Abstract:
This paper is concerned with the problem of reliable mixed H∞ and passivity-based control for a class of stochastic Takagi-Sugeno (TS) fuzzy systems with Markovian switch...Show MoreMetadata
Abstract:
This paper is concerned with the problem of reliable mixed H∞ and passivity-based control for a class of stochastic Takagi-Sugeno (TS) fuzzy systems with Markovian switching and probabilistic time varying delays. Different from the existing works, the H∞ and passivity control problem with probabilistic occurrence of time-varying delays and actuator failures is considered in a unified framework, which is more general in some practical situations. The main aim of this paper is to design a reliable mixed H∞ and passivity-based controller such that the stochastic TS fuzzy system with Markovian switching is stochastically stable with a prescribed mixed H∞ and passivity performance level γ > 0. Based on the Lyapunov-Krasovskii functional (LKF) involving lower and upper bound of probabilistic time delay and convex combination technique, a new set of delay-dependent sufficient condition in terms of linear matrix inequalities (LMIs) is established for obtaining the required result. Finally, a numerical example based on the modified truck-trailer model is given to demonstrate the effectiveness and applicability of the proposed design techniques.
Published in: IEEE Transactions on Cybernetics ( Volume: 45, Issue: 12, December 2015)