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Abstract

The classical maximum entropy clustering (MEC) algorithm usually cannot achieve satisfactory 

results in the situations where the data is insufficient, incomplete, or distorted. To address this 

problem, inspired by transfer learning, the specific cluster prototypes and fuzzy memberships 

jointly leveraged (CPM-JL) framework for cross-domain MEC (CDMEC) is firstly devised in this 

paper, and then the corresponding algorithm referred to as CPM-JL-CDMEC and the dedicated 

validity index named fuzzy memberships-based cross-domain difference measurement (FM-

CDDM) are concurrently proposed. In general, the contributions of this paper are fourfold: 1) 

benefiting from the delicate CPM-JL framework, CPM-JL-CDMEC features high-clustering 

effectiveness and robustness even in some complex data situations; 2) the reliability of FM-CDDM 

has been demonstrated to be close to well-established external criteria, e.g., normalized mutual 

information and rand index, and it does not require additional label information. Hence, using FM-

CDDM as a dedicated validity index significantly enhances the applicability of CPM-JL-CDMEC 

under realistic scenarios; 3) the performance of CPM-JL-CDMEC is generally better than, at least 

equal to, that of MEC because CPM-JL-CDMEC can degenerate into the standard MEC algorithm 

after adopting the proper parameters, and which avoids the issue of negative transfer; and 4) in 

order to maximize privacy protection, CPM-JL-CDMEC employs the known cluster prototypes 
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and their associated fuzzy memberships rather than the raw data in the source domain as prior 

knowledge. The experimental studies thoroughly evaluated and demonstrated these advantages on 

both synthetic and real-life transfer datasets.

Index Terms

Cross-domain clustering; maximum entropy clustering (MEC); privacy protection; transfer 
learning; validity index

I. Introduction

Clustering analysis is one of the primary branches in pattern recognition. The conventional 

clustering approaches can be divided into the following major categories: the partition-based 

[1]–[12], the hierarchy-based [13], [14], the density-based [15]–[18], the grid-based [19]–

[21], and the graph-based [22]–[25], etc. Among them, the partition-based approach, such as 

the well-known K-means [1] and fuzzy C-means (FCM) [2]–[5], is the most popular 

approach because of its general applicability to real-life problems. Recently, there is a 

growing interest in another partition-based method, i.e., maximum entropy clustering (MEC) 

[6], [7], [26], [27], which integrates two theories of probability-based soft partition and 

information entropy. Karayiannis [6] proposed MEC based on this understanding that the 

information entropy (such as Shannon’s entropy [28], Renyi’s entropy [28], and Havrda–

Charvat’s entropy [28]) is an essential measure of uncertainty or disorder of a system. 

Consequently, he devised the objective function by combining two items, i.e., one measures 

the distortion between the samples and the cluster prototypes, and the other is the Shannon’s 

entropy in terms of fuzzy memberships.

MEC aims to search for the optimal partitions via simultaneously minimizing the distortion 

and maximizing the entropy. Because of the simplicity of its essence as well as the 

meaningful physical connotation, the research with respect to MEC has triggered extensive 

interests. We briefly summarized the representatives as follows. Two convergence analyses 

regarding MEC were studied in [26] and [27]. Quite a few of model improvements related to 

MEC have also been presented to date. For example, Li and Mukaidono [29] designed a 

complete Gaussian membership function for MEC; Ghorbani [30] devised a L1-norm-based 

MEC objective expression with better robustness; Lao et al. [31] manipulated the 

conventional MEC framework into a weighted modality; Yu [32] presented a general fuzzy 

clustering theory via summarizing several soft-partition clustering prototypes, e.g., MEC and 

FCM; Yu and Yang [33] further proposed the optimality test and the complexity analysis 

methods, based on [32], for guaranteeing desirable clustering performance; Wang et al. [34] 

incorporated the concepts of Vapnik’s ε-insensitive loss function as well as weight factor 

into the MEC framework to improve the identification of outliers; and Zhi et al. [35] 

presented a meaningful joint framework by combing fuzzy linear discriminant analysis and 

the original MEC objective function. In addition, some application studies with respect to 

MEC were also developed, such as image compression [36], image segmentation [37], and 

real-time target tracking [38].
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Traditional clustering approaches, such as MEC, K-means, and FCM, usually work well in 

the ideal condition where the data is sufficient and pure. However, in reality, the noise and 

interference information is omnipresent in real life. In addition, there are more challenges 

regarding the data completeness, in light of the fast developments as well as the rapid 

requirement changes in modern information systems. In particular, in the early course of a 

new system, it is extremely difficult to collect sufficient reliable data. Such data shortage 

severely restricts the practicability of clustering algorithm to a large extent.

Several advanced clustering models have been developed to overcome the challenges of data 

incompleteness and impureness, such as semi-supervised clustering [39]–[42], co-clustering 

[43]–[45], multitask learning [46]–[48], and transfer learning [49]–[53]. In our view, transfer 

learning is the most promising one because of its specific mechanism. Transfer learning 

works in at least two connected data domains, i.e., one source domain and one target 

domain, and it allows more than one source domain as needed. It first identifies helpful 

information from the source domain, in the form of either data or knowledge, and then it 

migrates this information into the target domain to guide the learning procedure. This 

auxiliary guidance usually enhances the learning performance in the target domain. In the 

case where current data is insufficient or impure but there is plenty of useful information 

coming from related fields or previous studies, transfer learning is an appropriate approach 

that can significantly improves the clustering performance. Up to now, many methodologies 

regarding transfer learning have also been reported. For instance, Pan and Yang [49] offered 

us an outstanding survey on transfer learning. References [50]–[54] investigated the transfer 

learning-based classification methods. The classification problem could be the most 

extensive research field on transfer learning by now. References [55]–[58] proposed several 

transfer regression models. Wang et al. [59] and Pan et al. [60] presented two dimensionality 

reduction approaches via transfer learning. In addition, References [45], [61]–[63] connected 

transfer learning with clustering problems and presented several transfer clustering models.

