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Abstract—In this paper, the well-known Stagewise Additive1

Modeling using a Multi-class Exponential (SAMME) boosting2

algorithm is extended to address problems where there exists a3

natural order in the targets using a cost-sensitive approach. The4

proposed ensemble model uses as a base classifier an Extreme5

Learning Machine (ELM) model, (with the Gaussian kernel and6

the additional regularization parameter). The closed form of the7

derived Weighted Least Squares Problem (WLSP) is provided8

and it is employed to estimate analytically the parameters9

connecting the hidden layer to the output layer at each iteration10

of the boosting algorithm. Compared to the state-of-the-art11

boosting algorithms, in particular those using ELM as base12

classifier, the suggested technique doesn’t require the generation13

of a new training dataset at each iteration. The adoption of14

the weighted least squares formulation of the problem has been15

presented as an unbiased and alternative approach to the already16

existing ELM boosting techniques. Moreover, the addition of a17

cost model for weighting the patterns, according to the order18

of the targets, extends further the classifier to tackle ordinal19

regression problems. The proposed method has been validated20

by an experimental study with comparison to already existing21

ensemble methods and ELM techniques for ordinal regression,22

showing competitive results.23

Index Terms—Ordinal Regression, Boosting, SAMME algo-24

rithm, Extreme Learning Machine, Neural Networks25

I. INTRODUCTION26

Ordinal regression resides between multi-classification and27

standard regression in the area of supervised learning. In an28

ordinal regression problem, the patterns are labeled with a set29

of discrete ranks [1], [2], [3], [4]. It is commonly formulated30

as a multi-class problem with ordinal constraints [5], [6]. The31

goal of learning in ordinal regression is to find a model based32

on training set which can predict the rank of the patterns in33

the test set. Several approaches for ordinal regression were34

proposed in recent years from a machine learning perspective.35

Vast majority of the algorithms are based on the idea of36

transforming the ordinal scales into numeric values, and then37

solving the problem as a standard regression problem [5], [7],38

[8], [9], [10]. This kind of algorithms are called threshold39

models. Two examples of threshold algorithms are the support40

vector based formulations [11], [12] and the Gaussian Process41

for Ordinal Regression (GPOR) [13] method.42

In the field of Extreme Learning Machines (ELMs), Deng43

et al. [14] proposed a modification in the encoding scheme44

to adapt the standard ELM algorithm to the ordinal scenario.45

They considered three methodologies with its corresponding46
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encoding schemes: the single multi-output classifier approach,47

the multiple binary-classifications with one-against-all decom-48

position method and the one-against-one method. After that,49

the models parameters are trained using the corresponding50

encoding framework. From another perspective, Becerra et al.51

[15] proposed an evolutionary approach based on the Evolu-52

tionary ELM (E-ELM) [16] to address the ordinal regression53

problem. The authors relied on the assumption that the ordinal54

structure of the set of class labels is also reflected in the55

topology of the instance space. Under this idea, Becerra et56

al. [15] proposed an evolutionary algorithm in two stages.57

The first stage makes a projection of the ordinal structure of58

the feature space. Next, an evolutionary algorithm tunes the59

first projection working with the misclassified patterns near60

the border of their right class.61

On the other hand, ensembles are a promising machine62

learning research field, where several models are combined63

to generate a final output [17], [18], [19]. Two factors must64

be considered in order to enhance the generalization per-65

formance of a neural network ensemble. One is diversity66

and the other one is the performance of the models that67

comprise the ensemble. A trade-off study between the optimal68

measures of diversity and performance is available in [18]. The69

approaches for designing neural network ensembles can be70

divided in two groups: the first one iterates between different71

architectures and parameters settings while the second one72

gets diverse models by training them on different training73

sets. Some approaches on this idea are bagging, boosting or74

cross-validation [20], [21], [22]. Both groups of methodologies75

directly generate a group of neural networks which are error76

uncorrelated.77

For ordinal regression problems, there are some ensemble-78

related approaches. The main idea of these approaches is79

to transform the classification problem into a nested binary80

classification one, and then combine the resulting classifier81

predictions to obtain the final ensemble model. For example,82

Frank and Hall [23] proposed a general algorithm that enables83

binary classifiers to make use of order information in the84

targets, using as base binary classifier a tree model. Waegeman85

and Boullart [24] proposed an enhanced method based on86

an ensemble of Support Vector Machines (SVMs). In their87

proposal, each binary classifier is trained with specific weights88

for each pattern of the training set.89

Recently, two neural network threshold ensemble models for90

ordinal regression have been proposed in [10], [25]. For the91

first ensemble method, the thresholds are fixed a priori and92

are not modified during training. The second one considers93

the thresholds of each member of the ensemble as free94

parameters, allowing their modification during the training95
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process. This is achieved through a reformulation of the1

