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Significant Body Point Labelling and Tracking
Faisal Azhar and Tardi TjahjadiSenior Member, IEEE

Abstract

A method is presented to label and track anatomical landmarks (e.g. head, hand/arm, feet), which are referred to as Significant

Body Points (SBPs), using implicit body models. By considering the human body as an inverted pendulum model, ellipse fitting

and contour moments are applied to classify it as being in Stand, Sit or Lie posture. A convex hull of the silhouette contour is

used to determine the locations of SBPs. The particle filter or a motion flow based method is used to predict SBPs in occlusion.

Stick figures of various activities are generated by connecting the SBPs. The qualitative and quantitative evaluation show that the

proposed method robustly labels and tracks SBPs in various activities of two different (low and high) resolution data sets.

Index Terms

Implicit body model, Significant body points, Anthropometry, Convex points, Stick figure.

I. I NTRODUCTION

The marker-less approach to human motion analysis uses video-based methods to detect and track positions of significant

body points (SBPs) located at the convex points, i.e., the local maxima, of the silhouette contour. Applications include tracking,

stick figure generation, animation for cartoons and virtualreality, imitation of human action by robots and action recognition for

assisted living, surveillance, etc., [1], [2]. The approach offers advantages, e.g., cost effectiveness, no requirement of particular

attire and ease of application [3], [4]. The approach can broadly be classified into model based and model-free approaches. The

model based approach employs a prior model. The model-free approach estimates the motion of regions that enclose relevant

anatomical landmarks without prior information about the subject’s shape [2]. The former requires fitting, manual annotation

and predefined models which are time consuming while the latter tend to be less accurate.

This paper presents a marker-less method which uses Implicit Body Models (IBMs) that does not require manual annotation

of SBPs, a training phase (learning a classifier) or fitness procedure. IBMs provide anthropometric, geometric and human

vision inspired constraints for labelling SBPs in activities observed from a profile view and performed by subjects of differing

anthropometric proportions. The human body is considered as an inverted pendulum model and ellipse fitting is used to compute

the global angle in order to classify Stand, Sit and Lie postures. The contour moments are used to find the angle between the

principal and vertical axis to provide cues for selecting best IBM. The convex hull [5] of the contour is utilized to determine

the locations of SBPs across time. The particle filter methodis used to predict SBPs during occlusion, and is compared with

the motion flow based tracker for cyclic activities. Realistic Stick figures are generated from the labelled SBPs. The versatility

of the proposed method is demonstrated in a number of challenging activities on low and high resolution video data sets.

The paper is organized as follows: Section II presents related methods. The methodology and the proposed framework are

presented in Section III and Section IV, respectively. Section V discusses the experimental results, and Section VI concludes

the paper.
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II. RELATED WORK

The body segmentation and posture estimation method in [1] is model-free and locates convex points on the contour at the

local maxima of the distance curve of the silhouette contourpixels. The principal and minor axes of the human body, their

relation with the silhouette contour, relative distance between convex points, and convex point curvature are used as rules to

label convex points as SBPs. This method uses head point to determine the location of feet, however an inaccurate head point

localization may lead to inaccurate feet point. It also ignores the knee point and does not present quantitative evaluation of

labelled SBPs. The Star skeletonization method [6] is also model free and recognises walk and run from the frequency of leg

and torso angles during motion. It does not label local maxima as SBPs.

A model-based modified Star skeleton method [7] produces stick figures from monocular video sequences and is extended in

Connectivity Based Human body Modelling (CBHM) [8] by usinga modified solution of the Poisson equation to obtain torso

size and angle. It uses negative minimum curvature to locatethe head, and nearest neighbour tracking to find the hand and

feet. The local maximum method used in [1], [6]–[8] to identify extremities within the distance curve is sensitive to silhouette

contour and these extremities are not always identified due to self occlusion. Furthermore, a smooth distance curve and self

occlusion may result in missed local maxima. The method in [9] selects dominant points along the convex hull on a silhouette

contour and utilises prior knowledge of body-ratio within the head, and the upper body and lower body segments to identify

SBPs. The body parts are connected to a predefined skeleton model via its centre to adapt it to the subject’s posture. However

the criteria for labelling convex points as SBPs are not clearly presented in [9]. This method is extended in [10] for activity

analysis and 3-dimensional (3D) scene reconstruction.

The First Sight [11] produces stick body parts of a subject performing complex gymnastic movements by matching a

prestored labelled body model with an outline of a current image of the subject. The method in [12] generates an elaborate

stick figure by a manual selection of anatomical landmarks, body ratios, ratio pruning and an initial stick figure.

The W4 system [13] classifies a posture into Stand, Sit, Crawlor Lie, then classifies the postures into front/back, and

left-side and right-side perspectives using vertical and horizontal projection histograms of its silhouette. SBPs are identified

using the vertices of convex and concave hulls on the silhouette contour. A topological model is projected onto the contour

to label SBPs. The quantitative accuracy of the labelled SBPs is not presented. This system is computationally expensive. In

[14] Discrete Fourier Transform (DFT) is applied to the vertical and horizontal histograms of the silhouette. A neural fuzzy

network is then used to infer postures from magnitudes of significant DFT coefficients and length-width body ratio. SBPs are

not labelled in [14].

In [15] a 2D model is combined with particle filter is used to detect the torso, and colour information is used to detect the

hands. A posture is recognized by the Nearest mean classifier. However, initial camera calibration and use of 500 particles to

track only torso and hand limit its application in real time.The method in [16] uses heuristic rules with contour analysis to

locate SBPs, and employs colour information and particle filter for robust feature tracking. It has only been applied to subjects

in Stand. The segmentation of a silhouette contour length into portions is inadequate for activities such as walk, crawland bend

due to variations in contour lengths.The use of a particle filter with 1000 particles also decreases the speed of computation.

In [17] a part appearance map and an anthropometry based spatial constraint graph cut are used to locate scope of body parts

such as torso, head, arms and legs. In [18] human body is segmented into parts, and pose is estimated using a combination of

joint pixel-wise and part-wise formulation. Each pixel is assigned to an articulated model using a histogram of gradients. This

model is segmented into body parts using a given set of joint positions. However the locations of body parts are not evaluated
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in these methods.

The pose estimation framework in [19] uses a two layered random forest classifier to localise joints. The first layer classifies

the body parts, and the second incorporates the body parts and their joint locations to estimate the pose. In [20] articulated

body parts are detected by first finding the torso and then performing a fitness procedure to locate the remaining body parts.

It is computationally expensive with no occlusion handlingability.

The recent introduction of the low-cost depth camera has motivated researchers to utilise depth images. In [21] the 3D pose

is estimated from a single depth image. The human body is divided into a set of parts and a random forest is employed to

compute the probability of each pixel belonging to each part. The 3D joint locations are then independently estimated from

these probabilities. A similar method in [22] is applied to video images from multiple views. Random forest is used to assign

every pixel a probability of being either a body part or background. The results are then back-projected to a 3D volume.

Corresponding mirror symmetric body parts across views arethen found by using a latent variable, and a part-based modelis

used to find the 3D pose. In [23] a local shape context descriptor is computed from edges obtained from depth images to create

a template descriptor of each body part category, i.e., head, hand and foot. A multivariate Gaussian model is employed onthe

template descriptor to compute the probability of each category. A greedy algorithm then finds the best match to identifythe

body parts. The use of multiview and depth images are not within the scope of this paper.

III. M ETHODOLOGY

Human body proportion has been widely studied with applications in engineering, ergonomics and computer vision [24].

