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Abstract—Graph mining has been a popular research area
because of its numerous application scenarios. Many unstruc-
tured and structured data can be represented as graphs, such as,
documents, chemical molecular structures, and images. However,
an issue in relation to current research on graphs is that they
cannot adequately discover the topics hidden in graph-structured
data which can be beneficial for both the unsupervised learning
and supervised learning of the graphs. Although topic models
have proved to be very successful in discovering latent topics,
the standard topic models cannot be directly applied to graph-
structured data due to the ‘bag-of-word’ assumption. In this
paper, an innovative Graph Topic Model (GTM) is proposed to
address this issue, which uses Bernoulli distributions to model
the edges between nodes in a graph. It can, therefore, make
the edges in a graph contribute to latent topic discovery and
further improve the accuracy of the supervised and unsupervised
learning of graphs. The experimental results on two different
types of graph datasets show that the proposed GTM outperforms
the Latent Dirichlet Allocation on classification by using the
unveiled topics of these two models to represent graphs.

Index Terms—Graph mining, Topic model, Latent Dirichlet
Allocation

I. INTRODUCTION

GRAPH is a structure of a set of nodes where some pairs
of nodes are connected by links. Many unstructured and

structured data can be represented as graphs. The research
about this graph structured data belongs to the graph mining
area [1]. The motivation for graph mining is that the edges
(formed structures) will contribute to the classification or
clustering of the data as compared to instance mining which
only considers nodes [1], [2]. In text mining, a document,
for example, [3], [4] is composed of some words as nodes
and word relations, which can be co-occurrence relations,
association relations, or other semantic relations. The classi-
fication of these document graphs can improve the accuracy
of document retrieval with word vectors as representations.
To provide another example, a chemical molecular structure
can be represented by a graph with basic elements as nodes
and chemical bonds as edges. The classification of these
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chemical molecular graphs can help to label molecular struc-
tures which is normally a very difficult and time-consuming
process. Moreover, products, services, website retrieval and
many real-world tasks can benefit from such graph mining.
However, the existing graph mining algorithms are mainly
based on the frequent subgraph representation [5]–[7] which
transforms a graph into an instance where each subgraph is
a dimension and then the existing instance-based machine
learning algorithms can be adopted. The problem with this is
that the links between subgraphs in a single graph are omitted.
This omission unfortunately loses some valuable information.

On the other hand, although the topic detection in text
mining [8] and video processing [9] is a hot research area,
the research issue, that of discovering hidden topics in graph-
structured data, has not been well solved. For example, in
the text mining area, if topics are from scientific papers
about a research area, the topics mean the different research
directions of this research area, i.e., cloud computing and
machine learning; in the image mining area, if topics are
about the images in a scene, the topics mean the different
background semantics (e.g. the combinations of objects, like
the combination of ‘sky’ and ‘water’ can actually be the
‘environment’). These discovered topics are useful for many
real-world tasks, such as, topic detection and tracking in text
mining, image segmentation and retrieval, and dimensionality
reduction, but we do not have a suitable solution for graphs
since the existing works on topic discovery are only based on
instance-represented data [10]–[12]. A challenging question
therefore arises: how do we discover hidden topics for graph-
structured data?

In order to resolve this research issue, we propose a topic
model for graph mining (GTM) in this paper. To the best
of our knowledge, we are the first to apply the topic model
for graph mining. Although topic models have proved to be
very successful in discovering latent topics, the standard topic
models cannot be directly applied to graph-structured data
because of the ‘bag-of-word’ assumption. Here, we make an
assumption that if there is an edge between two nodes in a
graph, these two nodes tend to ‘talk’ similar content. In GTM,
a Bernoulli distribution is adopted to model the existence of an
edge parameterized by topics of two linked nodes. By directly
the modelling edges, GTM can make the edges contribute to
latent topic discovery instead of the process of using frequent
subgraphs. Finally, we compare the performance of GTM and
Latent Dirichlet Allocation (LDA) on the classification task.
The experimental results show that the ability of GTM on
document and chemical formula classifications is better than
LDA. The discovered topics by GTM are also better than LDA.
In other words, topics from GTM can more accurately describe
graphs than LDA.

The contributions of this paper are:
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1) An innovative Graph topic model (GTM) for graph-
structured data is built by modelling the edges in graphs
using Bernoulli distribution, which makes the edges in
graphs contribute to the discovered topics;

2) Two inference algorithms: Variational algorithm and
Markov Chain Monte Carlo algorithm are developed to
resolve the proposed GTM.