tunable thresholds to avoid the definition of constraints in the2

ordinal regression problem. During training diversity, existing3

in the different projections generated by each member, is4

taken into account for the parameter updating according to the5

Negative Correlation Learning (NCL) framework [26], [27].6

In the NCL framework, an ensemble of M neural networks7

are trained in parallel using gradient descent techniques. The8

error function for each neural network, in addition to the usual9

squared error term, contains a penalty term proportional to the10

correlation of the network projections with those of all the11

other networks. The ordinal thresholds ensemble models of12

[10], [25] were validated using an economic dataset and real13

benchmark ordinal datasets14

From another point of view, Perez-Ortiz et al. [28] proposed15

a projection-based ensemble model where every single model16

is trained in order to distinguish between one given class (j)17

and all the remaining ones, while grouping them in those18

classes with a rank lower than j, and those with a rank19

higher than j. Actually, the proposal could be considered as20

a reformulation of the well-known one-versus-all scheme. In21

the study, the base algorithm for the ensemble could be any22

threshold (or even probabilistic) model.23

From a boosting perspective, two algorithms (ORBoost24

and AdaBoost.OR) [29], [30] were proposed for the ordinal25

scenario. ORBoost is a thresholded ensemble model for or-26

dinal regression which consists of a weighted ensemble of27

confidence functions and an ordered vector of thresholds. In28

[29], the authors also derived novel large margin bounds of29

common error functions, such as the classification error and30

the absolute error. Apart from this boosting approach based31

on binary confidence functions, the same authors proposed32

an extension of the well-known AdaBoost using the reverse33

technique to directly improve the performance of existing cost-34

sensitive ordinal ranking algorithms, AdaBoost.OR [30].35

In this paper, the Stagewise Additive Modeling using a36

Multi-class Exponential (SAMME) boosting algorithm [31] is37

extended to address ordinal problems. The SAMME model38

is an alternative approach to the multi class boosting algo-39

rithm called AdaBoost.MH [32]. The AdaBoost.MH algorithm40

addresses the multi class problem performing J one-against-41

all classifications, where J is the number of classes, while42

SAMME performs directly the J class classification problem.43

SAMME only needs weak classifiers better than random guess44

(e.g. correct probability larger than 1/J), rather than better than45

1/2 as the two-class AdaBoost requires.46

The proposed ensemble model uses as a base classifier an47

Extreme Learning Machine (ELM) [33] model. Concretely, in48

this work the Gaussian kernel version of the ELM with the49

regularization parameter has been considered. The approach50

integrates the advantages of variable weighting and the speed51

of ELM. In each iteration of the SAMME algorithm, non-52

negative weights are assigned to different time steps of the53

boosting process, reflecting the importance of each pattern in54

each interval. The parameters corresponding to the linear part55

of the model are analytically determined in each iteration ac-56

cording to the closed form of the Weighted Least Squares Error57

(WLSE). Traditionally, the state-of-the-art boosting algorithms58

using ELM as base classifier generate a new training subset59

at each iteration. This task is unnecessary if the closed form60

of the weighted least squares problems is adopted.61

Summarizing, the main contributions of this paper are:62

• The adaptation of the multi-class SAMME algorithm63

to the ordinal scenario considering a cost-sensitive ap-64

proach.65

• The use of a ELM model with Gaussian kernel and66

the regularization parameter as base classifier (for its67

competitive trade-off between efficiency and accuracy).68

• The WLS closed-form solution of the error function69

was considered to estimate the linear parameters of the70

individuals in the final ensemble model. This avoids to71

generate M different sub-datasets, where M is the size72

of the ensemble, differently from what has been done73

traditionally in the ELM community [34], [35], [36].74

The remainder of the paper is organised as follows: a brief75

analysis of the SAMME algorithm for multi-class classifi-76

cation is given in Section II. Section III describes the cost-77

sensitive ensemble model proposed and Section IV draws the78

way to estimate analytically the parameters of the ELM classi-79

fier based on the WLSE. Section V presents the experimental80

framework while the results are discussed in Section VI.81

Finally, Section VII summarises the achievements and outlines82

some future developments of the proposed methodology.83

II. MULTI-CLASS ADABOOST84

In this paper, the so-called Stagewise Additive Modeling85

using a Multi-class Exponential loss function (SAMME) [31],86

multi-class version of the AdaBoost method, is adopted.87

SAMME directly handles the J-class problem by building88

a single J-class classifier, instead of J binary ones. Zhu et89

al. [31] proves that the solution of SAMME is consistent90

with the Bayes classification rule, so it is optimal in mini-91

mizing the misclassification error. Given a training set D =92

{X , C} = {xn, cn}Nn=1, where xn = (x1n, x
2
n, . . . , x

K
n ) ∈ RK93

and cn ∈ {1 . . . J} ⊂ N is the n-th input pattern and its94

corresponding target, the goal is to find a regression function95

f : RK → RJ , i.e., f(x) = (f1(x), . . . , fJ(x)) such that96

minimizes the following error function:97

min
f(x)

N∑
n=1

L(yn, f(xn)) (1)

s.t f1(xn) + . . .+ fJ(xn) = 0, ∀n = 1, . . . , N

where98

L(yn, f(xn)) = exp
(
−1/J(y1nf1(xn) + . . .+ yJnfJ(xn))

)
= exp

(
−1/J yTn f(xn)

)
,

is the exponential loss function for the n-th pattern and99

yn = (y1n, . . . , y
J
n), (2)

is the J-dimensional vector, encoding of the target cn, defined100

for all j = 1, . . . J as101

yjn =

{
1 if cn = j,

− 1
J−1 if cn 6= j.

(3)
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SAMME Algorithm:
Require: Training dataset (D)
Require: Size of the ensemble (M )
Ensure: Ensemble model

1: w(1)
n ← 1/N, ∀n = 1, . . . , N {Initialization of the patterns weights}

2: Initialization of the parameters of the ensemble model
3: for m = 1, . . . ,M do
4: Fit a classifier to the training set using weights w(m)

n

5: e(m) ←
∑N

n=1 w
(m)
n I(o(m)(xn) 6= cn)/

∑N
n=1 w

(m)
n {Computation of the error of the weighted ELM model}

6: α(m) ← log 1−e(m)

e(m) + log(J − 1)

7: w
(m+1)
n ← w

(m)
n exp(α(m)I(o(m)(xn) 6= cn)),∀n = 1, . . . , N {Updating the weights}

8: w
(m+1)
n ← w

(m+1)
n /

∑N
n=1 w

(m+1)
n , ∀n = 1, . . . , N {Normalization of the weights}

9: end for
10: Output: C(x) = argmax

j

∑M
m=1 α

(m)I(o(m)(x) = j)

