based detector: The detector applies a linear SVM
and the HOG features, as proposed by Dalal and Triggs
[9]. Their recommended settings are also used for all
parameters except that our detection window has a size
of 96×64. The candidate point cluster is projected onto
a color image of size 96 × 64 to enable single-scale
scanning to save computation. It is desirable that the
color image contains the whole candidate, including the
parts that are occluded. When a candidate is partially
occluded, we set the distance between the candidate’s
highest pixel and the bottom of the projected color image
to be proportional to the candidate’s height, as illustrated
in Fig. 7. By using a height closer to the actual height
rather than the blob height we obtain a more reliable
detection result.

The parameters of the heuristic detectors are manually tuned
according to empirical observation and prior knowledge, while
the HOG-based detector requires a training process to learn
model parameters. The candidates that survive the detector
cascade are passed to the tracking module. The HOG features
of each candidate are also passed to the tracking module,
which are used to further distinguish humans and nonhuman
objects to allow for more robust and efficient tracking.

D. Multiple Human Tracking

In human-robot teaming, most tasks, such as human action
recognition and navigation among humans, require a robot to
perceive human trajectories. In these scenarios, single-frame
detection is insufficient and human tracking across multiple
consecutive frames becomes essential. In this paper, we im-
plement a decision DAG-based candidate handling algorithm
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Fig. 8. Illustration of our candidate handling decision DAG that efficiently integrates human-object classification, data association, and multiple target tracking.
This framework also simultaneously handles tracked humans, detected objects, and new humans and nonhuman objects, and performs human reidentification.

to simultaneously handle tracked humans, detected nonhuman
objects, and new humans and objects, and reidentify humans
who enter the camera’s view after leaving the camera’s view
for a period of time, as illustrated in Fig. 8. One key advantage
of our decision DAG-based algorithm is that it allows us to
divide the types of candidates into separate cases and only
apply the most computationally expensive techniques where
necessary, thus increasing the speed of our overall system to
achieve real-time performance.

1) Human-Object Classification: In order to further sep-
arate humans and nonhuman objects and explicitly address
partial occlusion, the poselet-based human detector [11], a
state-of-the-art body part-based detector, is applied in our
human-object classification module. Poselets are defined as
human parts that are highly clustered in both appearance and
configuration space. This detector separately classifies human
parts using trained linear SVMs with poselet features, and
combines their outputs in a max-margin framework. Although
this detector can alleviate the occlusion problem by relying
on the unoccluded parts to recognize a human, it is very
time consuming to compute poselet features. Because of the
time constraints of our real-time system and our desire to use
consumer-grade computation hardware, this key disadvantage
prevents us from simply applying this technique to every
candidate in all point cloud frames. As a result, a poselet-
based detector cannot be used as a part of the detector cascade
in our candidate detection module, and instead must be used
only where most necessary.

In order to use the poselet-based detector most effectively
for our real-time system, our decision DAG-based candidate
handling algorithm applies this technique only on a subset of
candidates. To achieve this goal, we first introduce the object
cache, which is defined as the set of nonhuman candidates.
Given the object cache, the poselet technique is used only on
the candidates that do not match with any tracked humans
or nonhuman objects in the cache. Thus, for each object,
including both humans and nonhuman objects, application of
the poselet-based classification is a one-time procedure, even
if the object stays in the robot’s view over a long time period,
across multiple frames.

The object cache is maintained in the following way. A new
candidate in the robot’s view, classified by the poselet-based
detector as a nonhuman object, is added to the object cache.

Alternatively, if a candidate is not new, that is, it matches
coarsely with an object in the cache, that object is replaced
by the candidate. If an object in the cache does not match
any candidate for a period of time, it is removed. It should
be noted that no tracking is performed over the nonhuman
objects in the object cache, and the object cache evolves by
replacing old objects with new ones. The object cache plays an
important role in improving the efficiency and accuracy of our
tracking module. It not only reduces the number of poselet-
based detection procedures to significantly reduce computation
time, but also provides negative instances to discriminatively
update human models during run-time for robust fine matching
of candidates with tracked humans, as discussed next.