The rest of this paper is organized as follows. Some related
works are given in Section II. In Section III, we introduce the
proposed GTM with the inference algorithms. In Section IV,
experiments are conducted to compare traditional LDA with
the proposed GTM on the classification. Finally, Section V
concludes this study and discusses further work.

II. RELATED WORK

In this section, we will review the state-of-the-art research
in two areas: topic models and graph mining. A successful
model and also our competitive model will be introduced in
more detail.

A. Topic models

Probabilistic Latent Semantic Indexing (pLSI) [13], which
is an extension of Latent Semantic Indexing (LSI) [14], can
be seen as the first topic model. The original idea of this
comes from the sparse document-keyword matrix. LSI uses
Singular Value Decomposition (SVD) from the dimension
reduction view and pLSI builds a generative model to find
the latent classes (topics). However, there is an over-fitting
problem in the pLSI model, which is addressed by Latent
Dirichlet Allocation (LDA) [11] using a Dirichlet prior to
all the topic distributions with the resulting sacrifice of the
inference complexity [15]. There are also many extensions of
LDA which have considered different aspects of data, such as
the label [16], time [12], author [17], emotion [18] and so on.
More information about topic models can be found in [19],
[20].

There are also some works which try to capture the
dependencies using topic models. Here, we class them as
three categories according to the dependence level: topic-
level, document-level and word-level. At the topic level, a
correlated topic model is proposed to capture the relations
between hidden topics by replacing the Dirichlet prior with
Log-normal prior [21]. An infinite topic tree is learned from
the data by a nested Hierarchal Dirichlet Process [22]. At the
document-level, the citation relations between scientific papers
are considered by a relational topic model [23], [24]. Both
topic-level and document level models are still based on the
‘bag-of-word assumption. At the word level, Thomas Griffiths
[25] tries to fill this gap by adding the syntactic relations of
words in a sentence to the model. The Hidden Markov Model
(HMM) [26] is combined with the topic model by assuming
that the keywords in a document are generated under an
inherent linguistic sequence. Although these two works have
proved to be successful, only the linguistic linear relation of all
keywords in a sentence or document are considered. Actually,
there are many types of relations between keywords in a
document and these relations are not limited in a sentence. Our

work belongs to the third level, i.e. the word-level. Compared
with current works, our model can be extended to the graph
mining area, because our model can capture more general
relations (e.g. graph structure).

B. Graph mining

Graph mining [27] has become an important research topic
and has been successfully applied to numerous applications,
like computational biology, chemistry and so on. Compared
with the traditional instance-based data representation, the
graph-based representation expresses more data information
which constitutes the structure of data. The main work in
the graph mining area is to find a way to incorporate this
structural information into the traditional algorithms, such as
classification, clustering, frequent pattern mining, and so on.

Frequent subgraph mining is of significance in graph mining
because it is the bridge connecting traditional data mining
algorithms and graphs. So, there are plenty of frequent sub-
graph mining algorithms proposed in the literature which
are categorized in terms of ‘general purpose’ and ‘pattern
dependent’ algorithms [28]. Based on the graph traversing
strategies, BFS and DFS, some algorithms are designed, like
FSG [29], DPMine [30], gSpan [31], GASTON [32], etc.

Graph classification provides the labels for the unlabelled
graphs using labelled graphs as training data. A similarity
measure between two graphs is the basis for the graph
classification, because the traditional measures do not work
for graphs, e.g. cosine, Euclidean distance, and Minkowski
distance. Kernel-based [33] methods are proposed to resolve
this problem. Since the direct comparison between two graphs
is the NP hard problem, some graph kernels [34], [35] are
proposed to measure the distance between the two graphs by
considering the properties of graphs, like nodes, edges, paths.
The original kernel-based methods [34], [36] are normally
time-consuming. For example, the geometric random walk
graph kernel [36] requires O(n6) time. Four approximation
methods are proposed to reduce this complexity to O(n4),
and, for some sparse graphs, the time only requires O(n2)
[37]. Subgraph-based graph classification is also a prevalent
method [5], [7]. Some boosting approaches have been adopted
to select interesting subgraphs from the original big subgraph
set [38]. The dual active features [6] and positive labels [39]
are considered.

Graph clustering clusters the graphs with similar labels.
Apparently, the most important thing for graph clustering is
the existence of similarity between two graphs. Some ideas
of graph classification can also be adopted here. There are
also some other methods, like the entropy-based method [40]
and some works try to improve efficiency by employing the
parallel algorithm [41].

To sum up, although various methods about graph have
been proposed, there is little work on the probabilistic model
for graph mining. Accordingly, we have sought to build a
probabilistic model for the different kinds of graphs based
on the idea of topic models.
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Fig. 1: Instance-based and Graph-based representation of a document. Each node in the graph denotes a word in the document. The edges
denotes a kind of relationes between words.