11: return Ensemble model

Fig. 1: SAMME training algorithm framework

The symmetric constraint f1(xn) + . . . + fJ(xn) = 0 is1

included to guarantee the unicity of the solution f , since2

adding a constant to all fj(xn) will give the same loss as3 ∑J
j=1 y

j
n = 0 for every n ∈ {1, ..., N}. As proved in [31]4

the formulation of Problem 1 is consistent with the Bayes5

classification rule.6

Fig. 1 describes the algorithmic flow of the SAMME7

algorithm, where w
(m)
n is the weight of the n-th pattern, at8

the m-th iteration of the ensemble model, and o(m)(xn) is9

the index of the maximum component of the corresponding10

predicted values11

o(m)(xn) = arg max f (m)(xn), (4)

with f (m)(xn) the m-th classifier, I(·) is the indicator function12

(I(x) = 0 if x is false, 1 otherwise) and C(x) is the class13

predicted by the ensemble model for the test pattern x.14

From Fig. 1, it is possible to recognise which is the main15

difference between SAMME and two-class AdaBoost. This16

difference resides in Step 6 of Fig. 1. A further log(J−1) term17

is added to guarantee the positiveness of the exponent α(m)
18

(and hence the increasing of the corresponding weight for the19

misclassified pattern) when the weighted error e(m) < (J−1)/J,20

at each iteration m of the ensemble model. In the case of21

J = 2, the SAMME algorithm is equivalent to the original22

two-class AdaBoost because log(J − 1) = 0.23

III. COST SENSITIVE ADABOOST FOR ORDINAL24

REGRESSION25

In ordinal regression problems exists an order relation26

between labels, such as C1 ≺ C2 ≺ . . . CJ , where ≺ denotes27

the given order between different ranks. To be compliant28

with the previous notation, a bijection between the labels29

set {Cj}Jj=1 and integer values {1, . . . , J} is established, that30

maintains the order, such as Cj ↔ j.31

Based on the approach of [37], designed to tackle combi-32

natorial and imbalanced datasets with a cost-sensitive boost-33

ing classifier, a cost model that encodes the penalty of the34

misclassified patterns for ordinal regression problems is intro-35

duced in the ensemble model here proposed. The cost matrix36

K ∈ RJ ×RJ used to encode the penalty of the misclassified37

patterns is the Absolute cost matrix reported in Table I, for38

the particular case of a 5-class classification problem, where39

the element at position (i, j) represents the cost of classifying40

a pattern of class i as pattern of class j 1.41

TABLE I: Example of different cost matrices.

Zero-one Absolute cost Quadratic cost
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0



0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0




0 1 4 9 16
1 0 1 4 9
4 1 0 1 4
9 4 1 0 1
16 9 4 1 0



Three cost-sensitive variants of the SAMME algorithm42

are provided. To guarantee the equivalence to the stagewise43

additive modeling three different loss functions are used44

1) L1(yn, f(xn)) = κn exp(−1/J yTn f(xn)),45

2) L2(yn, f(xn)) = exp(−κn/J yTn f(xn)),46

3) L3(yn, f(xn)) = κn exp(−κn/J yTn f(xn)),47

where κn represents the cost of misclassifying the n-th pattern.48

Each formulation affect the update rule of the error estimation49

and/or of the pattern weights at the m-th iteration of the50

ensemble model (where the weights used in the following51

iteration are determined). In particular52

1) e(m) ←
∑N
n=1 κ

(m)
n w

(m)
n I(o(m)(xn) 6= cn)∑N

n=1 κ
(m)
n w

(m)
n

,

2) w
(m+1)
n ← w(m)

n exp(κ(m)
n α(m)I(o(m)(xn) 6= cn)),

3) e(m) ←
∑N
n=1 κ

(m)
n w

(m)
n I(o(m)(xn) 6= cn)∑N

n=1 κ
(m)
n w

(m)
n

,

w
(m+1)
n ← w(m)

n exp(κ(m)
n α(m)I(o(m)(xn) 6= cn)),

where53

κ(m)
n :=

(kcn,o(m)(xn) + 1)

J
, (5)

1Please note that all the cost matrices in Table I are symmetric. It is
important also to point out that asymmetric cost matrices are often encountered
in practical applications as proposed in [38].
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with kcn,o(m)(xn) the (cn, o
(m)(xn))-element of the cost ma-1

trix, hence the cost of misclassifying pattern xn of class cn as2

pattern of the class o(m)(xn); J is introduced for robustness3

as normalization factor and 1 is added to avoid zeroing the4

equation. If compared with [37], where only one cost value is5

assigned to the misclassification of each pattern, the proposed6

model includes a cost schema, κ(m)
n , whose values depend on7

the prediction of the m-th model.8

For the details of the proof of equivalence with the stagewise9

additive modeling please refer to [31].10

IV. WEIGHTED LEAST SQUARES ESTIMATION FOR11

EXTREME LEARNING MACHINE12

Extreme Learning Machine (ELM) is an efficient algorithm13

that determines the output weights of a Single Layer Feedfor-14

ward Neural Network (SLFNN) using an analytical solution15

instead of the standard gradient descent algorithm [39]. ELM16

have been used to solve classification and regression problems17

in several domains ranging from computer vision [40], credit18

risk evaluation [41] or bioinformatics [42].19

Traditionally, for a SLFNN, all the parameters for the20

different layers need to be tuned and there is a dependency21

among the different layers. The gradient descent algorithm is22

slow and is prone to converge to local minima. Furthermore, to23

achieve good generalization performance several iterative steps24

are necessary [33], [43], [44]. The ELM scheme proposed by25

Huang et. al. [43] overcomes these problems by randomly as-26

signing weights to the input layers and analytically computing27

the weights for the output layer using a simple generalized28

inverse operation. The ELM framework has shown comparable29

classification performance, and faster run times in comparison30

to support vector machines [45], [46].31

Let’s note as vs = (vs1, vs2, . . . , vsK) the weight vector32

connecting the input nodes to the s-th basis function, for33

s = 1, 2, . . . , S and with βj = (βj1, . . . , β
j
S) the weight vector34

connecting the basis functions to the j-th output node for35

j = 1, . . . , J .36

During the training process, ELM determines the parameters37

βj , for all j values, by minimizing the Least Squared Error38

(LSE) function:39

LSE =

N∑
n=1

J∑
j=1

(fj(xn)− yjn)2, (6)

where fj(xn) is the estimated output corresponding to the n-th40

input pattern and the j-th class. It is defined as:41

fj(xn) =

S∑
s=1

βjsφ(xn; vs), n ∈ {1, . . . , N}, (7)

where φ(xn; vs) is the activation function. According to [47]42

the concurrent minimization of the training error and the43

norm of the weight parameters, allows better generalization44

performance for the network. Hence the minimization problem45

has the following form46

min
β∈RS×RJ

(
‖Hβ −Y‖2, ‖β‖

)
(8)

where ‖·‖ is the L2 norm, H is the hidden layer output matrix
of the SLFN:

H = (h1,h2, . . . ,hS) =

=

 φ1(x1; v1) . . . φS(x1; vS)
. . . . . . . . .