Based on transfer learning, we comprehensively study the cluster prototypes and fuzzy 

memberships jointly leveraged (CPM-JL) framework for the cross-domain MEC (CDMEC) 

issue in this paper. The corresponding algorithm is referred to as CPM-JL-CDMEC. 

Furthermore, we devise the dedicated validity index, i.e., fuzzy membership-based cross-

domain difference measurement (FM-CDDM), in order to aid self-adaptive parameter 

setting in CPM-JL-CDMEC. Owing to this delicate jointly leveraged transfer mechanism as 

well as the dedicated FM-CDDM validity index, the effectiveness and practicability of 

CPM-JL-CDMEC are distinctly improved.

The rest of this paper is organized as follows. In Section II, the classical MEC algorithm and 

transfer learning are reviewed in brief. In Section III, the CPM-JL framework, the CPM-JL-

CDMEC algorithm, the convergence analyses, the parameter setting, and the FM-CDDM 

index are introduced step-by-step. In Section IV, the experimental validations of the 

correlated algorithms are presented and discussed. The conclusion is summarized in Section 

V.
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II. Related Work

A. MEC

In a broad sense, MEC implies a series of clustering methods whose objective function is 

composed of one modality of maximizing entropy. The detailed clustering framework may 

vary to a certain extent in different algorithms [5], [28]–[34], and herein, we review [5], 

which is a good representative for this category of approach.

Let X = {xi|xi ∈ Rd, i = 1, 2, …, N} denote a given data set, where d is the data 

dimensionality and N is the data size. Suppose it can be separated into C(2 ≤ C < N) clusters 

according to a similarity measure. The objective function of the classical MEC algorithm 

can be rewritten as

(1)

where, ||xj − vi||2 denotes the distance between the pattern xj and the cluster prototype vi; U 
∈ RC×N is the membership matrix consisting of μij(i = 1, …, C; j = 1, …, N), and μij denotes 

the membership of the pattern xj to the cluster prototype vi; V ∈ Rd×C is the cluster prototype 

matrix composed of all cluster prototypes vi(i = 1, …, C); and γ > 0 is the regularization 

parameter of the Shannon’s entropy.

Using the Lagrange optimization, the update equations of the cluster prototype vi and the 

membership μij in (1) can be derived as

(2)

(3)

B. Transfer Learning

Transfer learning aims to improve the learning performance in the target domain by using 

the reference information from the source domain [49]. The overall framework of transfer 

learning is illustrated in Fig. 1. In general, there are two kinds of information that the target 

domain can obtain from the source domain: raw data or knowledge. Raw data in the source 

domain is the least sophisticated type of prior information. It may be the most common form 

to sample the source domain dataset and acquire some representatives and their labels. 

Knowledge in the source domain is another type of advanced information. Because the 

original data is not always accessible in the source domain, we may need to conclude 
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knowledge from it sometimes. For example, for the purpose of privacy protection, some raw 

data maybe cannot be opened and other reasons also could cause the raw data cannot be 

directly employed even they can be opened. For instance, if there are some underlying drifts 

between two domains and an unexpected negative influence may occur in the target domain 

if some improper data are adopted from the source domain. This is the so-called 

phenomenon of negative transfer. To avoid this potential risk, it is a good choice to draw 

useful knowledge from the source domain instead of the raw data, e.g., the cluster prototypes 

in the source domain can be regarded as the good references for the target domain.

So far, transfer learning has been successfully applied in various real-world modeling and 

learning tasks, such as classification, clustering, and regression [50]–[63].

III. CDMEC Based on Transfer Learning

A. Meaningful Transfer Optimization Formulations for CDMEC

As the two most important elements affecting the clustering performance, cluster prototypes 

and fuzzy memberships are generally rich in information for reference. Therefore, they are 

reliable knowledge that can be extracted from the source domain for transfer learning. Based 

on this idea, for the CDMEC issue, we first devise several transfer optimization formulations 

from the simple to the complex, and then, we eventually present the complete optimization 

framework.

1) Cluster Prototypes Leveraged Transfer Optimization Formulation

Definition 1: Let V = [v1, …, vC] ∈ Rd×C denote the cluster prototype matrix in the target 

domain, where vi(i = 1, …, C) is the estimated cluster prototype, and d and C are the data 

dimensionality and the cluster number, respectively. Meanwhile, let Ṽ = [ṽ1, …, ṽC] ∈ Rd×C 

denote the cluster prototype matrix consisting of each known cluster prototype ṽi(i = 1, …, 

C) in the source domain. Furthermore, make λ be a regularization parameter. Then, the 

cluster prototype leveraged transfer optimization formulation for CDMEC is defined as

(4)

Equation (4) represents the total gap between the estimated cluster prototypes in the target 

domain and the known ones in the source domain. The regularization coefficient λ controls 

the reference values of the cluster prototypes in the source domain to those in the target 

domain. Usually, the larger the coefficient λ, the greater the reference values are.

2) CPM-JL Transfer Optimization Formulation

Definition 2: Let Ũ ∈ RC×N denote the membership matrix composed of μ̃
ij(i = 1, …, C; j = 

1, …, N), where μ̃
ij denotes the membership of the pattern xj in the target domain to the 

known cluster prototype ṽi(i = 1, …, C) in the source domain and it can be derived from (3). 