2) Data Association: This module is applied to match
candidates with tracked humans or detected nonhuman objects
in the object cache, based on the assumption that at most
one candidate is matched with at most one human or detected
nonhuman object. Our data association process is divided into
coarse and fine matching phases.

a) Coarse Matching: Coarse matching between detected
candidates and tracked humans is based on position and
velocity information. Formally, the Euclidian distance in the
3-D space between a candidate d and a human t is first
computed by

dis(d, t) = ‖(ct + ċt�t) − cd‖ (3)

where cd and ct are the positions of d and t, respectively, ċt is
the velocity of the human, and �t is the time interval between
frames. If this distance is smaller than a predefined threshold
εct , then there is a coarse match between the candidate and
human. Because objects in our system are detected but not
tracked, their velocity information is not available, so only
position information is used to coarsely match a candidate and
object. Similarly, if the Euclidian distance ‖cd −co‖ < εco, the
candidate d and the nonhuman object o are coarsely matched,
where co is the position of the nonhuman object o, and εco is
a predetermined distance threshold.

b) Fine Matching: Fine matching is applied to further
match candidates with tracked humans, and also to reidentify
humans when they reenter the camera’s view.

We use color information to create an appearance model
for each tracked human, which is learned and updated in an
online fashion using an online AdaBoost algorithm for feature
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selection, as proposed by Grabner et al. [41]. We train a strong
classifier for each human t to determine whether a candidate
d matches a human, which is a linear combination of selectors

h
strong
t (d) = sgn

(
N∑
i=1

αih
sel
i (d)

)
(4)

where sgn is the signum function, N is the number of selectors
to form a strong classifier, and α is the weight for the selector
hsel, which chooses the weak classifier with the lowest error
from a pool of M weak learners. A weak learner hweak

represents a feature f (d) that is computed on the candidate
d. A color histogram in the RGB color space is used for our
features, and is computed from the candidate’s color image
that is projected from its 3-D point cluster, as shown in
Fig. 7(c). We use nearest neighbor classifiers, with a distance
function D, as our weak learners

hweak(d) = sgn(D(f (d), p) − D(f (d), n)) (5)

where p and n are cluster centers for positive and negative
instances. The weak learner is updated from a positive and
a negative instance in each learning process. Each positive
instance to the human-specified classifier h

strong
t is provided

by the tracked human t. Each negative instance is randomly
sampled from other tracked humans or nonhuman objects in
the object cache.

Our fine matching approach has several advantages. First, it
creates an adaptive human appearance model that provides a
natural way to adapt to human appearance changes caused by
occlusions and different body configurations. Moreover, our
matching approach is based on a discriminative classification
framework, which selects the most discriminative features to
distinguish a specific human from other tracked humans and
nonhuman objects in a more reliable and robust way. Finally,
our color histogram features are an accurate representation of
a candidate, since the background is masked out in our color
images by applying DOIs, as shown in Fig. 7(c). Together,
these advantages improve our system’s performance through
the reduction of errors.

3) Extended Kalman Filtering: Humans in the robot’s field
of view are tracked locally in our human tracking module,
that is, human positions and velocities are tracked relative to
the robot. Based on the assumption that humans and robots
move smoothly in the global coordinates, humans also move
smoothly in the local coordinates. The centroid of each human
is tracked in the 3-D space, using the extended Kalman filter
(EKF) [42]. EKF is able to track nonlinear movements with
a low computational complexity, making it suitable to address
nonlinear tracking tasks in real-time applications.