By using the 5th-95th percentile values of body proportion,90 percent of the world population can be covered [25], [26].

Anthropometry has only been used for stand postures in a semi-automated manner, since its application in complex actions

is not an easy task [27], [28]. Anthropometric transformations do not conform to any known laws, it is thus not possible to

formally define invariant properties. A functional definition of anthropometric transforms is presented combining anthropometric,

geometric, kinesiology and human vision (heuristic) inspired constraints, to provide six IBMs for robust labelling and tracking

of SBPs. The six IBMs cover most actions, activities and range of motion performed by human from a profile view (see

Section V).

In this paper SBPs are labelled as Head (H), Shoulder (S), Arm(A), Knee (K), Feet (F). The abbreviations encapsulate the

x-coordinate and y-coordinate of a SBP. The lowercasex andy are respectively the x-coordinate and y-coordinate locations

of a point. The specificx and y coordinates of a SBP is represented by adding SBP prefixes such asHx, Hy Ax, Ay etc.

The current and previous locations of a point are denoted by lowercasec andp respectively, e.g.,cx, px, Acx, Apx. Subscript

refers to a specific entity, e.g.,xc, xcv andxnr represent thex coordinate of a centre, convex point, and normalised convex

point respectively.

A. Implicit Body Models (IBMs)

Several anthropometric studies reveal that in Stand posture the head length is approximately one-eighth the total length of

the human body [29]–[31]. The body segment length as a fraction of human body height (1H) is shown in Fig. 1(a), where

8× 0.13H ≈ 1H [31]. These ratios are used to provide ranges of eight segments to label SBPs in Stand posture. The human

body maintains an approximate Stand posture in activities such as walk, run, skip, etc. However, these activities induce motion

in the vertical plane of the human body which is compensated for by selecting a longer range from the eight segments providing
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Fig. 1. (a) Body segment lengths as a fraction of the body height (1H); (b) and (c) are respectively the arm and leg range of motion based on anthropometric

[25], [32], [33] and kinesiology studies [34].

Fig. 2. IBMs for Head (H), Arm (A), and Feet (F) SBP labelling and anthropometry based segmentation [G1-G7] (see Section IV-A2 Table III) of silhouette

contour using bounding rectangle minimum(ubr , vbr) and maximum points (wbr , hbr ) for: (a) Stand (α activities in Table I, convex hull in shaded region);

(b) Sit; and (c) Lie.

accurate labelling and tracking of SBPs. Thus, the Stand body model is divided into seven segments as shown in Fig. 2(a)

(see Section IV-A2).

Anthropometric studies show that in Sit posture the thigh becomes horizontal to the ground and human body height decreases

(i.e., head length is not one-eighth the total human body length) [26], [30]. As a result, the Sit posture cannot be divided into

eight segments based on empirical anthropometric studies.Note that the body part positioning, (i.e., head, shoulder,arms, knee,

and feet above each other, respectively) is somewhat maintained in Sit posture [30]. This problem is resolved by finding the

relationship between the segmentation of Sit and Stand postures based on anthropometric studies [26], [30], [31]. According

to Fig. 1(a),

ΓH = 1H − SH −KH = 1H − 0.52H − 0.285H = 0.195H (1)

whereΓH and KH are respectively the thigh length and knee height in the Stand posture.SH is the sitting height (i.e.,

measured from head to buttocks) in the Sit posture [30].

The number of segments is

Nseg =
8× (1H − ΓH)

H
=

8× (1H − 0.195H)

H
≈ 6 (2)

By substituting (1) in (2), for Sit postureNseg should be six, hence, the Sit body model is divided into six horizontal segments

as shown in Fig. 2(b). The Lie body model is considered as the Stand body model rotated by 90◦ based on geometry, thus it is

divided into seven vertical segments. The lie body model is further divided into five horizontal segments to account for head

leaning [32], [34] in the sagittal plane as shown in Fig. 2(c). These three IBMs can be used to label SBPs in cyclic activities

(e.g., walk, side, and skip), and in Stand, Sit and Lie postures. In all of these activities, anthropometric body proportions and

part positioning are somewhat maintained. However, in activities such as bend, wave, punch and kick, the anthropometrybased
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Fig. 3. IBMs based on cues in Section IV-A2 with Smart Search Algorithm (see Section IV-B4) for locating and labelling Head (H), Arm (A), and Feet (F)

SBPs inβ activities (see Table I): (a) Wave; (b) Kick and (c) Bend.

positioning of body parts/points is not maintained, i.e., the hand goes above/near the head (in wave, punch) or below theknee

(in bend), and the feet go above the knee and centre of contour(in kick) [25], [32]–[34].

The IBMs are defined based on a range of motion obtained from anthropometric [25], [32], [33] and kinesiology studies

[34], human geometry and vision constraints. They are used to label and track SBPs in activities that do not exactly maintain

anthropometry (see Section IV-A2 and Section IV-B4 for details). These models cover a diverse range of motions of the

shoulder, hand, arm, elbow, knee and hip mentioned in kinesiology studies and as shown in Fig. 1(b) and (c) [34]. The Wave

IBM in Fig. 3(a) covers a range of motion of shoulder, arm and elbow. The Kick IBM in Fig. 3(b) covers a range of motion of

knee and leg. The Sit body model slightly overlaps with the bend posture. Finally the Bend IBM in Fig. 3(b) covers a range

of motion of trunk.

B. Inverse Pendulum and Contour Moments

Humans are bipeds and locomote over the ground with the majority of the body mass located two third of the body height

above the ground. Due to this reason a human body can be represented as an inverted pendulum which is capable of moving

in anterior-posterior (forward-back movement) and medial-lateral (side-to-side movement) directions [35]–[37]. In a simple

pendulum it is assumed that motion happens only in two dimensions, i.e., the point of mass does not draw an ellipse but an

arc. This conjecture allows us to apply a 2D ellipse fitting onthe inverted pendulum human body model as shown in Fig. 4(a).

The global angleθ and angle of the human bodyφ from the vertical are respectively computed using ellipse fitting and

contour moments. The contour moments of a continuous imagef(x, y) are defined as [38]

mpq =

∫

∞

−∞

∫

∞

−∞

xpyqf(x, y)dxdy (3)

wherep andq are respectively the x-order and y-order moment of the contour, andx andy are coordinates. The centre of the

ellipse enclosing the human body is an approximation of the centre (xc,yc) the human contour mass, i.e.,

xc =
m10

m00

, yc =
m01

m00

(4)

wherem10, m01, andm00 are respectively the first and zero order spatial moments. The centre (xc,yc) is used to calculate

the central moment

µpq =

∫

∞

−∞

∫

∞

−∞

(x− xc)
p(y − yc)

qf(x, y)dxdy. (5)

The global angle of the human body is the angle of the axis withthe least moment of inertia in degree as shown in Fig. 4(a),

i.e.,

θ =
1

2
tan−1

2µ1,1

µ2,0 − µ0,2

(6)
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Fig. 4. (a) Inverse pendulum human body model with global angle θ and angleφ from the vertical; (b) Motion flow based arm predictionA using previous

arm Ap and current armAc during occlusion. (see Section III-C)

whereµ1,1 is the first order central moment, andµ2,0 andµ0,2 are the second order central moments. The angle of the human

body from the vertical using contour moments is computed asφ = 90− θ.