By introducing a trade-off factor η ∈ [0, 1] and with the other denotations being the same as 

those in (4), then CPM-JL transfer optimization formulation can be defined as
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(5a)

where

(5b)

For easily interpreting the meaning of Definition 2, we specifically illustrate its overall 

composition in Fig. 2. As explained in Definition 1,  can be used to measure 

the approximation degree between the estimated cluster prototypes in the target domain and 

the given cluster prototypes in the source domain. However, from the perspective of 

weighted sum, we need to further differentiate the importance of each ||vi − ṽi||2, i.e., the 

individual weight w′i. In our view, it is reasonable that major clusters, i.e., the clusters 

composed of many individuals, play primary influence to the total measurement. Therefore, 

the issue is now converted to find the major clusters in the target domain dataset. As we are 

aware, each column [μ1j, …, μij, …, μCj]T in the membership matrix U ∈ RC×N in the target 

domain indicates the potential affiliation of each individual xj in the target dataset, and the 

greater the value of μij, the more strongly xj belongs to the estimated cluster i in the target 

domain. Let us analyse the problem in the other point of view, i.e., each row [μi1, …, μij, …, 

μiN] in U. It is definite that cluster i necessarily contains plenty of samples if many entries of 

[μi1, …, μij, …, μiN ] take larger values, and which also equals that  takes great 

values. Therefore, as indicated in Fig. 2,  can be intuitively used to measure 

the probability of cluster i that whether it belongs to the major clusters, i.e., whether it 

consists of many individuals. Moreover, in light of the similarity between the source domain 

and the target domain in transfer learning, the membership μ̃
ij of xj in the target domain to 

the known cluster prototype ṽi in the source domain can be employed as a reference for μij, 

and recursively,  can be adopted as a reference for . 

Consequently, as shown in Fig. 2, the combination of wi and w̃i with a trade-off factor η ∈ 

[0, 1] is devised in (5). Here, the value of η controls the reference degree with respect to μ̃
ij, 

i.e., η → 1 implies that the contribution of μij dominates the optimization formulation Θ(V, 
U), whereas η → 0 indicates the membership μĩj is significantly emphasized. By the way, in 

light of , and , 

thus the sum of all the weights in Θ(V, U), i.e., , equals 

N rather than 1 in our case.

Both the known cluster prototypes and their associated fuzzy memberships in the source 

domain are simultaneously utilized in (5), therefore the designed formulation is named as 

CPM-JL transfer optimization.

Qian et al. Page 6

IEEE Trans Cybern. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Novel CDMEC Framework and Matching Algorithm

In the classical MEC algorithm [see (1)], the term  is utilized to 

evaluate the total deviation of all patterns to all cluster prototypes. Obviously, it is also in the 

form of weighted sum and the membership μij is employed as the weight factor. Inspired by 

(5), we introduce the transfer trick into this term, and it can be represented as

(6)

where parameter η and membership μ̃
ij are the same as those in (5).

1) Specific CPM-JL Framework for CDMEC—Based on (5) and (6), we herein present 

a novel, integrated framework for solving the general CDMEC problem.

Definition 3: Let XT = xi|xi ∈ Rd, i = 1, 2, …, N} denote the target domain where d is the 

data dimensionality and N is the data size. Assume there are C clusters in both the source 

domain and the target domain. The notations of vi, ṽi,μij,μ̃
ij, η, and λ are the same as those in 

(5) or (6). Make γ > 0 be the regularization parameter of the Shannon’s entropy. In addition, 

have η ∈ [0, 1] and λ ≥ 0, λ ≠ = 1, then the CPM-JL framework for CDMEC can be defined 

as

(7)

There are four items in (7). Both the first and the second terms are inherited from the 

classical MEC algorithm with only introducing the transfer trade-off coefficient η into the 

first one. The last two terms, as presented in (5) or (6), are introduced to incorporate 

additional knowledge from transfer learning.

Theorem 1: The necessary conditions for minimizing the objective function 

JCPM−JL−CDMEC in (7) yields the following cluster prototype and membership update 

equations:

(8)
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(9)

Proof: Using the Lagrange optimization, the minimization of JCPM−JL−CDMEC can be 

transformed into the following unconstrained minimization problem:

(10)

where αj(j = 1, …, C) are the Lagrange multipliers.

By separately setting the derivatives to zero with respect to μij and vi, we arrive at

(11)

As , based on (11), we get exp ((αj − γ )/γ)

(12)

and then by substituting (12) into (11), we can attain (9).

Algorithm 1

CPM-JL-CDMEC

Inputs: The target domain dataset XT, the cluster number C, the maximum iteration number maxiter, the iteration 
termination threshold ε, the known cluster prototypes Ṽ or the source domain dataset XS, the parameter 
values in Eq. (7), such as η, λ, and γ.

Outputs: The memberships U, the cluster prototypes V.

Extracting knowledge in the source domain:

Setp1: Obtain the cluster prototypes in Ṽ XS by the classical MEC algorithm; (Skip this step if the cluster 
prototypes Ṽ in XS are known beforehand)

Step2: Calculate the reference memberships Ũ of all patterns in XT to the cluster prototypes Ṽ in XS via Eq. (3);

Cross-domain MEC in the target domain:
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Step 1: Set the iteration counter t = 1 and initialize the memberships U(t);

Step 2: Calculate the cluster prototypes V(t) via Eq. (8), U(t), Ũ, and Ṽ;

Step 3: Calculate the memberships U(t+1) via Eq. (9), V(t) and Ṽ

Step 4: If ||U(t + 1) − U(t)|| < ε or t = maxiter go to Step 5, otherwise, t = t + 1 and go to Step 2;

Step 5: Output the final cluster prototypes V and memberships U in the target domain.

(13)

We can subsequently achieve (8) by rearranging (13).

2) CPM-JL-CDMEC Algorithm—Based on (7)–(9), we now present the core algorithm 

for CDMEC problems, i.e., CPM-JL-CDMEC, as specifically described in Algorithm 1.

CPM-JL-CDMEC relies essentially on the knowledge coming from the source domain, 

therefore, the overall workflow of CPM-JL-CDMEC can be divided into two phases: 

extracting knowledge from the source domain and CDMEC in the target domain.