φ1(xN ; v1) . . . φS(xN ; vS)

 ∈ RN × RS (9)

Y = (y1,y2, . . . ,yN )T ∈ RN × RJ , (10)

and47

β = (β1,β2, . . . ,βJ) ∈ RS × RJ . (11)

The ELM algorithm starts choosing the activation function48

φ(x,v) and the number of basis functions S. Generally, the49

sigmoidal function is the one selected in the ELM framework50

although other types of basis functions could be also consid-51

ered [48], [49]. In the first step, arbitrary weights are assigned52

to the input weight vectors vs. The problem of minimizing53

the training error reduces to solve the linear system54

Hβ = Y. (12)

Therefore the output weights β are approximated by the55

Moore-Penrose generalized inverse [43], [44], to guarantee56

better generalization performance [50],57

β̂ = H†Y, (13)

where

H† =

{
HT

(
I
C + HHT

)−1
for N < S,(

I
C + HTH

)−1
HT otherwise,

(14)

and C ∈ R is a user-specified parameter that promotes58

generalization performance.59

Traditionally Boosting algorithms proceed by continuously60

minimizing the Weighted Least Square Error (WLSE) between61

the estimated outputs and its true target. In the field of ELM,62

several adaptations of the original AdaBoost algorithm have63

been proposed for regression and classification problems [34],64

[35], [36]. These approaches use the AdaBoost algorithm to65

generate M training subsets from the training set, and then66

train one ELM regressor/classifier for each of training subsets,67

hence M regressors/classifiers are finally obtained.68

In this work, the weights distribution is employed to directly69

estimate the β parameters instead of using it to generate M70

different sub-datasets. The generation of these M sub-datasets71

is unnecessary if the WLSE is adopted. Therefore, the goal is72

to find the parameter matrix β which minimizes the WLSE73

for all n patterns in the training set with weight wn, i.e.:74

WLSE =

N∑
n=1

J∑
j=1

wn(fj(xn)− yjn)2. (15)

As before, to improve the generalization performance, the75

norm of the weights need to be minimized concurrently.76

Therefore the problem can be formulated as77

min
β∈RS×RJ

(
(Hβ −Y)TW(Hβ −Y), ‖β‖

)
(16)
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AdaBoost(ELM) Algorithm:
Require: Training dataset (D)
Require: Size of the ensemble (M )
Require: Regularization Parameter (C)
Require: Width Gaussian Kernel (k)
Ensure: ELM Ensemble model

1: w(1)
n ← 1/N, ∀n = 1, . . . , N {Initialization of the patterns weights}

2: Estimation of ΩELM

3: Initialization of the parameters of the ensemble model
4: for m = 1, . . . ,M do
5: f (m)(x) := K(x)T

(
I
C
+ W(m)ΩELM

)−1

W(m)Y {Computation of the kernelized output function}
6: e(m) ←

∑N
n=1 w

(m)
n I(o(m)(xn) 6= cn)/

∑N
n=1 w

(m)
n {Computation of the error of the weighted ELM model}

7: α(m) ← log 1−e(m)

e(m) + log(J − 1)

8: w
(m+1)
n ← w

(m)
n exp(α(m)I(o(m)(xn) 6= cn)),∀n = 1, . . . , N {Updating of the weights}

9: w
(m+1)
n ← w

(m+1)
n /

∑N
n=1 w

(m+1)
n , ∀n = 1, . . . , N {Normalization of the weights}

10: end for
11: Output: C(x) = argmax

j

∑M
m=1 α

(m)I(o(m)(x) = j)

12: return Ensemble model

Fig. 2: AdaBoost(ELM) training algorithm framework

Fig. 3: Graphical illustration of the AdaBoost(ELM)

where W is a diagonal matrix of dimension N ×N defined1

as:2

W =


w1 0 . . . 0
0 w2 . . . 0
. . . . . . . . . . . .
0 . . . 0 wN

 ∈ RN × RN . (17)

The optimal β value is computed as critical point of the first
order derivative of the weighted error function, hence solution
of the following linear system

∂

∂β

[
(Hβ −Y)TW(Hβ −Y)

]
= 0

∂

∂β

[
(βTHTWHβ − βTHTWY −YTWHβ+

+YTWY)
]

= 0

(HTWHβ)T + βTHTWH− (HTWY)T −YTWH = 0

2βTHTWH− 2YTWH = 0.

Finally, the weighted least squares solution can be approx-3

imate by the generalized form:4

β̂ =

{
HT

(
I
C + WHHT

)−1
WY for N < S,(

I
C + HTWH

)−1
HTWY otherwise.