C. Theoretical basis of Motion flow prediction

The direction of the instantaneous angular velocity (whichis measured over an extremely small time interval [34]) is the basis

for motion flow prediction. Consider the human arm as a pendulum attached at the shoulder joint producing curvilinear motion

(incurring an angular displacement). As the pendulum (arm)swings from its equilibrium position (vertical) to its maximum

displacement, the magnitude and direction of angular velocity vector change. Two geometric constraints are proposed for

predicting arm location based on pendulum motion. For an extremely small time interval in consecutive time frames:

Conjecture 1: The direction of the instantaneous angular velocity must bethe same until the arm reaches its maximum

displacement.

Conjecture 2: A large instantaneous angular displacement shows that the arm has reached its maximum displacement.

Based on conjecture 1, the point to be predicted should be close to the last arm point and continue in the direction of the

previous two arm points, i.e., follow the swing of the arm forcyclic activities as shown in Fig. 4(b). The conjecture 2 identifies

the change in the direction of arm swing.

Consider the arm motion as a pendulum swing which draws a small dotted curvef in each frame as shown in Fig. 4(b).

Denote(Apx,Apy) and(Acx,Acy) respectively as coordinates of labelled arm points in the previous and current frames. For

every frame, the linear displacement between the current and previous arm points is

dx = Acx−Apx , dy = Acy −Apy. (7)

The lengthL of the entire curvef (i.e., angular displacement) traced by arm movement on the interval [P1-P2] can be

approximated as a summation of all the line segments of the entire polygon path. Theath line segment is the hypotenuse of

a triangle with basedx and heightdy, and has length

La =
√

(Acxa −Apxa)2 + (Acya −Apya)2. (8)

By the Mean Value Theorem, there existsx∗

a ∈ [Apx,Acx] such that

Acya −Apya
Acxa −Apxa

= f
′

(x∗

a) (9)

Acya −Apya = f
′

(x∗

a)× dxa (10)

Substituting (10) in (8) gives

La =
√

1 + [f ′(x∗

a)]
2 × dxa. (11)
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TABLE I

ACRONYMS FOR ACTIVITIES.

Type Activities (α)

1 Walk

2 Run

3 Skip

4 Side

5 Jump

6 Turn

Type Activities (β)

7 Jump-in-place-on-two-legs

8 Bend

9 One hand wave

10 Two hand wave

11 Jack

12 Standup

13 Collapse

14 Kick

15 Punch

16 Guard-to-kick

17 Guard-to-punch

TABLE II

ACRONYMS FOR BODY MOVEMENT AND BODY SIDE.

Type Body movement (γ)

1 Right to Left

2 Left to Right

3 Stand to Lie

4 Lie to Stand

Type Body side (δ)

1 Upper body

2 Lower body

3 Right side

4 Left side

Finally the length of the entire polygon path withk subintervals is

k
∑

a=1

La =
k
∑

a=1

√

1 + [f ′(x∗

a)]
2 × dxa (12)

which has the form of Riemann sum, i.e.,

L = lim
Λ→0

k
∑

a=1

√

1 + [f ′(x∗

a)]
2 × dxa =

∫ k

a

√

1 + [f ′(x)]2dx (13)

Increasing the number of subintervals or line segments of a polygon such thatΛ = max(dxa) → 0 in (13) proves the

approximation that the length of polygon line segments is equal to the length of the curve, i.e.,
∑k

a=1
La → L. This mathematical

proof and above-mentioned conjectures lead to the proposedmotion flow based prediction (see Section IV-C2) of arm points

as shown in Table IV.

IV. PROPOSEDFRAMEWORK

A split approach is developed to simplify the problem and to reduce the search space in order to find the best IBM for

labelling the convex points on a silhouette contour as SBPs.This is done by using a hierarchical categorization of human

posture (Stand, Sit, Lie), movements (Right to left, Left toRight, Stand to Lie, Lie to Stand) and the human body itself (Upper

body and lower body, Right side and left side). Stand, Sit andLie postures are categorized by considering the human as an
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inverse pendulum and using contour moments. In Stand, Sit and Lie postures, Upper body and Lower body, and Right side

and Left side are respectively distinguished based on the transverse and sagittal planes as shown in Fig. 2 using

Stand, Sit|δ1 < yc & δ2 > yc & δ3 < xc & δ4 > xc

Lie|δ1 < xc & δ2 > xc & δ3 > Cy & δ4 < yc
(14)

where body sidesδ1, δ2, δ3 andδ4 are described in Table II.

Initially the Stand to Lie or Lie to Stand movement is ascertained (see Section IV-A1). Fig. 5(a) and (b) are then respectively

used to categorise postures in Stand to Lie and Lie to Stand movements according to clockwise and anti-clockwise rotation.

Right to Left, Left to Right and no movement are discerned based on the subject’s location in the first frame. In Stand to Lie,

for Stand, the movement is further divided intoα andβ (see Table I).α refers to activities with Right to Left or Left to Right

movement, e.g., Walk, Run, Skip, Side, Jump, Turn.β refers to activities in which the subject remains almost at the same

place and has Right side or Left side motion, e.g., Jump-in-place-on-two-legs, Bend, One hand wave, Two hand wave, Jack,

Standup, Collapse, Kick, Punch, Guard-to-kick, Guard-to-punch.α andβ are respectively determined using

α =
{

γ1|0.25× FRw > xc or γ2|xc > 0.75× FRw (15)

β =
{

0.25× FRw < xc < 0.75× FRw. (16)

where body movementsγ1, andγ2 are described in Table II.FRw andFRh are the frame width and frame height, respectively.

The global angle and the bounding rectangle are respectively used inα andβ to select the best IBM for labelling anatomical

landmarks.β is further categorized intȯβ andβ̈ (see Section IV-A2) to select the appropriate IBM. For any action, the convex

points of a human contour are normalized with respect to the bounding rectangle and then filtered. The criteria summarized in

Section IV-B from the proposed IBMs are used to label these convex points as SBPs in Stand to Lie, Lie to Stand,α, andβ

movements. Particle filter (or Motion flow) is used for prediction during occlusion. Finally the SBPs are connected to generate

stick figures for various actions and activities.

A. Silhouette Feature Extraction

1) Posture classification:As in [39] a contour is traced using the freeman chain code [40] on the silhouettes of the Weizmann

[41] and Multi-camera Human Action Video (MuHAVi) data sets[42] (see Section V). A least-squares fitness procedure is

used to compute the ellipse global angleθ based on (6) that best approximates the contour.

The maximum flexion and extension range of the trunk in Stand posture, i.e., 140◦ [33] is used to set the initial global angle

θstart parameters such that255− 115 = 140◦. This initial global angle is only checked in the first frame of the input video

sequence. It is a metric to ascertain the preliminary state of the subject’s posture by determining whether the body movement

starts from Stand, i.e., Stand to Lie, or from Lie, i.e., Stand to Lie, according to

γ3 =
{

Stand if115 ≤ θstart ≤ 255 (17)

γ4 =
{

Lie if 115 6≤ θstart 6≤ 255 (18)

where body movementsγ3 andγ4 are described in Table II.

Standard deviation of the global angle has been used to discriminate human shapes, posture based events and activities [43].

In [1], the difference in angle between the principal and vertical axes is used to detect SBPs but not for posture classification.

Biomechanical analysis of human spine show that a complete flexion of the whole trunk occurs due to a rotation of the lumber
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Fig. 5. Stand, Sit, and Lie posture classification using ellipse global angleθ (see Section IV-A1) in movements from: (a) Stand to Lie and (b) Lie to Stand.

vertebrae and pelvis, when the difference between the vertical and axis of human body rotation is greater than50◦ [33]. A

60◦ variation in global angle is set to differentiate between Stand and Lie posture for Stand to Lie.