C. Convergence of CPM-JL-CDMEC

It is well known that the Zangwill’s convergence theorem [9], [64], [65] can be adopted for 

the convergence proof for almost all iterative optimization algorithms. We aim to prove the 

convergence of CPM-JL-CDMEC by demonstrating it is a special case of Zangwill’s 

theorem that can be summarized as follows.

Lemma 1 (Zangwill’s Convergence Theorem)—Let V be a domain of a certain 

continuous function g, and S ⊂ V be the solution set of g. Define A : V → P(V) is a point to 

set mapping, which creates an iterative sequence {z(t) = A(t)(z(0))}, where z(0)∈V. If the 

following conditions hold:

1. {z(t)} ⊂ Γ ⊆ V, Γ is a compact set;

2. the function g : V → R, satisfying:

a. if z ∉ S, then for any y ∈ A(z), g(y) < g(z);

b. if z ∈ S, then either the algorithm terminates or for any y ∈ A(z), g(y) = g(z).

3. The map A is closed at z if z ∉ S.

Then, either the algorithm stops at a solution or the limit of any converged subsequence is a 

solution.

Now, we need to prove that our CPM-JL-CDMEC satisfies the three conditions in Lemma 1. 

Using the similar strategy proposed in [65], we can prove the corresponding Theorems 2a–

2c with the auxiliary Definitions 4–7. In light of limited space, we omit the proof details of 

Theorems 2a–2c, please refer to [65] for detailed derivations.
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Definition 4: Let X = {x1, … , xN} be a finite dataset in the Euclidean space Rd, then the set 

of all fuzzy C-partition of X is defined as 

.

Definition 5: Define G1 : MC → Rd×C to be a function: G1(U) = V = (v1, … , vC), where vi = 

(vi1, … , vid)T ∈ Rd, 1 ≤ i ≤ C, are calculated according to (8) and U ∈ Mc.

Definition 6: Define G2 : Rd×C → P(MC) to be a point-to-set map: G2(V) = {U|U ∈ Mc and 

it is computed by (9)}.

Definition 7: Define a point-to-set map TCPM–JL–CDMEC : Rd×C × MC → P(Rd×C × MC) for 

the iteration in CPM-JL-CDMEC: TCPM–JL–CDMEC(V,U) = {( V̑, Ȗ)|V̑ = G1(U), Ȗ∈ G2(V̑)}. 

Specifically, such map can be rewritten as the following composition TCPM–JL–CDMEC = A2 

∘ A1, where A1(V,U) = (G1(U),U) and A2(V, U) = {(V, U)|U ∈ G2(V)}. Thus, (V̑, Ȗ) ∈ 

TCPM–JL–CDMEC(V, U) = A2 ∘ A1(V, U) = A2(G1(U),U) = A2(V̑, U) = {( V̑, Ȗ)|Ȗ∈ G2(V̑)}.

Theorem 2a: Let η ∈ [0, 1], λ ≥ 0 and λ ≠ 1, and γ > 0 take the specific values as well as Ũ 
and Ṽ be fixed, suppose X = {x1, … , xN} contains at least C (C < N) distinct points, and 

make the solution set S of the optimization problem 

be defined as

(14)

Then, it holds that JCPM–JL–CDMEC(V̑, Ȗ) ≤ JCPM–JL–CDMEC(V̄,Ū) for each (V̑, Ȗ) ∈ 

TCPM–JL–CDMEC(V̄,Ū), and the inequality is strict if (V̄,Ū) ∉ S.

Theorem 2b: Suppose X = {x1, … , xN} contains at least C(C < N) distinct points and 

(V(0),U(0)) is the starting point of iteration of TCPM–JL–CDMEC with U(0) ∈ MC and V(0) = G1 

(U(0)), then the iteration sequence {V(t), (U(t))}, t = 1, 2, … , is contained in a compact 

subset of Rd×C ×MC.

Theorem 2c: Let η ∈ [0, 1], λ ≥ 0 and λ ≠ 1, and γ > 0 take the specific values as well as Ũ 
and Ṽ be fixed, suppose X = {x1, … , xN} contains at least C(C < N) distinct points, then the 

point-to-set map TCPM–JL–CDMEC : Rd×C × MC → P(Rd×C × MC) is closed at each point in 

Rd×C × MC.

As the objective function JCPM–JL–CDMEC defined in (7) is continuous, the convergence of 

the CPM-JL-CDMEC algorithm, as summarized in following Theorem 3, is immediately 

guaranteed from Theorems 2a–2c and Lemma 1.
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Theorem 3: (Convergence of CPM-JL-CDMEC). Let η ∈ [0, 1], λ ≥ 0 and λ ≠ 1, and γ > 0 

take the specific values as well as Ũ and Ṽ be fixed, have X = {x1, … , xN} contain at least 

C(C < N) distinct points and JCPM–JL–CDMEC(V, U) be defined in (7), make (V(0), U(0)) be 

the starting point of the iterations via TCPM–JL–CDMEC with U(0) ∈ MC and V(0) = G1(U(0)), 

then the iteration sequence {V(t), (U(t))}, t = 1, 2, … , either terminates at a point (V*, U*) in 

the solution set S or there is a subsequence converging to a point in S.

D. Parameter Setting

There are three important parameters in CPM-JL-CDMEC, i.e., the Shannon’s entropy 

parameter γ, the transfer regularization coefficient λ, and the trade-off factor η. As usual, the 

well-known grid search strategy is used for parameter setting in this paper. As we are aware, 

the grid search strategy depends on some validity indices and current validity indices can be 

divided roughly into two categories: external criteria (label-based) and internal criteria 

(label-free) [66]. Those existing external indices, such as normalized mutual information 

(NMI) [23], [42], [67] and rand index (RI) [67], or internal ones, e.g., Davies–Bouldin index 

(DBI) [68] and Dunn index [68], can be certainly deployed for the grid search process in this 

paper. However, for our specific CPM-JL-CDMEC algorithm, especially when it runs on 

real-life datasets, it is necessary that a dedicated validity index is developed for further 

enhancing its practicability. For this purpose, we establish the following new validity index.