The following procedures for initialization, update and dele-
tion for the EKF process were integrated into our candidate
handling framework (Fig. 8).

a) Initialization: A new human tracker is created if a
candidate is detected as a human that is not currently tracked.
However, to address human reidentification tasks, when a non-
tracked human is detected, instead of immediately initializing
a new tracker, the deactivated trackers are first checked to
detect whether the human has already been observed. If the

TABLE I

Characteristics of Our Dataset with Varying Difficulties

Check Marks Indicate the Challenge Exists

human matches a previously tracked subject, the deactivated
tracker is reactivated instead, reidentifying the human.

b) Update: At each frame, EKF predicts each tracked
human’s current state, and corrects this estimated state using
the observation that is provided by the data association mod-
ule. Then, the updated estimate is used to predict the state for
the next frame. If a tracked human is not associated with any
candidate, the tracker is updated with the previous observation.

c) Termination: A human tracker instance only persists
for a predefined period of time without being associated by any
candidates. After this threshold is passed, it is automatically
terminated. However, in order to allow for recovering the
identity of a human who reenters the camera’s field of view
after leaving for a short period of time, the trackers are
terminated by deactivation instead of deletion.

E. Implementation

In the candidate detection module, the parameters of the
height-based detector are manually set; the min-height thresh-
old is set to 0.4 meters, and the max-height threshold is set to
2.3 meters. The max-size threshold in the size-based detector
is set to 3 meters2. Our HOG-based detector is modified from
the HOG implementation in [9]. Our detector is trained using
bootstrapping. We first train an initial detector with the H3-D
dataset [11], using all of the positive and a subset of the
negative samples. Then, we apply the initially trained detector
on samples of our newly created datasets, as described in
Section IV-B, and collect samples leading to false positives
and false negatives. Finally, we do a second round of training
by including these samples in the training set. In the multiple
human tracking module, we use the pretrained poselet-based
classifier, which is implemented as described by Bourdev et al.
[11]. The coarse matching threshold is set to be 1 meter for
humans and candidate pairs, and 0.5 meters for object and
candidate pairs. When performing fine matching with online
AdaBoost, we use N = 30 selectors that select color histogram
features from a feature pool of size M = 250. The EKF
termination threshold for human trackers is set to 5 minutes.

IV. Experimental Results

We performed experiments using our human perception
system that is implemented with a mixture of MATLAB and
C++ with the PCL library [43], without taking advantage of
GPU processing, on a laptop with an Intel i7 2.0GHz CPU
(quad core) and 4GB of memory (DDR3). We created a new
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dataset suitable for the task of multiple human detection and
tracking, consisting of 3-D point clouds obtained using an
RGB-D camera. Half of the samples in our dataset were used
to train the HOG-based detector in a bootstrapping fashion,
and half were used to evaluate our system’s performance.

A. Datasets

At the time of this paper’s publication, there is no publicly
available 3-D human detection and tracking dataset that is
collected with an RGB-D camera. Thus, we collected a large-
scale dataset to evaluate the performance of our human percep-
tion system. Our dataset was recorded with an Asus Xtion Pro
LIVE RGB-D camera in an indoor laboratory environment.
The camera was installed on a Pioneer 3-DX mobile robot,
as illustrated in Fig. 2, and a laptop was mounted on the
robot to record 3-D point cloud data. Because the problem of
following a target human at an appropriate and safe distance
is outside the scope of this paper, the robot was remotely
teleoperated by a human, who could only observe the robot’s
surrounding environment through the robot sensors, that is,
the operator could only perceive what the robot perceives.
The webcam on top of the RGB-D camera has a similar field
of view as the RGB-D camera, which allows the operator
to identify and track human subjects without interfering with
data recording. The PTZ camera was used to observe behind
the robot for safety purposes. The robot’s on-board PC was
used to control the robot and handle the webcam and PTZ
cameras. Although they were needed for conducting exper-
iments, it is noteworthy that the webcam and PTZ cameras
do not provide any information to our human perception
system, and thus are not pertinent to the essence of this
paper.

Our dataset considers three scenarios with increasing diffi-
culties. In Dataset 1, humans act like pedestrians with simple
(linear) trajectories. In Dataset 2, humans conduct the task
of lifting several humanoid robots and putting them away. In
Dataset 3, humans pick up an object, exchange it, and one
delivers the object from a laboratory down a hallway to an
office room, passing and interacting with other humans on the
way. The robot follows the human delivering the object during
the entire task. The statistics of our datasets are summarized in
Table I, with a breakdown of the increasing difficulty aspects.
Each sample in our dataset is a sequence of 3-D point clouds
that are saved as PCD [43] files with a frame rate of 30 FPS.
Each 3-D point cloud contains 307, 200 points, corresponding
to 640 × 480 color and depth images, and each point has six
values: its coordinates in the 3-D space and RGB values.