The reference global angle for Stand is set to180◦ in Fig. 5(a). A flexion of more than60◦ from the reference in clockwise

or anti-clockwise direction is considered as Lie posture, i.e., Lie= 180± 60 = 120◦ or 240◦. The human body can flex and

extend at a range of110 − 140◦ while maintaining a somewhat Stand posture [33]. This yields a variation of40-70◦ from

the reference global angle with an average of55◦. Thus, the range of angle for Stand posture is set to be215− 155 = 60◦,

i.e., Stand= 180 + 35 = 215◦ or 180− 25 = 155◦. The disproportionate division of this range is to cater forthe clockwise

and anti-clockwise directions leaning ability of the humanbody while in Stand posture as shown in Fig. 5(a). Sit posture

is categorised in the remaining range of angle for clockwiseand anti-clockwise directions. It also encompasses intermediate

posture such as bend, manoeuvre from Sit to Lie and vice versa.

The range of global angle for Stand in Lie to Stand Fig. 5(b) iskept the same as Stand to Lie, i.e.,215 − 155 = 60◦.

However, in trying to stand from Lie, the body leans forward and the subject remains in intermediate posture (Sit) for a longer

duration. Thus, a global range of60◦ is set for Sit posture in Lie to Stand, i.e.,155− 95 = 60◦. The Lie posture is categorized

in the remaining range of global angle for clockwise and anti-clockwise directions. Fig. 5 illustrates the resulting division of

ellipse quadrant used to categorise postures for Stand to Lie and Lie to Stand. A mirror reflection of Fig. 5 is used for the

opposite direction of Right side and Left side for Stand to Lie and Lie to Stand. IBM forα activities is selected based on

these ranges of global angle.

2) Posture Segmentation:The ellipse fitting procedure used in [1] provides approximations, i.e., not body contour points are

enclosed by the ellipse as illustrated in Fig. 4(a). The bounding rectangle is used to enclose contour, and obtain its minimum and

maximum points, i.e.,Pmin = (ubr, vbr) andPmax = (wbr , hbr). ubr andvbr are respectively the startingx andy coordinates

of the bounding rectangle.wbr andhbr are respectively the width and height of the bounding rectangle. These points represent

the size of the silhouette contour, and are used to divide thebody into segments [G1-G7] using anthropometric information

[29] (see Section IV-B) defined for IBMs in each of the Stand, Sit and Lie postures as illustrated in Fig. 2. The difference
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TABLE III

NORMALISED SEGMENT VALUES FORSTAND , SIT AND L IE IBM.

Model G1 G2 G3 G4 G5 G6 G7

Stand 0.147 0.295 0.443 0.591 0.738 0.886 1

Sit 0.164 0.328 0.492 0.656 0.742 1 -

Lie 0.194 0.388 0.582 0.776 1 - -

between two segments (which depends on the number of segments Nseg) is

Dseg = (Pmax − Pmin)/Nseg (19)

whereNseg=7,6,5 andDseg=30,21,22 pixel for horizontal segmentation of Stand, Sit and Lie, respectively, andNseg=7 and

Dseg=30 pixel for vertical segmentation of Lie.hbr and vbr , andwbr and ubr are used in (19) for horizontal and vertical

segmentation, respectively. The normalised segmentsG[g] are determined using

G[g + 1] = Dseg × (g + 1)/(Pmax − Pmin), ∀g ∈ 0 : Nseg (20)

whereg = 0 andg = Nseg respectively correspond to the minimum and maximum points of the bounding rectangle as shown

in Fig. 4(b). Table III shows the normalised segmentation values for Stand, Sit and Lie posture fixed for all the experiments.

The bounding rectangle along with the angleφ from the vertical and global angleθ are used to provide cues to the Smart

Search Algorithm (SSA) (see Section IV-B4) for selecting the best IBM forβ movements.β is divided intoβ̇ andβ̈ respectively

for 0.7× hbr > wbr and0.7× hbr < wbr . Thus,

β =































Wave if β̇ and SSA

Kick if β̈ and2 ≤ φ ≤ 15 and SSA

Bend if β̈ and170 > θ > 190

and |H − F | < 1.5×Dseg and SSA

(21)

The intermediate postures are selected by wave IBM for labelling, since the subject has yet to attain any defined posture.

The Punch action is similar to throwing a ball involving latecocking, acceleration and follow through. In follow through, the

arm moves across the body in a diagonal manner and as a result the angleφ of body from the vertical is quite large [33].

Punch action inβ̈ is labelled using Wave IBM whenφ > 15. The range ofφ in Kick IBM is in between the Stand posture

(with tolerance for leaning) and the Punch action. The global angleθ is 170 and 190 respectively for left and right bend. The

Bend IBM criteria is formulated based on human vision and kinesiology. The Smart Search Algorithm (SSA) in Section IV-B4

uses (21) in labelling SBPs in Wave, Kick and Bend IBM.

3) Convexity Points:The convex hull method [44] is used to determine SBPs which are located at convex points of a

contour, where the line surrounding the silhouette is its convex hull and the shaded regions are its convexity defects. The

convexity defects yield a number of convex points on contourwhich are marked as head (H), arm (A), feet (F), etc. using the

IBM criteria in Section IV-B and as illustrated in Fig. 2(a).

The convex points(xcv, ycv) are normalised with respect to its bounding rectangle to increase the computational speed as

follows

xnr =
|xcv − ubr|

wbr

, ynr =
|ycv − vbr |

hbr

(22)
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within [0,1]. The Euclidean distance between convex pointsis computed as

DTcv (i) =

√

(cxcv − pxcv)
2
+ (cycv − pycv)

2 (23)

where (cxcv, cycv) and (pxcv, pycv) respectively denote the current and previous convex points, andi is the number of convex

points. Convex points are close to each other in a high resolution video frame but further apart in a low resolution one. This

is because in high resolution there are more frequent and sharper edges which will results in more convex points. A threshold

Th which is proportional to the frame widthFRw, frame heightFRh and resolution factorΥ are used to remove nearby

convex points, where

Th = FRw × FRh ×Υ (24)

andΥ (determined experimentally) is fixed as follows:

Υ =



















0.05 if FRw, FRh ≤ 200

0.007 if FRw, FRh ≥ 400

0.01 if 200 < FRw, FRh < 400

(25)

A convex point(xcv, ycv) is selected for labelling by first checking ifCV DT > Th, whereTh is determined by using (24)

and (25).

B. SBP Labelling and Tracking

The best IBM is used to label normalised convex points(xnr , ynr) as SBP using Table III as follows. The following SBPs

are labelled: Head (H), Arm/hand (A), Knee (K) and Feet (F). In the case where multiple criteria are used to label convex

points, the abbreviation of a SBP is followed by a numeral, e.g., H1, A1, A2, A3. Convex points(xcv, ycv) are compared with

xc and yc based on (14) to determine Upper body, Lower body, Right sideand Left side. The ranges for Sit and Lie have

been determined in the MuHAVi data set since it contains the collapse and standup activity. Body sidesδ1, δ2, δ3 andδ4 are

described in Table II.