Definition 8—Let Q̃ = {x̃l}(l = 1, … , m) denote the subset constructed by extracting the 

pi(i = 1, … , C) nearest samples to each cluster prototype ṽi(i = 1, … , C) in the source 

domain, where  denotes the total data size in Q̃. Let Q = {xj}(j = 1, … , m) 

signify the subset constructed by extracting one of the nearest neighbors in the target domain 

to each sample in Q̃. Furthermore, have  denote the membership 

matrix where , l = 1, … , m, represents the fuzzy membership vector of 

each sample x̃l in Q̃ to the known cluster prototypes Ṽ in the source domain; 

 denote the membership matrix where , j = 1, 
… , m, represents the fuzzy membership vector of each sample xj in Q to the known cluster 

prototypes Ṽ in the source domain; and  denote the membership 

matrix where , j = 1, … , m, signifies the fuzzy membership vector of 

each sample xj in Q to the estimated cluster prototypes V in the target domain, respectively. 

Thus, the new validity index, named FM-CDDM, for our proposed CPM-JL-CDMEC can be 

defined as

(15)

FM-CDDM, in the form of (15), is designed according to this idea: to measure the 

differences between the source domain and the target domain, the average distances of each 

pair of membership vectors in “ ” and “ ” are 
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separately employed and calculated. Actually, the individuals in subset Q̃ are the 

representatives of each cluster in the source domain, and those in subset Q in the target 

domain can be regarded as the most similar variations of the corresponding samples in Q̃. 

Hence, we aim to utilize these two subsets to estimate the differences between the source 

domain and the target domain from two perspectives. One is that, we fix the cluster 

prototypes and vary the data samples, i.e., we first separately compute the fuzzy 

memberships  and  of Q̃ and Q to the same known cluster prototypes Ṽ in the 

source domain, and then figure out the average distance via the first term in (15) as one 

estimated difference. The other is converse, i.e., we adopt the same data samples but 

different cluster prototypes. Specifically, we firstly compute the fuzzy memberships 

and  of Q to the known cluster prototypes Ṽ in the source domain and the estimated 

cluster prototypes V in the target domain, respectively, and then calculate the average 

distance via the second term in (15) as the other estimated difference.

As a result, the best settings of all the parameters η, λ, and γ involved in (15), in principle, 

can be simultaneously determined via the grid search strategy when FM-CDDM achieves 

the smallest value. It should be pointed out that, however, the sample size m of Q̃ and Q 
influences the effectiveness of FM-CDDM to a certain extent. According to our extensive 

empirical studies, it is an acceptable setting with  and 

, where C is the cluster number and | | denotes the data capacity of the 

ith cluster in the target domain.

IV. Experimental Results

A. Setup

In this section, we focus on evaluating the performance of the developed CPM-JL-CDMEC 

algorithm and the FM-CDDM index. Besides CPM-JL-CDMEC and MEC, we employ four 

other algorithms for comparison, i.e., learning shared subspace for multitask clustering 

(LSSMTC) [48], combining K-means (CombKM) [48], self-taught clustering (STC) [61], 

and transfer spectral clustering (TSC) [45]. These algorithms are good representatives of the 

state-of-the-art algorithms related to our studies. MEC and CPM-JL-CDMEC belong to soft 

partition clustering; CombKM and LSSMTC belong to hard partition clustering; LSSMTC, 

TSC, and CombKM belong to multitask clustering; STC, TSC, and CPM-JL-CDMEC 

belong to transfer clustering. In addition, STC and TSC also belong essentially to co-

clustering.

Our experiments were implemented on both synthetic and real-life datasets. To verify the 

clustering performance of these involved algorithms, three popular validity indices were 

adopted in this paper, i.e., NMI, RI, and DBI. Among them, NMI and RI belong to external 

criteria, whereas DBI is an internal criterion. In addition, for CPM-JL-CDMEC, the 

dedicated FM-CDDM index, proposed by ourselves in (15), was also calculated. Next, we 

briefly review the particular definitions of NMI, RI, and DBI as follows.

1) NMI—

Qian et al. Page 12

IEEE Trans Cybern. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(16)

where Ni,j denotes the number of agreements between cluster i and class j, Ni is the number 

of data points in cluster i, Nj is the number of data points in class j, and N is the size of the 

whole dataset.

2) RI—

(17)

where f00 denotes the number of any two sample points belonging to two different clusters, 

f11 denotes the number of any two sample points belonging to the same cluster, and N is the 

total number of sample points.

3) DBI—

(18a)

where

(18b)

and C denotes the cluster number in the dataset,  denotes the data point belonging to 

cluster Ck, nk, and vk denote the data size and the centroid of cluster Ck separately.

Both NMI and RI take values within the interval from 0 to 1. Larger values of NMI and RI 

indicate better clustering performance. In contrast, smaller values of DBI are preferred, and 

which mean that the levels of both intercluster separation and intracluster compactness are 

concurrently high. Nevertheless, similar to other internal criteria, DBI has the potential 

drawback that good values do not necessarily imply better information retrievals. As for FM-

CDDM, as previously analysed, smaller values of FM-CDDM are also preferred.

The grid search strategy was adopted in our experiments for parameter optimization. The 

values or the trial intervals of the primary parameters in each algorithm are listed in Table I.

The experimental results are reported in terms of the means and the standard deviations of 

the employed validity indices, and which were calculated after 20 repeated runs of each 

algorithm on each dataset. All experiments were carried out on a personal computer with 

Intel Core i3-3240 3.4 GHz CPU and 4 GB RAM, Microsoft Windows 7, and MATLAB 

2010a.
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B. On Synthetic Datasets

In order to simulate the data scenes for transfer clustering, we generated four synthetic 

datasets: X̃, X1, X2, and X3. These datasets all contain three base clusters but pose different 

data distributions, and they were all generated by using the MATLAB built-in function: 

mvnrnd(). As illustrated in Fig. 3, X̃ simulates the source domain dataset and each cluster 

consists of 250 samples, so its total capacity is 750.

