
1

Adversarial Feature Selection against
Evasion Attacks

Fei Zhang, Student Member, IEEE, Patrick P.K. Chan, Member, IEEE, Battista Biggio, Member, IEEE,
Daniel S. Yeung, Fellow, IEEE, Fabio Roli, Fellow, IEEE

Abstract—Pattern recognition and machine learning tech-
niques have been increasingly adopted in adversarial settings
such as spam, intrusion and malware detection, although their
security against well-crafted attacks that aim to evade detection
by manipulating data at test time has not yet been thoroughly
assessed. While previous work has been mainly focused on
devising adversary-aware classification algorithms to counter
evasion attempts, only few authors have considered the impact
of using reduced feature sets on classifier security against the
same attacks. An interesting, preliminary result is that classifier
security to evasion may be even worsened by the application
of feature selection. In this paper, we provide a more detailed
investigation of this aspect, shedding some light on the security
properties of feature selection against evasion attacks. Inspired
by previous work on adversary-aware classifiers, we propose a
novel adversary-aware feature selection model that can improve
classifier security against evasion attacks, by incorporating spe-
cific assumptions on the adversary’s data manipulation strategy.
We focus on an efficient, wrapper-based implementation of our
approach, and experimentally validate its soundness on different
application examples, including spam and malware detection.

Index Terms—Adversarial Learning, Feature Selection, Classi-
fier Security, Evasion Attacks, Spam Filtering, Malware Detection

I. INTRODUCTION

MACHINE learning has been widely used in security-
related tasks such as biometric identity recognition,

malware and network intrusion detection, and spam filtering,
to discriminate between malicious and legitimate samples
(e.g., impostors and genuine users in biometric recognition
systems; spam and ham emails in spam filtering) [1]–[7]. How-
ever, these problems are particularly challenging for machine
learning algorithms due to the presence of intelligent and
adaptive adversaries who can carefully manipulate the input
data to downgrade the performance of the detection system,
violating the underlying assumption of data stationarity, i.e.,
that training and test data follow the same (although typically
unknown) distribution [8]–[12]. This has raised the issue of
understanding whether and how machine learning can be

F. Zhang, P. P.K. Chan, D. S. Yeung are with the School of Computer
Science and Engineering, South China University of Technology, Guangzhou
510006, China

F. Zhang: e-mail zjfei87@gmail.com, phone +86 20 3938 0285 (3415)
P. P. K. Chan (corresponding author): e-mail patrickchan@ieee.org, phone

+86 20 3938 0285 (3415)
D. S. Yeung: e-mail danyeung@ieee.org, phone +86 20 3938 0285 (3304)
B. Biggio and F. Roli are with the Department of Electrical and Electronic

Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy
B. Biggio: e-mail battista.biggio@diee.unica.it, phone +39 070 675 5776
F. Roli: e-mail roli@diee.unica.it, phone +39 070 675 5779

securely applied in adversarial settings, including its vulnera-
bility assessment against different, potential attacks [13].

In one relevant attack scenario, referred to as evasion attack,
attackers attempt to evade a deployed system at test time by
manipulating the attack samples. For instance, spam, malware
and network intrusion detection can be evaded by obfuscating
respectively the content of spam emails (e.g., by misspelling
bad words like “cheap” as “che@p”), and the exploitation
code embedded in malware samples and network packets [5],
[7], [10]–[12], [14]–[19]. Previous work on evasion attacks
has mainly investigated the vulnerability of supervised [7],
[11], [20] and unsupervised learning techniques [21], [22] in
different applications, including spam filtering [5], [23], [24],
intrusion detection [25] and biometric recognition [1], [2]. Few
studies have instead addressed the problem of training data
poisoning to mislead classifier learning [6], [26]–[29].

Research in adversarial learning has not only been ad-
dressing the problem of evaluating security of current learn-
ing algorithms to carefully-targeted attacks, but also that
of devising learning algorithms with improved security. To
counter evasion attacks, explicit knowledge of different kinds
of adversarial data manipulation has been incorporated into
learning algorithms, e.g., using game-theoretical [8], [12],
[20], [30] or probabilistic models of the hypothesized attack
strategy [2], [9]. Multiple classifier systems, which have been
originally proposed to improve classification accuracy through
the combination of weaker classifiers, have also been exploited
to the same end [15], [16], [31]. Countermeasures to poisoning
attacks have also been proposed, based on data sanitization
(i.e., a form of outlier detection) [6], [32], multiple classifier
systems [33], and robust statistics [26].

While previous work has been mainly focused on devising
secure classification algorithms against evasion and poisoning
attempts, only few authors have considered the impact of
using reduced feature sets on classifier security against the
same attacks. An interesting result is that classifier security to
evasion may be even worsened by the application of feature
selection, if adversary-aware feature selection procedures are
not considered [11], [16], [34]–[36]. In particular, it has
been shown that using reduced feature sets may require an
attacker to manipulate less features to reach a comparable
probability of evading detection, i.e., given the same amount of
manipulations to the attack samples, the probability of evading
detection can be higher; e.g., in spam filtering, using a smaller
dictionary of selected words (i.e., features) may not to affect
accuracy in the absence of attack, but it may significantly
worsen classifier security, i.e., its performance under attack.

ar
X

iv
:2

00
5.

12
15

4v
1

 [
cs

.L
G

]
 2

5
M

ay
 2

02
0

2

The above result has questioned the suitability of feature
selection approaches for adversarial settings, i.e., whether and
to what extent such techniques can be applied without affecting
classifier security against evasion (and poisoning) attacks. To
our knowledge, this issue has only been recently investigate,
despite the relevance of feature selection in classification tasks.
Selecting a relevant subset of features may indeed not only
improve classifier generalization, but it may also significantly
reduce computational complexity and allow for a better data
understanding [37], [38]. Therefore, understanding whether
these advantages can be exploited without compromising
system security in security-sensitive tasks (where reducing
computational complexity is of particular interest due to the
massive amount of data to be processed in real time) can be
considered a relevant, open research issue.

In this paper, we present a systematic security evaluation
of classification algorithms exploiting reduced feature sets to
gain a better understanding of how feature selection may affect
their security against evasion attacks. We further propose a
feature selection model that allows us to improve classifier
security against the same attacks, while using a significantly
reduced feature representation (Sect. III). The underlying idea
of our approach is to select features not only based on
the generalization capability of the resulting classifier in the
absence of attack (as in traditional feature selection methods),
but also depending on its security against adversarial data
manipulation. We model classifier security as a regularization
term to be optimized together with the estimated classifier’s
generalization capability during the feature selection process.
The proposed model is implemented as a wrapper-based
feature selection approach, suitable for linear and non-linear
classifiers (with differentiable discriminant functions), and for
discrete- and real-valued feature spaces. We exploit the well-
known forward selection and backward elimination algorithms
to implement the proposed approach. Its effectiveness against
attacks that assume different levels of knowledge of the
attacked system (discussed in Sect. IV) is experimentally
evaluated on different application examples, including spam
and PDF malware detection (Sect. V). We finally discuss
contributions, limitations and future work (Sect. VI).

II. BACKGROUND

In this section we revise some useful concepts that will
be exploited in the rest of the paper, also introducing our
notation. We start by describing previously-proposed measures
of classifier security (or robustness) against evasion attacks.
We then discuss traditional feature selection methods, and their
stability to non-adversarial perturbations.

A. Adversarial Attacks and Classifier Security to Evasion

An implicit assumption behind traditional machine learning
and pattern recognition algorithms is that training and test
data are drawn from the same, possibly unknown, distribution.
This assumption is however likely to be violated in adversarial
settings, since attackers may carefully manipulate the input
data to downgrade the system’s performance [8], [10]–[12],
[39]. A taxonomy of potential attacks against machine learning

has been defined in [10], [13], [39]. It categorizes attacks
according to three axes: the attack influence, the kind of
security violation, and the attack specificity. The attack influ-
ence can be either causative or exploratory. A causative (or
poisoning) attack alters the training data to mislead subsequent
classification of test samples [29], [40], while an exploratory
(or evasion) attack directly manipulates test samples to cause
misclassifications [10], [11], [13], [39]. Depending on the kind
of security violation, an attack may compromise a system’s
availability, integrity, or privacy: availability attacks aim to
downgrade the overall system’s accuracy, causing a denial of
service; integrity attacks, instead, only aim to have malicious
samples misclassified as legitimate; and privacy attacks aim
to retrieve some protected or sensitive information from the
system (e.g., the clients’ biometric templates in biometric
recognition systems). The attack specificity defines whether
the attack aims to change the classifier decision on a targeted
set of samples, or on an indiscriminate fashion (e.g., if the goal
is to have any malicious sample misclassified as legitimate).
This taxonomy has been subsequently extended in [11], [19]
by making more detailed assumptions on the attacker’s goal,
knowledge of the targeted system, and capability of manipulat-
ing the input data, to allow one to formally define an optimal
attack strategy. Notably, in [21], a similar model of attacker
has been proposed to categorize attacks against unsupervised
learning algorithms (i.e., clustering).

