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Manifold Partition Discriminant Analysis
Yang Zhou and Shiliang Sun

Abstract—We propose a novel algorithm for supervised dimensionality reduction named Manifold Partition Discriminant Analysis

(MPDA). It aims to find a linear embedding space where the within-class similarity is achieved along the direction that is consistent with

the local variation of the data manifold, while nearby data belonging to different classes are well separated. By partitioning the data

manifold into a number of linear subspaces and utilizing the first-order Taylor expansion, MPDA explicitly parameterizes the connections

of tangent spaces and represents the data manifold in a piecewise manner. While graph Laplacian methods capture only the pairwise

interaction between data points, our method capture both pairwise and higher order interactions (using regional consistency) between

data points. This manifold representation can help to improve the measure of within-class similarity, which further leads to improved

performance of dimensionality reduction. Experimental results on multiple real-world data sets demonstrate the effectiveness of the

proposed method.

Index Terms—Discriminant Analysis, Supervised Learning, Manifold Learning, Tangent Space

✦

1 INTRODUCTION

Linear Discriminant Analysis (LDA) is a classical su-
pervised dimensionality reduction method. It aims to
find an optimal low-dimensional projection along which
data points from different classes are far away from
each other, while those belonging to the same class are
as close as possible. In the resultant low-dimensional
space, the performance of classifiers could be improved.
Because of this, LDA is especially useful for classification
tasks. Due to its effectiveness, LDA is widely employed
in different applications such as face recognition and
information retrieval [1], [2], [3], [4]. However, when the
input data are multimodal or mainly characterized by
their variances, LDA cannot perform very well. This is
caused by the assumption implicitly adopted by LDA
that data points belonging to each class are generated
from multivariate Gaussian distributions with the same
covariance matrix but different means. If data are formed
by several separate clusters or lie on a manifold, this
assumption is violated, and thus LDA obtains undesired
results.

To solve this problem, some extensions of LDA have
been proposed, which resort to discovering local data
structures. Marginal Fisher Analysis (MFA) [5] aims
to gather the nearby examples of the same class, and
separate the marginal examples belonging to different
classes. Locality Sensitive Discriminant Analysis (LSDA)
[6] maps data points into a subspace where the examples
with the same label at each local area are close, while the
nearby examples from different classes are apart from
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each other. Local Fisher Discriminant Analysis (LFDA)
[7] also focuses on discovering local data structures. It
can be viewed as performing LDA on the local area
around each data point. LFDA is a very effective al-
gorithm and has many applications. Recently, LFDA
(combined with PCA) was applied to the pedestrian re-
identification problem and achieved the state-of-the-art
performance [8]. Despite of different names and motiva-
tions, these methods, in fact, fall into the same graph
Laplacian based framework. All of them employ the
Laplacian matrix on specific graphs to characterize data
structures locally, and share the same idea that if nearby
examples xi, xj have the same class label y, they should
be projected as close as possible, otherwise, they should
be well separated. By exploiting the local structures
around each data point, they are able to process the data
on which LDA cannot achieve reasonable results. As
widely recognized, graphs are often used as a proxy for
the manifold. Therefore, these methods, to some extent,
can be viewed as the combinations of manifold learning
and LDA.

Although the above methods overcome the drawback
of LDA, they rely on the graph Laplacian to capture
the manifold structure, where only pairwise differences
are considered whereas regional consistency is ignored.
The regional consistency can be characterized by tangent
spaces of the data manifold, which could be very useful
to enhance the performance of discriminant analysis
in some situations [9] [10]. Moreover, the definition of
closeness of these graph Laplacian based methods is
rather vague. Along which direction can we decide if
the closeness of the mapped data points is achieved? We
advocate that in order to preserve the manifold structure
as much as possible, the closeness of the embeddings
should be achieved along the direction that is consistent
with the local variation of the data manifold.