Let ECi and ΣCi denote the mean vector and the covariance matrix of the ith cluster in one 

dataset, respectively. Thus, X̃ was created with EC1 = [2 4], EC1 = [10 0;0 10], EC2 = [9 15], 

EC2 = [25 0;0 7], and EC3 = [8 30], EC3 = [30 0;0 20]. X1, X2, and X3 are three cases of 

target domain, as shown in Fig. 4. X1 simulates the condition where the data in the target 

domain is insufficient, and which was constructed with EC1 = [3 4], EC1 = [10 0;0 11], EC2 

= [10.5 12.5], EC2 = [25 0;0 7], EC3 = [9 29], EC3 = [30 0;0 19.5], and each cluster only 

consisting of 25 data samples. X2 and X3 were generated using the same data distribution as 

X1 but each cluster containing 125 samples. Further, two additional clusters were 

incorporated into X2 as the interference data with EA1 = [7 10], EA1 = [4 0;0 4], EA2 = [8 

20], EA2 = [4 0;0 4], and each interference cluster consisting of 35 individuals; and X3 was 

added the Gaussian noise with the mean and the deviation being 0 and 2, respectively. In 

general, the eventual data capacities of X̃, X1, X2, and X3 are separately 750, 75, 445, and 

375.

LSSMTC, CombKM, STC, MEC, and CPM-JL-CDMEC were separately carried out on X1, 

X2, and X3. Among them, except for MEC, the others need to use the source domain X̃ in 

different manners. Specifically, CPM-JL-CDMEC utilizes the advanced knowledge 

concluded from X̃, i.e., the known cluster prototypes and the memberships of those patterns 

in the target domain to these known cluster prototypes in X̃, whereas the others thoroughly 

use the raw data in X̃. The clustering effectiveness of each algorithm is listed in Table II in 

terms of the means and the standard deviations of NMI, RI, and DBI, respectively. In 

addition, in order to validate the reliability of our devised FM-CDDM index, its value was 

also calculated in CPM-JL-CDMEC with  in (15). 

Due to the limited space of this paper, we only report the correspondences between FM-

CDDM and NMI and RI on X2 and X3 in Tables III and IV, respectively.

The TSC algorithm did not run on these synthetic datasets, because it requires that the data 

dimensionality must be greater than the number of clusters, and which is not met in these 

synthetic datasets.

Based on the results presented in Tables II–IV, we make some analyses as follows.

1. The data in the target domain X1 is relatively scarce and clusters 1 and 2 even 

overlap a bit. In this situation, the clustering outcomes of those approaches working 

only based on the data itself in the target domain, such as MEC, are prone to 

inefficient. Furthermore, the data distribution in X1 is different clearly from that of 

X̃, so that the clustering performances of LSSMTC, CombKM, and STC are worse 

than that of CPM-JL-CDMEC. This is because that, even though these competitive 

clustering algorithms could extract some supporting information from the source 
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domain, the reference value of this information was unreliable in this case. 

Conversely, CPM-JL-CDMEC utilized the advanced knowledge coming from the 

source domain as the guidance and such advanced knowledge was more robust than 

those raw data in this case, therefore it outperformed the others.

2. Although the data capacities in X2 and X3 are comparatively sufficient, these two 

cases were polluted by either the interference data or the noise. In general, one of 

the merits of transfer learning-based methods is the comparatively high anti-noise 

capability. Consequently, as we see, CPM-JL-CDMEC and STC performed better 

than the others on X2 and X3.

3. The pursuits of multitask clustering and transfer clustering are different, and which 

results in the different performance. Multitask clustering focuses on finishing 

multiple tasks at the same time, and there exist certainly interactivities between 

these tasks. By comparison, transfer clustering emphasizes the useful information 

from the source domain which can enhance the learning performance in the target 

domain. In summary, because of the guidance of transfer information, the 

performance of transfer clustering approaches, such as CPM-JL-CDMEC and STC, 

is distinctly better than the others, if we just focus on the clustering results on the 

target domain datasets.

4. Benefitting from the delicate CPM-JL framework, the clustering effectiveness of 

CPM-JL-CDMEC is always better than that of MEC. This implies the impact of 

negative transfer was eliminated in these synthetic scenarios.

5. CPM-JL-CDMEC overcomes the others from the perspective of privacy protection, 

because CPM-JL-CDMEC merely employs the advanced knowledge (i.e., the 

known cluster prototypes and their associated fuzzy memberships) in the source 

domain which cannot be inversely mapped into the original data. Oppositely, the 

others thoroughly use the raw data in the source domain if they need.

In addition, Tables III and IV indicate that the values of NMI and RI of CPM-JL-CDMEC 

tend to stay within better ranges when FM-CDDM takes the smallest six values on X2 and 

X3. For example, on X3, as shown in Table II, the best means of NMI and RI of CPM-JL-

CDMEC are 0.7954 and 0.9296, respectively, and in Table IV, the means of NMI and RI are 

separately around 0.77 and 0.92 when CPM-JL-CDMEC is at the top six. Actually, the 

correlation between FM-CDDM and NMI/RI exists on all testing datasets, and which 

indicates that the reliability of FM-CDDM is close to NMI and RI with the distinctive merit 

that it does not need the sample labels and thus it exhibits stronger practicability.

