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Significant Body Point Labelling and Tracking

Faisal Azhar and Tardi Tjahjadenior Member, IEEE

Abstract

A method is presented to label and track anatomical landsn@lg. head, hand/arm, feet), which are referred to asfiigmni
Body Points (SBPs), using implicit body models. By consiugithe human body as an inverted pendulum model, ellipseditt
and contour moments are applied to classify it as being ind5t8it or Lie posture. A convex hull of the silhouette comt@u
used to determine the locations of SBPs. The particle filtex motion flow based method is used to predict SBPs in ocelusio
Stick figures of various activities are generated by coringdhe SBPs. The qualitative and quantitative evaluatitoowsthat the
proposed method robustly labels and tracks SBPs in varictigtas of two different (low and high) resolution datatse

Index Terms

Implicit body model, Significant body points, Anthropomet€onvex points, Stick figure.

I. INTRODUCTION

The marker-less approach to human motion analysis uses-bidged methods to detect and track positions of significant
body points (SBPs) located at the convex points, i.e., thallmaxima, of the silhouette contour. Applications in@uchcking,
stick figure generation, animation for cartoons and virteality, imitation of human action by robots and action mgaition for
assisted living, surveillance, etc., [1], [2]. The apphoaffers advantages, e.g., cost effectiveness, no reqeireaf particular
attire and ease of application [3], [4]. The approach camdisobe classified into model based and model-free appreadhe
model based approach employs a prior model. The model-frpmach estimates the motion of regions that enclose maleva
anatomical landmarks without prior information about thiject’'s shape [2]. The former requires fitting, manual dation
and predefined models which are time consuming while therlétind to be less accurate.

This paper presents a marker-less method which uses Itpbdy Models (IBMs) that does not require manual annotation
of SBPs, a training phase (learning a classifier) or fithesequure. IBMs provide anthropometric, geometric and human
vision inspired constraints for labelling SBPs in acta#iobserved from a profile view and performed by subjectsftdriig
anthropometric proportions. The human body is consideseahdnverted pendulum model and ellipse fitting is used toprde
the global angle in order to classify Stand, Sit and Lie pestuThe contour moments are used to find the angle between the
principal and vertical axis to provide cues for selectingtd8M. The convex hull [5] of the contour is utilized to det@ne
the locations of SBPs across time. The particle filter metisagsed to predict SBPs during occlusion, and is compare wit
the motion flow based tracker for cyclic activities. Re&tistick figures are generated from the labelled SBPs. Theatiéty
of the proposed method is demonstrated in a number of clyatigractivities on low and high resolution video data sets.

The paper is organized as follows: Section Il presentseélatethods. The methodology and the proposed framework are
presented in Section Il and Section IV, respectively. BecV discusses the experimental results, and Section Vtlodes
the paper.
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Il. RELATED WORK

The body segmentation and posture estimation method irs[@jddel-free and locates convex points on the contour at the
local maxima of the distance curve of the silhouette confoxels. The principal and minor axes of the human body, their
relation with the silhouette contour, relative distancéss®n convex points, and convex point curvature are usedles to
label convex points as SBPs. This method uses head pointéontiae the location of feet, however an inaccurate headtpoi
localization may lead to inaccurate feet point. It also igrsothe knee point and does not present quantitative ei@tuat
labelled SBPs. The Star skeletonization method [6] is alsdehfree and recognises walk and run from the frequencygf le
and torso angles during motion. It does not label local maxas SBPs.

A model-based modified Star skeleton method [7] producek figures from monocular video sequences and is extended in
Connectivity Based Human body Modelling (CBHM) [8] by usiagnodified solution of the Poisson equation to obtain torso
size and angle. It uses negative minimum curvature to lottetehead, and nearest neighbour tracking to find the hand and
feet. The local maximum method used in [1], [6]-[8] to idénextremities within the distance curve is sensitive thailette
contour and these extremities are not always identified duself occlusion. Furthermore, a smooth distance curve alid s
occlusion may result in missed local maxima. The method jrs¢@ects dominant points along the convex hull on a silhteuet
contour and utilises prior knowledge of body-ratio withirethead, and the upper body and lower body segments to igdentif
SBPs. The body parts are connected to a predefined skeletdel wia its centre to adapt it to the subject’s posture. Havev
the criteria for labelling convex points as SBPs are notrblgaresented in [9]. This method is extended in [10] for @ty
analysis and 3-dimensional (3D) scene reconstruction.

The First Sight [11] produces stick body parts of a subjeafguming complex gymnastic movements by matching a
prestored labelled body model with an outline of a curreragm of the subject. The method in [12] generates an elaborate
stick figure by a manual selection of anatomical landmarkslylratios, ratio pruning and an initial stick figure.

The W4 system [13] classifies a posture into Stand, Sit, Cawlie, then classifies the postures into front/back, and
left-side and right-side perspectives using vertical andzontal projection histograms of its silhouette. SBPs @entified
using the vertices of convex and concave hulls on the silt@wsntour. A topological model is projected onto the conto
to label SBPs. The quantitative accuracy of the labelledsSBFot presented. This system is computationally expengiv
[14] Discrete Fourier Transform (DFT) is applied to the igat and horizontal histograms of the silhouette. A neualzfy
network is then used to infer postures from magnitudes afiiigint DFT coefficients and length-width body ratio. SBPs a
not labelled in [14].

In [15] a 2D model is combined with particle filter is used tded# the torso, and colour information is used to detect the
hands. A posture is recognized by the Nearest mean classlifirever, initial camera calibration and use of 500 pagtdo
track only torso and hand limit its application in real timighe method in [16] uses heuristic rules with contour analysi
locate SBPs, and employs colour information and partiderffor robust feature tracking. It has only been appliedulojects
in Stand. The segmentation of a silhouette contour lendthportions is inadequate for activities such as walk, crawd bend
due to variations in contour lengths.The use of a particlerfivith 1000 particles also decreases the speed of conmputat

In [17] a part appearance map and an anthropometry basadl spatstraint graph cut are used to locate scope of bodg part
such as torso, head, arms and legs. In [18] human body is segthimto parts, and pose is estimated using a combination of
joint pixel-wise and part-wise formulation. Each pixel ss@ned to an articulated model using a histogram of gréslidinis

model is segmented into body parts using a given set of jaitipns. However the locations of body parts are not evatlia



in these methods.

The pose estimation framework in [19] uses a two layeredoanfbrest classifier to localise joints. The first layer cifiss
the body parts, and the second incorporates the body pattsheir joint locations to estimate the pose. In [20] artdad
body parts are detected by first finding the torso and theropeifig a fithess procedure to locate the remaining body .parts
It is computationally expensive with no occlusion handladglity.

The recent introduction of the low-cost depth camera hasvatet researchers to utilise depth images. In [21] the 38epo
is estimated from a single depth image. The human body islelivinto a set of parts and a random forest is employed to
compute the probability of each pixel belonging to each.pBine 3D joint locations are then independently estimatedhfr
these probabilities. A similar method in [22] is applied ideo images from multiple views. Random forest is used tigass
every pixel a probability of being either a body part or backod. The results are then back-projected to a 3D volume.
Corresponding mirror symmetric body parts across viewdlaa found by using a latent variable, and a part-based msdel
used to find the 3D pose. In [23] a local shape context descripttomputed from edges obtained from depth images toecreat
a template descriptor of each body part category, i.e., Hemad and foot. A multivariate Gaussian model is employethen
template descriptor to compute the probability of eachgmte A greedy algorithm then finds the best match to iderttify

body parts. The use of multiview and depth images are notinwitie scope of this paper.