1) Stand: In Stand posture, Stand to Lie and Lie to Stand, clockwise andanti-clockwise directions, Head and Feet are

respectively assigned using

H =
{

(xnr, ynr)|ynr < G1 if δ1 (26)

F =
{

(xnr, ynr)|ynr > G5 if δ2 (27)

Arm in Stand posture, Stand to Lie, and Lie to Stand for clock and anti-clockwise directions are respectively assigned using

A =
{

(xnr , ynr)|G2 < ynr ≤ G4 if δ3/δ4 (28)

A =







(xnr, ynr)|ynr > G4 if δ3/δ4 & δ1/δ2

(xnr, ynr)|G2 < ynr ≤ G4 if δ3/δ4 & δ2
(29)

2) Sit: In Sit posture, Stand to Lie and Lie to Stand, clock and anti-clockwise direction, Head and Feet are respectively

assigned using

H =
{

(xnr , ynr)|ynr < G1 if δ3/δ4 & δ1 (30)

F =
{

(xnr , ynr)|ynr > G5 if δ3/δ4 & δ2 (31)
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The Arm is respectively assigned for Stand to Lie, and Lie to Stand for clockwise and anti-clockwise directions using

A =
{

(xnr , ynr)|G1 < ynr ≤ G2 if δ3/δ4 & δ2 (32)

A =
{

(xnr , ynr)|ynr ≥ G5 if δ3/δ4 & δ2 (33)

3) Lie: In Lie posture, Stand to Lie and Lie to Stand, clockwise and anti-clockwise directions, Head and Feet are respectively

assigned using

H =



















(xnr, ynr)|xnr < G1 if δ1/δ3 & δ4

& ynr < G1 if δ1/δ3 & δ4

(xnr, ynr)|xnr < G1 if δ1/δ3 & δ4

(34)

F =
{

(xnr , ynr)|xnr > G5 if δ2 (35)

Head is also assigned using

H =



















(xnr , ynr)|xnr ≥ G2 & ynr ≥ G4 if δ1

or xnr > G2 & ynr < G5 if δ1

or xnr ≤ G4 &ynr > G4 if δ2

(36)

For Stand to Lie and Lie to Stand, clockwise and anti-clockwise directions, arm and head are respectively assigned using

A =
{

(xnr , ynr)|G1 < xnr ≤ G2 if δ3/δ4 (37)

H =
{

(xnr, ynr)|xnr < 0.5×G1 if δ1 & δ3/δ4 (38)

In Lie to Stand, as the subject is trying to stand, support of arms is used to assist in manoeuvring. (29) for Lie to Stand

is utilized for labelling SBPs as the subject is manoeuvringfrom Sit to Stand. However, during this manoeuvring when

hbr > 1.7× wbr, (28) is used instead of (29).

4) Smart Search Algorithm (SSA):In theβ activities, i.e.,, Wave, Kick and Bend IBMs, SSA is used to label SBPs. Based

on (21) SSA is initiated by locating the convex points in the non-anthropometric segment ranges.β̇ refers to the subject in

Stand posture who has yet to attain the posture of models shown in Fig. 3(a)-(c). It is an indication that the subject is likely

to perform Wave. In Fig. 3Hp andHc are respectively the location of previous(Hpx,Hpy) and current(Hcx,Hcy) head

points, andǫ is the horizontal distance between them.Hx andHy are respectively thex andy coordinates of headH SBP.

SSA divides the wave model into four horizontal segments, and as the hand goes near or above the head, the following steps

are defined for labelling convex points as SBPs in the segmentrange [G1-G4] as shown in Fig. 3(a):

Step 1: Locate the arm in the segment rangeG(1, 2] of shoulderS by dividing the bounding rectangle widthwbr into three

equal vertical sections, and reallocate normalised convexpoints(xnr , ynr) as arm pointA if xnr < wbr/3 or xnr > 2×wbr/3

or |ynr −Hy| > 0.7×Dseg represented by the shaded region in Fig. 3(a).

Step 2: Verify no arm point was identified using Step 1. Next, every normalised convex point(xnr , ynr) in the head

segment rangeG[1] of Stand to Lie, clockwise and anti-clockwise directions, is reallocated asA if ǫ > 0.7 × Dseg, where

ǫ = |Hcx−Hpx| as shown in Fig. 3(a).

Step 3: Check if no arm point has been labelled using the above two steps. Find two points in the segment range [G1-G4]

that are at maximum distance from the centre and lie to its right and left, respectively denoted by arrows in Fig. 3(a). These

points are then labelled as arm points.

Step 4: If an arm point is labelled using one of the above three criteria then it implies that a wave IBM best represents the

activity, hence the head point is reallocated as follows:Hx = xc, Hy = yc − τDseg , whereτ = 1, 1.7, 2.5 respectively for
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resolution factorΥ = 0.05, 0.007, 0.1. This is based on the fact that the centre of mass moves upwardwhen the human arms

are above the head.

In β̈ based on (21), for the kick IBM, only Step 1 and 2 of the SSA are invoked. Step 1 and 2 are respectively used in the

segment range of the armG(2, 4] andG[1] to reallocate foot point for right and left Kick as shown in the shaded region of

Fig. 3(b). In β̈ for Bend IBM, the global angleθ is near Sit, and the head to feet distance reduces (denoted bydashed arrows)

in Fig. 3(c). This model slightly overlaps with the Sit modelof Stand to Lie and Lie to Stand, hence, Sit criteria Stand to Lie

in Section IV-B2 is used to label SBPs. Depending upon the global angle the proposed framework automatically switches to

Lie to Stand using Fig. 5(b).

C. SBP Prediction during Occlusion

1) Particle filter based prediction:A particle filter [5], [45] is able to track and predict SBPs inthe presence or absence

of occlusion, or missed convex points. Given the current observation of location, i.e,(xcv, ycv), of a SBP at time stept− 1,

the particle filter predicts the location(x′

cv, y
′

cv) of a SBP at time stept. The state vectorXt−1 = (xcv, ycv, V x, V y) is

initialized, where(V x, V y) are respectively the distance between the current and previous SBPs along thex andy directions.

A constant-acceleration dynamic modelXt is used to update the state vector, where

Xt = M ∗Xt−1 (39)

M=

















1 0 dt 0

0 1 0 dt

0 0 dt 0

0 0 0 dt

















(40)

dt is the time lapse between two frames. For each SBP, particle filter with 100 particles is instantiated for optimum accuracy

of prediction with particles≥ 30 producing good results. During occlusion, the particle filter is initialized with the last

known observation to predict the next SBP(x′

cv, y
′

cv). This is achieved by keeping the temporal information of every previous

measurement and observation. In the event of occlusion in consecutive frames, the predicted values in the first frame(x′

cv, y
′

cv),

V ′x = x′

cv − xcv, andV ′y = y′cv − ycv are fed back as observations to initialize particle filter for the subsequent frames.

2) Motion flow based prediction:Motion flow employs the direction of linear displacement, prior knowledge of the activity,

temporal information of a SBP and geometry of the human body to define criteria for locating, labelling and tracking SBP, i.e.,

arm points(Ax,Ay) during occlusion as detailed in Table IV. If the displacement dx between current armAcx and previous

armApx point is greater than a thresholdζ = Dseg/6 = 5 (whereDseg=30, see Section IV-A2), it suggests that the maximum

displacement is reached and direction of the arm swing arm has changed. Onlydx is used because the horizontal displacement

of arm (pendulum) from equilibrium position to maximum displacement is intutively more than vertical displacement. The

direction of the front arm movement is constrained based on the previously labelled front arm points. The criteria in Table IV

are used to predict front and back arm points during walk, side, jump-in-place-on-two-legs, jump Left to Right, run Right to

Left and skip on the Weizmann data set.