C. On Real-Life Datasets

In this section, we evaluated the performance of all six algorithms in four real-life transfer 

scenes, i.e., texture image segmentation, text database, human face recognition, and 

recognition of real-time human motions (RTHMs). We first introduce the details of these 

involved real-life datasets, and then present the clustering results of all six algorithms on 

these datasets.
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1) Constructions of Real Transfer Scenes

a. Texture image segmentation [datasets: texture data 1 (TD1) and texture data 2 
(TD2)]: For the scenes of texture image segmentation, we chose seven different 

textures from the Brodatz texture database,1 and based on them, we firstly 

constructed two original texture images with the same resolution being 100 × 100 = 

10 000 pixels, as shown in Fig. 5(a) and (b). To simulate the transfer scenes, we 

subsequently generated one derivative of each original image by adding noise as 

shown in Fig. 5(c) and (d) originating separately from Fig. 5(a) and (b). Based on 

these four texture images, we generated two datasets for transfer clustering: TD1 

and TD2. The specific compositions of these two datasets are listed in Table V. 

Each dataset was obtained by using the Gabor filter method [69] to extract texture 

features from the corresponding texture images.

b. Text data clustering [dataset: rec versus talk]: The New20 text database2 was used 

in this paper to construct the transfer scenes for text data clustering. Two categories 

of text data, i.e., rec and talk, and a few of their sub-categories were employed to 

deploy the source domain and the target domain. We generated the dataset for our 

experiment: rec versus talk. The categories and their sub-categories involved in rec 

versus talk are listed in Table VI. Furthermore, the Bow toolkit [70] was also 

adopted to reduce the data dimensionality which was originally up to 43 586. The 

final data used for clustering contains 350 effective features.

c. Human face recognition [dataset: ORL]: The widely-used human face repository, 

i.e., the ORL database of face,3 was employed for our experiment. We generated 

the dataset also named ORL in this paper by the following steps. We selected 8 × 

10 = 80 facial images from the original ORL database, i.e., eight persons and ten 

images per person. One facial image of each person is illustrated in Fig. 6. We 

arbitrarily put eight images per person in the source domain, and the leftover in the 

target domain. For the purpose of further widening the deviation between the 

source domain and the target domain as well as enlarging the data capacity in each 

domain, we also rotated each image anticlockwise with 10° and 20°, respectively. 

Thus, the eventual image numbers in the source domain and the target domain were 

separately 192 and 48. In light of the resolution of each image being 92 × 112 = 

10304 pixels, we cannot directly use the pixel-gray values of each image as the data 

features. So we performed the principal component analysis processing on the 

original gray features, and got the final ORL dataset with data dimensionality being 

239.

d. Recognition of RTHMs [dataset: RTHM]: The dataset for activities of daily living 

(ADL) recognition with wrist-worn accelerometer data set in the UCI machine 

learning repository4 was adopted in this paper. It was originally composed of 

numerous three-variate time series which recorded three signal values of the 

1http://www.ee.oulu.fi/research/imag/texture/image_data/Brodatz32.html
2http://www.cs.nyu.edu/~roweis/data.html
3http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
4http://archive.ics.uci.edu/ml/datasets/
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sensors worn on 16 volunteers’ wrists when they conducted 14 categories of ADL. 

To simulate the transfer scenario, we first divided the volunteers into two groups 

according their genders and selected ten categories of activities from the original 

dataset whose series number are greater than 15, i.e., climb_stairs, comb_hair, 
descend_stairs, drink_glass, getup_bed, liedown_bed, pour_water, sitdown_chair, 
standup_chair, and walk. In light of the fact that the female’s total records are 

distinctly more than the male’s, we used all the female’s time series as the source 

domain and the male’s as the target domain. Because the time series dimensions 

(also, series lengths) of different categories of activities are inconsistent and they 

vary from hundreds to thousands, the multiscale discrete Haar wavelet 

decomposition [71] strategy was adopted in this paper for dimensionality reduction. 

After three to six levels of Haar discrete wavelet transform [71] performed on these 

raw time series, we truncated the intermediates with the same length being 17 and 

reshaped them into the forms of vectors, thus, we attained the eventual dataset 

denoted as RTHM in our experiment with the final data dimension being 17 × 3 = 

51.

The details of all of the real-life datasets involved in our experiments are shown in Table 

VII. All these datasets had been normalized before they were adopted in our experiments.

2) Results of the Experiments—Table VIII reports the means and the standard 

deviations of NMI, RI, and DBI obtained by the six algorithms on all the real-life datasets. 

These results clearly prove that CPM-JL-CDMEC is generally of the best performance 

among all of the candidates. It should be mentioned that these real-life datasets are good 

representatives aside from their different application backgrounds. In details, rec versus talk 

and ORL both assume high-dimensionality; TD1 and TD2 are of medium-large scales; and 

RTHM originating from real-time time series belongs to one of hot topics with respect to the 

applications of intelligent techniques. This implies that, generally speaking, our CPM-JL-

CDMEC algorithm can cope effectively with all of these data situations. Moreover, 

compared with MEC, the average performance improvement of CPM-JL-CDMEC is more 

than 50% in terms of the NMI index, which further indicates that the CPM-JL framework is 

an effective way for the CDMEC problem, even if in some complex data scenarios.

Table VIII also reveals two other facts.

1. The LSSMTC and ComKM approaches good at multitask processing are inefficient 

in high-dimensional data scenarios.

2. The DBI metric, which is calculated based on the internal criterion, cannot always 

catch the inherent information in the data even if it reaches a good value, such as 

the value of DBI of STC on ORL. In this regard, our proposed FM-CDDM index 

demonstrates better versatility as well as practicability. The values of FM-CDDM 

in CPM-JL-CDMEC on all the real-life datasets were computed during our 

experiments. Similar to that on the synthetic datasets, the values of NMI and RI in 

CPM-JL-CDMEC correlate well with FM-CDDM because they really rank near the 

top when FM-CDDM takes the top six values in all these real-life transfer 
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scenarios. For saving paper length, we only present the cases on three datasets: 

TD2, ORL, and RTHM, as shown in Tables IX–XI.