According to the aforementioned taxonomy, the evasion
attack considered in this paper can be regarded as an ex-
ploratory integrity attack, in which malicious test samples
are manipulated to evade detection by a classifier trained on
untainted data. This is indeed one of the most common attacks
in security-related tasks like spam filtering [5], [23], [24], net-
work intrusion detection [25], and biometric recognition [1],
[2]. Optimal evasion has been formulated according to slightly
different optimization problems [11], [12], [16], [19], [41],
[42]. In general, the rationale behind all of the proposed attacks
is to find a sample x? ∈ X that evades detection by minimally
manipulating the initial attack x ∈ X , where the amount of
manipulations is characterized by a suitable distance function
in feature space. For instance, in [41], [42] optimal evasion is
formulated as:

x? = argminx′ c(x′,x) (1)
s.t. g(x′) < 0 , (2)

where c(x′,x), with c : X × X 7→ R, is the distance of
the manipulated sample from the initial attack, and x′ is
classified as legitimate if the classifier’s discriminant function
g : X 7→ R evaluated at x′ is negative. Without loss of gener-
ality, this amounts to assuming that the classification function
f : X 7→ Y , with Y = {−1,+1} can be generally written
as f(x′) = sign (g(x)), being −1 and +1 the legitimate and
the malicious class, respectively, and sign(a) = +1 (−1) if
a ≥ 0 (a < 0). A typical choice of distance function for
Boolean features is the Hamming distance, which amounts to
counting the number of feature values that are changed from
x to x′ by the attack. In spam filtering, this often corresponds
to the number of modified words in each spam, having indeed

3

a meaningful interpretation [11], [12], [15], [16], [41], [42].
Based on the above definition of optimal evasion, in [34],

[43] the authors have proposed a measure of classifier security
against evasion attacks, called hardness of evasion, to show
that multiple classifier systems that average linear classifiers
can be exploited to improve robustness to evasion. It is simply
defined as the expected value of c(x?,x) computed over all
attack samples. In the case of Boolean features, it amounts
to computing the average minimum number of features that
have to be modified in a malicious sample (e.g., the minimum
number of words to be modified in a spam email) to evade
detection. A different measure of classifier security to evasion,
called weight evenness, has been later proposed in [15], [16].
It is based upon the rationale that a robust classifier should
not change its decision on a sample if only a small subset of
feature values are modified. For linear classifiers, this can be
easily quantified by measuring whether the classifier’s weights
are evenly distributed among features, since more evenly-
distributed feature weights should require the adversary to
manipulate a higher number of features to evade detection.
Accordingly, weight evenness has been defined as:

E =
2

d− 1

[
d−

d∑
k=1

(
k∑

i=1

|w(i)|

/
d∑

j=1

|w(j)|

)]
∈ [0, 1], (3)

being |w(1)| > |w(2)| > · · · > |w(d)| the absolute values of
the classifier’s weights sorted in descending order, and d the
number of features. Higher values of E clearly correspond
to evener weight distributions. This measure has also been
exploited to improve the robustness of support vector ma-
chines (SVMs) and multiple classifier systems against evasion
attacks [15], [16], [20].

B. Feature Selection, Robustness, and Stability

Feature selection is an important preprocessing step in
pattern recognition [38], [44], [45]. It is has been widely used
in bioinformatics [37], [46], image steganalysis [47], [48],
network intrusion detection [49], camera source model identifi-
cation [50] and spam detection [16], [51]. Its goal is to choose
a relevant subset of features not only to improve a classifier’s
generalization capability when only few training samples are
available, but, most importantly, to reduce time and space
complexity [38]. Another advantage is that data understanding
and visualization are also facilitated after removing irrelevant
or redundant features [46].

Feature selection methods can be divided into three cate-
gories according to their interaction with classification algo-
rithms [38], [44], [52]. Filter approaches rank feature subsets
mostly independently from the accuracy of the given classifier.
For efficiency reasons, they exploit surrogate functions of
the classification accuracy, based on some properties of the
dataset [53]–[55], such as mutual information [56], [57].
Feature selection is instead guided by the performance of
the considered classifier in wrapper approaches, which how-
ever require one to re-train the classification algorithm each
time the feature subset is modified [51], [58]. Embedded
approaches exploit internal information of the classifier to
select features during classifier training [59], [60]. Traditional

feature selection algorithms thus optimize classification accu-
racy or some surrogate function with respect to the choice
of the feature subset, without considering how the resulting
classifier may be affected by adversarial attacks. It has indeed
been shown that feature selection may even worsen classifier
security to evasion: the resulting classifiers may be evaded with
less modifications to the attack data [11], [16], [34]–[36].

Robust feature selection approaches have also been pro-
posed, both to minimize the variability of feature selection
results against random perturbations of the training data (i.e.,
considering different training sets drawn from the same under-
lying data distribution) [61], and, more recently, also to counter
some kinds of adversarial data manipulations [35], [36]. As a
result, the notion of ‘robustness’ considered in [61] is rather
different from that considered in [35], [36] and in this paper. It
is nevertheless of interest to understand whether methods that
are more robust to evasion may also benefit from robustness
to random perturbations, and vice versa.

Finally, it is worth mentioning that Robust Statistics [62],
[63] may be also exploited to learn more robust feature
mappings. An example is given in [10], [26], where the authors
have exploited a robust version of the principal component
analysis (originally proposed in [64]) to reduce the influence of
poisoning attacks in the training data, yielding a more secure
network traffic anomaly detector. However, to our knowledge,
no work has considered thus far the problem of learning more
secure classifiers against evasion attacks (i.e., manipulations of
malicious samples at test time), by leveraging on a carefully-
devised, wrapper-based feature selection approach.

III. ADVERSARIAL FEATURE SELECTION

In this section, we present our adversary-aware feature
selection approach. The underlying idea is to select a feature
subset that not only maximizes the generalization capability
of the classifier (in the absence of attack, as in traditional
feature selection), but also its security against evasion attacks.
Given a d-dimensional feature space, and m < d features to
be selected, this criterion can be generally formalized as:

θ? = argmaxθ G(θ) + λS(θ) , (4)

s.t.

d∑
k=1

θk = m, (5)

where G and S respectively represent an estimate of the
classifier’s generalization capability and security to evasion,
weighted by a trade-off parameter λ (to be chosen according to
application-specific constraints, as discussed in Sect. V), θ ∈
{0, 1}d is a binary-valued vector representing whether each
feature has been selected (1) or not (0), and θ? is the optimal
solution.1 Notably, the inequality constraint

∑d
k=1 θk ≤ m

can be alternatively considered if one aims to select the best
feature subset within a maximum feature set size m.

The generalization capability G(θ) of a classifier on a
feature subset θ can be estimated according to different perfor-
mance measures, depending on the given application. Provided

1We use the same notation defined in [38], and refer to the set of selected
features as θ (although θ is an indexing vector rather than a proper set).

4

that the data follows a distribution p(X, Y), with X and Y
being two random variables defined in the corresponding sets
X and Y , and that a suitable utility function u : Y × R 7→ R
is given, this can formalized as:

G(θ) = Ex,yvp(X,Y) u(y, g(xθ)) , (6)

where E denotes the expectation operator, xθ is the projection
of x onto the set of selected features, and g(x) is the
classifier’s discriminant function (see Sect. II). For instance,
if u(y, g(x)) = +1 when yg(x) ≥ 0, and 0 otherwise, G(θ)
corresponds to the classification accuracy. As the data distri-
bution p(X, Y) is typically unknown, G(θ) can be empirically
estimated from a set of available samples drawn from p(X, Y),
as in traditional feature selection (e.g., using cross-validation).

As for the security term S(θ), we exploit the definition of
minimum cost evasion given by Problem (1)-(2). Accordingly,
classifier security can be defined as the hardness of evasion
(see Sect. II-A), i.e., the average minimum number of modi-
fications to a malicious sample to evade detection:

S(θ) = Exvp(X|Y=+1) c(x
?
θ,xθ) , (7)

where x?
θ is the optimal solution to Problem (1)-(2). The

rationale is that more secure classifiers should require a higher
number of modifications to the malicious samples to evade
detection. Since, in practice, the attacker may only have
limited knowledge of the system, or limited capability of
manipulating the data, this should indeed yield a lower evasion
rate [11], [19], [41]. The value of S(θ) can be empirically
estimated from the set of available samples when p(X, Y) is
unknown, as for G(θ), by averaging c(x?

θ,xθ) over the set of
malicious samples. Note however that this value may depend
on the size of the feature subset, as it estimates an average
distance measure. This may be thought as a different rescaling
of the trade-off parameter λ when selecting feature subsets of
different sizes. Therefore, one may rescale λ to avoid such a
dependency, e.g., by dividing its value by the maximum value
of c(x?