Fig. 2: Instance-based and Graph-based representation of a chemical formula. A chemical formula (left figure) is composed by different
elements, like O, C, HO, and so on. The connections between these elements are called bonds between them, which have almost same ability
to influence the function of a chemical formula. Here, two different representations are constructed for a same chemical formula.
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Fig. 3: Graphical representation of LDA

C. Latent Dirichlet Allocation

Since our work is based on Latent Dirichlet Allocation
(LDA) and it aims to extend LDA to graphs, we will provide

more details about this model. LDA [11] is a generative
graphical model, as shown in Fig .3. The documents are
selected as the example dataset in line with the original paper,
but it should be noted that LDA can be used for any instance-
based representation objects. The aim of this model is to
discover the underlying topics in a corpus. It assumes that
a document is composed by a number of topics with different
weights (called topic distribution), and a topic is composed by
a number of keywords 1 with different weights (called keyword
distributions). The generative process is:
• Draw φz ∼ Dir(β) for each topic;
• Draw θd ∼ Dir(α) for each document;

1Keywords are the selected words to express/represent the semantics of the
documents. Here, the keywords in this paper are non-stopwords and these
are stemmed by the NLP tools. All the words are also given certain POS,
and then only the nouns and verbs are kept analogous with other literature,
because the document classification is mainly sensitive to nouns and verbs.
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• For all keywords in a document:
– Draw zd,n ∼Multi(θd) for each keyword;
– Draw nd ∼Multi(φzd,n) for each keyword;

The inference for this model is the inverse process of this
generative process. The Expectation Maximization algorithm
is adopted to get optimized latent variables for maximizing the
model likelihood. In this generative process, the topic assign-
ment of each keyword is determined by the topic distribution
of the belonged documents, and each keyword is determined
by its topic assignment and keyword distribution of topics, as
shown in Fig. 3. It is a pity that the relations between keywords
in a document have been overlooked in previous studies.

III. GRAPH TOPIC MODEL

In this section, we first present some basic concepts used in
this paper. Based on these concepts, we introduce the proposed
model followed by two inference algorithms. In order to show
the procedure and intrinsic of the algorithms, an illustrative
example is given at last.

A. Graph

The definition of graph is given here and its representative
ability is shown by two examples: a document graph and a
chemical graph. Besides, some basic concepts and notations
will also be given, which will be used throughout this paper.

Definition 1 (Graph): A graph g is composed by nodes and
edges,

g :=< V, {e} > (1)

where V is a node set in a dataset G and {e} is an edge set
of relations between nodes within this graph. Examples are
shown in Fig. 1 and Fig. 2.

Graph can be used to model or represent lots of items. In
this paper, we give two examples of graphs, one is document
graph and the other is chemical graph.

1) Document Graph: A document is apparently composed
by some words, which is the reason why most of researches
about documents using a word vector to represent a document.
In order to construct a graph for a document, we just need to
add relations between these keywords as shown in Fig. 1. The
relation in this paper between keywords is selected as the co-
occurrence relation. Co-occurrence frequency of two keywords
is,

fco =
|Gni ∩Gnj |
|G|

where Gni
is the documents which contain keyword ni. An

edge eni,nj
exists only if the co-occurrence frequency of

them exceeds a threshold ρ. This edge means that these two
keywords have a big probability to be used to describe a
similar topic. If there are a number of topics, it means these
two keywords may have similar topic distribution.

The reason why this co-occurrence relation is selected here
is that it is a weak-semantic relation between keywords and
can be easily and automatically constructed without appealing
to other resources. Actually, there are other concrete and rich-
semantic relations can be discovered by some other methods,
like Resource Description Framework (RDF) [42] or Ontology

TABLE I: Notations used in this paper

Symbol Description
|G| the number of graphs in a graph dataset G
N the number of nodes in a graph dataset G
K the number of topics in a dataset
θg topic distribution of graph g
zg,n topic assignment of node n of graph g
ng node n of graph g
egi,j an edge between nodes ni and nj in graph g
φk node distribution of topic k

[43], [44]. However, they normally need the help of outer data
resources or the human intervention. For an arbitrary corpus,
co-occurrence relation is a better choice.

2) Chemical Graph: Each chemical formula seems nat-
urally a graph with each chemical element as a node and
chemical bonds as edges. However, the nodes may occur twice
in a single chemical formula with different positions. Since a
treatment function is normally expressed by the combination
of basic chemical elements [45], we cannot directly use the
original graph structure.