The segmentation results of six algorithms on Fig. 5(d) are illustrated in Fig. 7. The pixels 

with the same labels are displayed in the same colors in each sub-graph corresponding to 

each algorithm. Intuitively, CPM-JL-CDMEC and TSC achieved the better segmentations.

D. Robustness Analyses

Last but not least, we have evaluated the robustness of our CPM-JL-CDMEC algorithm with 

respect to its three core parameters, i.e., the transfer trade-off factors η, the transfer 

regularization parameter λ, and the entropy regularization parameter γ, on both the synthetic 

and the real-life datasets. On each dataset, we took turns fixing two of the three parameters 

and gradually changed the third one until CPM-JL-CDMEC achieved the optima by grid 

search. We calculated the values of the three metrics: NMI, RI, and DBI. Due to the limit of 

paper length, here, we only report the experimental results on the synthetic dataset X2, the 

texture image dataset TD1, and the human motion recognition dataset RTHM.

On X2, CPM-JL-CDMEC roughly reached the optima with λ = 2, γ = 100, and η = 0.8; on 

TD1, with λ = 0.06, γ = 0.01, and η = 0.9; and on RTHM, with λ = 0.05, γ = 0.02, and η = 

0.75. The performance curves of CPM-JL-CDMEC on these three datasets are illustrated in 

Fig. 8, where Fig. 8(a)–(c) shows the cases on X2, Fig. 8(d)–(f) are on TD1, and Fig. 8(g)–

(i) are on RTHM.

As revealed in Fig. 8, the clustering effectiveness of CPM-JL-CDMEC is relatively stable 

when the three major parameters are within proper ranges, which demonstrates that CPM-

JL-CDMEC features a good robustness against parameter setting.

V. Conclusion

Inspired by transfer learning, we propose the CPM-JL-CDMEC algorithm as well as the 

dedicated FM-CDDM index in this paper to deal with cross-domain partition-based 

clustering issues, especially in the situations where the data could be insufficient or polluted 

by unknown noise or outliers.

In summary, owing to the delicate, CPM-JL framework and the reliable strategy for avoiding 

negative transfer issues, CPM-JL-CDMEC proves satisfactory clustering effectiveness and 

robustness in both the artificial and the real-life transfer scenarios. Besides these, by means 

of the dedicated FM-CDDM index, another contribution of this paper, the combination of 

“CPM-JL-CDMEC + FM-CDDM” can cope with most of cross-domain data cases. In 

addition, the intrinsic mechanism of privacy protection in CPM-JL-CDMEC further 

strengthens the practicability of our research in this paper.
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Fig. 1. 
Overall framework of transfer learning.
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Fig. 2. 
Illustration of Definition 2.
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Fig. 3. 
Source domain X̃.
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Fig. 4. 
Target domains. (a) X1. (b) X2. (c) X3.
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Fig. 5. 
Texture images adopted in our experiment. (a) Original texture image 1. (b) Original texture 

image 2. (c) Derivative image from original image 1. (d) Derivative image from original 

image 2.
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Fig. 6. 
Human facial dataset: ORL.
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Fig. 7. 
Segmentation results of six algorithms on Fig. 5(d). Results of (a) LSSMTC, (b) CombKM, 

(c) MEC, (d) STC, (e) TSC, and (f) CPM-JL-CDMEC.
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Fig. 8. 
Performance curves of CPM-JL-CDMEC with respect to parameters η, λ, and γ on X2, TD1, 

and RTHM. (a) On X2, λ and γ are fixed and η varies. (b) On X2, η and γ are fixed and λ 

varies. (c) On X2, λ and η are fixed and γ varies. (d) On TD1, λ and γ are fixed and η varies. 

(e) On TD1, η and γ are fixed and λ varies. (f) On TD1, λ and η are fixed and γ varies. (g) 

On RTHM, λ and γ are fixed and η varies. (h) On RTHM, η and γ are fixed and λ varies. (i) 

On RTHM, λ and η are fixed and γ varies.
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TABLE I

Values or Intervals of Primary Parameters in Six Algorithms

Algorithm Parameter setting

ComKM K equals to the number of cluster

LSSMTC
Task number T = 2
Regularization parameter l ∈ {2,22,23,24}∪{100:100:1000}
Regularization parameter λ ∈ {0.25, 0.5, 0.75}

STC Trade-off parameter λ = 1

TSC K=27, λ = 3, and step = 1

MEC Entropy regularization parameter
γ∈{0.01:0.01:0.09}∪{0.1:0.1:l}∪{2:l:10}∪{20:10:100}

CPM-JL-CDMEC

Entropy regularization parameter
γ∈{0.01:0.01:0.09}∪{0.1:0.1:l}∪{2:l:10}∪{20:10:100}
Transfer regularization parameter
γ∈{0:0.01:0.09}∪{0.1:0.1:0.9}∪{2:l:10}∪{20:10:100}
Transfer trade-off factor η∈ {0:0.05:1}
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TABLE V

Compositions of Texture Datasets Involved in Our Experiment

Dataset Source domain Target domain

TD1 Fig. 5(a) Fig. 5(d)

TD2 Fig. 5(b) Fig- 5(c)
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TABLE VI

Categories and Sub-Categories of New20 Adopted in Our Experiment

Dataset Source domain Target domain

rec VS talk
rcc.autos rec.sport.baseball

talk.politics.guns talk.politics.mideast
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TABLE VII

Details of Real-Life Datasets Involved in This Paper

Dataset Transfer domain Data size Dimension Cluster number

TD1
Source domain 10,000 49

7
Target domain 10,000 49

TD2
Source domain 10,000 49

7
Target domain 10,000 49

rec VS talk
Source domain 1,500 350

2
Target domain 500 350

ORL
Source domain 192 239

8
Target domain 48 239

RTHM
Source domain 494 51

10
Target domain 312 51
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