θ,xθ) attained over the malicious samples.
In principle, the proposed criterion can be exploited for

wrapper- and filter-based feature selection, provided that G
and S can be reliably estimated, e.g., using surrogate measures.
However, we are not aware of any technique that allows
estimating classifier security to evasion without simulating
attacks against the targeted classifier. We thus consider a
wrapper-based implementation of our approach, leaving the
investigation of filter-based implementations to future work.
Two implementations of our wrapper-based adversarial feature
selection, based on the popular algorithms of forward feature
selection and backward feature elimination, are discussed in
the next section. In the sequel, we assume that S(θ) can be
estimated from the available data. We will discuss how to
estimate its value by solving Problem (1)-(2) in Sect. III-B,
for different choices of distance functions and classifiers.

A. Wrapper-based Adversarial Feature Selection (WAFS)

The implementation of the proposed adversarial feature se-
lection approach is given as Algorithm 1. It is a simple variant
of the popular forward selection and backward elimination
wrapping algorithms, which iteratively add or delete a feature

Algorithm 1 Wrapper-based Adversarial Feature Selection,
with Forward Selection (FS) and Backward Elimination (BE).
Input: D = {xi, yi}ni=1: the training set; λ: the trade-off

parameter; m: the number of selected features.
Output: θ ∈ {0, 1}d: the set of selected features.

1: S ← ∅, U ← {1, . . . , d};
2: repeat
3: for each feature k ∈ U do
4: Set F ← S ∪ {k} for FS (F ← U \ {k} for BE);
5: Set θ = 0, and then θj = 1 for j ∈ F ;
6: Estimate Gk(θ) and Sk(θ) using cross-validation

on Dθ = {xi
θ, y

i}ni=1 (this involves classifier training);
7: end for
8: λ′ = λ(maxk Sk)

−1 (i.e., rescale λ);
9: k? = arg maxk

(
Gk(θ) + λ′Sk(θ)

)
;

10: S ← S ∪ {k?}, U = U \ {k?};
11: until |S| = m for FS (|U| = m for BE)
12: Set F ← S for FS (F ← U for BE);
13: Set θ = 0, and then θj = 1 for j ∈ F ;
14: Return θ

from the current candidate set, starting respectively from an
empty feature set and from the full feature set [38], [44],
[58]. As in traditional wrapper methods, cross-validation is
exploited to estimate the classifier’s generalization capability
G(θ) more reliably. The only – although very important –
difference is that our approach also evaluates the security term
S(θ) to select the best candidate feature at each step.

B. Evaluating Classifier Security to Evasion

We explain here how to solve Problem (1)-(2) to estimate
the classifier security term S(θ) in the objective function of
Eq. (4). Problem (1)-(2) essentially amounts to finding the
closest sample x′ to x that evades detection, according to a
given distance function c(x′,x). In general, the problem may
be solved using a black-box search approach (e.g., a genetic
algorithm) that queries the classification function with different
candidate samples to find the best evasion point. This approach
may be however too computationally demanding, as it does not
exploit specific knowledge of the objective function and of the
targeted classifier. To develop more efficient algorithms, one
should indeed focus on specific choices of the objective (i.e.,
the distance function), and of the constraints (i.e., the kind of
classifier and feature representation).

As for the distance function, most of the work in adversarial
learning has considered the `1- and the `2-norm, depending on
the feature space and kind of attack [8], [19], [41], [42]; e.g., if
it is more convenient for an attacker to significantly manipulate
few features than slightly manipulate the majority of them, the
`1-norm should be adopted, as it promotes sparsity; otherwise,
the `2-norm would be a better choice.

The classification function may be linear (e.g., linear SVMs,
perceptrons) or non-linear (e.g., SVMs with the radial basis
function (RBF) or the polynomial kernel, neural networks).
Further, it may be non-differentiable (e.g., decision trees).
Previous work has addressed the evasion of linear [41] and
convex-inducing classifiers, i.e., classifiers that partition the

5

−5 0 5
−5

0

5

−5

−4

−3

−2

−1

0

1

2

−5 0 5
−5

0

5

−5

−4

−3

−2

−1

0

1

2

−5 0 5
−5

0

5

−5

−4

−3

−2

−1

0

1

2

−5 0 5
−5

0

5

−5

−4

−3

−2

−1

0

1

2

−5 0 5
−5

0

5

−5

−4

−3

−2

−1

0

1

2

Fig. 1. Examples of descent paths obtained by Algorithm 2 to find optimal evasion points against SVM-based classifiers on a bi-dimensional dataset, for
different choices of distance function, classification algorithm, and feature representation. Red and blue points represent the malicious and legitimate samples,
respectively. The initial malicious sample x to be modified in this example is the red point at x = [−3, 2]. Solid black lines denote the SVM’s decision
boundary (i.e., g(x) = 0) and margin conditions (i.e., g(x) = ±1). The color map represents the value of the discriminant function g(x) at each point.
Dashed black lines denote the boundaries of a box constraint. Red and blue lines denote the descent paths when the initialization point is equal to the
initial malicious point (x(0) = x) and to the closest point classified as legitimate, respectively. In the first and the second plot, evasion points are found by
minimizing the `2-norm ||x′−x||22, respectively against a linear SVM with regularization parameter C = 1, and against a nonlinear SVM with C = 1 using
the RBF kernel with γ = 0.5, on a continuous feature space. In the third and the fourth plot, the `1-norm ||x′−x||1 is minimized against the same nonlinear
SVM, respectively on a continuous and on a discrete feature space, where feasible points lie at the grid intersections. The problem may exhibit multiple local
minima, or have a unique solution (see, e.g., the first plot). Further, depending on the shape of the decision boundary, Algorithm 2 may not find an evasion
point when initialized with x(0) = x (see, e.g., the third plot). Accordingly, the closest point to x that evades detection should be eventually retained.

Algorithm 2 Evasion Attack

Input: x: the malicious sample; x(0): the initial location of
the attack sample; t: the gradient step size; ε: a small
positive constant; m: the maximum number of iterations.

Output: x′: the closest evasion point to x found.
1: i← 0
2: repeat
3: i← i+ 1
4: if g(x(i)) ≥ 0 then take a step towards the boundary
5: x(i) ← x(i−1) − t∇g(x(i−1))
6: else take a step to reduce the objective function
7: x(i) ← x(i−1) − t∇c(x(i−1),x)
8: end if
9: if x(i) violates other constraints (e.g., box) then

10: Project x(i) onto the feasible domain
11: end if
12: until c(x(i),x)− c(x(i−1),x) < ε or i ≥ m
13: return x′ = x(i)

feature space into two sets, one of which is convex [42]. It
has also been recently shown that non-linear classifiers with
differentiable discriminant functions can be evaded through a
straightforward gradient descent-based attack [19]. We are not
aware of any work related to the evasion of non-linear classi-
fiers with non-differentiable functions. Although this may be
addressed through heuristic search approaches, as mentioned
at the beginning of this section, we leave a more detailed
investigation of this aspect to future work. In this work we
therefore consider classifiers whose discriminant function g(x)
is not necessarily linear, but differentiable. These include, for
instance, SVMs with differentiable kernels (e.g., linear, RBF,
polynomial) and neural networks, which have been widely
used in security-related applications [11], [19].

Additional constraints to Problem (1)-(2) may be consid-
ered, depending on the specific feature representation; e.g., if
features are real-valued and normalized in [0, 1]d, one may
consider a box constraint on x′, given as 0 ≤ x′j ≤ 1,
for j = 1, . . . , d. Further, features may take on discrete

values, making our problem harder to solve, as discussed in
Sect. III-B2. In the following, we assume that feature values
are continuous on a potentially compact space, such as [0, 1]d.

In the easiest cases, a solution can be found analytically;
e.g., if one aims to minimize c(x′,x) = ||x′ − x||22 against a
linear classifier g(x) = w>x+b (being w ∈ Rd and b ∈ R the
feature weights and bias), it is easy to verify that the optimal
evasion point is x′ = x−g(x) w

||w||22
(cf. Fig. 1, leftmost plot).

If the discriminant function g(x) is non-linear, the opti-
mization problem becomes non-linear as well, and it may
thus exhibit local minima. Nevertheless, a local minimum
can be found by minimizing the objective function c(x′,x)
through gradient descent. Our idea is to take gradient steps
that aim to reduce the distance of x′ from x, while projecting
the current point onto the feasible domain as soon as the
constraint g(x′) < 0 is violated. In fact, following the intuition
in [19], the attack point can be projected onto the non-
linear, feasible domain g(x′) < 0 by minimizing g(x′) itself
through gradient descent. The detailed procedure is given as
Algorithm 2. Notice however that this projection may not
always be successful (see Fig. 1, third plot from the left).
It may indeed happen that the attack point x′ reaches a flat
region where the gradient of g(x′) is null, while the point
is still classified as malicious (g(x′) ≥ 0). To overcome this
limitation, we initialize the attack point to different locations
before running the gradient descent (instead of mimicking
the feature values of samples classified as legitimate, as done
in [19]). In particular, we consider two initializations: one in
which the attack point x′ is set equal to x (red descent paths in
Fig. 1), and the other one in which x′ is set equal to the closest
sample classified as legitimate (blue descent paths in Fig. 1).
The rationale is the following. In the former case, we start
from a point which is classified as malicious, and see whether
we can reach a reasonably close evasion point by following
the gradient of g(x′). In the latter case, we start from the
closest point classified as legitimate, and try to get closer to
x while avoiding violations of the constraint g(x′) < 0. The
closest point to x that evades detection is eventually retained.
As shown in Fig. 1, this should reasonably allow us to find

6

at least a good local minimum for our problem. Finally, note
that the proposed algorithm quickly converges to the optimal
evasion point when g(x′) is linear too, from any of the two
proposed initializations, as shown in the leftmost plot of Fig. 1.