(18)

The output function of the m-th ELM classifier is defined
as (just for the case N < S)

f (m)(x) = h(x)β̂

= h(x)HT

(
I

C
+ WHHT

)−1
WY, (19)

where h(x) is a mapping function that corresponds to the
basis functions outputs in the neural network literature or it is
unknown to users in the kernel machines literature. Therefore,
the output function can be kernelized, as suggested in [44], as

f (m)(x) = K(x)T
(

I

C
+ WΩELM

)−1
WY, (20)
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where K(x) : RK → RN is the vector of kernel functions1

K(x)T = [K(x,x1), . . . ,K(x,xN )]. The Gaussian kernel2

function here considered is3

K(x,xi) = exp(−k||x− xi||2), i = 1, . . . , N (21)

where k ∈ R is the kernel parameter. Similarly the kernel4

matrix ΩELM = [Ωi,j ]i,j=1,...,N is defined element by element5

as6

Ωi,j = K(xi,xj). (22)

The algorithm proposed is named AdaBoost based on ELM7

(AdaBoost(ELM)) and is described in Fig. 2 and Fig. 3.8

To tackle Ordinal Regression problems the AdaBoost(ELM)9

algorithm has been extended to include the cost model intro-10

duced in Section III. In particular three new algorithms are11

generated, namely AdaBoost for Ordinal Regression based12

on ELM and Cost model i (AdaBoost(ELM).ORC[i]), with13

i = 1, 2, 3. They differ from the algorithm in Figure 2 in the14

update schema of the error estimation and/or of the patterns15

weights. In particular the following modifications apply16

• AdaBoost(ELM).ORC1:

6 : e(m) ←
∑N
n=1 κ

(m)
n w

(m)
n I(o(m)(xn) 6= cn)∑N

n=1 κ
(m)
n w

(m)
n

• AdaBoost(ELM).ORC2:

8 : w(m+1)
n ← w(m)

n exp(κ(m)
n α(m)I(o(m)(xn) 6= cn))

∀n = 1, . . . , N

• AdaBoost(ELM).ORC3:

6 : e(m) ←
∑N
n=1 κ

(m)
n w

(m)
n I(o(m)(xn) 6= cn)∑N

n=1 κ
(m)
n w

(m)
n

8 : w(m+1)
n ← w(m)

n exp(κ(m)
n α(m)I(o(m)(xn) 6= cn))

∀n = 1, . . . , N

where κ
(m)
n is the cost factor computed as described in17

Section III.18

V. EXPERIMENTAL FRAMEWORK19

In this section, the experimental study performed to validate20

the new algorithms is presented. In Section V-A details of the21

datasets selected for the experimentation are provided. Section22

V-B gives the measures employed to evaluate the performance23

of the algorithms. Instead, Section V-C is dedicated to a de-24

scription of the algorithms chosen for the comparison and their25

relevant parameters. Finally, the description of the statistical26

tests used to validate the obtained results (see Section V-D) is27

provided.28

A. Ordinal regression datasets29

Sixteen datasets have been selected from the UCI [51] and30

the mldata.org repositories and one synthetic dataset (the toy31

dataset) has been included in the test sets. The latter dataset32

was created as suggested in [52]: 300 example patterns x =33

(x1, x2) were generated uniformly at random in the unit square34

[0, 1] × [0, 1] ⊂ R2. To each pattern a class y from the set35

{C1, C2, C3, C4, C5} has been assigned according to:36

O(y) = min{j : θj−1 < 10(x1 − 0.5)(x2 − 0.5) + ε < θj}

where O(y) represents the rank of the patterns, θj is the
threshold for the j-th class, according to the values

(θ0, θ1, θ2, θ3, θ4, θ5) = (−∞,−1,−0.1, 0.25, 1,∞),

and ε ∼ N(0; 0.1252) simulates the possible existence of error37

in the assignment of the true class to x.38

TABLE II: Characteristics of the sixteen datasets used for the
experiments: number of patterns (Size), total number of inputs
(#In.), number of classes (#Out.), and number of patterns
per-class (NPPC)

Dataset Size #In. #Out. NPPC
ERA 1000 4 9 (92,142,181,172,158,118,88,31,18)
ELS 488 4 9 (2,12,38,100,116,135,62,19,4)
LEV 1000 4 5 (93,280,403,197,27)
SWD 1000 10 4 (32,352,399,217)

automobile 205 71 6 (3,22,67,54,32,27)
balance-scale 625 4 3 (288,49,288)

car 1728 21 4 (1210,384,69,65)
contact-lenses 24 6 3 (15,4,4)

eucalyptus 736 91 5 (180,107,130,214,105)
newthyroid 215 5 3 (30,150,35)

pasture 36 25 3 (12,12,12)
squash-stored 52 51 3 (23,21,8)

squash-unstored 52 52 3 (24,24,4)
tae 151 54 3 (49,50,52)
toy 300 2 5 (35,87,79,68,31)

winequality-red 1599 11 6 (10,53,681,638,199,19)

Table II summarizes the properties of the selected datasets.39

It shows, for each dataset, the number of patterns (Size),40

the total number of inputs (#In.), the number of classes41

(#Out.) and the number of patterns per-class (NPPC). Their42

descriptions (available in the web sites) lead to the conclusion43

that they are ordinal datasets since the class labels show an44

ordinal nature.45

The datasets considered are partitioned by using a hold-out46

cross-validation procedure. Concretely, 30 different stratified47

random splits of the datasets have been considered, with48

75% and 25% of the instances in the training and test sets49

respectively (30 hold-outs).50

B. Performance measures for Ordinal Regression51

In this study, ordinal regression datasets are considered.52

In these domains, two measures are widely used because53

of their simplicity and successful application. Therefore,54

two evaluation metrics have been considered which quan-55

tify the accuracy of N predicted ordinal labels for a given56

dataset {ŷ1, ŷ2, . . . , ŷN}, with respect to the true targets57

{y1, y2, . . . , yN}. Namely they are:58

• Accuracy rate (Acc): It is the number of successful hits59

(correct classifications) relative to the total number of60

classifications. It has been by far the most commonly61
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TABLE III: Parameter specification for the methods considered (C: regularization parameter; k: width of the Gaussian
functions;M : number of models in the ensemble;S: number of basis functions). The criteria for selecting the best configuration
was the MAE performance

Algorithm Ref. Parameters
ASAOR [23] There is no hyperparameters to be considered

MCOSvm [24] C: Best ∈ {103, 102, . . . , 10−3}; k: Best ∈ {103, 102, . . . , 10−3}; Gaussian Kernel
ORBoost-All [29] M = 25; S Best ∈ {5, 10, 15, 20, 30, 40}; Sigmoidal Basis Function
ORBoost-LR [29] M = 25; S Best ∈ {5, 10, 15, 20, 30, 40}; Sigmoidal Basis Function