To establish ground truth, our dataset is manually annotated
using 2-D depth images as follows: First, a representative pixel
on a human in a depth image is manually selected to determine
the DOI that applies to the human. Using the proper DOI, we
mask out the background, leaving the pixels belonging to the
same human clustered together as a blob. Then, a bounding
box is manually added around each human blob to indicate its
x and y coordinates in the depth image. Finally, the bounding
box and the DOI are converted to a bounding cube in the
3-D space, which is used as ground truth, and the center of a
bounding cube is considered the centroid of a human.

B. Qualitative Analysis

We first analyze the tracking results from our human percep-
tion system to demonstrate its effectiveness and robustness in
handling different challenges in human detection and tracking
tasks. For each tracked human, a bounding cube with a
consistent shape is manually drawn in the 3-D point cloud,
according to the cube’s vertices that are output by our system.
Human identities are represented with different colors, that
is, the same human is represented with the same color in a
dataset. The tracking results are illustrated in Fig. 9.

Dataset 1: Humans act like pedestrians in Dataset 1; they
always have an upright pose and generally move with a linear
trajectory. It can be observed from Fig. 9(a) that nonoccluded
humans in Dataset 1 are detected and tracked perfectly by our
system. When a slight partial occlusion occurs, for example,
Fig. 9(a) (t4) and Fig. 9(a) (t7), humans are still detected,
but the accuracy of the bounding cube might decrease. How-
ever, when severe or full occlusion occurs, for example, in
Fig. 9(a) (t5), the occluded human cannot be detected, which
results in a false negative. Despite the fact that the mostly
or fully occluded human cannot be identified, the location of
the occluded human’s centroid is still updated by the EKF
algorithm (for a predefined period of time), using the obser-
vation from the previous time point. The advantage of this is
that after a human reappears in the camera’s field of view,
our system is able to coarsely match the human and continue
to use the same tracker to track the human, as shown in
Fig. 9(a) (t7), which both saves processing time and improves
accuracy.

Dataset 2: In this dataset, humans move with a complicated
but approximately linear trajectory, in which they switch po-
sitions as shown in Fig. 9(b) (t7–t9). Our EKF-based tracking
algorithm performs well in this situation. Humans also exhibit
a variety of body configurations in this dataset, for example,
crouching as shown in Fig. 9(b) (t2), and interacting with
objects, as illustrated in Fig. 9(b) (t7). In these situations,
humans can be detected using our detector cascade along
with the poselet-based detector, even with partial occlusions as
shown in Fig. 9(b) (t9). In some cases from Dataset 2, a false
positive is detected and incorrectly tracked, as indicated by the
magenta-colored bounding cube in Fig. 9(b) (t1–t6), which is
induced by the human-shape robot sitting on a big box in the
center. The other humanoid robot sitting on a small box is not
detected, as it is rejected by our height-based detector.

Dataset 3: Dataset 3 involves a variety of challenges, as
listed in Table I. First, because the robot is moving and humans
are tracked in the robot’s local coordinate system, human
trajectories are no longer linear. We observe that the EKF
algorithm still tracks humans with high accuracy in this case,
as shown in Fig. 9(c). Second, humans can leave the robot’s
field of view for a certain period of time. For example, the
robot loses the target when the tracked human goes through
the door and turns right, as shown in Fig. 9(c) (t5). Our
system addresses this problem; when the human reenters the
robot’s field of view, the human reidentification module, using
online human specific appearance models, is activated and
continues to track the human with the correct index, as shown
in Fig. 9(c) (t6). Third, humans perform very complicated
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Fig. 9. Experimental results of the proposed human perception system over our datasets. (a) Dataset 1: Humans move like pedestrians with linear trajectory.
(b) Dataset 2: Humans act with complicated body-configurations. (c) Dataset 3: A human performs a delivery task followed and observed by a moving robot.

actions, including human-object and human-human interac-
tions. For instance, a person is passing a humanoid robot to an-
other person in Fig. 9c (t2), and two persons are shaking hands
in Fig. 9(c) (t10). In most cases, the interacting humans are
separated into different candidates, as illustrated in Figs. 6(c)
and (d) for the hand-shaking interaction. However, when
interacting humans have very similar depth values (e.g., less
than 0.1 meters), they can be incorrectly extracted as a single
candidate, which can then be rejected by the size-based detec-
tor. This incorrect rejection would result in a false negative.