1) Gradients: The gradients required to evaluate classifier
security using Algorithm 2 are given below, for some distance
and discriminant functions. Subgradients can be considered for
non-differentiable functions, such as the `1-norm.
Distance functions. As discussed in Sect. II, typical choices
for the distance function c(x′,x) in adversarial learning are
the `2- and the `1-norm. Their gradients with respect to x′

can be respectively computed as ∇c(x′,x) = 2(x′ − x), and
∇c(x′,x) = sign(x′ − x), where sign(v) returns a vector
whose ith element is 0 if vi = 0, 1 (−1) if vi > 0 (vi < 0).
Linear classifiers. For linear discriminant functions g(x) =
〈w,x〉+ b, with feature weights w ∈ Rd and bias b ∈ R, the
gradient is simply given as ∇g(x) = w.
Nonlinear SVMs. For kernelized SVMs, the discriminant
function is g(x) =

∑n
i=1 αiyik(x,xi)+ b, where the parame-

ters α and b are learned during training, k(x,xi) is the kernel
function, and {xi, yi}ni=1 are the training samples and their
labels [65]. The gradient is ∇g(x) =

∑
i αiyi∇k(x,xi). In

this case, the feasibility of our approach depends on the kernel
derivative ∇k(x,xi), which is computable for many numeric
kernels; e.g., for the RBF kernel k(x,xi) = exp{−γ‖x −
xi‖2}, it is ∇k(x,xi) = −2γ exp{−γ‖x− xi‖2}(x− xi).

Although in this work we only consider kernelized SVMs
as an example of nonlinear classification, our approach can
be easily extended to any other nonlinear classifier with
differentiable discriminant function g(x) (see, e.g., [19], for
the computation of ∇g(x) for neural networks).

2) Descent in discrete spaces: In discrete spaces, it is not
possible to follow the gradient-descent direction exactly, as
this may map the current sample to a set of non-admissible
feature values. In fact, descent in discrete spaces amounts to
finding, at each step, a feasible neighbor of the current sample
that maximally decreases the objective function. This can be
generally addressed using a search algorithm that queries the
objective function at every point in a small neighborhood
of the current sample, which may however require a large
number of queries (exponential in the number of features).
For classifiers with a differentiable discriminant function, the
number of queries can be reduced by perturbing only a number
of features which correspond to the maximum absolute values
of the gradient, one at a time, in the correct direction, and
eventually retaining the sample that maximally decreases the
objective function. This basically amounts to exploiting the
available gradient as a search heuristic, and to selecting the
feasible point that best aligns with the current gradient. An
example of the descent paths explored in discrete spaces by
our evasion attack algorithm is given in Fig. 1 (rightmost plot).

IV. SECURITY EVALUATION

To evaluate the effectiveness of the proposed adversarial
feature selection method against traditional feature selection
approaches, we follow the security evaluation procedure origi-
nally proposed in [11], [19]. The underlying idea is to simulate

attacks that may be potentially incurred at test time, relying
on specific assumptions on the adversary’s model, in terms
of his goal, knowledge of the targeted system, and capability
of manipulating the input data. In the evasion setting, the
attacker aims to evade detection by exploiting knowledge of
the classification function to manipulate the malicious (test)
samples. The attacker’s knowledge can be either perfect or
limited. In the former case, the classification algorithm is fully
known to the attacker, who can then perform a worst-case
attack, similarly to Problem (1)-(2). In the latter case, instead,
knowledge of the true discriminant function g(x) is not
available. This is a more realistic case, as typically the attacker
has neither access to the classifier internal parameters nor to
the training data used to learn it. Nevertheless, the function
g(x) can be approximated by collecting surrogate data (i.e.,
data ideally sampled from the same distribution followed by
the training data used to learn the targeted classifier), and then
learning a surrogate classifier on it. As shown in [19], this can
lead to very good approximations of the targeted classifier for
the sake of finding suitable evasion points. Intuitively, solving
Problem (1)-(2) when exploiting an approximation ĝ(x) of the
true discriminant function g(x) may not be a good choice, as
looking for evasion points which are only barely misclassified
as legitimate by the surrogate classifier may lead the attacker
to only rarely evade the true classifier. For this reason, optimal
evasion has been reformulated in [19] as:

min
x′

ĝ(x′) , (8)

s.t. c(x′,x) ≤ cmax , (9)

where the constraint on c(x′,x) bounds the attacker’s capa-
bility by setting an upper bound on the maximum amount of
modifications cmax that can be made to the initial malicious
sample x. In this case, the malicious sample is modified to be
misclassified as legitimate with the highest possible confidence
(i.e., minimum value of ĝ(x)), under a maximum amount of
modifications cmax, which can be regarded as a parameter of
the security evaluation procedure. In fact, by repeating the
security evaluation for increasing values of cmax, one can show
how gracefully the performance of the true classifier decreases
against attacks of increasing strength. The more the perfor-
mance gracefully decreases, the more secure the classifier is
expected to be. Examples of such curves will be shown in
Sect. V. Finally, note that the aforementioned problem can be
solved using an algorithm similar to Algorithm 2, in which
the objective function and the constraint are exchanged.

V. APPLICATION EXAMPLES

In this section we empirically validate the proposed ap-
proach on two application examples involving spam filtering
and PDF malware detection. In the former case, we compare
the traditional forward feature selection wrapping algorithm
with the corresponding implementation of our approach, using
a linear SVM as the classification algorithm. In the latter
case, instead, we consider traditional and adversarial back-
ward feature elimination approaches, and an SVM with the
RBF kernel as the wrapped classifier. We believe that these

7

examples can be considered a representative set of cases to
assess the empirical performance of the proposed method.

A. Spam Filtering

Spam filtering is one of the most common application
examples considered in adversarial machine learning [6], [10],
[11], [16], [26]. In this task, the goal is often to design
a linear classifier that discriminates between legitimate and
spam emails by analyzing their textual content, exploiting the
so-called bag-of-words feature representation, in which each
binary feature denotes the presence (1) or absence (0) of a
given word in an email [66]. Despite its simplicity, this kind of
classifier has shown to be highly accurate, while also providing
interpretable decisions. It has been therefore widely adopted
in previous work [6], [10], [11], [15], [16], [23], [24], [26],
and in several real anti-spam filters, like SpamAssassin and
SpamBayes.2 Evasion attacks against these kinds of classifier
consist of manipulating the content of spam emails through
bad word obfuscations (e.g., misspelling spammy words like
“cheap” as “che4p”) and good word insertions (i.e., adding
words which typically appear in legitimate emails and not in
spam), which amounts to modifying the corresponding feature
values from 1 to 0 and vice versa [11], [15], [16], [41].

Experimental setup. For these experiments, we considered
the benchmark TREC 2007 email corpus, which consists of
25,220 legitimate and 50,199 real spam emails [67]. We rep-
resented each email as a feature vector using the tokenization
method of SpamAssassin, which exploits the aforementioned
bag of-words feature model. To this end, we first extracted the
dictionary of words (i.e., features) from the first 5,000 emails
(in chronological order). Then, to keep the computational
complexity manageable, we reduced the feature set from
more than 20,000 to 500 features, without significant loss
in classification accuracy, using a supervised feature selection
approach based on the information gain criterion [68].3 The
linear SVM was considered as the classification algorithm.
As for the performance measure G(θ), we used classification
accuracy. Classifier security S(θ) was evaluated as discussed
in Sect. III, using the `1-norm as the distance function c(x′,x),
and Algorithm 2 for discrete spaces (Sect. III-B2). This choice
of distance function amounts to counting the minimum number
of words to be modified in each spam to evade detection.