Here, we use the frequent subgraphs in a dataset as the
nodes and the links between subgraphs as edges. At first,
gSpan2 is adopted to mine the subgraphs. Each chemical
formula is re-represented as a vector of subgraphs,

gc =< sg1, sg2, ..., sgn > (2)

where sgi denotes the weight of ith subgraph in this chemical
graph gc. At last, the subgraph relations are defined as their
inclusive relation. For example, if a subgraph sgi contains
another subgraph sgj , there will be an edge < sgi, sgj >
between sgi and sgj as shown Fig. 2.

Definition 2 (Topic): A topic is a vector of all nodes in a
dataset with their weights.

From different datasets, topics have different meanings. For
example, the topics from scientific papers can be seen as
the different research directions; the topics from chemical
formulas can be seen as the different treatment functions, such
as activity, toxicity, etc.

Some other frequently used notations in this paper are listed
in Table I.

B. Proposed Model

This model is an extension of LDA, so it is also a generative
model. The graphical representation of GTM is shown in Fig.
4 and the corresponding generative process is,

1) draw φk ∼ Dir(β) for each topic;
2) draw θg ∼ Dir(α) for each graph;
3) for all nodes in a graph:

a) draw zg,n ∼Multi(θg) for one node;
b) draw ng ∼Multi(φzg,n) for one node;

4) for all edges in a graph:
draw egni,nj

∼ π(pgni,nj
) for an edge eni,nj ,

pgni,nj
(egi,j = 1) =f(zg,ni

, zg,nj
,φ)

=φzg,ni
◦ φzg,nj

(3)

2http://www.cs.ucsb.edu/ xyan/software/gSpan.htm
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Fig. 4: Graphical representation of GTM

The pgni,nj
is the parameter of Bernoulli distribution of the

existing of an edge between two nodes ni and nj . It should be
noted that the edge generation here is different from the edge
definition in Section III.A. The edge definition is a description
of the observed data. But the edge generation here is a part
of the statistical model assumption. We just learn the data
from this model assumption. The difference from LDA and
the main idea of this model lie on modelling the edges in
graphs using Bernoulli distribution parameterized by the topic
distribution of nodes. We can see from the Fig. 4 that egni,nj

is generated by {zg,ni
, zg,nj

,Φ}. It means that the probability
of the existence of an edge between two nodes is determined
by the similarity of their topic distributions. This similarity is
measured by vector inner product between φzg,ni

and φzg,nj
,

where φzg,ni
is node distribution of topic {zg,ni

}, as shown in
Eq. (3). The more similar topics of two keywords are, the more
likely there is an edge between these two nodes. As discussed
in next subsection, the learning process for this model will
show that the edges between nodes will influence the topic
assignment of nodes and then influence the topic distribution
of a graph. It is just this influence that makes the discovered
topics are better than ones from LDA.

C. Variational Inference

For model learning, variational Expectation Maximization
is adopted to learn the posterior distribution of graphs. It has
two steps: e-step and m-step. In the e-step, the key work is
to compute probability distribution of latent variables of the
model. The posterior distribution of latent variables of a graph
is,

p(θg, zg,φ1:K |ng, eg, α, β) (4)

Generally, this distribution is intractable to compute. The
idea of variational inference is to use Jensen’s inequality to
maximize the lower bound on the log likelihood. The original
posterior distribution in Eq. (4) is factorized into some selected
distributions parameterized by variational parameters.

For GTM, the distributions used to factorize posterior dis-
tribution are,

θg ∼Dir(γg)
zg,n ∼Multi(ϕg,n)

φk ∼Multi(κk)

(5)

where γg , ϕg,n and κk are variational parameters. Actually,
they are not just three distributions but three distribution
families composed by distributions with different parameter
values. Then, the Eq. (4) is factorized as,

q(θg, zg,φ1:K |γg,ϕg,κg)

=qθ(θg|γg)
N∏
n=1

qz(zg,n|ϕg,n)

K∏
k=1

qφ(φk|κk)
(6)

This is an approximation of the posterior distribution. The
distance between this approximation and original posterior
distribution can be measured by KL distance, as

log p(ng, eg|α, β)

= logEq

[
p(θg, zg,φ1:K ,ng, eg|α, β)

q(θg, zg,φ1:K)

]
≥ Eq

[
log p(θg, zg,φ1:K ,ng, eg|α, β)

]
− Eq

[
log q (θg, zg,φ1:K)

]
(7)

Through the adjusting of variational parameters, the distribu-
tions that can maximize the Eq. (7) can be found from the
variational distribution families. After transforming the search-
ing of variational distributions to an optimization problem, the
variational parameters can be computed as,