I1l. METHODOLOGY

Human body proportion has been widely studied with appbcat in engineering, ergonomics and computer vision [24].
By using the 5th-95th percentile values of body proporti®d, percent of the world population can be covered [25], [26].
Anthropometry has only been used for stand postures in a-getomated manner, since its application in complex astion
is not an easy task [27], [28]. Anthropometric transformiasi do not conform to any known laws, it is thus not possible to
formally define invariant properties. A functional defioitiof anthropometric transforms is presented combininigrapbmetric,
geometric, kinesiology and human vision (heuristic) insgiconstraints, to provide six IBMs for robust labellingdaracking
of SBPs. The six IBMs cover most actions, activities and eanf motion performed by human from a profile view (see
Section V).

In this paper SBPs are labelled as Head (H), Shoulder (S), A)mKnee (K), Feet (F). The abbreviations encapsulate the
x-coordinate and y-coordinate of a SBP. The lowercasmdy are respectively the x-coordinate and y-coordinate looati
of a point. The specifiaz andy coordinates of a SBP is represented by adding SBP prefixésasiiz, Hy Az, Ay etc.
The current and previous locations of a point are denotedWericase: andp respectively, e.g¢x, px, Acx, Apx. Subscript
refers to a specific entity, e.gr,, ., andx,, represent the: coordinate of a centre, convex point, and normalised convex

point respectively.

A. Implicit Body Models (IBMs)

Several anthropometric studies reveal that in Stand peshe head length is approximately one-eighth the totaltlenf
the human body [29]-[31]. The body segment length as a @maati human body height (1H) is shown in Fig. 1(a), where
8 x 0.13H ~ 1H [31]. These ratios are used to provide ranges of eight segnenabel SBPs in Stand posture. The human
body maintains an approximate Stand posture in activitieb &s walk, run, skip, etc. However, these activities irduwotion

in the vertical plane of the human body which is compensaiedly selecting a longer range from the eight segments pirayid
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Fig. 1. (a) Body segment lengths as a fraction of the bodyht€itH); (b) and (c) are respectively the arm and leg range atfan based on anthropometric
[25], [32], [33] and kinesiology studies [34].
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Fig. 2. I1BMs for Head (H), Arm (A), and Feet (F) SBP labellingdaanthropometry based segmentation [G1-G7] (see Sedfié® [Table Il) of silhouette
contour using bounding rectangle minimuma,., v5,-) @and maximum pointsuy,-, hy,- ) for: (a) Stand § activities in Table I, convex hull in shaded region);
(b) Sit; and (c) Lie.

accurate labelling and tracking of SBPs. Thus, the Stand lmoaddel is divided into seven segments as shown in Fig. 2(a)
(see Section IV-A2).

Anthropometric studies show that in Sit posture the thigtolees horizontal to the ground and human body height dezseas
(i.e., head length is not one-eighth the total human bodgtln26], [30]. As a result, the Sit posture cannot be didideto
eight segments based on empirical anthropometric studie. that the body part positioning, (i.e., head, shouldens, knee,
and feet above each other, respectively) is somewhat nragatén Sit posture [30]. This problem is resolved by findihg t
relationship between the segmentation of Sit and StandupEssbased on anthropometric studies [26], [30], [31]. Adtw
to Fig. 1(a),

I'H=1H -SH - KH =1H — 0.52H — 0.285H = 0.195H (1)

whereI'H and K H are respectively the thigh length and knee height in the dStaosture.SH is the sitting height (i.e.,
measured from head to buttocks) in the Sit posture [30].

The number of segments is

8x (1H —TH) 8x (1H —0.195H) _

NSGZ - N6 2

By substituting (1) in (2), for Sit postur®,., should be six, hence, the Sit body model is divided into sisZumtal segments
as shown in Fig. 2(b). The Lie body model is considered as tapdsbody model rotated by 9®ased on geometry, thus it is
divided into seven vertical segments. The lie body modeurther divided into five horizontal segments to account fead
leaning [32], [34] in the sagittal plane as shown in Fig. 2{dese three IBMs can be used to label SBPs in cyclic ad#viti
(e.g., walk, side, and skip), and in Stand, Sit and Lie pestuin all of these activities, anthropometric body projpo and

part positioning are somewhat maintained. However, invédiets such as bend, wave, punch and kick, the anthroporbasgd



G2 o
G3 |
L H H
164 5 ' 3
KeH S
| Ge
G7 AA A
Centre (Whrshpy)

(a) (b) ©

r e ud
G1 /180>L N

Fig. 3. IBMs based on cues in Section IV-A2 with Smart SeartgoAthm (see Section IV-B4) for locating and labelling tde@d), Arm (A), and Feet (F)
SBPs ing activities (see Table 1): (a) Wave; (b) Kick and (c) Bend.

positioning of body parts/points is not maintained, i.ee hand goes above/near the head (in wave, punch) or beloknése
(in bend), and the feet go above the knee and centre of cofitokick) [25], [32]-[34].

The IBMs are defined based on a range of motion obtained fratmra@wometric [25], [32], [33] and kinesiology studies
[34], human geometry and vision constraints. They are usddbiel and track SBPs in activities that do not exactly naamt
anthropometry (see Section 1V-A2 and Section 1V-B4 for dgYaThese models cover a diverse range of motions of the
shoulder, hand, arm, elbow, knee and hip mentioned in lohegy studies and as shown in Fig. 1(b) and (c) [34]. The Wave
IBM in Fig. 3(a) covers a range of motion of shoulder, arm altdw. The Kick IBM in Fig. 3(b) covers a range of motion of
knee and leg. The Sit body model slightly overlaps with thadoposture. Finally the Bend IBM in Fig. 3(b) covers a range

of motion of trunk.

B. Inverse Pendulum and Contour Moments

Humans are bipeds and locomote over the ground with the itajafrthe body mass located two third of the body height
above the ground. Due to this reason a human body can be eepgdsas an inverted pendulum which is capable of moving
in anterior-posterior (forward-back movement) and metditdral (side-to-side movement) directions [35]—[37#].d simple
pendulum it is assumed that motion happens only in two diimessi.e., the point of mass does not draw an ellipse but an
arc. This conjecture allows us to apply a 2D ellipse fittingtio@ inverted pendulum human body model as shown in Fig. 4(a).

The global anglgd and angle of the human body from the vertical are respectively computed using ellipsin§j and

contour moments. The contour moments of a continuous infégey) are defined as [38]

A ®)

wherep andgq are respectively the x-order and y-order moment of the eonandx andy are coordinates. The centre of the
ellipse enclosing the human body is an approximation of #@re ¢.,y.) the human contour mass, i.e.,

mio mo1
Te=——Ye=—— (4)
™moo moo
wheremyg, mo1, andmgg are respectively the first and zero order spatial moments. cEmtre £.,y.) is used to calculate

the central moment
Ppq = / / (= 2)P(y — ye)? f(z,y)dzdy. (5)

The global angle of the human body is the angle of the axis thigheast moment of inertia in degree as shown in Fig. 4(a),

i.e.,
1 2/1
0— — tan 1 L1

g tan ! (6)
H2,0 — Ho,2



Fig. 4. (a) Inverse pendulum human body model with globalefigand anglep from the vertical; (b) Motion flow based arm predictichusing previous

arm Ap and current armAc during occlusion. (see Section 1lI-C)

wherey; ;1 is the first order central moment, apd o and 2 are the second order central moments. The angle of the human

body from the vertical using contour moments is computee as90 — 6.