We run a preliminary security evaluation to tune the trade-
off parameter λ of our method, aiming to maximize the
average true positive (TP) rate (i.e., the fraction of correctly
classified malicious samples) at the 1% false positive (FP)
rate operating point (i.e., when 1% of the legitimate samples
are misclassified), for cmax ∈ [0, 20] (see Sect. IV). It is
indeed common to evaluate system performance at low FP
rates in security-related tasks [11], [15], [16]. This also allows
us to compare different classifiers against evasion attacks
in a fair way, as classifiers with higher FP rates may be
easier to evade [11], [19]. If λ is too large, the selected
features show poor generalization capability in the absence
of attack (i.e., when cmax = 0), which also leads to a too

2http://spamassassin.apache.org/, http://spambayes.sourceforge.net/
3Note that a similar procedure has also been carried out in [11], where it

is also quantitatively shown that classification performance is not affected.

low TP rate under attack (i.e., when cmax > 0). Conversely,
if λ is too small, classifier performance under attack may
quickly decrease. Hence, to effectively tune λ, one should
quantitatively investigate this trade-off on the available data.
We assume that a maximum decrease of the TP rate in the
absence of attack of 1% is tolerable, at the given FP rate.
Then, the highest value of λ under this constraint can be
selected, to maximize the TP rate under attack. Based on these
observations, we run a 5-fold cross validation on the training
set with values of λ ∈ {0.1, 0.5, 0.9}, and selected λ = 0.5.

Each experiment was repeated five times, each time by
randomly selecting 2,500 samples for each class from the
remaining emails in the TREC corpus. In each run, the dataset
of 5,000 samples was randomly split into a training and a
test set of 2,500 samples each. Then, subsets consisting of
1 to 499 features were selected according to the traditional
and adversarial forward selection methods, through a 5-fold
cross validation procedure on the training set, to respectively
maximize the value of G(θ) and G(θ)+λS(θ) (Algorithm 1)
estimated on such data. The SVM regularization parameter
C ∈ {2−10, 2−9, ..., 210} was also selected during this process
using an additional inner 5-fold cross-validation to maximize
classification accuracy, usually yielding C = 1.

Security evaluation was then carried out on the test data.
Similarly to the procedure used to tune λ, we manipulated each
malicious sample according to Problem (8)-(9) for cmax ∈
[0, 20], assuming perfect (PK) and limited (LK) knowledge of
the true discriminant function g(x). As discussed in Sect. IV,
in the LK case the attacker constructs evasion points by attack-
ing a surrogate classifier ĝ(x). These points are then used to
attack the true classifier g(x) and evaluate the performance. To
provide a realistic evaluation, as in [19], we learn the surrogate
classifier using a smaller training set, consisting of only 500
samples. For each value of cmax we then computed TP at 1%
FP for the true classifier under the PK and LK attack scenarios.

Experimental results. The average value (and standard
deviation) of TP at 1% FP for the security evaluation procedure
described above are reported in Fig. 2, for feature subset sizes
of 100, 200, 300, and 400, and for the PK and LK attack
scenarios. In the absence of attack (i.e., when cmax = 0),
the two methods exhibited similar performances. Although
the traditional method performed occasionally better than
WAFS, the difference turned out not to be 95% statistically
significant according to the Student’s t-test. Under attack
(i.e., when cmax > 0), instead, WAFS always significantly
outperformed the traditional method, for both the PK and the
LK attack scenarios. As the performance of the traditional
method decreased less gracefully as cmax increased, we can
conclude that WAFS leads to learning more secure classifiers.
This is also confirmed by the LK attack scenario. In this case,
even if only a surrogate classifier is available to the attacker,
manipulating up to 20 words in a spam email may allow one
to evade the true classifier almost surely (provided that the
selected features are known to the attacker).

In Fig. 3, we also report the values of G(θ) (i.e., the
classification accuracy in the absence of attack) and S(θ) (i.e.,
the average minimum number of features to be modified in a
malicious sample to evade detection). Note how the proposed

http://spamassassin.apache.org/
http://spambayes.sourceforge.net/

8

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 100

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 200

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 300

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 400

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 100

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 200

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 300

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 400

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 100

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 200

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%
max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 300

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 400

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 100

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 200

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%
max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 300

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 400

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 100

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 200

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 300

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 400

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 100

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 200

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 300

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 400

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 100

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 200

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%
max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 300

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 400

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 100

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 200

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%
max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 300

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature set size: 400

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of modified words

Traditional (LK)

WAFS (LK)

Fig. 2. Security evaluation curves for the spam data, showing the average and standard deviation of the TP rate at 1% FP rate, for feature subset sizes of
100, 200, 300, and 400 (in different columns), and for the PK (top row) and LK (bottom row) attack scenarios.

0 100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

Number of Selected Features

S
(θ

)

Traditional (PK) WAFS (PK) Traditional (LK) WAFS (LK)

0 100 200 300 400 500
0.97

0.975

0.98

0.985

0.99

0.995

Number of Selected Features

G
(θ

)

0 100 200 300 400 500
0

6

12

18

Number of Selected Features

S
(θ

)

Fig. 3. Average classification accuracy G(θ) in the absence of attack (left
plot), and classifier security S(θ) under attack (i.e., average minimum number
of modified words in each spam to evade detection) for the PK and LK attack
scenarios (right plot), against different feature subset sizes, for the spam data.

adversarial feature selection method systematically required
the attacker to modify a higher number of features (i.e., words)
to evade detection, for all considered feature subset sizes,
without significantly affecting the accuracy in the absence
of attack G(θ). This clearly confirms our previous results,
showing that maximizing the security term S(θ) during feature
selection helps improving the detection rate under attack, and
thus classifier security. Although this comes at the cost of an
increased computational complexity (since it requires simulat-
ing attacks against the targeted classifier), feature selection is
often carried out offline, and thus the additional running time
required by our method may not be critical.

Finally, we evaluated the correlation of the hardness of
evasion, i.e., the classifier security measure S(θ) used in
this work, with the weight evenness [15], [16], i.e., another
possible measure for assessing the security of linear classifiers
(see Sect. II-A). The goal is to verify whether the weight
evenness can be adopted to compute the security term S(θ)
in our approach, as it can be computed more efficiently than
the hardness of evasion, i.e., without simulating any attack
against the trained classifier. To this end, we trained 200
linear classifiers using 200 distinct samples each, and eval-
uated the correlation between the two considered measures.
Surprisingly, our experiment showed that the two measures
were not significantly correlated (the Pearson’s correlation
coefficient was almost zero), contradicting the intuition in
previous studies [15], [16]. One possible reason is that the
weight evenness does not exploit any information on the data
distribution besides the classifier’s feature weights. Therefore,
it may not be properly suited to characterize classifier security.

B. Malware Detection in PDF Files

Here, we consider another realistic application example
related to the detection of malware (i.e., malicious software)
in PDF files. These files are characterized by a hierarchy of
interconnected objects, each consisting of a keyword, denoting
its type, and a data stream, representing its content; e.g., the
keyword /PageLayout characterizes an object describing
how the correponding page is formatted. This flexible, high-
level structure allows for embedding of different kinds of
content, such as JavaScript, Flash, and even binary pro-
grams, which in turn makes PDF files particularly attractive as
vectors for disseminating malware. Recent work has exploited
machine learning as a tool for detecting malicious PDF files
based on their logical structure; in particular, on the set of
embedded keywords [17], [18]. In this application example,
we use the same feature representation exploited in [17], [19],
in which each feature represents the number of occurrences of
a given keyword in a PDF file. Conversely to the spam filtering
example, feature values in this case can not be modified in an
unconstrained manner to perform an evasion attack. In fact, it
is not to trivially possible to remove an embedded object (and
the associated keywords) from a PDF without corrupting its
structure. Nevertheless, it is quite easy to add new objects (i.e.,
keywords) through the PDF versioning mechanism (see [17],
[19] and references therein). In our case, this can be easily
accounted for by setting x ≤ x′ as an additional constraint
to Problem (1)-(2) and Problem (8)-(9), respectively for the
purpose of finding the optimal evasion points, and running the
security evaluation procedure.4

Experimental setup. In these experiments, we considered
the PDF malware dataset used in [17], [19], including 5591
legitimate and 5993 malicious PDFs. As mentioned above,
features have integer values, each representing the occurrence
of a given keyword in a PDF. In total, 114 distinct keywords
were found from the first 1,000 samples (in chronological
order). They were used as our set of features. As in [19], we
limited the influence of outlying observations by setting the
maximum value of each feature to 100. We then normalized
each feature by simply dividing its value by 100. The SVM
with the RBF kernel was used as the classification algorithm.

4With the notation x ≤ x′, we mean that xj ≤ x′j , for j = 1, . . . , d.

9

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 23

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 46

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 68

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)

WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 91

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 23

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 46

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 68

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)

WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 91

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 23

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 46

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 68

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)

WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 91

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 23

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 46

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%
max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 68

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)

WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 91

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 23

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 46

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 68

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)

WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 91

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 23

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 46

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 68

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)

WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 91

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 23

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 46

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 68

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)

WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 91

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 23

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 46

T
P

 a
t F

P
=

1%

Traditional (PK)

WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%
max. num. of added keywords

Traditional (LK)
WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 68

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)

WAFS (LK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
Feature set size: 91

T
P

 a
t F

P
=

1%

Traditional (PK)
WAFS (PK)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

T
P

 a
t F

P
=

1%

max. num. of added keywords

Traditional (LK)
WAFS (LK)

Fig. 4. Security evaluation curves for the PDF malware data, showing the average and standard deviation of the TP rate at 1% FP rate, for feature subset
sizes of 23, 46, 68, and 91 (in different columns), and for the PK (top row) and LK (bottom row) attack scenarios.