γg,k = αk +

N∑
n

ϕg,n,k (8)

and

∂f(ϕg,n,k)

∂ϕg,n,k

=
(

Ψ(κk,n)−Ψ(

N∑
n

κk,n) + Ψ(γg,k)

−Ψ(

K∑
k

γg,k)− logϕg,n,k − 1
)

+
∑

nj∈Ne(ni)

(
ζ−1 · κ

ϕg,nj,k

k,nj
· lnκk,n · κ

ϕg,n,k

k,n

)
(9)

and

∂f(κk,n)

∂κk,n

=

(
Ψ,(κk,n)−Ψ,(

N∑
n

κk,n)

)
(ϕg,n,k + βn − κk,n)

+
∑

nj∈Ne(ni)

(
ζ−1 · ϕg,ni,k · κ

ϕg,ni,k
−1

k,ni
· κ

ϕg,nj,k
−1

k,nj

) (10)

and

ζ = N(ni,nj)

K∑
k

(
κ
ϕg,ni,k

k,ni
· κ

ϕg,nj,k

k,nj

)
(11)

where Ne(n) is the number of neighbors of a node n and ζ
is the a parameter of Taylor expansion of log probability of
Eq. (3) (The detail is shown in Appendix) . We can compute
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Algorithm 1: Variational Inference for GTM
Input: Topic number K, graph dataset G
Output: γ, ϕ and κ

1: random initialization of variational variables γ, ϕ and κ
2: i = 1
3: while i ≤ maxiteration do
4: for g = 0 to |G| do
5: Update γg through Eq. (8)
6: Update ϕg by gradient-based optimization with

derivative in Eq. (9)
7: end for
8: Update κ by gradient-based optimization with

derivative in Eq. (10)
9: Update ζ by gradient-based optimization with

derivative in Eq. (11)
10: i = i + 1.
11: end while

Algorithm 2: MCMC Inference for GTM
Input: Topic number K, graph dataset G
Output: φ, θ and z

1: random initialization of variables φ, θ and z
2: i = 1
3: while i ≤ maxiteration do
4: for g = 0 to |G| do
5: Update θg through Eq. (13)
6: Update zg through Eq. (14)
7: end for
8: Update φ through Eq. (17)
9: i = i + 1.

10: end while

the exact form of γ and ζ, but ϕ and κ cannot. So, gradient-
based optimization method 3 is adopted to get the optimized
ϕ and κ. The whole procedure, named Variational Inference
for GTM, is shown in Algorithm 1.

After getting the posterior distribution of each graph in
Eq. (4), we need to maximize the likelihood of the graph
by selecting α and β in the m-step. The Newton method 4

is adopted here. The detail is omitted, because there is no
difference from the method used in LDA.

Let us see how the edges in a graph impact on the topic
distribution θg of this graph. Since γg is the variational
parameter of θg , the value of γg will influence the topic
distribution θg of a graph g. In Eq. (8), it can be seen that
γg is influenced by topic assignments ϕg,n of its nodes and
ϕg,n is in turn impacted by its neighbors as the Eq. (9) shown.
This is consisted with our former discussion about GTM.

D. Markov Chain Monte Carlo (MCMC) Inference

Another method to get posterior distribution in Eq. (4) for
each graph is Gibbs sampling, which construct a Markov
chain with stationary distribution as the desired posterior

3http://en.wikipedia.org/wiki/Gradient descent
4http://en.wikipedia.org/wiki/Newton’s method

distribution. What we need to do is to find the conditional
distributions for each variables in this posterior distribution in
the model.

At first, since the prior of θ is Dirichlet distribution and its
likelihood is multinomial distribution, the posterior distribution
of θg conditioned on all other variables is easily found out as,

p(θg| · · · ) ∼ Dir(α1 +mg,1, α2 +mg,2, · · · , αK +mg,K)
(12)

where mg,k is the number of zi = k in graph g. Eq. (13)
relies on the conjugation between Dirichlet distribution and
multinomial distribution.