In Table IV, Hx andHy, andAx andAy, respectively denote the coordinates of the head and predicted arm points, and

Act represents activities (see Table I). The upper polarity is used for Right to Left, and the lower polarity is used for Left to

Right. Front arm and Back arm are distinguished respectively on Right side and Left side based on (14). For all actions thearm

point is predicted at the centre (xc,yc) when no conditions are satisfied or when more than three points have been predicted
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TABLE IV

PARAMETERS AND THEIR VALUE FORMOTION FLOW BASED ARM PREDICTION. (α AND β ARE DESCRIBED INTABLE I)

Act |dx| Acx Acy Ax Ay

α1 −, < ζ ≤ Apx ≥ Apy Acx∓ dx Acy + dy/0.4ζ

α1 > ζ − − Acx− 0.4ζ Acy + dy/0.4ζ

α2 < ζ ≤ Apx ≥ Apy Acx∓ dx Acy + dy/0.4ζ

α2 −,≥ ζ − − Acx∓ 0.8ζ Acy + dy/0.4ζ

α3 ≤ ζ ≤ Apx − Acx∓ dx/0.4ζ Acy

α3 − − − Hx± 1.4ζ Hy + 4ζ

α4 < ζ ≤ Apx − Acx∓ dx Acy

α4 > ζ − − Acx∓ dx/ζ Acy

α5 < ζ ≤ Apx − Acx∓ dx Acy

α5 > ζ − − Acx∓ dx/ζ Acy

β7 < ζ − ≤ Apy Acx Acy + dy

β7 > ζ − − Acx Acy

consecutively. In the first row of walk, side, skip, jump-in-place-on-two-legs and run in Table IV, the relational operator and

polarity of criteria for current arm(Acx,Acy) and predicted arm(Ax,Ay) are respectively reversed for front and back arm

prediction in Right to Left and Left to Right. The second row of these actions is used to predict back points when they are not

predicted by the first row. For walk,dx is not used for front arm point prediction (which is denoted by a dash) but is used to

predict back arm point only. For jump, front arm point is predicted at centre(xc, yc) in occlusion, while the back arm point

is predicted using the two rows of jump. However, ifdx > 2ζ pixels then back arm point is predicted at the centre.

D. Stick figure

The proposed framework can be used for the animation of the stick figures of a human body formed by joining the SBPs

of every video frame. To form a stick figure, first the maximum distance between shoulder point(Sx, Sy) and head point

(Hx,Hy) is computed as

Sx = max(Hx− Sx) , Sy = max(Hy − Sy) (41)

for an activity. Noting that a shoulder point is mostly at a constant distance from the head point, (41) is used to find a shoulder

point (Sx, Sy) for all activities. According to human anatomy, the head andfeet points are connected to the centre(xc, yc)

of the silhouette contour and the arm points are connected tothe shoulder point(Sx, Sy).

V. EXPERIMENTAL RESULTS

The Weizmann data set [41] comprises ninety low-resolution180×144 video sequences of nine subjects performing ten

daily activities as shown in Table I. The Multi-camera HumanAction Video (MuHAVi) data set [42] comprises nine high

resolution 720×576 primitive action classes of two actors with two samples per activity.

A. Qualitative Evaluation

The freeman chain code contours of various subjects enclosed in the bounding rectangle and the rescaled ellipse, with

generated stick figures from SBP obtained using the proposedframework on Walk, Side, Skip, Jump, Jump-in-place-on-two-
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Fig. 6. Weizmann data set. (a)-(j) Walk, Side, Skip, Jump, Jump-in-place-on-two-legs, Run, Bend, One hand wave, Two hand wave and Jack respectively

(Contour, bounding rectangle, ellipse and stick figure); and (k)-(t) SBPs labelled as Head (H), Shoulder (S), Arm (A), Knee (K) and Feet (F) in these

corresponding actions.

Fig. 7. MuHAVi data set. SBPs labelled as Head (H), Shoulder (S), Arm (A), Knee (K) and Feet (F) in (a)-(d) Collapse; (d)-(g) Standup; (h)-(i) Walk;

(j)-(k) Run; (l)-(m) Turn; (n)-(o) Guard-to-punch; (p)-(q) Guard-to-kick; (r)-(s) Punch; and (t)-(u) Kick.

legs, Run, Bend, One hand wave, Two hand wave and Jack activities are shown in Fig. 6(a)-(j) respectively. Fig. 6(k)-(t) shows

the detected SBPs on the corresponding actions. An initial missed or undetected convex point, results in an incomplete stick

figure. This is because the proposed framework requires temporal information (at least two convex points) for initialization of

prediction using particle filter or motion flow.

The adaptability and generality of the proposed framework is validated by applying it with the same parameter settings on

the MuHAVi data set. Fig. 7(a)-(d) and (e)-(g) respectivelyshow collapse and standup actions with identified SBPs in Stand,

Sit and Lie postures. Fig. 7(h)-(u) illustrate the SBPs identified during Walk, Run, Turn, Guard-to-punch, Guard-to-kick, Punch

and Kick respectively. Fig. 6 and Fig. 7 show that the proposed framework successfully labels SBPs and is able to generate

stick figures in various actions.
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B. Quantitative Evaluation

Most methods in Section II only provide qualitative evaluation. In [1] for Computer Vision based Human body Segmentation

and Posture estimation (CVHSP), [8] for CBHM, the method in [9], and [6] for Star skeletonization, SBPs are detected but

the accuracy of their localization with respect to ground truth coordinates of each SBP is not presented. Also, the FirstSight

[11] detects body parts and not SBPs. Thus, it is not possibleto compare the accuracy of SBP localization using the proposed

framework with these methods. In Table V, Table VI, Table VII, and Table VIII the best results are shown in bold.

1) Accuracy of localization:The accuracy of SBP localization is presented in terms of distance in pixels between the

manually annotated (i.e., the ground truth) and detected SBPs. Silhouette contours for all activities of the two data sets are

skeletonized using the method in [46]. Manual annotation isperformed on the results of the skeletonized silhouette using

mouse cursor to obtain ground truth coordinates of SBPs. Note that the manual annotation of ground truth also involves some

guesses of SBPs in cases where these points are not localizedby skeletonization or not clearly visible to the human eye.

The location of every SBP obtained using the proposed framework with particle filter is compared with the ground truth in

each frame of the video sequence. The overall accuracy of theproposed framework is defined by the average error in detecting

each SBP, i.e.,

Error(xavg , yavg) =

∑N

n=1
|Gn(x, y)− Ln(x, y)|

N
(42)

whereGn(x, y) andLn(x, y) are respectively the coordinates of each SBP obtained from the ground truth and the proposed

framework, andN is the total number of frames.

The average error inx andy coordinates of each SBP, i.e., Head (Hx, Hy), Front Arm (FAx,FAy), Back Arm (BAx, BAy),

Left Foot (LFx, LFy) and Right Foot (RFx, RFy), in various activities Act (see Table I) perfomed by all subjects of both data

sets is shown in Table V. For Jump-in-place-on-two-legs (β7), Side (α4) and Walk (α1) of the Weizmann data set (which have

less lateral head movement), thex-coordinate head error is less than other activities whereas they-coordinate head error is

similar in all activities. The front and back arm points are occluded more than any other SBPs, hence they have greater errors.

A common average error is obtained for the right and left footbecause they are joined in Jump (α5), Jump-in-place-on-two-legs

(β7), One hand wave (β9) and Two hand wave (β10). The feet have smaller vertical movement than horizontal movement in

consecutive frames in all activities, hence, the averagey-coordinate error is less than thex-coordinate for both feet. For the

MuHAVi data set, they-coordinate head error is less than thex-coordinate average error in all activities. The errors in the

front and back arm points are also greater due to occlusion. The highest average error occurs in Collapse and Standup due to

severe self occlusion of front and back arms. The right and left feet have similar average errors. The averageAvg of five SBP

errors per activity is presented in the last column of Table V.