0 100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

Number of Selected Features

S
(θ

)

Traditional (PK) WAFS (PK) Traditional (LK) WAFS (LK)

0 23 46 69 92 115
0.94

0.95

0.96

0.97

0.98

0.99

Number of Selected Features

G
(θ

)

0 23 46 69 92 115
0

10

20

30

40

Number of Selected Features

S
(θ

)

Fig. 5. Average classification accuracy G(θ) in the absence of attack (left
plot), and classifier security S(θ) under attack (i.e., average minimum number
of added keywords to each malicious PDF to evade detection) for PK and LK
attacks (right plot), against different feature subset sizes, for the PDF data.

The same performance G(θ) and classifier security S(θ)
measures defined in the previous section were considered
here. Notably, using the `1-norm to evaluate S(θ) in this
case amounts to counting the number of added keywords to
a PDF (divided by 100). It is clear that the feature space is
discrete in this case as well, since the admissible values are
x ∈ {0, 1/100, 2/100, . . . , 1}d. We therefore exploited again
Algorithm 2 on discrete spaces (Sect. III-B2) for the sake of
estimating S(θ) and running security evaluation.

Following the same experimental setup used for the spam
filtering task, we set λ = 0.9. Experiments were repeated ten
times, each time randomly drawing 1,000 samples from the
remaining data. In each run, these samples were split into a
training and a test set of equal sizes. Then, feature subsets
of sizes from 1 to 113 were selected using traditional and
adversarial backward feature elimination, performing a 5-fold
cross-validation on the training data. The SVM regularization
parameter C ∈ {2−10, 2−9, ..., 210} and the kernel parameter
γ ∈ {2−3, 2−2, ..., 23}, were set during this process through
an inner 5-fold cross-validation, maximizing the classification
accuracy. This typically yielded C = 256 and γ = 0.5. Secu-
rity evaluation was performed as for the previous experiments
on spam filtering, considering cmax ∈ [0, 0.5], which amounts
to adding a maximum of 50 keywords to each malicious PDF.

Experimental results. In Fig. 4, we report the average value
(and standard deviation) of TP at 1% FP for the SVM with
the RBF kernel trained on feature subsets of 23, 46, 68 and
91 features (i.e., 20%, 40%, 60% and 80% of the total number
of features), selected by the traditional backward elimination

wrapping algorithm and by the corresponding WAFS imple-
mentation, under the PK and LK attack scenarios. Similar
observations to those reported for the spam filtering task can
be made here; in particular, WAFS outperformed traditional
feature selection in terms of TP values under attack, without
exhibiting a significant performance loss in the absence of
attack. Moreover, in the LK case, a higher number of added
keywords was required, as expected, to reach a comparable
detection rate to that reported for the PK attack scenario.

It is worth noting here that the variance of the TP rates re-
ported in Fig. 4 turned out to be significantly higher than in the
previous experiments. This fluctuation might be due to the use
of smaller training sets, and to the higher variability induced
by the use of a nonlinear decision boundary. Consequently,
only few cases were 95% statistically significant based on the
Student’s t-test in the PK scenario. In the LK scenario, as the
difference between the average values of the two methods was
larger, WAFS was 95% significantly better than the traditional
backward elimination algorithm in all cases for feature subsets
of 23, 46 and 68 features, except for cmax ∈ [0, 0.03].
Although some results were not 95% statistically significant
due to the high variability of our results, we can nevertheless
conclude that WAFS was able to outperform the traditional
backward elimination approach in most of the cases.

The classification accuracy in the absence of attack G(θ),
and the average minimum number of keywords added to a
malicious PDF to evade detection (i.e., S(θ) × 100) for the
SVM with the RBF kernel trained on features selected by
the traditional and the adversarial feature selection methods
are shown in Fig. 5. Similarly to the results reported in
the spam filtering example, the S(θ) values for WAFS are
significantly higher than those exhibited by the traditional
feature selection method in both the PK and the LK sce-
narios, although the SVM’s classification accuracy G(θ) is
not significantly affected. It should however be noted that the
additional computational complexity required to compute S(θ)
for a nonlinear classifier is higher than that required by a
linear classifier due to the intrinsic complexity of exploring
a nonlinear decision boundary. Finally, it is worth pointing
out that WAFS was able to improve classifier security in this
case by mainly selecting features that exhibited, on average,

10

higher values for the malicious class. In fact, due to the
constraint x ≤ x′, it becomes harder for an attacker to mimic
characteristic feature values of the legitimate class in this case,
yielding eventually a lower probability of evading detection.
This may be an interesting research direction to explore,
in order to devise surrogate measures of classifier security
suitable for implementing adversarial feature selection as a
more computationally efficient filter method.

VI. CONCLUSIONS AND FUTURE WORK

Feature selection may be considered a crucial step in
security-related applications, such as spam and malware de-
tection, when small subsets of features have to be selected to
reduce computational complexity, or to improve classification
performance by tackling the course of dimensionality [38],
[44]. However, since traditional feature selection methods
implicitly assume that training and test samples follow the
same underlying data distribution, their performance may be
significantly affected under adversarial attacks that violate
this assumption. Even worse, performing feature selection
in adversarial settings may allow an attacker to evade the
classifier at test time with a lower number of modifications to
the malicious samples [11], [16], [35], [36]. To our knowledge,
besides the above studies, the issue of selecting feature sets
suitable for adversarial settings has neither been experimen-
tally nor theoretically investigated more in depth.

In this paper, we proposed an adversarial feature selection
method that optimizes not only the generalization capability
of the wrapped classifier, but also its security against evasion
attacks at test time. To this end, we extended a previous defini-
tion of classifier security, which was suited to linear classifiers
trained on binary features, to the case of nonlinear classi-
fication algorithms trained on either continuous or discrete
feature spaces. We validated the soundness of our approach
on realistic application examples involving spam and PDF
malware detection. We showed that the proposed approach can
outperform traditional approaches in terms of classifier secu-
rity, without significantly affecting the classifier performance
in the absence of attacks. We also empirically showed that
the proposed measure of classifier security provides a better
characterization of this aspect than other previously-proposed
measures aimed at evaluating the security of linear classifiers.
However, our method demands for an increased computational
complexity, with respect to traditional wrapping algorithms,
as it requires simulating evasion attacks against the wrapped
classifier at each iteration of the feature selection process.
Although this may not be a critical aspect, as feature selection
is often carried out offline, making our approach more efficient
remains an open issue to be investigated in future work.

A possible solution to overcome this limitation, and exploit
our method in the context of more efficient feature selection
approaches like filter methods, may be to devise suitable
surrogate measures of classifier security that can reliably
approximate this value without simulating attacks against
the trained classifier. Investigating the connections between
security and stability of the feature selection process may be
one fruitful research direction to this end, as discussed in
Sect. II. A more concrete example is however given at the end

of Sect. V-B, based on the intuition of restricting the feasible
space of sample manipulations available to the attacker. In
practice, if the feature values of malicious samples can only be
incremented, an adversarial feature selection procedure should
prefer selecting features that exhibit lower values for samples
in the legitimate class, making thus harder for an attacker
to evade detection by mimicking such samples. This can be
easily encoded by a measure that does not require training
and attacking the corresponding classifier, and that can be thus
exploited in the context of filter-based feature selection.

Another interesting extension of this work is related to
the application of the proposed approach in the context of
more complex feature mappings, i.e., feature spaces in which
there is not a clear, direct relationship with the characteristics
of each sample, and therefore it is not trivial to understand
how to modify a malicious sample to find an optimal evasion
point, i.e., to exhibit the desired feature values. This is how-
ever an application-specific issue, known in the adversarial
machine learning literature as the inverse feature-mapping
problem [10], [11]. In practice, the problem arises from the
fact that optimal attacks are defined in feature space, and
thus finding the corresponding optimal real samples requires
reverse engineering the feature mapping. From a pragmatic
perspective, this can be overcome by first defining a suitable
set of manipulations that can be made to the real malicious
samples (e.g., many tools are available to obfuscate the content
of malware samples, by manipulating their code [17]), and
considering such manipulations as the only ones available to
the attacker to find evasion points. Although this may lead us
to find only suboptimal evasion points in feature space (as we
restrict the attacker to work on a potentially smaller feasible
set), we are guaranteed that the corresponding real samples
not only exist, but they are also easily determined.

To conclude, we believe that our work provides a first,
concrete attempt towards understanding the potential vulner-
abilities of feature selection methods in adversarial settings,
and towards developing more secure feature selection schemes
against adversarial attacks.