Sampling z will be a little more complicated. We know that
the prior for zg,n = k is multinomial distribution parameter-
ized by θg . The likelihood should be,

p(n|φz=k) ·

 ∏
m∈Ne(n)

p(en,m = 1|φz=k, φkm)


 ∏
j /∈Ne(n)

p(en,j = 0|φz=k, φkj )

 (13)

where km is the topic assignment of node m. The likelihood
contains three parts. The first part is for the generation of node
n. Second part is for the generation of edges in graph g. It
should be noted that the third part, which is for the edges with
0 weights, is also necessary. With the prior and likelihood in
hand, the conditional distribution of zg,n = k is given as,

p(zg,n = k| · · · )

∝θk · p(n|φk) ·

 ∏
m∈Ne(n)

p(en,m = 1|φk, φkm)


 ∏
j /∈Ne(n)

p(en,j = 0|φk, φkj )


(14)

For the φk, its prior is Dirichlet distribution with parameter
β. The likelihood should be derived for its conditional distri-
bution. In GTM, the Φ are used to generate nodes and edges.
So, the likelihood for node generations of φk is,∏

n:kn=k

p(n|φk) (15)

n : kn = k are the nodes that are assigned to topic k. And the
likelihood for edge generations is, ∏

en,m=1&kn=k

p(en,m = 1|φk, φkm)


 ∏
en,m=0&kn=k

p(en,m = 0|φk, φkm)

 (16)

Here, all the edges with one node assigned to topic k are
separated into two groups, one is with weight 1 (existence)
and one is with weight 0 (non-existence). Combine the prior
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Fig. 5: An illustrative example

and two likelihoods,

p(φk| · · · ) ∝ p(φk|β) ·
∏

n:kn=k

p(n|φk) ∏
en,m=1

⋂
kn=k

p(en,m = 1|φk, φkm)


 ∏
en,m=0

⋂
kn=k

p(en,m = 0|φk, φkm)


(17)

The iterative sampling θg , zg , φ1:K for all graphs will
get the samples of posterior distribution of the whole dataset.
Except for θg , zg , φ1:K , the model parameters α and β could
also join the sampling without predefining specific values.
For the symmetric Dirichlet distribution, the prior for α and
β could be Gamma distribution and the likelihoods are also
easily computed. The final algorithm, named MCMC Inference
for GTM, is described in Algorithm 2.

E. An intuitive example to show the implication of GTM

Here, a simple example is made up to show how the
algorithms work. Suppose we have a document graph dataset
that contains three document graphs as shown in Fig. 5. There
are only two hidden topics discussed in these documents: the
first is about planting apple tree and the second is about apple
computer and electronic equipments. The topic assignment of
each graph can be represented by a two dimensional vector
(a, b) in which a denotes the probability of this graph assigned
to first topic and b denotes the probability of this graph
assigned to second topic. In Fig. 5, first frame denotes a very
simple graph in dataset and composed by three nodes (words):
plant, CPU and apple with an edge between apple and CPU
and an edge between apple and plant. The other two graphs
have same nodes with the first one but different edges.

At first, we can see that this graph dataset will be equal to
the corresponding instance dataset if the edges are omitted.
In this situation, all the graphs are identical. Take the first
graph as an example, there is one word CPU that belongs to
second topic apple computer and electronic equipments. At
the same time, there is one word ‘plant’ that belongs to first

topic planting apple tree. Third word apple could belong to
either one. To sum up, the topic assignment of the first graph is
(0.5, 0.5). The other two graphs are same with the first graph.

However, when we consider their structure (edges), three
graphs are not identical any more. Take Algorithm 2 as an
example. We do the following steps:

1) Input: three graphs and topic number is two;
2) Initialization: randomly set the topic assignments of

graphs. Here, we give them the same topic assignments:
(0.5, 0.5); topic assignments of keywords of all graphs:
(0.5, 0.5); and the keyword assignments (apple, CPU,
plant) of topics (0.33, 0.33, 0.34);

3) For the first graph, we can update the topic assignment
of the first graph from (0.5, 0.5) to (0.5, 0.5), according
to Eq. (13);

4) According to Eq. (14), the topic assignment of apple will
change from (0.5, 0.5) to (0.5, 0.5), the topic assignment
of CPU will change from (0, 1) to (0.2, 0.8), and the
topic assignment of plant will change from (1, 0) to
(0.8, 0.2);

5) For the second graph, we can update its topic assignment
from (0.5, 0.5) to (0.3, 0.7), according to Eq. (13);

6) According to Eq. (14), the topic assignment of apple will
change from (0.5, 0.5) to (0.3, 0.7), the topic assignment
of CPU will change from (0, 1) to (0.1, 0.9), and the
topic assignment of plant will change from (1, 0) to
(1, 0);

7) For the third graph, we can update its topic assignment
from (0.5, 0.5) to (0.7, 0.3), according to Eq. (13);

8) According to Eq. (14), the topic assignment of ‘apple’
will change from (0.5, 0.5) to (0.7, 0.3), the topic as-
signment of CPU will change from (0, 1) to (0.1, 0.9),
and the topic assignment of plant will change from (1, 0)
to (0.9, 0.1);