C. Theoretical basis of Motion flow prediction

The direction of the instantaneous angular velocity (wléameasured over an extremely small time interval [34]) eslihsis
for motion flow prediction. Consider the human arm as a pandwdttached at the shoulder joint producing curvilineariarot
(incurring an angular displacement). As the pendulum (awipgs from its equilibrium position (vertical) to its maxium
displacement, the magnitude and direction of angular glo@ctor change. Two geometric constraints are proposed f
predicting arm location based on pendulum motion. For aremly small time interval in consecutive time frames:

Conjecture 1: The direction of the instantaneous angular velocity mustheesame until the arm reaches its maximum
displacement.

Conjecture 2: A large instantaneous angular displacement shows thatrtheéhas reached its maximum displacement.

Based on conjecture 1, the point to be predicted should s dlw the last arm point and continue in the direction of the
previous two arm points, i.e., follow the swing of the arm égclic activities as shown in Fig. 4(b). The conjecture 2nitifees
the change in the direction of arm swing.

Consider the arm motion as a pendulum swing which draws al siotied curvef in each frame as shown in Fig. 4(b).
Denote(Apx, Apy) and (Aczx, Acy) respectively as coordinates of labelled arm points in tlevipus and current frames. For

every frame, the linear displacement between the curreshipagvious arm points is
dr = Acx — Apx , dy = Acy — Apy. @)

The lengthL of the entire curvef (i.e., angular displacement) traced by arm movement onntervial [P1-P2] can be
approximated as a summation of all the line segments of thiszguolygon path. Thet" line segment is the hypotenuse of

a triangle with baselx and heightdy, and has length

La = \/(AC,TQ - Apl'a)z + (Acya - Apya)Q' (8)

By the Mean Value Theorem, there exists € [Apz, Acx] such that

Acy, — Apy, /

e T APJa * 9

Acz, — Apz, /(o) ©
Acya — Apya = f () x dz, (10)

Substituting (10) in (8) gives
Lo =/1+[f (xz£)]? X dzg. (11)



TABLE |
ACRONYMS FOR ACTIVITIES

‘Type‘ Activities (8)
7 Jump-in-place-on-two-legs
o 8 Bend
Type| Activities (o)
9 One hand wave
1 Walk
10 Two hand wave
2 Run
11 Jack
3 Skip
12 Standup
4 Side
13 Collapse
5 Jump
14 Kick
6 Turn
15 Punch
16 Guard-to-kick
17 Guard-to-punch
TABLE I

ACRONYMS FOR BODY MOVEMENT AND BODY SIDE

‘Type‘ Body movementf)‘ ‘Type‘ Body side 6)‘

1 Right to Left 1 Upper body
2 Left to Right 2 Lower body
3 Stand to Lie 3 Right side
4 Lie to Stand 4 Left side

Finally the length of the entire polygon path withsubintervals is

k k
D La=)_\1+[f (&})]? x dza (12)
a=1 a=1

which has the form of Riemann sum, i.e.,

k k
L= Jimy 321+ @)l dow = / 1+ 1f @)Pde (13)

Increasing the number of subintervals or line segments oblggpn such thatA = max(dz,) — 0 in (13) proves the
approximation that the length of polygon line segments isaétp the length of the curve, i.eZ';:l L, — L. This mathematical
proof and above-mentioned conjectures lead to the proposin flow based prediction (see Section IV-C2) of arm moint

as shown in Table IV.

IV. PROPOSEDFRAMEWORK

A split approach is developed to simplify the problem and @duce the search space in order to find the best IBM for
labelling the convex points on a silhouette contour as SBRss is done by using a hierarchical categorization of human
posture (Stand, Sit, Lie), movements (Right to left, LefRight, Stand to Lie, Lie to Stand) and the human body itsefiiet

body and lower body, Right side and left side). Stand, Sit biedpostures are categorized by considering the human as an



inverse pendulum and using contour moments. In Stand, SitL#n postures, Upper body and Lower body, and Right side

and Left side are respectively distinguished based on Hresterse and sagittal planes as shown in Fig. 2 using

Stand, Sitl < y. & 02> y. & 3 <z, & 64 > z,
Lie[dl <z, & 62>z, & 63> Cy & 04 < y.

(14)

where body sides1, §2, 63 and 4 are described in Table II.

Initially the Stand to Lie or Lie to Stand movement is asdedd (see Section IV-Al). Fig. 5(a) and (b) are then respelgti
used to categorise postures in Stand to Lie and Lie to Stanegments according to clockwise and anti-clockwise rotatio
Right to Left, Left to Right and no movement are discernecetamn the subject’s location in the first frame. In Stand tq Lie
for Stand, the movement is further divided intoand 5 (see Table I)« refers to activities with Right to Left or Left to Right
movement, e.g., Walk, Run, Skip, Side, Jump, Tutrrefers to activities in which the subject remains almosthat $ame
place and has Right side or Left side motion, e.g., Jumgdngion-two-legs, Bend, One hand wave, Two hand wave, Jack,

Standup, Collapse, Kick, Punch, Guard-to-kick, Guargtach.a. and 3 are respectively determined using
o ={ 411025 x FR,, > x. or 2la. > 0.75 x FR,, (15)
B = { 0.25 X FRy < e < 0.75 X FR,,. (16)

where body movementsl, and~2 are described in Table IE'R,, and F Ry, are the frame width and frame height, respectively.
The global angle and the bounding rectangle are respectigeld ina and 3 to select the best IBM for labelling anatomical
landmarks 3 is further categorized int8 and 3 (see Section IV-A2) to select the appropriate IBM. For anyoag the convex
points of a human contour are normalized with respect to twnbing rectangle and then filtered. The criteria summdrize
Section IV-B from the proposed IBMs are used to label these/@o points as SBPs in Stand to Lie, Lie to Standand 3
movements. Particle filter (or Motion flow) is used for preitio during occlusion. Finally the SBPs are connected tcegee

stick figures for various actions and activities.

A. Silhouette Feature Extraction

1) Posture classificationAs in [39] a contour is traced using the freeman chain codgdd@he silhouettes of the Weizmann
[41] and Multi-camera Human Action Video (MuHAVI) data sd&?] (see Section V). A least-squares fithess procedure is
used to compute the ellipse global angl®ased on (6) that best approximates the contour.

The maximum flexion and extension range of the trunk in Starsdyse, i.e., 140[33] is used to set the initial global angle
Osiq¢ parameters such thabs — 115 = 140°. This initial global angle is only checked in the first framktloe input video
sequence. It is a metric to ascertain the preliminary sththeosubject’s posture by determining whether the body mem

starts from Stand, i.e., Stand to Lie, or from Lie, i.e., $tam Lie, according to

43 { Stand if115 < 000 < 255 (17)

4 { Lie if 115 £ Oyrape £ 255 (18)

where body movementg3 and~4 are described in Table II.
Standard deviation of the global angle has been used tamisate human shapes, posture based events and activiigs [
In [1], the difference in angle between the principal andieal axes is used to detect SBPs but not for posture clasisiic

Biomechanical analysis of human spine show that a compketefi of the whole trunk occurs due to a rotation of the lumber
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Fig. 5. Stand, Sit, and Lie posture classification usingsdliglobal angl® (see Section IV-Al) in movements from: (a) Stand to Lie andL{b to Stand.

vertebrae and pelvis, when the difference between theceértind axis of human body rotation is greater tisaf [33]. A

60° variation in global angle is set to differentiate betweean8tand Lie posture for Stand to Lie.