C. Quantitative Evaluation

We follow the CLEAR MOT metrics [44] to quantitatively
evaluate the performance of our multiple human perception
system, which consists of two scores: multiple object track-
ing precision (MOTP) and multiple object tracking accuracy
(MOTA). The MOTP distance indicates the error between the
tracking results and the actual target, and thus reflects the

TABLE II

Evaluation Results of Our 3-D-based Human Perception

System Using the CLEAR MOT Metrics

ability of the tracking module to estimate target positions and
keep consistent trajectories. The MOTA score combines the
errors that are made by the perception system, in terms of
false negatives (FN), false positives (FP), and the number of
identity switches (ID-SW), into a single accuracy metric. A
false negative occurs when a human is annotated in ground
truth, but not detected by the perception system. This usually
happens for persons that are severely occluded, or on the
boundary of the camera’s field of view. A false positive occurs
when the candidate that is detected as a human does not have
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a match with any annotated humans in ground truth. In our
system, this happens with the nonhuman objects that have a
similar height, size, shape and surface property to a human.
An identity switch occurs when a tracked human changes its
identity. This can happen when a new human enters the scene
who is similar in appearance to a human who has just left
the robot’s field of view, or when two humans with similar
appearances switch positions. Our human perception system
is evaluated using the metric threshold of 50 cm, as suggested
in [44]. The evaluation results are listed in Table II.

Examining our test results, several important observations
should be highlighted. First, our human perception system has
a very low (perfect) number of ID switches, which is one of
the most important properties of our tracking system, since
differentiating humans in human-robot teaming applications
is essential, especially when, for example, different human
coworkers can have distinct preferences and habits. Minimiz-
ing ID switch ratio is achieved by combining the following
concepts.

1) The background is masked out by the DOI information,
which results in a highly accurate human appearance
model.

2) An online algorithm is used to continuously update
appearance models in real time.

3) Human appearance models are trained discriminatively,
which helps maximize the difference between positive
and negative instances.

4) The difficult objects that survive the detector cascade are
saved in our object cache.

As negative examples to update human appearance models,
difficult objects are more representative than other easy objects
that are rejected by the cascade of detectors. Second, our
system also performs fairly well when localizing targets, in
terms of the MOTP scores. We discovered that occlusion
usually decreases the object localization ability of our system,
and we have greatly relieved this problem by centering a
human in a projected 2-D color image according to its real
height. Third, we achieve very good results with our most
complex and difficult dataset, Dataset 3. One reason for this
is that in a large number of frames, there is only one human in
the scene without any occlusions. In these cases, the human is
detected and tracked perfectly. Finally, our human perception
system does not perform as well with Dataset 2 as the other
sets, because the humanoid robot on the big box causes a
large number of false positives. Moreover, our system has the
highest false negative ratio on Dataset 2, due to the fact that
humans have the longest occlusion duration.

D. Comparison to 2-D Baseline

To provide a baseline comparison for the detection aspect of
our approach, the most widely used 2-D HOG-based detector
[9] was implemented on the same hardware. For this baseline,
the detector uses a sliding window paradigm and a sparse scan
with 800 windows [9]. For input to the baseline detector, color
images were converted from the point cloud data in Datasets
1–3. The baseline detection results are compared in Fig. 10.