ELMOR [53] S Best ∈ {10 + i10}, i = 0, . . . , 19; Sigmoidal Basis Function
AdaBoost(ELM) - M = 25; C: Best ∈ {103, 102, . . . , 10−3}; k: Best ∈ {103, 102, . . . , 10−3}; Gaussian Kernel

AdaBoost(ELM).ORC1 - M = 25; C: Best ∈ {103, 102, . . . , 10−3}; k: Best ∈ {103, 102, . . . , 10−3}; Gaussian Kernel
AdaBoost(ELM).ORC2 - M = 25; C: Best ∈ {103, 102, . . . , 10−3}; k: Best ∈ {103, 102, . . . , 10−3}; Gaussian Kernel
AdaBoost(ELM).ORC3 - M = 25; C: Best ∈ {103, 102, . . . , 10−3}; k: Best ∈ {103, 102, . . . , 10−3}; Gaussian Kernel

used metric to assess the performance of classifiers for1

years [3]. The mathematical expression of Acc is:2

Acc =
1

N

N∑
n=1

I (ŷn = yn) , (23)

where I(·) is the zero-one loss function and N is the3

number of patterns of the dataset.4

• Mean Absolute Error (MAE): It is the average devia-5

tion of the prediction from the true targets, i.e.:6

MAE =
1

N

N∑
n=1

|O(ŷn)−O(yn)| , (24)

where O(Cj) = j, 1 ≤ j ≤ J , i.e. O(yn) is the rank of7

pattern xn according to the encoding scheme used.8

These measures aim to evaluate different aspects that can9

be taken into account when an ordinal regression problem is10

considered: (a) Acc measures that patterns are generally well11

classified, and (b) MAE measures that the classifier tends to12

predict a class as closely as possible to the real class without13

taking into account the relative sizes of the classes.14

Additionally, the time required to estimate the parameters15

of each method has been also considered. The time (T ) is the16

simplest way to measure the practical efficiency of a method.17

The average time elapsed (in seconds) is analyzed by every18

method, considering cross-validation time, training and test19

time.20

C. Comparison Methods21

The models proposed have been evaluated comparing their22

results to the results of ensemble models for ordinal regression23

and one extreme learning approach for ordinal data. All of24

them have been already mentioned in the Introduction section.25

• Ensemble approaches for Ordinal regression:26

– A Simple Approach to Ordinal Regression27

(ASAOR) [23] is a meta classifier that allows stan-28

dard classification algorithms to be applied to ordinal29

class problems. In the current work, the C4.5 method30

available in Weka [54] is used as the underlying31

classification algorithm, since this is the one initially32

employed by the authors.33

– Multi-Class Ordinal Support vector machines34

(MCOSvm) [24] is an enhanced ensemble method35

for ordinal regression. As proposed in [24], weighted36

SVMs are used as base classifiers. Specific weights37

are assigned to each pattern in such a way that38

errors of more than one rank are heavier penalized.39

Therefore the weight of a training pattern differs for40

each binary SVM.41

– Ordinal Regression Boosting (ORBoost) [29] is42

a thresholded ensemble model for ordinal regres-43

sion problems. The model consists of a weighted44

ensemble of confidence functions and an ordered45

vector of thresholds. ORBoost can be used with46

any base learners for confidence functions. In the47

presented experimental study, a standard feedforward48

neural network is used as the underlying classifica-49

tion model. Two boosting approaches are considered:50

∗ ORBoost with all margins (ORBoost-All).51

∗ ORBoost with left-right margins (ORBoost-LR).52

• ELM models for Ordinal regression:53

– Extreme Learning Machine for Ordinal Regres-54

sion (ELMOR) [53]. For this experimental study55

the single model proposed in [53] is employed. The56

other two multiple model approaches have not been57

considered for efficiency reasons.58

Table III presents the parameters configuration of the dif-59

ferent models proposed. In the case of ensemble models the60

same size has been considered for all the methods M = 25.61

However, for the iterative neural network ensemble algorithms62

(ORBoost.LR and ORBoost.All), the number of basis func-63

tions S, were selected by considering the following values,64

S ∈ {5, 10, 20, 30, 40} while for the ordinal ELM algorithm65

(ELMOR), it is necessary to consider a more extensive set of66

possible number of basis functions, in this case S ∈ {10+i10}67

with i = 0, . . . , 19, given that the method relies on random68

projections. For the ensemble kernel methods (MCOSvm and69

AdaBoost(ELM) algorithm and its ordinal variants), the regu-70

larization parameter, C, and the width of the Gaussian kernel,71

k, were selected by considering the following set of values,72

C and k ∈ {103, 102, . . . , 10−3}. The hyperparameters were73

adjusted using a grid search with a 5-fold cross-validation74

considering just the training set. Despite this, the optimal75

number of basis functions for the ELMOR could be also76

determined using the approach proposed in [55].77
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D. Statistical Tests for Performance Comparison1

In the presented experimental study, the hypothesis testing2

techniques are used to provide statistical support for the3

analysis of the results. Concretely, nonparametric tests have4

been used, due to the fact that the initial conditions that5

guarantee the reliability of the parametric tests may not be6

satisfied, causing the statistical analysis to lose credibility [56].7

Throughout the study, the Friedman test is used to detect8

statistical differences among the methods. Holm post hoc pro-9

cedure will be used to find out which methods are distinctive10

among the multiple comparisons performed [56].11

VI. RESULTS AND ANALYSIS12

In this section, the different experimental studies carried13

out with the cost-sensitive boosting proposals are detailed. In14

particular, the aims are multiple:15

1) To compare the generalization performance of the ap-16

proaches proposed to recent ensemble and ELM algo-17

rithms for ordinal regression (Section VI-A).18

2) To test the time complexity of the models proposed19

compared to the above-mentioned methods (Section20

VI-B).21

3) To show the influence of the hyperparameters in the22

overall performance (Section VI-C)23

A. Comparison between the models proposed and ensemble24

and ELM algorithms for ordinal regression25

For the sake of simplicity, only the graphical and the sum-26

mary of the statistical results achieved are included, whereas27

the complete results can be found online2.28

TABLE IV: Summary of results in Acc and MAE for the
generalization set: Mean results over all the datasets, mean
ranking and Holm statistical test results (using as the control
method the one with the best mean ranking) for α = 0.10