The reference global angle for Stand is set&6° in Fig. 5(a). A flexion of more tha60° from the reference in clockwise
or anti-clockwise direction is considered as Lie postue, iLie= 180 £ 60 = 120° or 240°. The human body can flex and
extend at a range of10 — 140° while maintaining a somewhat Stand posture [33]. This weddvariation 0f40-70° from
the reference global angle with an averages®f. Thus, the range of angle for Stand posture is set t@1se— 155 = 60°,

i.e., Stand= 180 + 35 = 215° or 180 — 25 = 155°. The disproportionate division of this range is to catertfoe clockwise
and anti-clockwise directions leaning ability of the huntaody while in Stand posture as shown in Fig. 5(a). Sit posture
is categorised in the remaining range of angle for clockwisd anti-clockwise directions. It also encompasses irgdiate

posture such as bend, manoeuvre from Sit to Lie and vice versa

The range of global angle for Stand in Lie to Stand Fig. 5(bkeapt the same as Stand to Lie, i.815 — 155 = 60°.
However, in trying to stand from Lie, the body leans forwand dhe subject remains in intermediate posture (Sit) fomaéo
duration. Thus, a global range 66° is set for Sit posture in Lie to Stand, .55 — 95 = 60°. The Lie posture is categorized
in the remaining range of global angle for clockwise and-altttkwise directions. Fig. 5 illustrates the resultingisiion of
ellipse quadrant used to categorise postures for Standet@hd Lie to Stand. A mirror reflection of Fig. 5 is used for the
opposite direction of Right side and Left side for Stand te hhd Lie to Stand. IBM for activities is selected based on

these ranges of global angle.

2) Posture SegmentatiofThe ellipse fitting procedure used in [1] provides approxiorss, i.e., not body contour points are
enclosed by the ellipse as illustrated in Fig. 4(a). The ldugrectangle is used to enclose contour, and obtain itsymim and
maximum points, i.e.Pin = (upr, Vpr) @Nd Prgr = (Wer, iy ). up- @nduy, are respectively the startingandy coordinates
of the bounding rectangleu,, andh;, are respectively the width and height of the bounding regiarThese points represent
the size of the silhouette contour, and are used to dividebtdtly into segments [G1-G7] using anthropometric infororati

[29] (see Section IV-B) defined for IBMs in each of the Stand,&®d Lie postures as illustrated in Fig. 2. The difference
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TABLE Il
NORMALISED SEGMENT VALUES FORSTAND, SIT AND LIE IBM.

‘Model‘ G1 ‘ G2 ‘ G3 ‘ G4 ‘ G5 ‘ G6 ‘G7‘

Stand|0.1470.295/0.443 0.591/0.738 0.886| 1

Sit 0.164{0.328/0.492/0.656/0.742 1 -

Lie 0.194/0.388/0.582/0.776| 1 - -

between two segments (which depends on the number of segmeny is
Dseg = (Pmam - Pmin)/Nseg (19)

where N,.,=7,6,5 andD,.,=30,21,22 pixel for horizontal segmentation of Stand, &i &ie, respectively, an&V,.,=7 and
D,.4=30 pixel for vertical segmentation of Liéw, anduvy,, andw, andwus, are used in (19) for horizontal and vertical

segmentation, respectively. The normalised segm@fyk are determined using
G[g + 1] — Dseg X (g + 1)/(Pmaw - szn)7v9 S 0 : Nseg (20)

whereg = 0 andg = N, respectively correspond to the minimum and maximum poifts® bounding rectangle as shown

in Fig. 4(b). Table Il shows the normalised segmentatiolues for Stand, Sit and Lie posture fixed for all the experiteen
The bounding rectangle along with the angldrom the vertical and global angl are used to provide cues to the Smart

Search Algorithm (SSA) (see Section IV-B4) for selecting best IBM for3 movementsg is divided into3 and/3 respectively

for 0.7 x hpr > wp, and0.7 x hy,. < wp,-. Thus,

Wave if 3 and SSA
Kick if 8 and2 < ¢ <15 and SSA

B = . (21)
Bend if 8 and170 > 0 > 190

and|H — F| < 1.5 x Ds.y and SSA

The intermediate postures are selected by wave IBM for lialgelsince the subject has yet to attain any defined posture.
The Punch action is similar to throwing a ball involving latecking, acceleration and follow through. In follow thrdyghe
arm moves across the body in a diagonal manner and as a resuingles of body from the vertical is quite large [33].
Punch action inj is labelled using Wave IBM when > 15. The range of in Kick IBM is in between the Stand posture
(with tolerance for leaning) and the Punch action. The dlabgled is 170 and 190 respectively for left and right bend. The
Bend IBM criteria is formulated based on human vision anek&iology. The Smart Search Algorithm (SSA) in Section 1V-B4
uses (21) in labelling SBPs in Wave, Kick and Bend IBM.

3) Convexity Points:The convex hull method [44] is used to determine SBPs whiehlacated at convex points of a
contour, where the line surrounding the silhouette is itavea hull and the shaded regions are its convexity defedts. T
convexity defects yield a number of convex points on contehich are marked as head (H), arm (A), feet (F), etc. using the
IBM criteria in Section IV-B and as illustrated in Fig. 2(a).

The convex pointgz.,, y.,) are normalised with respect to its bounding rectangle toeeme the computational speed as

follows

o |xcv - ubrl , Y = |ycvh_ Ubr| (22)
br

Why



11

within [0,1]. The Euclidean distance between convex poisitsomputed as

DTCU (2) = \/(Cxcv - pxcv)2 + (Cycv - pycv)2 (23)

where ¢x.,, cyey) and px.,, pyey) respectively denote the current and previous convex poantd: is the number of convex
points. Convex points are close to each other in a high résaolwideo frame but further apart in a low resolution oneisTh
is because in high resolution there are more frequent angeshadges which will results in more convex points. A thagh

Th which is proportional to the frame width'R,,, frame heightF'R;, and resolution factofl are used to remove nearby

convex points, where

Th=FR, X FR;, x 7T (24)

and Y (determined experimentally) is fixed as follows:

0.05 if FRy, FR), <200
YT =< 0.007 if FRy,FR), > 400 (25)
0.01 if200 < FR,, FR), < 400

A convex point(x.,, y.») is selected for labelling by first checking@V DT > Th, whereTh is determined by using (24)
and (25).

B. SBP Labelling and Tracking

The best IBM is used to label normalised convex poi{ats., y..) as SBP using Table Il as follows. The following SBPs
are labelled: Head (H), Arm/hand (A), Knee (K) and Feet (R)tHe case where multiple criteria are used to label convex
points, the abbreviation of a SBP is followed by a numera,,é41, A1, A2, A3. Convex point&z.,, y.,) are compared with
z. andy. based on (14) to determine Upper body, Lower body, Right aiui Left side. The ranges for Sit and Lie have
been determined in the MuHAVI data set since it contains tiilajgse and standup activity. Body sidg&ls 62, 63 and 4 are
described in Table II.