Comparison of the 2-D baseline detector with our detection
results shows that the addition of depth information provides a

Fig. 10. Comparison of error ratios (i.e., FN and FP) between our 3-D-based
approach and 2-D baseline method of [9].

clear increase in accuracy. As discussed in Section III-C, this
is because depth information allows for accurate estimation
of a candidate’s height, size, and surface norm; this heuristic
information can be used by our cascade of detectors to greatly
reduce false positives by rejecting nonhuman candidates.
Depth information also greatly helps to reduce false negatives
by feeding DOI information from the tracking module to the
detection module to provide assistance locating humans in
a new observation. In addition, using the candidate’s height
helps to detect partially occluded humans, as shown in Fig. 7.

In obtaining the results for accuracy shown above, the 2-D
baseline detector yields a frame rate of 0.893 FPS. However,
detection is only a part of the entire perception system.
The additional tracking step would add additional nontrivial
time and further decrease the frame rate of any system into
which the baseline detector was incorporated. Because of this,
using a 2-D detector such as this baseline in a real-time
perception system would be impractical. Because the baseline
detector was less accurate and performed so slowly, we did
not undertake a comparison between our system and a full
system using a 2-D detection component.

In comparison, our complete system, including detection
and tracking, achieves a processing rate of 7–15 FPS, which
is suitable for real-time applications. Our processing rate is
improved using the following techniques.

1) Prior knowledge is used to guide the RANSAC algo-
rithm to efficiently detect ground and ceiling planes.

2) The detector cascade efficiently rejects the majority of
the candidates, which can be applied on multiple objects
in parallel to further save computation time.

3) Window scanning over entire images is avoided by
applying DOIs.

4) HOG features are computed with a single-scale scanning
over the projected 2-D color image that contains a
candidate blob.

5) Computed features in previous steps are reused in the
current step (e.g., the process to compute HOG features
reuses a candidate’s height and size features, and the
process to compute poselet features reuses HOG fea-
tures).

6) A decision DAG-based candidate handling framework
provides a one-pass process that efficiently combines
object-human classification, data association, and multi-
ple human tracking.

We observe that a larger number of clusters generally results in
more DOIs with more candidates, which typically need more
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time to process. Therefore, while our experiments were con-
ducted in an academic building and the environments were not
manipulated in any way to improve our system’s performance,
it is certainly possible to conceive of an extremely cluttered
environment that would negatively impact computation time.

V. Summary and Conclusion

In this paper, we presented a system for perceiving multiple
humans in three dimensions in real time using a color-depth
camera on a mobile robot. Our system consists of multiple,
integrated modules, where each module is designed to best
reduce computation requirements in order to achieve real-time
performance. We remove the ground and ceiling planes from
the 3-D point cloud input to disconnect object clusters and
reduce the data size. In our approach, we introduce the novel
concept of Depth of Interest and use it to identify candidates
for detection thereby avoiding the computationally expensive
sliding window paradigm of other approaches. To separate
humans from objects, we utilize a cascade of detectors in
which we intelligently reuse intermediary features in suc-
cessive detectors to reduce computation costs. We represent
our candidate tracking algorithm with a decision DAG, which
allows us to apply the most computationally expensive tech-
niques only where necessary to achieve best computational
performance. Our novel approach was demonstrated in three
scenarios of increasing complexity, with challenges including
occlusion, robot motion, nonupright humans, humans leaving
and reentering the field of view (that is, the reidentifica-
tion challenge), human-object and human-human interaction.
Evaluation of the system’s performance using CLEAR MOT
metrics showed both high accuracy and precision. The im-
plementation achieved a processing rate of 7–15 FPS, which
is viable for real-time applications. Our results showed that
through use of depth information and modern techniques in
some new ways, it is possible to use a color-depth camera to
create an accurate, robust system of real-time, 3-D perception
of multiple humans by a mobile robot.
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[31] R. Muñoz Salinas, E. Aguirre, and M. Garcı́a-Silvente, “People detection
and tracking using stereo vision and color,” J. Image Vision Comput.,
vol. 25, no. 6, pp. 995–1007, Jun. 2007.

[32] S. Ikemura and H. Fujiyoshi, “Real-time human detection using rela-
tional depth similarity features,” in Proc. Asian Conf. Comput. vision,
2011, pp. 25–38.