During recent years, tangent space based methods
have received considerable interest in the area of man-
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ifold learning [10], [11], [12], [13]. They utilize tangent
spaces to estimate and extract the topological and ge-
ometrical structure of the underlying manifold. Local
Tangent Space Alignment (LTSA) [11] constructs tangent
spaces at each data point and then aligns them to obtain
a global coordinate through minimizing the reconstruc-
tion error. Similar to LTSA, Manifold Charting [12] tries
to unfold the manifold by aligning local charts. Tangent
Space Intrinsic Manifold Regularization (TSIMR) [10]
estimates a local linear function on the manifold which
has constant manifold derivatives. Parallel Vector Field
Embedding (PFE) [13] represents a function along the
manifold from the perspective of vector fields and re-
quires the vector field at each data point to be as parallel
as possible. Due to exploiting the regional consistency
reflected by tangent spaces, these tangent space based
methods work well for representing the manifold struc-
ture. However, because of their unsupervised nature,
they have no ability to capture the discriminative infor-
mation from class labels, and thus are not optimal for
supervised dimensionality reduction. Then how should
we utilize the regional consistency of tangent spaces to
improve the performance of supervised dimensionality
reduction?

Besides the methods mentioned above, there are many
other works that have been done in the field of dimen-
sionality reduction. Supervised Local Subspace Learn-
ing (SL2) [14] learns a mixture of local tangent spaces
that are robust to under-sampled regions for continuous
head pose estimation, so that it can avoid overfitting
and be robust to noise. Linear Spherical Discriminant
Analysis (LSDA) [15] performs discriminant analysis
based on the cosine distance metric to improve speaker
clustering performance. By building a sparse projection
matrix for dimension reduction, Double Shrinking Al-
gorithm (DSA) [16] compresses image data on both di-
mensionality and cardinality to obtain better embedding
or classification performance. Least-Squares Dimension
Reduction (LSDR) [17] adopts a squared-loss variant of
mutual information as a dependency measure to perform
sufficient dimensionality reduction. Wang et al. proposed
an exponential framework for dimensionality reduction
[18]. By using matrix exponential to measure data sim-
ilarity, this framework emphasizes small distance pairs,
and can avoid the small sample size problem. Although
all of these methods have their own merits, none of them
solves the above mentioned two problems.

In this paper, we propose a novel supervised di-
mensionality reduction method called Manifold Partition
Discriminant Analysis (MPDA), which solves the above
two problems. In MPDA, pairwise differences and piece-
wise regional consistency are considered simultaneously,
so that the manifold structure can be well preserved.
MPDA aims to find a linear embedding space where
the within-class similarity is achieved along the direction
that is consistent with the local variation of the data man-
ifold, while nearby data belonging to different classes
are well separated. Compared with existing methods,

MPDA has several desirable properties that should be
highlighted:

• MPDA partitions the data manifold into a number
of non-overlapping linear subspaces and discovers
regional manifold structures in a piecewise manner.

• With the partitioned manifold, MPDA is able to
construct tangent spaces with varied numbers of di-
mensions. This provides MPDA with more flexibil-
ity to handle non-uniformly distributed or complex
data.

• By using the first-order Taylor expansion, MPDA
establishes a manifold representation which is char-
acterized by both the pairwise differences and piece-
wise regional consistency of the underlying mani-
fold.

• Thanks to the proposed manifold representation,
MPDA improves the measure of within-class sim-
ilarity, and is able to obtain a projection that is
consistent with the local variation of the underlying
manifold.

The rest of this paper is organized as follows. In
Section 2, we briefly introduce the graph Laplacian based
framework, under which many supervised dimensional-
ity reduction methods can be considered within the same
category. Then the Manifold Partition Discriminant Anal-
ysis (MPDA) algorithm is presented in Section 3. Sec-
tion 4 discusses the connection and difference between
MPDA and related works. In Section 5, MPDA is tested
on multiple real-world data sets compared with existing
supervised dimensionality reduction algorithms. Finally,
we give concluding remarks in Section 6.