Weizmann and MuHAVi data sets have180× 144 = 25920 pixels and720× 576 = 414720 pixels per frame, respectively.

An overall average error of 5.02 and 7.8 pixels in location ofSBPs on all activities for five SBPs respectively on two diverse

data sets show that the proposed framework with arm prediction using particle filter is accurate and adaptable to data sets of

different resolution.

2) Localization Accuracy of predicted arm SBP:It is vital to verify the accuracy of location of predicted arm SBP versus

the ground truth. Table VI shows the error in the location using particle filter and motion flow in occlusion, where the average

location error of predicted SBP is

ErrorPred(xavg , yavg) =

∑N

n=1
|Gn(x, y)− Predn(x, y)|

N
(43)

andPredn(x, y) are the predicted SBP coordinates.
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TABLE V

AVERAGE ERROR IN PIXELS OFSBPS W.R.T GROUND TRUTH.

Act Hx Hy FAx FAy BAx BAy LFx LFy RFx RFy Avg

Weizmann Data set with prediction

α1 2.3 5.5 5.3 7.5 4.8 10.3 4.6 2.4 4.3 2.3 4.93

α2 3.8 5.6 5.3 3.4 8.7 8 5 3.7 4 3.4 5.09

α3 4.3 5.4 7 5.9 8.6 6 5 4.1 3.8 2.1 5.22

α4 1.6 5 6.5 6.3 4.5 7.5 3.8 3.1 4 3.5 4.58

α5 3.6 5.1 7.3 11 6.1 7.1 5.3 3.6 5.3 3.6 5.8

β7 1 4.5 6.5 8.6 3.9 6.5 6.2 2.9 6.2 2.9 4.92

β8 7.3 6.5 7.2 9.6 5 6.8 4.2 2.5 4.2 2.5 5.58

β9 9.6 5.4 5.2 6 2.6 5.2 6 1.7 6 1.7 4.94

β10 5.7 4 8.5 8.5 8.6 8.7 6 1.6 6 1.6 5.92

β11 5.3 4 3.3 4.4 2.8 3.3 2.4 2 3.2 2.3 3.3

MuHAVi Data set with prediction

α1 11 3.3 5.7 7.2 8.5 12.3 8 4.6 8.3 4.9 7.38

α2 9.65 3.8 6.4 6.7 9.2 16.3 8.3 5.2 9.7 6 8.12

α6 10.2 3.7 5.7 11.9 5.3 14.2 7.7 4.4 8 4.3 7.54

β12 9 5.2 32 23.5 11.7 13 12 10.4 11.4 7 13.52

β13 8.4 5.5 11.6 11.2 7.7 5.6 9.8 8.4 13.1 8.5 8.98

β14 10.8 4.9 4.1 5.4 6.5 5.2 11.5 9.5 7.2 6.5 7.2

β15 8.6 4.9 3.6 6.4 7.5 6.4 4.3 3.3 7.4 4.6 5.7

β16 7.3 5.6 2.9 4.9 7.9 5.4 3.8 4.3 6.2 8 5.6

β17 5.5 5.8 3.3 3.2 6.1 10.7 3.7 3.1 10.3 6.3 5.78

TABLE VI

PARTICLE FILTER AND MOTION FLOW PREDICTION ERROR, RESPECTIVELY DENOTED BY P AND M.

Act FAxp FAyp FAxm FAym BAxp BAyp BAxm BAym

α1 7.7 12.9 4.2 3.3 9.23 19.4 3.4 6.4

α2 7.5 8.1 8.3 3.3 9.9 15.4 6.8 8.4

α3 8.5 9.4 4.8 6.3 13 9.2 4.1 5.7

α4 5.4 8 6.1 5 3.5 11 5 6.6

α5 8.2 14.2 4.1 6.2 6.9 8.5 5 6.5

β7 4.4 12.2 7 6.1 2.9 10 4.5 6

Avg 6.9 10.8 5.8 5 7.1 12.2 4.8 6.6
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The particle filter and motion flow are compared for the arm prediction cyclic activities (see Table I), i.e., Walk (α1), Run

(α2), Skip (α3), Side (α4), Jump (α5) and Jump-in-place-on-two-legs (β7) of both data sets because it is the most occluded

SBP. Table VI shows that particle filter and motion flow accurately predict arm point, i.e., close to ground truth location. The

y-coordinate error of the front and back arm points using motion flow prediction are consistently smaller than those obtained

using particle filter. Thex-coordinate error is also smaller in most activities. Hence, motion flow outperforms particle filter

which is demonstrated by smaller averageAvg errors in all activities in Table VI. However, the lack of necessity for prior

information makes particle filter the better choice for prediction. Results on Walk (α1) and Run (α2) activity of both data sets

are shown in Table VI.

3) Accuracy of detected SBPs vs observed:The accuracy of detection is evaluated in terms of precision(PR), recall (RC)

and error (ER), i.e.,

PR =

∑q

1
CT

∑q

1
DT

, RC =

∑q

1
CT

∑q

1
OB

(44)

ER =

∑q

1
DT −

∑q

1
CT

∑q

1
DT

(45)

whereDT andCT are respectively the number of detected and correctly detected SBPs.OB is the observed SBPs andq

is the number of subjects. The number of detected SBPs includes misclassified SBPs which are manually counted by visual

inspection on every frame of video sequence. The number of correctly detected SBPs is obtained by deducting misclassified

SBPs from the number of detected SBPs.

The detection accuracy of five SBPs is computed by using the proposed framework first with no prediction and then with

particle filter prediction. This demonstrates the impact ofprediction on the performance of the framework. In Table VIIfor

SBP detection with no prediction, observed (OB) SBPs are the manually counted visible SBP onl with no guess work involved.

For SBP detection with prediction in Table VII, observed (OB) SBPs is the manually counted visible SBP with guessed SBPs.

In Table VII, for no prediction, smaller recalls are obtained for Run (α2), Skip (α3), Jump (α5), and Two hand wave (β10)

that have abrupt human limb movement as compared to Walk (α1), Side (α4), Jump-in-place-on-two-legs (β7), Bend (β8) and

One hand wave (β9). The smallest recall and precision respectively occur in Run (α2) and One hand wave (β9). The maximum

recall and precision respectively occur in Side (α4) and One hand wave (β9). The proposed framework with no prediction

obtains an overall averageAvg% recall and precision of95.3% and 96.5%, respectively, for all activities of the Weizmann

data set. On the MuHAVi data set it obtains the smallest recall for Run (α2) but is robust in detecting SBPs in Walk (α1),

Standup (β12), Punch (β15), Guard-to-kick (β16) and Guard-to punch (β17). In Turn (α6), Collapse (β13), and Kick (β14)

it is able to produce SBPs with reasonable accuracy. It has the least precision for complex movement such as Standup (β12).

It achieves an overall averageAvg% recall and precision of92.01% and98.4%, respectively, for all activities of the MuHAVi

data set. The average error for all activities of the Weizmann and MuHAVi data sets computed using (45) are3.5% and1.9%,

respectively.