ACKNOWLEDGMENTS

The authors would like to thank Davide Maiorca for provid-
ing them the PDF malware dataset. This work was supported
in part by the National Natural Science Foundation of China
under Grant 61003171, Grant 61272201, and Grant 61003172,
and in part by Regione Autonoma della Sardegna under Grant
CRP-18293, L. R. 7/2007, Bando 2009.

REFERENCES

[1] B. Biggio, Z. Akhtar, G. Fumera, G. L. Marcialis, and F. Roli, “Security
evaluation of biometric authentication systems under real spoofing
attacks,” IET Biometrics, vol. 1, no. 1, pp. 11–24, 2012.

[2] R. N. Rodrigues, L. L. Ling, and V. Govindaraju, “Robustness of
multimodal biometric fusion methods against spoof attacks,” J. Vis.
Lang. Comput., vol. 20, no. 3, pp. 169–179, 2009.

[3] J. Newsome, B. Karp, and D. Song, “Paragraph: Thwarting signature
learning by training maliciously,” in RAID, ser. LNCS. Springer, 2006,
pp. 81–105.

[4] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage,
“Inferring internet denial-of-service activity,” ACM Trans. Comput. Syst.,
vol. 24, no. 2, pp. 115–139, 2006.

11

[5] D. Lowd and C. Meek, “Good word attacks on statistical spam filters,”
in 2nd Conf. on Email and Anti-Spam, CA, USA, 2005, pp. 87–94.

[6] B. Nelson, M. Barreno, F. Jack Chi, A. D. Joseph, B. I. P. Rubinstein,
U. Saini, C. Sutton, J. D. Tygar, and K. Xia, “Misleading learners: Co-
opting your spam filter,” in Mach. Learn. in Cyber Trust. Springer US,
2009, pp. 17–51.

[7] B. Biggio, I. Corona, B. Nelson, B. Rubinstein, D. Maiorca, G. Fumera,
G. Giacinto, and F. Roli, “Security evaluation of support vector machines
in adversarial environments,” in Supp. Vect. Mach. Apps.. Springer Int’l
Publishing, 2014, pp. 105–153.

[8] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma, “Adversarial
classification,” in 10th ACM SIGKDD Int’l Conf. on Knowl. Discovery
and Data Mining, 2004, pp. 99–108.

[9] B. Biggio, G. Fumera, and F. Roli, “Design of robust classifiers for
adversarial environments,” in IEEE Int’l Conf. on Syst., Man, and Cyb.,
2011, pp. 977–982.

[10] L. Huang, A. D. Joseph, B. Nelson, B. Rubinstein, and J. D. Tygar,
“Adversarial machine learning,” in 4th ACM Workshop on Artificial
Intell. and Security, 2011, pp. 43–57.

[11] B. Biggio, G. Fumera, and F. Roli, “Security evaluation of pattern
classifiers under attack,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 4,
pp. 984–996, 2014.

[12] M. Brückner, C. Kanzow, and T. Scheffer, “Static prediction games for
adversarial learning problems,” JMLR, vol. 13, pp. 2617–2654, 2012.

[13] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can
machine learning be secure?” in ASIACCS ’06: Proc. 2006 ACM Symp.
on Info., Comput. and Comm. Sec.. ACM, 2006, pp. 16–25.

[14] G. L. Wittel and S. F. Wu, “On attacking statistical spam filters,” in 1st
Conf. on Email and Anti-Spam, CA, USA, 2004.

[15] A. Kolcz and C. H. Teo, “Feature weighting for improved classifier
robustness,” in 6th Conf. on Email and Anti-Spam, CA, USA, 2009.

[16] B. Biggio, G. Fumera, and F. Roli, “Multiple classifier systems for robust
classifier design in adversarial environments,” Int’l J. Mach. Learn. Cyb.,
vol. 1, no. 1, pp. 27–41, 2010.

[17] D. Maiorca, I. Corona, and G. Giacinto, “Looking at the bag is not
enough to find the bomb: an evasion of structural methods for malicious
pdf files detection,” in Proc. 8th ACM SIGSAC Symp. on Info., Comp.
and Comm. Sec., ser. ASIACCS ’13. ACM, 2013, pp. 119–130.

[18] N. Šrndić and P. Laskov, “Detection of malicious pdf files based on
hierarchical document structure,” in Proc. 20th Annual Network &
Distributed Syst. Sec. Symp.. The Internet Society, 2013.

[19] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning at
test time,” in ECML PKDD, Part III, ser. LNCS, vol. 8190. Springer
Berlin Heidelberg, 2013, pp. 387–402.

[20] A. Globerson and S. T. Roweis, “Nightmare at test time: robust learning
by feature deletion,” in Proc. 23rd Int’l Conf. on Mach. Learn., W. W.
Cohen and A. Moore, Eds., vol. 148. ACM, 2006, pp. 353–360.

[21] B. Biggio, I. Pillai, S. R. Bulò, D. Ariu, M. Pelillo, and F. Roli, “Is data
clustering in adversarial settings secure?” in AISec’13: Proc. Artificial
Intell. and Sec. Workshop. ACM, 2013, pp. 87–98.

[22] B. Biggio, S. R. Bulò, I. Pillai, M. Mura, E. Z. Mequanint, M. Pelillo,
and F. Roli, “Poisoning complete-linkage hierarchical clustering,” in
Structural, Syntactic, and Statistical Patt. Rec., ser. LNCS, vol. 8621.
Springer, 2014, pp. 42–52.

[23] Z. Jorgensen, Y. Zhou, and M. Inge, “A multiple instance learning
strategy for combating good word attacks on spam filters,” JMLR, vol. 9,
pp. 1115–1146, 2008.

[24] H. Lee and A. Y. Ng, “Spam deobfuscation using a hidden Markov
model.” in Int’l Conf. Email and Anti-Spam, 2005.

[25] K. Wang, J. J. Parekh, and S. J. Stolfo, “Anagram: A content anomaly
detector resistant to mimicry attack.” in RAID’06, 2006, pp. 226–248.

[26] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h. Lau, S. Rao,
N. Taft, and J. D. Tygar, “Antidote: understanding and defending against
poisoning of anomaly detectors,” in 9th Internet Meas. Conf., ser. IMC
’09. ACM, 2009, pp. 1–14.

[27] M. Bishop, J. Cummins, S. Peisert, A. Singh, B. Bhumiratana, D. Agar-
wal, D. Frincke, and M. Hogarth, “Relationships and data sanitization: A
study in scarlet,” in W. New Sec. Paradigms. ACM, 2010, pp. 151–164.

[28] M. Kloft and P. Laskov, “Online anomaly detection under adversarial
impact,” in 13th Int’l Conf. on AI and Statistics, 2010, pp. 405–412.

[29] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in 29th Int’l Conf. Mach. Learn.. Omnipress, 2012,
pp. 1807–1814.

[30] C. H. Teo, A. Globerson, S. Roweis, and A. Smola, “Convex learning
with invariances,” in NIPS 20. Cambridge, MA: MIT Press, 2008, pp.
1489–1496.

[31] B. Biggio, G. Fumera, and F. Roli, “Multiple classifier systems under
attack,” in MCS, ser. LNCS, vol. 5997. Springer, 2010, pp. 74–83.

[32] G. F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D. Keromytis,
“Casting out demons: Sanitizing training data for anomaly sensors,” in
IEEE Symp. on Sec. and Privacy. IEEE CS, 2008, pp. 81–95.

[33] B. Biggio, I. Corona, G. Fumera, G. Giacinto, and F. Roli, “Bagging
classifiers for fighting poisoning attacks in adversarial environments,” in
MCS, ser. LNCS, vol. 6713. Springer, 2011, pp. 350–359.

[34] B. Biggio, G. Fumera, and F. Roli, “Evade hard multiple classifier
systems,” in Supervised and Unsupervised Ensemble Methods and
Their Applications, ser. Studies in Comp. Intell., Springer Berlin /
Heidelberg, 2009, vol. 245, pp. 15–38.

[35] B. Li and Y. Vorobeychik, “Feature cross-substitution in adversarial
classification,” in NIPS 27, Curran Associates, Inc., 2014, pp. 2087–
2095.

[36] F. Wang, W. Liu, and S. Chawla, “On sparse feature attacks in adversarial
learning,” in IEEE Int’l Conf. on Data Mining (ICDM). IEEE, 2014,
pp. 1013–1018.

[37] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines,” Mach. Learn.,
vol. 46, no. 1-3, pp. 389–422, 2002.

[38] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, “Conditional likelihood
maximisation: A unifying framework for information theoretic feature
selection,” JMLR, vol. 13, pp. 27–66, 2012.

[39] M. Barreno, B. Nelson, A. Joseph, and J. Tygar, “The security of
machine learning,” Mach. Learn., vol. 81, pp. 121–148, 2010.

[40] M. Kloft and P. Laskov, “A ’poisoning’ attack against online anomaly
detection,” in NIPS, 2007.

[41] D. Lowd and C. Meek, “Adversarial learning,” in KDD, , Chicago, IL.,
2005, pp. 641–647.