2 GRAPH LAPLACIAN BASED FRAMEWORK

FOR DISCRIMINANT ANALYSIS

Representing data on a specific graph is a popular way to
characterize the relationships among data points. Given
an undirected weighted G = {X,W} with a vertex set
X and a symmetric weight matrix W ∈ R

n×n, these
relationships can be easily characterized by G, where
each example serves as a vertex of G, and W records the
weight on the edge of each pair of vertices. Generally, if
two examples xi and xj are “close”, the corresponding
weight Wij is large, whereas if they are “far away”,
then the Wij is small. Provided a certain W , the intrinsic
geometry of graph G can be represented by the Laplacian
matrix [19], which is defined as

L = D −W, (1)

where D is a diagonal matrix with the i-th diagonal
element being Dii =

∑

j 6=i Wij . The Laplacian matrix
is capable of representing certain geometry of data ac-
cording to a specific weight matrix. This property is
very helpful for developing dimensionality reduction
methods.

Let X be a data set consisting of n examples and labels,
{(xi, yi)}ni=1

, where xi ∈ R
d denotes a d-dimensional
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example, yi ∈ {1, 2, . . . , C} denotes the class label cor-
responding to xi, and C is the total number of classes.
Classical LDA aims to find an optimal linear projection t

along which the between-class scatter is maximized and
the within-class scatter is minimized [20]. The objective
function of LDA can be written as:

t∗ = argmax
t

t⊤Sbt

t⊤Swt
, (2)

where ⊤ denotes the transpose of a matrix or a vector, Sb

and Sw denote the between-class and within-class scatter
matrices, respectively. The definitions of Sb and Sw are
given as follows:

Sb =
C
∑

c=1

nc(µc − µ)(µc − µ)⊤, (3)

Sw =

C
∑

c=1

∑

{i|yi=c}

(xi − µc)(xi − µc)
⊤, (4)

where nc is the number of data from the c-th class,
µ = 1

n

∑n

i=1
xi is the mean of all the data points, and

µc = 1

nc

∑

{i|yi=c} xi is the mean of the data from class
c. Apart from the above formulations, Sb and Sw can also
be formulated via the graph Laplacian [7]:

Sb =
∑

ij

W b
ij‖xi − xj‖

2 = 2XLbX⊤, (5)

Sw =
∑

ij

Ww
ij ‖xi − xj‖

2 = 2XLwX⊤, (6)

where Lw and Lb are the Laplacian matrices constructed
by the weight matrices Ww and W b with

W b
ij =

{

(1/n− 1/nc) if yi = yj = c

1/n if yi 6= yj ,

Ww
ij =

{

1/nc if yi = yj = c

0 if yi 6= yj .

The objective function (2) can be converted to a gener-
alized eigenvalue problem:

XLwX⊤t = λXLbX⊤t (7)

whose solution can be easily given by the eigenvector
with respect to the largest eigenvalue. From the above
formulations, it is clear that the graph Laplacian plays
a key role in deriving LDA, where the weight matrices
W b and Ww measure the similarity of each pair of data
points, and their characteristics varies as the criterion of
similarity changes. This provides a general and flexible
framework to develop new dimensionality reduction
algorithms by constructing appropriate Laplacian matri-
ces.

In order to improve the performance of LDA, many
local structure based extensions of LDA have been pro-
posed in the recent decades. Representative methods
include Marginal Fisher Analysis (MFA) [5], Locality
Sensitive Discriminant Analysis (LSDA) [6], Local Fisher

Discriminant Analysis (LFDA) [7], etc. Unlike traditional
LDA, they compute the between-class and within-class
scatter based on local data structures rather than the
global mean values. Although these methods improve
the performance of discriminant analysis by solving the
problem caused by the improper assumption adopted by
LDA, none of them extends beyond the graph Laplacian
based framework. Their differences merely lie in the
different ways of constructing the Laplacian matrices Lb

and Lw.
In spite of its effectiveness, the graph Laplacian based

framework still has several limitations. The between-
class and within-class scatter are computed by only
aggregating all pairwise differences between data points
across the entire graph, whereas the regional consistency,
which is reflected by the regional structure around a local
area of the underlying manifold, is ignored. Moreover,
by minimizing the aggregation of within-class data pairs
(6), the objective function (2) tends to find a direction
along which some “averaged” within-class similarity is
achieved. However, it is unclear that how the “averaged”
similarity can precisely reflect the topological and geo-
metrical structure of the underlying manifold.