1) Stand: In Stand posture, Stand to Lie and Lie to Stand, clockwise amclockwise directions, Head and Feet are

respectively assigned using

Arm in Stand posture, Stand to Lie, and Lie to Stand for cloall anti-clockwise directions are respectively assignedgus

A= { (s Ynr) | G2 < Ynr < G4 if 63/64 (28)
A (@nrs Ynr )|y / / 9
(Tnrs Ynr)|G2 < yr < G4 if 63/64 & 652

2) Sit: In Sit posture, Stand to Lie and Lie to Stand, clock and aoittovise direction, Head and Feet are respectively

assigned using

H= { (Tnr Ynr)|Ynr < G1if §3/04 & 41 (30)

F={ @ar yur)lyar > G5 if 63/54 & 52 (31)
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The Arm is respectively assigned for Stand to Lie, and Lie ten8 for clockwise and anti-clockwise directions using
A ={ (@ar yur)|G1 < gy < G2 i 53/54 & 52 (32)

3) Lie: In Lie posture, Stand to Lie and Lie to Stand, clockwise an@@ackwise directions, Head and Feet are respectively

assigned using

H=4{ & y. <Gl if §1/63 & 64 (34)
(Tory Ynr )| Tnr < Gl if 61/63 & 4
F={ @argur)lor > G5 i 52 (35)
Head is also assigned using
(Znrs Ynr )| Tnr > G2 & ynp > G4 if 51
H=1 orz, >G2& y, <G5 if 91 (36)
or T, < G4 &ypr > G4 if 62

For Stand to Lie and Lie to Stand, clockwise and anti-clogendirections, arm and head are respectively assigned using

A={ @uryun)|G1 < 2 < G2 1f 63/54 (37)
H={ @ur e < 0.5 x G1if 51 & 53/64 (38)

In Lie to Stand, as the subject is trying to stand, supportrofsais used to assist in manoeuvring. (29) for Lie to Stand
is utilized for labelling SBPs as the subject is manoeuvfirggn Sit to Stand. However, during this manoeuvring when
heyr > 1.7 X wy,, (28) is used instead of (29).

4) Smart Search Algorithm (SSA the 8 activities, i.e.,, Wave, Kick and Bend IBMs, SSA is used toelaSBPs. Based
on (21) SSA is initiated by locating the convex points in tlenanthropometric segment rang@srefers to the subject in
Stand posture who has yet to attain the posture of modelsrshowig. 3(a)-(c). It is an indication that the subject iselik
to perform Wave. In Fig. 3{p and Hc are respectively the location of previoU¥ px, Hpy) and current Hcx, Hey) head
points, ande is the horizontal distance between theffu: and Hy are respectively the andy coordinates of head/ SBP.
SSA divides the wave model into four horizontal segmentd, @sthe hand goes near or above the head, the following steps
are defined for labelling convex points as SBPs in the segmagge [G1-G4] as shown in Fig. 3(a):

Step 1: Locate the arm in the segment ran@él, 2] of shoulderS by dividing the bounding rectangle widih,,. into three
equal vertical sections, and reallocate normalised copeaxts (., yn,) @s arm pointd if z,,, < wpr/3 OF Ty > 2 X wWh /3
or |lynr — Hy| > 0.7 x D, represented by the shaded region in Fig. 3(a).

Step 2: Verify no arm point was identified using Step 1. Next, everymalised convex pointz.,.,yn,) in the head
segment rangé&[1] of Stand to Lie, clockwise and anti-clockwise directiorssréallocated as! if € > 0.7 x D,.,, where
e = |Hex — Hpz| as shown in Fig. 3(a).

Step 3: Check if no arm point has been labelled using the above twissteéind two points in the segment range [G1-G4]
that are at maximum distance from the centre and lie to itst @and left, respectively denoted by arrows in Fig. 3(a).sEhe
points are then labelled as arm points.

Step 4: If an arm point is labelled using one of the above three datthren it implies that a wave IBM best represents the

activity, hence the head point is reallocated as folloWs: = z., Hy = y. — 7Dseq, Wherer = 1,1.7,2.5 respectively for
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resolution factorY = 0.05,0.007,0.1. This is based on the fact that the centre of mass moves upmized the human arms
are above the head.

In 8 based on (21), for the kick IBM, only Step 1 and 2 of the SSA awked. Step 1 and 2 are respectively used in the
segment range of the arf(2, 4] and G[1] to reallocate foot point for right and left Kick as shown iretehaded region of
Fig. 3(b). In3 for Bend IBM, the global anglé is near Sit, and the head to feet distance reduces (denotddded arrows)
in Fig. 3(c). This model slightly overlaps with the Sit moa¢é|Stand to Lie and Lie to Stand, hence, Sit criteria Standi¢o L
in Section 1V-B2 is used to label SBPs. Depending upon théajlangle the proposed framework automatically switches to

Lie to Stand using Fig. 5(b).

C. SBP Prediction during Occlusion

1) Particle filter based predictionA particle filter [5], [45] is able to track and predict SBPsthe presence or absence
of occlusion, or missed convex points. Given the currenenlation of location, i.e(z.,, y.,), of @ SBP at time step— 1,
the particle filter predicts the locatiofx’,,,v.,) of a SBP at time step. The state vectoX;_1 = (Zcv, Yev, V£, Vy) is

initialized, where(Vz, Vy) are respectively the distance between the current andque8BPs along the andy directions.

A constant-acceleration dynamic mod¥} is used to update the state vector, where

Xt =M x Xt—l (39)
1 0 dt 0
01 0 a4t
0 0 dt 0
0 0 0 dt

dt is the time lapse between two frames. For each SBP, partitde fiith 100 particles is instantiated for optimum accyrac
of prediction with particles> 30 producing good results. During occlusion, the particlefilis initialized with the last
known observation to predict the next SBE, , ., ). This is achieved by keeping the temporal information ofreyeevious
measurement and observation. In the event of occlusionrisezutive frames, the predicted values in the first fréame, v, ),
Ve =2, —ze, andV'y =y, — y., are fed back as observations to initialize particle filtartfte subsequent frames.

2) Moation flow based predictionMotion flow employs the direction of linear displacemenippknowledge of the activity,
temporal information of a SBP and geometry of the human bodjefine criteria for locating, labelling and tracking SBB, i
arm points(Ax, Ay) during occlusion as detailed in Table 1V. If the displaceimén between current armicx and previous
arm Apx point is greater than a threshajd= D,.,/6 = 5 (whereD,.,=30, see Section IV-A2), it suggests that the maximum
displacement is reached and direction of the arm swing aschanged. Onlyiz is used because the horizontal displacement
of arm (pendulum) from equilibrium position to maximum dagement is intutively more than vertical displacemente Th
direction of the front arm movement is constrained basecherpteviously labelled front arm points. The criteria in [Eaky/
are used to predict front and back arm points during walke,sigmp-in-place-on-two-legs, jump Left to Right, run Righ
Left and skip on the Weizmann data set.