[42] B. Nelson, B. I. Rubinstein, L. Huang, A. D. Joseph, S. J. Lee,
S. Rao, and J. D. Tygar, “Query strategies for evading convex-inducing
classifiers,” JMLR, vol. 13, pp. 1293–1332, 2012.

[43] B. Biggio, G. Fumera, and F. Roli, “Multiple classifier systems for ad-
versarial classification tasks,” in MCS, ser. LNCS, vol. 5519. Springer,
2009, pp. 132–141.

[44] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” JMLR, vol. 3, pp. 1157–1182, 2003.

[45] M. Kolar and H. Liu, “Feature selection in high-dimensional classifica-
tion,” JMLR (ICML Track), vol. 28, pp. 329–337, 2013.

[46] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection
techniques in bioinformatics,” Bioinformatics, vol. 23, no. 19, pp. 2507–
2517, 2007.

[47] Q. Liu, A. H. Sung, M. Qiao, Z. Chen, and B. Ribeiro, “An improved
approach to steganalysis of JPEG images,” Info. Sciences, vol. 180, no. 9,
pp. 1643 – 1655, 2010.

[48] Q. Liu, A. H. Sung, Z. Chen, and J. Xu, “Feature mining and pat-
tern classification for steganalysis of LSB matching steganography in
grayscale images,” Pattern Recognition, vol. 41, pp. 56–66, 2008.

[49] W. Lee, W. Fan, M. Miller, S. J. Stolfo, and E. Zadok, “Toward cost-
sensitive modeling for intrusion detection and response,” J. Comput.
Sec., vol. 10, no. 1-2, pp. 5–22, 2002.

[50] M.-J. Tsai, C.-S. Wang, J. Liu, and J.-S. Yin, “Using decision fusion of
feature selection in digital forensics for camera source model identifi-
cation,” Comp. Standards & Interf., vol. 34, no. 3, pp. 292–304, 2012.

[51] S. M. Lee, D. S. Kim, J. H. Kim, and J. S. Park, “Spam detection
using feature selection and parameters optimization,” in Int’l Conf. on
Complex, Intell. and Software Intensive Syst., 2010, pp. 883–888.

[52] M. Dash and H. Liu, “Consistency-based search in feature selection,”
Artificial Intell., vol. 151, no. 1, pp. 155–176, 2003.

[53] D. Andrea and A. Nicholas, “Feature selection via probabilistic outputs,”
in 29th Int’l Conf. Mach. Learn., pp. 1791–1798, 2012

[54] P. Maji and P. Garai, “Fuzzy-rough simultaneous attribute selection and
feature extraction algorithm,” IEEE Trans. Cyb., vol. 43, no. 4, pp. 1166–
1177, 2013.

[55] R. Diao and Q. Shen, “Feature selection with harmony search,” Syst.,
Man, and Cyb., Part B: IEEE Trans. Cyb., vol. 42, no. 6, pp. 1509–1523,
2012.

[56] H. Peng, F. Long, and C. Ding, “Feature selection based on mu-
tual information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 27, no. 8, pp.
1226–1238, 2005.

[57] J.-B. Yang and C.-J. Ong, “An effective feature selection method via
mutual information estimation,” Syst., Man, and Cyb., Part B: IEEE
Trans. Cyb., vol. 42, no. 6, pp. 1550–1559, 2012.

[58] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artificial Intell., vol. 97, no. 1, pp. 273–324, 1997.

12

[59] J. Neumann, C. Schnörr, and G. Steidl, “Combined SVM-based feature
selection and classification,” Mach. Learn., vol. 61, no. 1-3, pp. 129–
150, 2005.

[60] J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping, “Use of the zero
norm with linear models and kernel methods,” J. of Mach. Learn. Res.,
vol. 3, pp. 1439–1461, 2003.

[61] H. A. Le Thi, X. T. Vo, and T. P. Dinh, “Robust feature selection for
SVMs under uncertain data,” in Advances in Data Mining, Apps, and
Theoretical Aspects. Springer, 2013, pp. 151–165.

[62] P. Huber, Robust Statistics, ser. Probability and Mathematical Statistics.
New York, NY, USA: John Wiley and Sons, 1981.

[63] R. A. Maronna, R. D. Martin, and V. J. Yohai, Robust Statistics: Theory
and Methods, ser. Probability and Mathematical Statistics. New York,
NY, USA: John Wiley and Sons, 2006.

[64] C. Croux, P. Filzmoser, and M. R. Oliveira, “Algorithms for projection -
pursuit robust principal component analysis,” Chemometrics and Intell.
Lab. Syst., vol. 87, no. 2, pp. 218–225, 2007.

[65] V. N. Vapnik, The nature of statistical learning theory. New York, NY,
USA: Springer-Verlag New York, Inc., 1995.

[66] C. D. Manning and H. Schütze, Foundations of statistical natural lang.
proc.. MIT Press, 1999, vol. 999.

[67] G. V. Cormack, “TREC 2007 spam track overview,” in TREC, E. M.
Voorhees and L. P. Buckland, Eds., vol. SP 500-274. NIST, 2007.

[68] F. Sebastiani, “Machine learning in automated text categorization,” ACM
Comput. Surv., vol. 34, no. 1, pp. 1–47, 2002.

Fei Zhang (S’11) received her B.S. degree in Infor-
mation and Computer Science from Minnan Normal
University, Zhangzhou, China, in 2009. Now she is
a Ph. D. student in South China University of Tech-
nology. Her current interested research is focused
on machine learning, computer security and spam
filtering. Miss Zhang is an IEEE student member.

Patrick P.K. Chan (M’04) received the Ph.D.
degree from Hong Kong Polytechnic University in
09. He is currently Associate Professor of School
of Computer Science and Engineering in South
China University of Technology, China. His cur-
rent research interests include pattern recognition,
adversarial learning, and multiple classifier systems.
Dr. Chan is a member of the governing boards of
IEEE SMC Society 14-16. He is also the Chairman
of IEEE SMCS Hong Kong Chapter 14-15 and the
counselor of IEEE Student Branch in South China

University of Technology.

Battista Biggio (M’07) received the M.Sc. degree
(Hons.) in electronic engineering and the Ph.D. de-
gree in electronic engineering and computer science
from the University of Cagliari, Italy, in 2006 and
2010. Since 2007, he has been with the Department
of Electrical and Electronic Engineering, University
of Cagliari, where he is currently a post-doctoral
researcher. In 2011, he visited the University of
Tbingen, Germany, and worked on the security of
machine learning to training data poisoning. His
research interests include secure machine learning,

multiple classifier systems, kernel methods, biometrics and computer security.
Dr. Biggio serves as a reviewer for several international conferences and
journals. He is a member of the IEEE and of the IAPR.

Daniel S. Yeung (F’04) received his Ph.D. from
Case Western Reserve University, USA. He was a
faculty at Rochester Institute of Technology from
74-80. In the next ten years he held industrial
and business positions in USA. In 89 he joined
City Polytechnic of Hong Kong as an Associate
Head/Principal Lecturer at the Department of Com-
puter Science. Then he served as the founding Head
and Chair Professor of the Department of Computing
at The Hong Kong Polytechnic University until his
retirement at 06. Currently he is a Visiting Professor

in the School of Computer Science and Engineering, South China University
of Technology. Dr. Yeung is a fellow of the IEEE and served as the President
of IEEE SMC Society in 08-09. His current research interests include neural-
network sensitivity analysis, large scale data retrieval problem and cyber
security.

Fabio Roli (F’12) received his Ph.D. in Electronic
Eng. from the Univ. of Genoa, Italy. He was a re-
search group member of the Univ. of Genoa (88-94).
He was adjunct professor at the University of Trento
(93-94). In 95, he joined the Dept. of Electrical
and Electronic Eng. of the Univ. of Cagliari, where
he is now professor of Computer Eng. and head
of the research laboratory on pattern recognition
and applications. His research activity is focused on
the design of pattern recognition systems and their
applications. He was a very active organizer of int’l

conferences and workshops, and established the popular workshop series on
multiple classifier systems. Dr. Roli is Fellow of the IEEE and of the Int’l
Association for Pattern Recognition.

	I Introduction
	II Background
	II-A Adversarial Attacks and Classifier Security to Evasion
	II-B Feature Selection, Robustness, and Stability

	III Adversarial Feature Selection
	III-A Wrapper-based Adversarial Feature Selection (WAFS)
	III-B Evaluating Classifier Security to Evasion
	III-B1 Gradients
	III-B2 Descent in discrete spaces

	IV Security Evaluation
	V Application Examples
	V-A Spam Filtering
	V-B Malware Detection in PDF Files

	VI Conclusions and Future Work
	References
	Biographies
	Fei Zhang (S'11)
	Patrick P.K. Chan (M'04)
	Battista Biggio (M'07)
	Daniel S. Yeung (F'04)
	Fabio Roli (F'12)