3 MANIFOLD PARTITION DISCRIMINANT

ANALYSIS

In this section, we propose a novel supervised dimen-
sionality reduction algorithm named Manifold Partition
Discriminant Analysis (MPDA). Unlike previous meth-
ods that mainly rely on the graph Laplacian [5], [6], [7],
MPDA exploits both pairwise differences and piecewise
regional consistency to preserve the manifold structure.
It aims to find a linear embedding space where the
within-class similarity is achieved along the direction
that is consistent with the local variation of the data man-
ifold, while nearby data belonging to different classes
are well separated. To this end, we first need to extract
the piecewise consistency from the data manifold, which
can be achieved by partitioning the data manifold into
non-overlapping pieces, and estimating tangent spaces
for each piece. Then we can represent the data manifold
by combining pairwise differences with piecewise con-
sistency. The resultant manifold representation is able to
characterize the local variation of the data manifold, and
improve the measure of within-class similarity, which
eventually leads to the MPDA algorithm. Specifically, we
mainly solve the following problems:

P1 How to partition the data manifold into a number
of non-overlapping pieces, and estimate an accurate
tangent space?

P2 How to combine pairwise differences with piece-
wise regional consistency in representing the data
manifold?

P3 How to find a linear subspace where the within-
class similarity is achieved along the direction that
is consistent with the local variation of the data
manifold?
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Next, we first solve P2 and P3 in Section 3.1 and 3.2,
respectively, and defer the treatment of P1 to Section 3.3.

3.1 Manifold Representation

In order to combine pairwise differences with piecewise
regional consistency in representing the data manifold,
we are interested in estimating a function f defined
on an m-dimensional smooth manifold M, where M is
embedded in R

d. This function f can serve as a direct
connection between the data representation in d and m-
dimensional spaces. For simplicity, we first consider to
represent data in a one-dimensional Euclidean space R.
Define f : R

d → R as a function along the manifold
M. Let Tx0

M be the tangent space of x0 on M, where
x0 ∈ R

d is a single point on the manifold M. Accord-
ing to the first-order Taylor expansion at x0, f can be
expressed as follows [10], [13], [21]:

f(x) = f(x0) + v⊤
x0
ux0

(x) +O(‖x− x0‖
2
),

where ux0
(x) = T⊤

x0
(x− x0) is an m-dimensional vector

which gives a representation of x in the tangent space
Tx0
M. Tx0

∈ R
d×m is a matrix formed by the or-

thonormal bases of Tx0
M, and characterizes the regional

consistency of the manifold structure around x0. Gener-
ally, Tx0

can be estimated by performing PCA on the
neighborhood of x0 [11], [22]. vx0

is an m-dimensional
tangent vector and represents the manifold derivative of
f at x0 with respect to ux0

(x), which reflects the local
variation of the manifold at x0.

Given two nearby data points z and z′ lying on the
manifoldM, we can use the first-order Taylor expansion
at z′ to express f(z) as follows:

f(z) = f(z′) + v⊤
z′T⊤

z′(z − z′) +O(‖z − z′‖
2
). (8)

If M is smooth enough, the second-order derivatives of
f tend to vanish. Furthermore, when z and z′ are close
to each other, ‖z − z′‖2 becomes very small. Therefore,
the remainder in (8) can be omitted, which leads to:

f(z) ≈ f(z′) + v⊤
z′T⊤

z′(z − z′). (9)

With the above results, it is clear that for any nearby
data points z and z′ lying on the manifold M, the low-
dimensional embeddings f(z) and f(z′) should satisfy
(9), and the difference between both sides of (9) should
be as small as possible. This can serve as a good criterion
to preserve the manifold structure, which establishes the
connection between each pair of nearby data points.