In Table VII, for prediction, an overall2.5% and2.4% percentage increase in recall and precision, respectively, are obtained

in cyclic actions of the Weizmann data set using particle filter prediction. Specifically, the highest percentage increase of7.3%

in recall is achieved in Run (α2), which has the smallest recall with no prediction. For the MuHAVi data set, particle filter

prediction is only used for Walk (α1) and Run (α2) since they are cyclic actions. A percentage increase of10.7% in recall

is attained in Run (α2). There is a decrease in precision for both Walk (α1) and Run (α2), which suggests an increase in

misclassified arm SBPs. However, more importantly particlefilter prediction enhances the recall in all cyclic actions of both

data sets. The proposed framework with prediction obtains an overall averageAvg% recall and precision of97.7% and98.8%,
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TABLE VII

PRECISION AND RECALL OF FIVE SBPS DETECTION OF PROPOSED FRAMEWORK.

Weizmann Data set

No prediction Prediction No prediction Prediction

Act CT OB DT CT OB DT RC% PR% RC% PR%

α1 2655 2768 2681 3134 3195 3160 95.9 99 98.1 99.2

α2 1468 1623 1532 1828 1885 1892 90.4 95.8 97 96.6

α3 1566 1664 1585 2108 2170 2127 94.1 98.8 97.1 99.1

α4 1726 1786 1726 2183 2220 2183 96.6 100 98.3 100

α5 1756 1877 1759 2220 2290 2223 93.5 99.8 97 99.9

β7 2231 2271 2286 2654 2690 2709 98.2 97.6 98.7 98

β8 3067 3195 3278 - - - 96 93.6 - -

β9 3265 3265 3555 - - - 100 91.8 - -

β10 2875 3120 3018 - - - 92.1 95.3 - -

β11 3157 3370 3201 - - - 93.7 98.6 - -

Avg % - - - - - - 95.3 96.5 97.7 98.8

MuHAVi Data set

α1 1188 1231 1191 1326 1351 1502 96.2 99.8 98.1 88

α2 975 1198 985 1080 1198 1160 81.4 99 90.1 93.1

α6 868 1046 868 - - - 83 100 - -

β12 1431 1471 1505 - - - 97.4 95 - -

β13 1131 1306 1152 - - - 86.6 98.1 - -

β14 828 922 865 - - - 89.8 95.7 - -

β15 729 757 739 - - - 96.3 98.6 - -

β16 503 512 507 - - - 98.2 99.2 - -

β17 529 533 529 - - - 99.2 100 - -

Avg % - - - - - - 92.01 98.4 94.2 95.7

respectively, for all activities of the Weizmann data set. It achieves an overall averageAvg% recall and precision of94.2%

and95.7%, respectively, with prediction for all activities of MuHAVi data set.

The distance curve method in [1], [6] is implemented to compare its SBP detection accuracy with the proposed framework.

Based on Table VII the total number of SBPs detected across all activities by the proposed framework is more than the

skeletonized and CVHSP or Star skeletonization. Hence it ismore consistent in generating stick figures of various activities.

4) Comparative evaluation of SBP detection:The performance of the proposed framework is compared with state of the

art approaches, i.e., First Sight (FS) [11] and CBHM [8], with respect to a similar extent of occlusion and type of activity,

respectively. The accuracy of First Sight to detect five bodyparts, i.e., head, arms and feet, is evaluated in terms of theparts

observed by the human eye. Five SBPs identified by the proposed framework correspond to the five body parts detected by

First Sight. The activities used by First Sight differ with respect to no, mild and severe self occlusion. In the data setsfor this

paper, Walk (α1), Run (α2), Side (α4), Turn (α6), Jump-in-place-on-two-legs (β7), Punch (β15), Guard-to-kick (β16), and
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TABLE VIII

SBPDETECTION: PROPOSED VSCBHM AND FS.

4 SBPs Accuracy 5 SBPs Error

Classification CBHM Proposed Proposed FS

Occlusion Act RC% PR% RC% PR% ER% Avg% Avg%

Mild α1 95.2 100 97.4 99.2 0.6

Mild α2 76.8 90.8 97 97 2.59

Mild α4 - - 98.1 100 0

Mild α6 - - 80.2 100 0

Mild β7 - - 98.3 97.5 2.4

Mild β14 - - 87.2 94.5 4.2

Mild β15 - - 95.5 98.3 1.35

Mild β16 - - 97.8 99 0.79

Mild β17 - - 99.1 100 0 1.33 15

Severe α5 88.5 70.4 97 99.8 0.17

Severe β12 99.7 82.6 95.9 94.4 4.91

Severe β13 83.3 83 85.7 97.6 1.82

Severe β8 - - 97.6 92.2 6.43

Severe β9 - - 100 89.6 8.15

Severe β10 - - 91 94 4.73

Severe β11 - - 92.1 98.3 1.37

Severe α3 - - 94.8 97.1 1.19 3.59 21

Guard-to-punch (β17) have mild self occlusion, whereas Skip (α3), Jump (α5), Bend (β8), One hand wave (β9), Two hand

wave (β10), Standup (β12) and Collapse (β13) have severe self occlusion. Table VIII shows the performances of the proposed

framework and First Sight (as reported in [11]) on activities with mild and severe occlusion on all subjects of the Weizmann

and MuHAVi data sets. In Table VIII, results on Walk (α1) and Run (α2) activity of both data sets are presented collectively.

The averageAvg% five SBPs error computed using (45) is clearly much less than First Sight.

Due to unavailability of the data set used by CBHM, Table VIIIcompares the average precision and recall of the proposed

framework in detecting four SBPs (i.e., hands and feets) in similar activities with those of CBHM as reported in [8]. It shows

that the proposed framework obtains better recall and precision than CBHM in Run (α2), Jump (α5) and Collapse (β13). It

also achieves a slightly better recall for Walk (α1). The recall obtained for Standup (β12) is close to this approach, thus,

overall the proposed framework performs better than CBHM.

C. Computational complexity

The proposed framework runs in real time due to its computational simplicity. The computational time of the proposed

framework implemented in Microsoft Visual Studio 2010 Express Edition environment with OpenCV 2.4.6 on an Intel (R)

Core (TM) i7 processor working at 2.93 GHz with 4 GB RAM running Windows 7 operating system is measured using the

computer system clock. The proposed framework labels SBPs in 0.031 seconds per image frame on the Weizmann data set at

20-30 frame per second. It labels SBPs in 0.071 seconds per image frame on the MuHAVi data set.
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The convex hulll is computed using the Sklansky’s algorithm[44] which has a computational complexity ofO(N), whereN

in the number of convex points. The contour moments algorithm is based on the Green theorem [38] which has a computational

complexity ofO(L), where L is the length of the boundary of the object. The performance of the particle filter enhances with

the increase in number of particles. It is formallyO(N logN), however, it can be madeO(N) with minor modifications

to the sampling procedure. In the proposed framework, the particle filter is initialized with 100 particles with a state vector

constituting of four parameters. As a result its computational speed can be considered to be real time. This is similiar to [45]

where a 6-12 degree of freedom model with 100 particles run inreal time.

VI. CONCLUSIONS

In this paper, an automated video based human SBP labelling and tracking framework is presented. It employs IBMs based

on anthropometry, kinesiology and human vision inspired criteria to label SBPs. The classification of postures based onglobal

angle is combined with the convexity hull and bounding rectangle to select the best IBM for labelling convex points as SBPs.

Particle filter and motion flow are proposed for prediction inocclusion. Stick figures are generated by connecting SBPs. The

results demonstrate that the proposed framework robustly locates, labels and tracks SBPs in several actions on two datasets

of low and high resolution. The results also show better it achieves better detection performance than the state of the art

approaches. In future, manual counting of misclassified points can be automated and particle filter can be extended to predict

SBPs for more actions.
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