Acc generalization results
Algorithm Acc RAcc z-statistic p-value αAdjusted

ELMOR• 64.12 7.68 5.06 0.00 0.01
AdaBoost(ELM)• 66.36 6.84 4.19 3.0E-5 0.01

ASAOR• 66.12 5.68 3.00 2.6E-3 0.01
ORBoost− All• 69.58 5.28 2.58 9.8E-3 0.02

AdaBoost(ELM).ORC1 69.68 4.46 1.74 0.08 0.03
ORBoost-LR 70.32 4.28 1.54 0.12 0.03

AdaBoost(ELM).ORC2 70.34 4.18 1.45 0.14 0.05
MCOSvm 71.36 3.78 1.03 0.30 0.10

AdaBoost(ELM).ORC3+ 71.88 2.78 - - -
MAE generalization results

Algorithm MAE RMAE z-statistic p-value αAdjusted

ELMOR• 0.49 8.43 6.51 0.00 0.01
AdaBoost(ELM)• 0.42 7.06 5.09 0.00 0.01

ASAOR• 0.40 5.62 3.61 3.0E-4 0.01
AdaBoost(ELM).ORC1• 0.37 5.12 3.09 1.9E-3 0.02

ORBoost− All• 0.36 5.03 3.00 2.6E-3 0.03
ORBoost− LR• 0.36 4.40 2.35 0.01 0.03

AdaBoost(ELM).ORC2 0.36 3.78 1.71 0.08 0.05
MCOSvm 0.34 3.40 1.32 0.18 0.10

AdaBoost(ELM).ORC3+ 0.34 2.12 - - -

• Statistical differences are found
+ Control Method

Fig. 4 is the star plot representation of generalization29

performance of the comparison of the different methodologies.30

2http://www.esa.int/gsp/ACT/cms/projects/ResultsAdaboostELM.zip

This star plot represents the performance as the distance from31

the center; hence a higher area determines the best average32

performance where the goal is to maximize the metric (Acc)33

and lower area determines the best average performance where34

the goal is to minimize (MAE). The plot allows to visualize35

the performance of the algorithms comparatively for each36

dataset. As can be seen in Fig. 4, the AdaBoost(ELM).ORC3 is37

the most promising methodology following by the MCOSvm38

method. From the analysis of the results (Table IV), it can39

be concluded that the AdaBoost(ELM).ORC3 model produces40

the best mean ranking in Acc and MAE (RAcc = 2.78 and41

RMAE = 2.12), reporting also the best mean accuracy and42

mean absolute error (Acc = 71.88% and MAE = 0.34).43

To determine the statistical significance of the rank differ-44

ences observed for each method in the different datasets, a45

non-parametric Friedman test [57] has been completed with46

the ranking of Acc and MAE in the generalization set of the47

best models as test variables. The test shows that the effect of48

the method used for classification is statistically significant at49

a significance level of 10%.50

Based on this rejection, the Holm post-hoc test was used51

to compare all classifiers with a control method [58]. For the52

experiments carried out, the control method selected is the53

one reporting the best mean ranking in Acc and MAE, the54

AdaBoost(ELM).ORC3. The results of the Holm test for α =55

0.10 can be seen in Table IV. By using a level of significance56

α = 0.10, AdaBoost(ELM).ORC3 is significantly better than57

ELMOR, AdaBoost(ELM), ASAOR and ORBoost-All using58

Acc as variable test, and significantly better than ELMOR,59

AdaBoost(ELM), ASAOR, AdaBoost(ELM).ORC1, ORBoost-60

All and ORBoost-LR using MAE as variable test.61

As can be seen in Table IV, the AdaBoost(ELM).ORC362

algorithm is competitive when compared to the most promising63

ensemble methods for ordinal regression. Furthermore, it is64

much more efficient than most of them. This justifies its65

proposal.66

B. Time complexity analysis67

In this section, the computational time and complexity of68

the proposed methods are analyzed and compared to the al-69

ready existing ensemble models for ordinal regression already70

presented in the experimental section.71

The computational complexity of the SAMME algorithm is72

conditioned by the choice of its base classifier. In the proposed73

ELM model the computation of the kernel matrix has a74

quadratic complexity in N , where N is the size of the dataset.75

However the kernel matrix is initialized at the beginning of76

the ensemble and not recomputed. In each iteration of model,77

the most time consuming task is the inversion of a N × N78

matrix and the multiplication of it with a matrix of dimension79

N ×J . The computational complexity of the multiplication of80

the two matrices is O(N2J), while the complexity of inverting81

the matrix of dimension N is O(N3) (if the Gauss–Jordan82

elimination algorithm is used), where N is the number of83

training patterns and J is the number of classes. Hence the84

computational complexity of the AdaBoost(ELM) algorithm is85

O((N3 +N2J)M), where M is the size of its ensemble [31].86
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Fig. 4: Radar illustration of the results on Acc (Figure 4a and 4c) and MAE (Figure 4b and 4d)

The time recorded included cross-validation, training and1

test, and it is shown in Table V. The number of hyperparam-2

eters of each method is decisive for the final time spent in3

running the algorithms, given that they have to be adjusted4

using a time-consuming cross-validation process (see Section5

V-C for further details).6

TABLE V: Computational time results in seconds (cross-
validation, training and test) for the toy dataset and all the
methods: average and standard deviation over the 30 holdouts.