Assume that the data manifold can be well approx-
imated by the union of a number of non-overlapping
linear subspaces. In this case, each linear subspace can
serve as a tangent space, and each tangent space has
a tangent vector. With the partitioned manifold, we are
able to construct tangent spaces and tangent vectors for
each linear subspace rather than each data point. If z′

lies in a tangent space TpM with a tangent vector vp, (9)
becomes:

f(z) ≈ f(z′) + v⊤
p T

⊤
p (z − z′), (10)

Fig. 1. Conceptual illustration of the manifold partition
strategy.

where Tp is estimated by performing PCA on the data
falling into TpM. This can be justified by the fact that
the manifold derivative of a linear subspace is a con-
stant function. This means that for the data falling into
the same linear subspace, their corresponding tangent
vectors are equal, and can be represented by only one
tangent vector vp. It is worth noting that since PCA
entails mean subtraction, each tangent space estimated
by PCA will have a separate mean. This seems to
cause the discrepancy of tangent spaces. However, this
discrepancy is not a problem in our case. Once the
orthonormal basis Tp has been estimated, the effect of
mean subtraction is just to center data to the origin of
the corresponding subspace. Notice that only the data
falling into TpM or those around TpM are involved in
the projection of Tp. These data points implicitly reflect
the mean of the corresponding subspace. Therefore, we
can directly use the orthonormal basis Tp to compute the
projection without mean subtraction. Figure 1 illustrates
the concept of the above strategy (we call it the manifold
partition). Intuitively, after partitioning the manifold,
M is approximated by the union of the linear sub-
spaces, where each linear subspace serves as a tangent
space. Therefore, (10) combines pairwise differences with
piecewise regional consistency in representing the data
manifold.

3.2 The MPDA Algorithm

Based on the above results, we propose our MPDA algo-
rithm. Consider a data set X = {(xi, yi)}ni=1

belonging to
C classes where xi ∈ R

d and yi ∈ {1, 2, . . . , C} is the class
label associated with the data point xi. Generally, we
assume that data in different classes are generated from
different manifolds. Provided that X = {x1, . . . ,xn} =
⋃P

p=1
Xp has been partitioned into P patches, where

data of each patch have the same class label, and we
have obtained the orthonormal basis matrices {Tp}Pp=1

of
tangent spaces for each data patch. Our goal is to find
an embedding space where the within-class similarity is
achieved along the direction that is consistent with the
local variation of the data manifold, while nearby data
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belonging to different classes are well separated.

In order to gather within-class data based on the
manifold structure, we first construct the within-class
graph G = {X,W} to represent the geometry of the data
manifold. If xi is among the k-nearest neighbors of xj

with yi = yj , an edge connecting xi to xj is added with
the weight Wij = Wji = 1. If there is no edge connecting
xi to xj , Wij = 0. With the results in Section 3.1, for each
pair of nearby within-class data points, we can obtain:

f(xi) ≈ f(xj) + v⊤
πj
T⊤
πj
(xi − xj), (11)

f(xj) ≈ f(xi) + v⊤
πi
T⊤
πi
(xj − xi). (12)

We require the difference between both sides of (11) to
be as small as possible. In the scenario of linear dimen-
sionality reduction, f(x) represents a one-dimensional
embedding of x, and we aim to find a linear projection.
To this end, f(x) is further approximated as a linear
function f(x) = t⊤x where t ∈ R

d is a linear projection
vector. Then, if nearby data points xi,xj belong to the
same class, we can measure their similarity as follows:

(

f(xi)− f(xj)− v⊤
πj
T⊤
πj
(xi − xj)

)2

=
(

t⊤(xi − xj)− v⊤
πj
T⊤
πj
(xi − xj)

)2

, (13)

where πi ∈ {1, . . . , P} is an index indicating the patch xi

belongs to. Moreover, we also need to measure the sim-
ilarity between nearby tangent spaces. By substituting
(11) into (12), we have:

(Tπj
vπj
− Tπi

vπi
)⊤(xi − xj) ≈ 0.

From the above equation, we know that the two vec-
tors are approximately perpendicular or the row vector
(Tπj

vπj
−Tπi

vπi
)⊤ approximately equals to a zero vector.