9) Then, we update keyword assignment of topics
using Eq. (17), the first topic from (0.33, 0.33, 0.34)
to (0.3, 0.2, 0.5), and the second topic from
(0.33, 0.33, 0.34) to (0.3, 0.5, 0.2);

10) Stop until reach the max iteration number.
Using the Algorithm 2, we get different topic assignments

of graphs. The topic assignment of the first graph does not
change. But the one of second graph changes from (0.5, 0.5)
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TABLE II: Statistics of document graph dataset

Topic name document number all keyword number
earn 3722 14424
acq 2127

TABLE III: Value of ρ

ρ average document graph density
0.01 0.3104

0.0042 0.4017
0.0017 0.5023
0.0006 0.6103

(the result of omitting edges) to (0.3, 0.7) (the result of Algo-
rithm 2). It means the second graph is more likely discussing
second topic. The reason why the Algorithm 2 gets this result
is because there is an edge between apple and CPU. By the
effect of this edge, the word apple is more likely discussing
second topic. Overall, the second graph is more tend to talk
about second topic.

From this simple example, we can see that the edges do
affect the hidden topic discovery and intuitively these edges
can improve the accuracy of discovered topics from the Fig.
5. Next, we will test on the real-world datasets to verify our
algorithms.

IV. EXPERIMENTS AND RESULT ANALYSIS

In order to verifying the merit of considering edges between
nodes, we compare our proposed GTM with LDA on two
different types of datasets, one type is document and the other
is chemical formula. The objects are represented as instances
and graphs and trained by LDA and GTM, respectively.
After that, objects are re-represented by the topic distributions
that are outputs of both models. This new re-represented
objects are used for a typical graph mining task–classification.
The accurate classification result means the topics can better
represent the semantic of objects. The implementation of LDA
is from JGibbLDA5 . The two inference methods of GTM
are implemented by Matlab in this paper for documents and
chemical formula, respectively.

A. Document classification

The document dataset used here is Reuters-215786 in which
documents have been labelled with topics. Two topics, ‘earn’
and ‘acq’, are selected and some statistics are shown in Table
II after removing documents which have less than 10 keywords
(only considering noun and verb). Each document in these two
topics is represented by 90% of keywords (only considering
noun and verb) ranked by tf-idf [46] in this document. k-
Nearest Neighbour algorithm (k-NN) [47] is selected as the
classification method, because it is simple and does not do
much operations on the features of data comparing with
other classification methods, like Decision tree or SVM. The
implementation of k-NN comes from Weka7 with 10 times
cross-validation. In order to compare LDA and GTM, the

5http://jgibblda.sourceforge.net/#Griffiths04
6http://www.daviddlewis.com/resources/testcollections/reuters21578/
7http://www.cs.waikato.ac.nz/ml/weka/
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TABLE IV: Statistics of chemical graph dataset

BioassayID Topic name chemical formula
number subgraph number

NCI33 active 1000 252
inactive 1000

NCI47 active 1000 325
inactive 1000

NCI81 active 1000 251
inactive 1000

numbers of topics are all set 2 which is just the number of
topics of data.

Since relations between keywords are considered in GTM,
the number of links in documents need to be given, which
is controlled by threshold of co-occurrence frequency ρ. As
shown in Fig. 6, the distribution of average density of docu-
ment graphs and ρ approximate power-law distribution. The
average document graph densities are given in Table III in
which four kinds of density and corresponding ρ are given.

The results are shown in Fig. 7 and Fig. 8. There are 6
methods are compared in these two figures: LDA-tf (original
LDA), LDA-tfidf (use tf-idf to replace tf of keyword weights
in original LDA [48]), GTM-0.01 (GTM with ρ = 0.01),
GTM-0.0042 (GTM with ρ = 0.0042), GTM-0.0017 (GTM
with ρ = 0.0017) and GTM-0.0006 (GTM with ρ = 0.0006).
To sum all, the efficiency of GTM is better than LDA. The
density of average graphs impacts on the efficiency of GTM,
because the GTM relies on the relations between keywords.
However, it does not mean that the more links the better. As
shown in Fig. 7 and 8, the best is ρ = 0.0042 and average
document graph density is 0.4017. We believe that this value is
not fixed and depends on dataset. If there is no co-occurrence
of keywords in documents of a corpus and then documents
are totally ‘separated’, GTM is not better than LDA.