Computational Time (MeanSD)
ORBoost-All 216.92 (160.54)
ORBoost-LR 215.92 (76.35)

MCOSvm 27.4 (0.90)
AdaBoost(ELM).ORC1 10.6 (0.5)
AdaBoost(ELM).ORC2 10.6 (0.5)
AdaBoost(ELM).ORC3 10.5 (0.3)

AdaBoost(ELM) 10.4 (0.4)
ELMOR 1.2 (0.6)
ASAOR 0.15 (0.04)

As can be seen, the ensemble models proposed are the7

methods with the lowest computational time, together with8

MCOSvm, ELMOR and ASAOR. The differences in time9

of these methods are not significant if they are compared10

to the differences with the ORBoost-All and ORBoost-LR11

methods. A simplified version of the proposed ensemble12

model, with a neural network as base classifier and without the13

regularization parameter and the kernel functions, has a single14

hyperparameter to be tuned (the number of hidden nodes) and15

doesn’t require the computation of the kernel matrix. This16

results in a more computational efficient model (is gained17

approximately one order of magnitude) but less performing.18

For this reason, the base classifier with its kernel version and19

with the regularization parameter is the one proposed in this20

paper.21

Furthermore, note that software implementations can affect22

these times. For example, the ASAOR Weka implementation23

was written in Java and the remaining methods were run using24

a common Matlab framework proposed in Gutierrez et al. [59].25

In general, the most efficient algorithms are the ones based26

on ELM. Both are trained without iterative tuning. Despite27

this, the lowest computation time is achieved by the ASAOR28

algorithm. The reason of that is that the ASAOR algorithm has29
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not any hyperparameters to be optimized by cross-validation1

unlike ELMOR and AdaBoost(ELM) approaches (they have,2

respectively, the number of basis functions S, and the kernel3

and regularization parameters (C, k) as hyperparameters). The4

efficiency of the models proposed and their good performance5

justify their proposal.6

C. Influence of the hyperparameters7

The proposed algorithms rely on three hypeparameters that8

need to be set: the size of the ensemble M , the regularization9

coefficient, C and the width of the Gaussian kernel k. A10

study has been performed to analyze the sensitivity of the11

model, in terms of Accuracy and MAE, with respect to the12

three hyperparameters. The algorithm considered is the one13

achieving the best results, AdaBoost(ELM).ORC3, on the toy14

problem. The hyperparameters are compared 2-by-2 fixing the15

value of the third one to the best value achieved in the cross16

validation process. In particular the best set of values used in17

this particular case is18

(M∗, C∗, k∗) = (25, 10, 1). (25)

While (C∗, k∗) are result of the cross-validation process,
M∗ = 25 has been considered as competitive trade-off
between efficiency, diversity and accuracy [60]. Several runs
of the AdaBoost(ELM).ORC3 model have been performed for
values of the three hyperparameters ranging in the sets

M ∈ {10, . . . , 50}
C, k ∈ {10−3, . . . , 103}. (26)

Results are reported in Fig. 5 and Fig. 6, where also the19

solution of the cross validation process is drawn in the contour20

lines plot for comparison. As expected the model is less21

sensitive to the size of its ensemble: the significant variations22

in performance are determined by the (C, k) parameters. The23

most critical parameter is the width of the Gaussian kernel k.24

The accuracy of the model has a very sensitive behavior with25

respect to the parameter k, with a drop down up to 80% of26

the overall model performance.27

VII. CONCLUSIONS28

The presented work extends the class of boosting algorithms29

for ordinal regression. In particular it enlarges the family of30

models that employ Extreme Learning Machine (ELM) as a31

base classifier. It differs from the already existing techniques32

in the way of addressing the training at each iteration of the33

ensemble. Instead of generating at each step a new training34

dataset according to the new set of patterns weights, the35

weights are used into the definition of the training problem,36

solving the derived Weighted Least Squares Problem (WLSP)37

in a close form and maintain the original training dataset38

during all the iterations cycle. Moreover, in order to be39

applied to Ordinal Regression problems, three cost models40

have been proposed that affect the way in which the weights41

are redistributed among the patterns.42

After introducing the existing boosting algorithms, in par-43

ticular those using ELM as base classifier, more attention has44

been given to the description of the Stagewise Additive Mod-45

eling using a Multi-class Exponential loss function (SAMME)46

algorithm, being the version of the AdaBoost method adopted47

in the proposed algorithms. The SAMME algorithm has been48

extended, in order to address ordinal regression problems,49

including three cost models and using an ELM as base classi-50

fier that determines the linear parameters of the kernel ELM51

method using the analytic solution of the WLSP. This led to52

the definition of four new algorithms, namely AdaBoost(ELM)53

for nominal classification and AdaBoost(ELM).ORC1, Ad-54

aBoost(ELM).ORC2 and AdaBoost(ELM).ORC3 for ordinal55

regression.56

Ordinal regression datasets available in the community and57

one synthetic dataset (the toy dataset) have been used as58

benchmark test sets, four algorithms from the state-of-the-art59

ensemble models for ordinal regression (ASAOR, MCOSvm,60

ORBoost-All, ORBoost-LR) and one extreme learning ap-61

proach for ordinal data (ELMOR) have been used for compar-62

ison and the model performance has been evaluated using the63

Accuracy and Mean Absolute Error (MAE) measures. Finally64

the models have been compared also in terms of computational65

efficiency, non parametric statistical tests have been performed66

to validate the results and an analysis of the influence of67

the hyperparameters on the selected metrics has also been68

included.69

From the results of these tests the AdaBoost(ELM).ORC370

algorithm is the method, among the one proposed in this71

article, with the most effective cost model. The algorithm72

reaches competitive results in terms of performance with the73

state of the art ensemble models, achieving the best mean74

ranking in accuracy and in mean absolute error. Furthermore,75

the models proposed outperforms in efficiency the selected76

ensemble models for ordinal regression but the ASAOR algo-77

rithm. It’s comparable performances with the state-of-the-art78

algorithms and its efficiency justify its proposal.79

The adaptation of the algorithms proposed to the incre-80

mental learning paradigm will be considered as future work.81

Indeed the Adaboost algorithm has already been adapted to the82

incremental learning paradigm [61] for nominal classification83

[62], [63] but not for ordinal regression problems.84
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