However, the perpendicular case can not be satisfied
for every pair of nearby data points on the manifold.
For instance, consider there are three nearby data points
on the manifold. Each pair of them should satisfy the
above equation, while only two of them are, in general,
justified in the perpendicular case. On the other side,
the case of zero row vectors can be justified for all the
data pairs, and leads to Tπj

vπj
≈ Tπi

vπi
. Finally, by

multiplying both sides of this equation with T⊤
πi

and
using T⊤

πi
Tπi

= I , it follows that:

vπi
≈ T⊤

πi
Tπj

vπj
. (14)

It is clear that for each pair of nearby tangent spaces the
difference between both sides of (14) should be as small
as possible. Therefore, the similarity between nearby
tangent spaces can be measured as follows:

‖vπi
− T⊤

πi
Tπj

vπj
‖2
2
. (15)

With the above results, the data manifold with respect
to each class can be estimated by relating data with a
discrete weight Wij , which leads to an objective function

as follows:

min
t,v

n
∑

i,j

Wij

[

(

t⊤(xi − xj)− v⊤
πj
T⊤
πj
(xi − xj)

)2

+ γ‖vπi
− T⊤

πi
Tπj

vπj
‖2
2

]

,

(16)

where γ is a trade-off parameter controlling the influence
between (13) and (15). It is clear that if xi and xj

belong to the same class and fall into the same tangent
space, their similarity only depends on their pairwise
difference. If xi and xj belong to the same class but
lie in different tangent spaces, apart from the pairwise
difference, their similarity also depends on the angle
between vπj

and T⊤
πj
(xi −xj), which means that xi and

xj can be viewed as similar data points when vπj
and

T⊤
πj
(xi − xj) have similar directions. Since vπj

reflects
the varying direction of the data manifold around xj ,
by optimizing (16), we can deem that the within-class
similarity is achieved along the direction that is consis-
tent with the local variation of the data manifold.

It is worth noting that the above derivation is based
on the first-order Taylor expansion of the function f . If
we employ the zero-order Taylor expansion, the terms
related to vπi

(i = 1, . . . , n) vanish. Then the objective
function is simplified as follows:

min
t

n
∑

i,j

Wij

(

t⊤xi − t⊤xj

)2

= min
t

2t⊤XLX⊤t,

where L = D − W is the Laplacian matrix and D is
a diagonal matrix with the i-th diagonal element being
Dii =

∑

j 6=i Wij . This formulation is identical to the
graph Laplacian based within-class scatter (6). From the
aspect of manifold approximations, this means that in
theory the proposed method is able to approximate
the underlying manifold with a smaller approximation
error O(||xi − xj ||2) than the graph Laplacian whose
approximation error is O(||xi − xj ||). Compared with
(16), the graph Laplacian based scatter fails to consider
the regional consistency that is explicitly parameterized
by the proposed manifold representation. Although it
can implicitly reflect regional relationships by mini-
mizing the distance between each pair of nearby data
points, the graph Laplacian has no ability to capture
the regional consistency which is determined by all the
nearby data around a given data point. On the other
hand, the proposed manifold representation is capable
of preserving both the pairwise geometry and the piece-
wise regional consistency, and thus can capture more
structural information from the data manifold than the
graph Laplacian. In other word, (16) better measures the
within-class similarity than the graph Laplacian based
scatter (6), because it can extract the regional consistency
of each tangent space, and explicitly establishes the
connections among tangent spaces by estimating tangent
vectors {vp}Pp=1

.
Notice that although we assume that the data manifold

can be approximated by a union of piece-wise subspaces,
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it does not mean that the proposed manifold repre-
sentation is inferior to the graph Laplacian. To verify
this, we can split the within-class objective function (16)
into two parts. The first part includes the terms related
to v, and the second part has the other terms. The
piece-wise manifold assumption only affects the first
part, while the second part is still based on the generic
manifold assumption. In fact, the second part of (16)
is just identical to the graph Laplacian based within-
class scatter. This implies that the proposed manifold
representation is at least as good as, if not better than,
the graph Laplacian, as each tangent vector vπi

can be a
zero vector.