In Table IV, Hx and Hy, and Az and Ay, respectively denote the coordinates of the head and pegdarm points, and
Act represents activities (see Table I). The upper polaritysisdufor Right to Left, and the lower polarity is used for Left t
Right. Front arm and Back arm are distinguished respegtwelRight side and Left side based on (14). For all actionsathe

point is predicted at the centrey.) when no conditions are satisfied or when more than threetpbiave been predicted
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TABLE IV
PARAMETERS AND THEIR VALUE FORMOTION FLOW BASED ARM PREDICTION (e AND 8 ARE DESCRIBED INTABLE |)

‘ Act ‘ |dz| ‘ Acx ‘ Acy ‘ AX Ay

al |—, < (| < Apz|> Apy| AcxFdx |Acy+ dy/0.4¢
al | >¢ — — Acr —0.4¢ |Acy + dy/0.4¢
a2 | <(¢ |<Apzx|>Apy| AcxFdx |Acy+ dy/0.4¢
a2 |—,>¢| - — Acx F0.8¢ |Acy+ dy/0.4¢
a3 | <¢ |<Apx| — |AcxFdx/0.4¢ Acy

a3 — — — Hx £1.4¢ Hy +4¢
ad | <(¢ |<Apzx| -— Acx Fdx Acy

ad | > ¢ — — Acx Fdz/¢ Acy

ab | <(¢ |<Apzx| - Acx F dzx Acy

ab | > ¢ - - Acx Fdx/¢ Acy

BT < (¢ — |< Apy Acx Acy + dy
BT >¢ — — Acx Acy

consecutively. In the first row of walk, side, skip, jumpgltace-on-two-legs and run in Table 1V, the relational op@rand
polarity of criteria for current arnjAcz, Acy) and predicted arnjAz, Ay) are respectively reversed for front and back arm
prediction in Right to Left and Left to Right. The second rofsttese actions is used to predict back points when they are no
predicted by the first row. For walldz is not used for front arm point prediction (which is denotgdabdash) but is used to
predict back arm point only. For jump, front arm point is goteld at centrgz., y.) in occlusion, while the back arm point

is predicted using the two rows of jump. Howeverdif > 2¢ pixels then back arm point is predicted at the centre.

D. Stick figure

The proposed framework can be used for the animation of ibk tjures of a human body formed by joining the SBPs
of every video frame. To form a stick figure, first the maximumtahce between shoulder poifx, Sy) and head point
(Hz, Hy) is computed as

Sz = max(Hx — Sz) , Sy =max(Hy — Sy) (41)

for an activity. Noting that a shoulder point is mostly at astant distance from the head point, (41) is used to find aldaou
point (Sz, Sy) for all activities. According to human anatomy, the head &t points are connected to the centig, y.)

of the silhouette contour and the arm points are connectéldetshoulder poin{Sz, Sy).

V. EXPERIMENTAL RESULTS

The Weizmann data set [41] comprises ninety low-resoluliBfix 144 video sequences of nine subjects performing ten
daily activities as shown in Table I. The Multi-camera Humaetion Video (MuHAVI) data set [42] comprises nine high

resolution 72576 primitive action classes of two actors with two samples ativity.

A. Qualitative Evaluation

The freeman chain code contours of various subjects ertlvs¢he bounding rectangle and the rescaled ellipse, with

generated stick figures from SBP obtained using the propfraetework on Walk, Side, Skip, Jump, Jump-in-place-on-two
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Fig. 6. Weizmann data set. (a)-(j) Walk, Side, Skip, Jumppghin-place-on-two-legs, Run, Bend, One hand wave, Twalhaave and Jack respectively
(Contour, bounding rectangle, ellipse and stick figure)] ék)-(t) SBPs labelled as Head (H), Shoulder (S), Arm (A),eEn(K) and Feet (F) in these

corresponding actions.
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Fig. 7. MuHAVi data set. SBPs labelled as Head (H), Shoul®&r Arm (A), Knee (K) and Feet (F) in (a)-(d) Collapse; (d)-@tandup; (h)-(i) Walk;
()-(k) Run; (I)-(m) Turn; (n)-(o) Guard-to-punch; (p)Xd&uard-to-kick; (r)-(s) Punch; and (t)-(u) Kick.

legs, Run, Bend, One hand wave, Two hand wave and Jack e&tiaite shown in Fig. 6(a)-(j) respectively. Fig. 6(k)-(tps/s
the detected SBPs on the corresponding actions. An initissed or undetected convex point, results in an incomptatk s
figure. This is because the proposed framework requiresasghfmformation (at least two convex points) for initiadizon of

prediction using particle filter or motion flow.

The adaptability and generality of the proposed framewsrkalidated by applying it with the same parameter settings o
the MuHAVI data set. Fig. 7(a)-(d) and (e)-(g) respectivelhow collapse and standup actions with identified SBPs indsta
Sit and Lie postures. Fig. 7(h)-(u) illustrate the SBPs idienl during Walk, Run, Turn, Guard-to-punch, Guard-tokkiPunch
and Kick respectively. Fig. 6 and Fig. 7 show that the progdsamework successfully labels SBPs and is able to generate

stick figures in various actions.
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B. Quantitative Evaluation

Most methods in Section Il only provide qualitative evaioat In [1] for Computer Vision based Human body Segmentatio
and Posture estimation (CVHSP), [8] for CBHM, the method9h gBnd [6] for Star skeletonization, SBPs are detected but
the accuracy of their localization with respect to groundtrcoordinates of each SBP is not presented. Also, the Sigtt
[11] detects body parts and not SBPs. Thus, it is not postibé®mpare the accuracy of SBP localization using the preghos
framework with these methods. In Table V, Table VI, Table,\dhd Table VIII the best results are shown in bold.

1) Accuracy of localization:The accuracy of SBP localization is presented in terms afadce in pixels between the
manually annotated (i.e., the ground truth) and detectedsSBilhouette contours for all activities of the two datts sae
skeletonized using the method in [46]. Manual annotatiopasformed on the results of the skeletonized silhouettagusi
mouse cursor to obtain ground truth coordinates of SBPse Mt the manual annotation of ground truth also involveseso
guesses of SBPs in cases where these points are not lochlizgdletonization or not clearly visible to the human eye.

The location of every SBP obtained using the proposed frarewith particle filter is compared with the ground truth in
each frame of the video sequence. The overall accuracy girtigosed framework is defined by the average error in datpcti

each SBP, i.e., N
2on=1|Gn(@,y) = Ln(z,y)|
N

whereG,,(z,y) and L, (z,y) are respectively the coordinates of each SBP obtained fhengtound truth and the proposed

(42)

Error(Zavg, Yavg) =

framework, andN is the total number of frames.

The average error i andy coordinates of each SBP, i.e., Head (Hx, Hy), Front Arm (FR&y), Back Arm (BAX, BAy),
Left Foot (LFx, LFy) and Right Foot (RFx, RFy), in various izttes Act (see Table 1) perfomed by all subjects of both data
sets is shown in Table V. For Jump-in-place-on-two-letig§ ( Side (4) and Walk ¢.1) of the Weizmann data set (which have
less lateral head movement), thecoordinate head error is less than other activities whsetlkay-coordinate head error is
similar in all activities. The front and back arm points aceloded more than any other SBPs, hence they have greates.err
A common average error is obtained for the right and left fuetause they are joined in Jumgb), Jump-in-place-on-two-legs
(87), One hand waved9) and Two hand wave310). The feet have smaller vertical movement than horizon@ement in
consecutive frames in all activities, hence, the avenageordinate error is less than thecoordinate for both feet. For the
MuHAVi data set, they-coordinate head error is less than theoordinate average error in all activities. The errorsha t
front and back arm points are also greater due to occlusiba.nighest average error occurs in Collapse and Standupodue t
severe self occlusion of front and back arms. The right afiddet have similar average errors. The averdge of five SBP
errors per activity is presented in the last column of Table V

Weizmann and MuHAVi data sets hav80 x 144 = 25920 pixels and720 x 576 = 414720 pixels per frame, respectively.
An overall average error of 5.02 and 7.8 pixels in locatior88Ps on all activities for five SBPs respectively on two dieer
data sets show that the proposed framework with arm predictsing particle filter is accurate and adaptable to datcfet
different resolution.