B. Chemical formula classification

In this section, we use a common benchmark dataset,
NCI cancer screening dataset8. Each chemical formula is
represented as a graph with atoms as nodes and bonds as
edges. According to the activity against corresponding cancer,
each graph has a label active’ or ‘inactive’. We use them as the
dataset, and select 1000 active graphs and 1000 inactive graphs
of which frequent subgraphs are mined by gSpan algorithm9

with support 30. The statistics are shown in Table IV. We
use these graphs as the original data and transform them into
new graphs with frequent subgraphs as nodes by the method
proposed in Eq. 2.

To compare the performance of GTM with LDA, we use
the topic distributions from both LDA and GTM as the
new representations of graphs to do classification. The more
accurate the discovered topics are, the better the classification
results would be. The MCMC inference method is used for
GTM in this section. The Fig. 9 shows the convergence of
log likelihood of GTM with Gibbs iteration number. The
final results are also shown in Fig. 9. Here, four different
classifiers are adopted, including k-NN, J48, SVM and NB

8http://pubchem.ncbi.nlm.nih.gov
9http://www.cs.ucsb.edu/x̃yan/software/gSpan.htm

(implementations are also from Weka). Except the SVM for
NCI81, all the classifiers on three datasets indicate that the
topics learned from the GTM are better than LDA. It should
be noted that these differences are determined by the natures
of different classifiers. Some classifiers, like kNN and J48, are
more sensitive to the different data representation (the topic
distribution from GTM or LDA) and some are not, like NB.
This difference is not our focus in this paper. We only use
these classifiers to show the topics mined from our proposed
GTM are better than the ones from LDA. To sum up, our
proposed GTM outweighs LDA.

Normally, the variational inference is more efficient than M-
CMC inference, and MCMC inference is more easily extended
to some more complicated tasks. In this paper, we just show
two basic inferences for graph mining. More graph mining
tasks can be benefit from topic models by extending them.

V. CONCLUSION AND FURTHER STUDY

In order to extend the topic model for graph mining, we
have proposed a Graph Topic model. The innovative premise
of this model is that Bernoulli distributions has been used to
model the edges between two nodes in a graph, which are
parameterized by the similarity between two topics of two
linked nodes. Considering the edges of graphs, the discovered
topic distribution of a graph by GTM is not just determined
by its nodes. Two inference algorithms have been developed
to resolve the proposed model. The experimental results on
different datasets have verified that the topics discovered by
GTM can describe graphs better than the ones from LDA. This
improvement is due to the fact that the edges of graphs are
considered in our innovative model and this makes the dis-
covered topics far more suitable for the graph data. Therefore,
the proposed model can be used for graph mining, including
the supervised learning and unsupervised learning. Possible
applications that could be improved by our proposed model
also include document retrieval and chemical graph labelling.

In the future, we aim to investigate how to incorporate the
structural information of graphs into the model and not just
consider each edge separately. The reason for this is that there
should be some hidden relations between these edges which
will impact on their formation as well. Incorporating these
structures may further improve the classification accuracy. An-
other interesting extension of our work is to use nonparametric
learning methods to avoid predefining the number of topics,
e.g. Hierarchical Dirichlet Processes [49].
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APPENDIX A
SOME DERIVATION OF VARIATIONAL INFERENCE

For Eq. 7, we can expand it as:

log p(ng, eg|α, β)

≥Eq [log p(θg, zg,φ1:K ,ng, eg|α, β)]

− Eq [log q (θg, zg,φ1:K)]

=

N∑
n

Eq [log p (wg,n|zg,n, φ)] + Eq [log p (θg|α)]

+
∑

(ni,nj)

Eq

[
log p

(
cni,nj |zg,ni , zg,nj , φzni

, φznj

)]

+

K∑
k

Eq [log p (φk|β)] +

N∑
n

Eq [log p (zg,n|θg)]

−
K∑
k

Eq [log qφ (φk|κk)]−
N∑
n

Eq [log qz (zg,n|ϕg,n)]

− Eq [log qθ (θg|γg)]

(18)

Since many parts of Eq. 18 are similar with other topic models,
we just focus on the third part of this equation which is related
to the relations between keywords.∑

(ni,nj)

Eq

[
log p

(
eni,nj

|zg,ni
, zg,nj

, φzni
, φznj

)]
=
∑

(ni,nj)

Eq

[
log
(
φzg,ni

◦ φzg,nj

)]

≈
∑

(ni,nj)

Eq

[
ζ−1

K∑
k

φzg,ni,k
· φzg,nj,k

+ log ζ − 1

]

=
∑

(ni,nj)

(
ζ−1κ

ϕg,ni,k

k,ni
· κ

ϕg,nj,k

k,nj
+ log ζ − 1

)
(19)

In Eq. 19, we use the Taylor expansion for function log(x)
in order to get the expectation of this function and ζ is the
expansion point.
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