[33] F. Xu and K. Fujimura, “Human detection using depth and gray images,”
in Proc. IEEE Conf. Adv. Video Signal Based Surveillance, 2003,
pp. 115–121.

[34] J. Salas and C. Tomasi, “People detection using color and depth images,”
in Proc. Mex. Conf. Pattern Recognit., 2011, pp. 127–135.

[35] L. Xia, C.-C. Chen, and J. Aggarwal, “Human detection using depth
information by Kinect,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognit. Workshops, 2011, pp. 15–22.



ZHANG et al.: REAL-TIME MULTIPLE HUMAN PERCEPTION WITH COLOR-DEPTH CAMERAS ON A MOBILE ROBOT 1441

[36] M. Luber, L. Spinello, and K. O. Arras, “People tracking in RGB-D
data with on-line boosted target models,” in Proc. IEEE Int. Conf. Intell.
Robots Syst., 2011, pp. 3844–3849.

[37] W. Choi, C. Pantofaru, and S. Savarese, “Detecting and tracking people
using an RGB-D camera via multiple detector fusion,” in Proc. IEEE
Int. Conf. Comput. Vision Workshops, 2011, pp. 1076–1083.

[38] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
Jun. 1981.

[39] G. Kim and A. Torralba, “Unsupervised detection of regions of interest
using iterative link analysis,” in Proc. Neural Inform. Process. Syst.,
2009, pp. 961–969.

[40] E. Parzen, “On estimation of a probability density function and mode,”
Ann. Math. Statist., vol. 33, no. 3, pp. 1065–1076, 1962.

[41] H. Grabner and H. Bischof, “On-line boosting and vision,” in Proc.
IEEE Conf. Comput. Vision Pattern Recognit., 2006, pp. 260–267.

[42] G. Einicke and L. White, “Robust extended Kalman filtering,” IEEE
Trans. Signal Process., vol. 47, no. 9, pp. 2596–2599, Sep. 1999.

[43] R. Rusu and S. Cousins, “3-D is here: Point cloud library (PCL),” in
Proc. IEEE Int. Conf. Robot. Automat., 2011, pp. 1–4.

[44] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: The CLEAR MOT metrics,” J. Image Video Process.,
vol. 2008, pp. 1:1–1:10, Feb. 2008.

Hao Zhang (S’09) received the B.S. degree in
electrical engineering from the University of Science
and Technology of China, Anhui, China, in 2006,
and the M.S. degree in electrical engineering from
the Chinese Academy of Sciences, Shanghai, China,
in 2009. He is currently pursuing the Ph.D. degree
in computer science at the University of Tennessee,
Tennessee, USA.

His current research interests include human per-
ception, human activity recognition, human-robot
teaming, 3-D machine vision, and machine learning.

Christopher Reardon (S’11) received the B.S. de-
gree in computer science from Berry College, Geor-
gia, USA, in 2002, and the M.S. degree in computer
science from the University of Tennessee, Tennessee,
USA, in 2008. He is currently pursuing the Ph.D.
degree in computer science at the University of
Tennessee.

He had been a Programmer Analyst at the Uni-
versity of Tennessee for eight years. His current
research interests include human-robot interaction,
human-robot teams, and machine learning.

Lynne E. Parker (S’92–M’95–SM’05–F’10) re-
ceived the Ph.D. degree in computer science from
the Massachusetts Institute of Technology, Boston,
USA, in 1994.

She is currently a Professor and Associate Head in
the Department of Electrical Engineering and Com-
puter Science, and the Director of the Distributed
Intelligence Laboratory, University of Tennessee,
Knoxville, Tennessee, USA.

Dr. Parker is the Editor-in-Chief of the Conference
Editorial Board of the International Conference on

Robotics and Automation, and is an elected Administrative Committee mem-
ber of the IEEE Robotics and Automation Society. She previously served as
the Editor of the IEEE Transactions on Robotics for several years, and
is on the Editorial Board of IEEE Intelligent Systems and the Swarm
Intelligence Journal. She was a recipient of the PECASE (U. S. Presidential
Early Career Award for Scientists and Engineers) in 2000 for her research in
multirobot systems.