2) Localization Accuracy of predicted arm SBR:is vital to verify the accuracy of location of predictedraSBP versus
the ground truth. Table VI shows the error in the locatiomgsarticle filter and motion flow in occlusion, where the aggr
location error of predicted SBP is

SN Ga(x,y) — Pred,(z,y)|
N

(43)

ET‘TOT‘PT‘@d(xavgvyaU!]) =

and Pred,, (z,y) are the predicted SBP coordinates.



TABLE V
AVERAGE ERROR IN PIXELS OFSBPS W.R.T GROUND TRUTH.

‘Act Hx ‘Hy‘ FAX‘ FAy‘BAx‘BAy‘LFx‘LFy‘ RFx‘RFy‘ Avg

Weizmann Data set with prediction

al | 2.3|55|53|75|48|10.3/4.6|24|4.3]|23|4.93

a2 | 3.8(56/53|34|87| 8 | 5 (37| 4 |34]5.09

a3 | 43|54 7 |59/86| 6 | 5 (41|38|21|5.22

a4 16| 5|65(63|45|75(3.8|31| 4 |3.5]|458

ab [3.6(51/73|11|6.1|71({53|36|53|3.6| 58

B7 | 1 45/65|86(39(65|6.2|29|6.2|29]|4.92

B8 |7.3(6.5/72|96| 5 (6.8|42|25|4.2|25]|558

B9 |9.6|54/52| 6 |26|52| 6 |17 6 |1.7|4.94

8101571 4|85|85(86(87| 6 |16| 6 |16]|5.92

B11/53|4|33[44|28|33|24| 2 |32|23]| 33

MuHAVI Data set with prediction

al | 11|33|5.7|7.2|85|12.3| 8 |4.6|8.3|4.9|7.38

a2 |9.65/3.8/6.4|6.7|9.2(16.3/ 8.3|52|9.7| 6 |8.12

a6 [10.2/3.7| 5.7 |11.9| 53 |14.2| 7.7|4.4| 8 | 43| 7.54

p12| 9 |5.2| 32 |23.5/11.7| 13 | 12 |10.4{11.4) 7 |13.52

£13| 8.4(5.5/11.6{11.2| 7.7 | 5.6 | 9.8 | 8.4(13.1| 8.5| 8.98

£14110.8(4.9| 4.1|5.4| 65|52 (115 95| 7.2|65]| 7.2

p15/8.6(4.9/36|6.4|75|6.4(43|3.3|74|46| 5.7

p16|7.3|56/2949|79|54(3.8|43|62| 8 | 56

B17|55(5.8/3.3|3.2| 6.1(10.7/ 3.7 | 3.1 {10.3| 6.3| 5.78

TABLE VI
PARTICLE FILTER AND MOTION FLOW PREDICTION ERRORRESPECTIVELY DENOTED BY P AND M

‘Act ‘FAxp FAYp FAxm‘FAym‘BAxp BAy, BAxm‘BAym‘

al | 7.7 |129]| 42 | 33 | 9.23|19.4| 34 6.4

a2 | 75(81| 83 | 33 | 99 |154| 68 | 84

a3 | 85| 94| 48 | 63| 13 | 9.2 | 4.1 5.7

a4 | 54| 8 6.1 5 35| 11 5 6.6

ab | 821|142 41 | 62 | 69 | 85 5 6.5

BT | 44 122 7 6.1 | 29 | 10 4.5 6

‘Avg‘ 6.9‘10.8‘ 5.8 ‘ 5 ‘ 7.1 ‘ 12.2‘ 4.8 ‘ 6.6 ‘




18

The particle filter and motion flow are compared for the arndjmtion cyclic activities (see Table 1), i.e., Walk{), Run
(«2), Skip (@3), Side @4), Jump ¢5) and Jump-in-place-on-two-leg87) of both data sets because it is the most occluded
SBP. Table VI shows that particle filter and motion flow acteisapredict arm point, i.e., close to ground truth locatidhe
y-coordinate error of the front and back arm points using amoflow prediction are consistently smaller than those oleti
using particle filter. Thes-coordinate error is also smaller in most activities. Hemoetion flow outperforms particle filter
which is demonstrated by smaller averageg errors in all activities in Table VI. However, the lack of mssity for prior
information makes patrticle filter the better choice for pcadn. Results on Walkd(1) and Run §2) activity of both data sets
are shown in Table VI.

3) Accuracy of detected SBPs vs observEHe accuracy of detection is evaluated in terms of precigioR), recall (RC)

and error £R), i.e.,

SeT SeeT
PR = = 44
R=Sipr > 70B (44)
S DT -Y4CT
ER = 45
i SIDT (45)

where DT and C'T are respectively the number of detected and correctly teete8BPs.OB is the observed SBPs and

is the number of subjects. The number of detected SBPs ieslodsclassified SBPs which are manually counted by visual
inspection on every frame of video sequence. The number wécty detected SBPs is obtained by deducting miscladsifie
SBPs from the number of detected SBPs.

The detection accuracy of five SBPs is computed by using tbpgsed framework first with no prediction and then with
particle filter prediction. This demonstrates the impacpddiction on the performance of the framework. In Table féH
SBP detection with no prediction, observeédR) SBPs are the manually counted visible SBP onl with no guesk imvolved.
For SBP detection with prediction in Table VII, observédR) SBPs is the manually counted visible SBP with guessed SBPs.

In Table VII, for no prediction, smaller recalls are obtalrfer Run 2), Skip (@3), Jump ¢&5), and Two hand wave3(10)
that have abrupt human limb movement as compared to Walk Side @4), Jump-in-place-on-two-leg®{), Bend (38) and
One hand waved9). The smallest recall and precision respectively occurin R2) and One hand waves0). The maximum
recall and precision respectively occur in Sidet and One hand wave3(). The proposed framework with no prediction
obtains an overall averagévg% recall and precision 095.3% and 96.5%, respectively, for all activities of the Weizmann
data set. On the MuHAVi data set it obtains the smallest fdoalRun («2) but is robust in detecting SBPs in Walk1),
Standup £12), Punch (15), Guard-to-kick 316) and Guard-to punchs(7). In Turn (@6), Collapse $13), and Kick (514)
it is able to produce SBPs with reasonable accuracy. It haethst precision for complex movement such as Standup)(

It achieves an overall averagkyg% recall and precision 0§2.01% and98.4%, respectively, for all activities of the MuHAVi
data set. The average error for all activities of the Weizmand MuHAVi data sets computed using (45) ar&% and1.9%,
respectively.

In Table VI, for prediction, an overall.5% and2.4% percentage increase in recall and precision, respectamdyobtained
in cyclic actions of the Weizmann data set using particleffiirediction. Specifically, the highest percentage irsze#H7.3%
in recall is achieved in Runof2), which has the smallest recall with no prediction. For theHVi data set, particle filter
prediction is only used for Walka(l) and Run {2) since they are cyclic actions. A percentage increas€0df% in recall
is attained in Rund2). There is a decrease in precision for both Wadk )(and Run {2), which suggests an increase in
misclassified arm SBPs. However, more importantly parfiitier prediction enhances the recall in all cyclic actiorishoth

data sets. The proposed framework with prediction obtaingvarall averagelvg% recall and precision d§7.7% and98.8%,
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TABLE VI
PRECISION AND RECALL OF FIVE SBPS DETECTION OF PROPOSED FRAMEWORK

Weizmann Data set

No prediction Prediction No prediction Prediction

‘Act CT ‘ OB ‘ DT | CT ‘ OB ‘ DT |RC%| PR% |RC%|PR%

al 2655|2768| 2681{3134(3195/3160| 95.9| 99 |98.1|99.2

a2 1468|1623 1532 1828|1885 1892| 90.4 | 95.8 | 97 | 96.6

a3 1566|1664]1585| 2108(2170{2127| 94.1| 98.8 | 97.1 | 99.1

ad 1726|1786|1726| 2183|2220/ 2183| 96.6 | 100 | 98.3| 100

ab 1756|1877 1759 2220|2290 2223| 93.5| 99.8 | 97 | 99.9

B7 2231 2271) 2286 2654(2690|2709| 98.2| 97.6 | 98.7| 98

B8 3067|3195|3278| - - - 96 | 93.6 | - -
B89 3265(3265|3555| - - - | 100| 918 | - -
$10 |2875[3120/3018| - - - 1921 953 | - -
B11  |3157|3370/3201| - - - |93.7]| 986 | - -
o] ||| || |see] seson]ses

MuHAViI Data set

al 118812311191 1326|1351/ 1502| 96.2| 99.8 | 98.1| 88
a2 975|1198| 985|1080({1198/1160| 81.4| 99 |90.1|93.1
ab 868 | 1046| 868 | - - - 83 | 100 - -
£12 143114711505 - - - | 974 95 - -
£13  |1131{1306| 1152 - - - | 86.6| 981 | - -
£14 828|922 | 865| - - - |1 89.8| 957 | - -
815 729|757 | 739 | - - - 196.3| 986 | - -
516 503|512 | 507 | - - - 198.2] 99.2 | - -
B17 529|533 | 529| - - - 199.2| 100 - -
‘Avg %| - ‘ - ‘ - ‘ - ‘ - ‘ - ‘92.01‘ 98.4 ‘ 94.2 ‘ 95.7‘

respectively, for all activities of the Weizmann data setadhieves an overall averaglyg% recall and precision 094.2%

and95.7%, respectively, with prediction for all activities of MuHAMata set.

The distance curve method in [1], [6] is implemented to corapss SBP detection accuracy with the proposed framework.
Based on Table VII the total number of SBPs detected acrdsactivities by the proposed framework is more than the

skeletonized and CVHSP or Star skeletonization. Henceritage consistent in generating stick figures of various aits:

4) Comparative evaluation of SBP detectiohhe performance of the proposed framework is compared wéte ©f the
art approaches, i.e., First Sight (FS) [11] and CBHM [8],hwiespect to a similar extent of occlusion and type of agtivit
respectively. The accuracy of First Sight to detect five bpdsts, i.e., head, arms and feet, is evaluated in terms gbdtis
observed by the human eye. Five SBPs identified by the prdpiamework correspond to the five body parts detected by
First Sight. The activities used by First Sight differ witsspect to no, mild and severe self occlusion. In the datafsethis

paper, Walk 1), Run @2), Side @4), Turn («6), Jump-in-place-on-two-legs3{), Punch (15), Guard-to-kick $16), and
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TABLE VI
SBPDETECTION: PROPOSED VSCBHM AND FS.

4 SBPs Accuracy 5 SBPs Error

Classification| CBHM Proposed| Proposed | FS

Occlusior{ Act | RC%| PR%| RC%| PR%| ER%| Avg% | Avg%

Mild al|95.2|100|97.4|99.2| 0.6
Mild a2 |76.8(90.8| 97 | 97 |2.59
Mild ad| - | - |981]100]| O
Mild a6| - | - |80.2]100]| 0O
Mild g7 | - | - |98.3|97.5| 2.4
Mild B14| - | - |87.2|945| 42
Mild B15| - | - |955[983[1.35
Mild pi16| - | - |97.8| 99 [0.79
Mild p17| - | - |991|100| 0 |133| 15

Severe | o5 | 88.5|70.4] 97 |99.8]|0.17

Severe |[512]99.7|82.6( 95.9|94.4|4.91

Severe |p313|83.3| 83 |85.7|97.6|1.82

Severe 58 - - 1 97.6|92.2| 6.43
Severe B9 | - - 100 | 89.6| 8.15
Severe |B10| - - 91 | 94 (4.73
Severe |B11| - - 192.1|98.3|1.37
Severe | a3 | - - 194.8(97.111.19| 359 | 21

Guard-to-punch£17) have mild self occlusion, whereas Skip3), Jump ¢5), Bend (38), One hand waved9), Two hand
wave (310), Standup £12) and Collapse{13) have severe self occlusion. Table VIII shows the perforrearof the proposed
framework and First Sight (as reported in [11]) on actiwtigith mild and severe occlusion on all subjects of the Weizma
and MuHAVi data sets. In Table VIII, results on Walk1) and Run &2) activity of both data sets are presented collectively.
The averagedvg% five SBPs error computed using (45) is clearly much less thest Sight.

Due to unavailability of the data set used by CBHM, Table \¢ibimpares the average precision and recall of the proposed
framework in detecting four SBPs (i.e., hands and feets)nilar activities with those of CBHM as reported in [8]. It®hs
that the proposed framework obtains better recall and gietithan CBHM in Run2), Jump ¢5) and Collapse £13). It
also achieves a slightly better recall for Walk1]. The recall obtained for Standupi2) is close to this approach, thus,

overall the proposed framework performs better than CBHM.

C. Computational complexity

The proposed framework runs in real time due to its companati simplicity. The computational time of the proposed
framework implemented in Microsoft Visual Studio 2010 Eegs Edition environment with OpenCV 2.4.6 on an Intel (R)
Core (TM) i7 processor working at 2.93 GHz with 4 GB RAM rungiVindows 7 operating system is measured using the
computer system clock. The proposed framework labels SBP31 seconds per image frame on the Weizmann data set at

20-30 frame per second. It labels SBPs in 0.071 seconds @ayeirftame on the MuHAVi data set.
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The convex hulll is computed using the Sklansky’s algorifdd] which has a computational complexity O N'), where N
in the number of convex points. The contour moments algaorithbased on the Green theorem [38] which has a computational
complexity of O(L), where L is the length of the boundary of the object. The perémce of the particle filter enhances with
the increase in number of particles. It is formally(V log N), however, it can be mad@®(N) with minor modifications
to the sampling procedure. In the proposed framework, thiecpafilter is initialized with 100 particles with a stateeetor
constituting of four parameters. As a result its computeticspeed can be considered to be real time. This is simdig43]

where a 6-12 degree of freedom model with 100 particles rumedh time.

VI. CONCLUSIONS

In this paper, an automated video based human SBP labelidgracking framework is presented. It employs IBMs based
on anthropometry, kinesiology and human vision inspirettiGa to label SBPs. The classification of postures baseglaial
angle is combined with the convexity hull and bounding regta to select the best IBM for labelling convex points as SBP
Particle filter and motion flow are proposed for predictiorogtlusion. Stick figures are generated by connecting SBRs. T
results demonstrate that the proposed framework robustigtés, labels and tracks SBPs in several actions on twosd&ta
of low and high resolution. The results also show better hieaees better detection performance than the state of the ar
approaches. In future, manual counting of misclassifiettpaian be automated and particle filter can be extended tcpre

SBPs for more actions.
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