To separate data in different classes, we construct a
between-class graph G′ = {X,W ′}. If yi 6= yj , we add
an edge between xi and xj with the weight W ′

ij = 1/n.
If yi = yj , the corresponding weight is set to be W ′

ij =
Aij(1/n−1/nc). nc is the number of data points from the
c-th class, and Aij is a weight that indicates the similarity
between xi and xj , whose definition is given as follows:

Aij =

{

exp(− ‖xi−xj‖
2

σiσj
) if i ∈ Nk(j) or j ∈ Nk(i)

0 else,

where Nk(i) denotes the k-nearest neighbor set of xi,
and σi is heuristically set to be the distance between xi

and its k-th nearest neighbor. Then we can formulate the
following objective function to separate nearby between-
class data points:

max
t

n
∑

i,j

W ′
ij(t

⊤xi − t⊤xj)
2. (17)

The methods for constructing G′ have been well studied
in the literature [5], [6]. Here, we employed the one in
[7] because of its effectiveness in enhancing the between-
class separability.

It is easy to see that (16) can be reformulated as a
canonical matrix quadratic as ( t⊤ v⊤ )S( t⊤ v⊤ )⊤

where S is a (d + mP ) × (d + mP ) positive semi-
definite matrix and v = (v⊤

1
,v⊤

2
, . . . ,v⊤

P )
⊤. Due to

the space limitation, the detailed derivation of S is
provided in the supplementary material, which is a
modification of the derivation of a similar quantity
used in [10]. By simple algebra formulations, (17) can

also be reduced to

(

t

v

)⊤(

2XL′X⊤
0

0 0

)(

t

v

)

=

( t⊤ v⊤ )S′( t⊤ v⊤ )⊤, where L′ is the Laplacian
matrix constructed by W ′. In order to preserve the man-
ifold structure while separating nearby between-class
data points, we can optimize the objective functions (16)
and (17) simultaneously, which leads to the following
objective function:

argmax
f

f⊤S′f

f⊤(S + αI)f
, (18)

where we have defined f = (t⊤,v⊤)⊤, and the Tikhonov
regularizer with a trade-off parameter α has been em-
ployed to avoid the numerical singularity of S.

Algorithm 1 MPDA

Input:
Labeled data {xi|xi ∈ R

d},
Class labels {yi|yi ∈ {1, 2, . . . , C}}

n
i=1

;
Dimensionality of embedding space m (1 ≤ m ≤ d);

Trade-off parameters γ (γ > 0).
Output:

d× r transformation matrix T .

Apply certain method to partition the data in each
class into a total of P patches {Xp}Pp=1

;
for p = 1 to P do

Construct Tp by performing PCA on Xp;
end for
Construct the within-class graph G and the between-
class graph G′;
Compute the eigenvectors f1,f2, . . . ,fm of (19) with
respect to the top m eigenvalues;
T = (t1, t2, . . . , tm).

The optimization of (18) is achieved by solving a
generalized eigenvalue problem:

S′f = λ(S + αI)f (19)

whose solution is the eigenvector f∗ = (t∗⊤,v∗⊤)⊤ with
respect to the largest eigenvalue. Then we can use the
first part of f∗ to obtain a one-dimensional embedding of
any x ∈ R

d by computing b = t∗⊤x. If we want to project
x into an m-dimensional subspace, we can just compute
m eigenvectors f1, . . . ,fm corresponding to the m largest
eigenvalues of (19). Then the m-dimensional embedding
b of x is computed as b = T⊤x, where T = (t1, . . . , tm).
Algorithm 1 gives the pseudo-code for MPDA.

3.3 Partitioning the Manifold

In this section, we propose a manifold partition algo-
rithm to solve the last problem (P1). Since tangent spaces
are linear subspaces in essence, the better the data man-
ifold can be linearly approximated by the partitioned
pieces, the more accurately the resultant tangent spaces
can reflect the regional consistency of the underlying
manifold. In order to estimate tangent spaces which
approximately lie on the manifold surface, we first need
to introduce a criterion to measure the linearity of sub-
spaces.

Given a data set X as well as its pairwise Euclidean
distance matrix DE and geodesic distance matrix DG

(approximated by the shortest path algorithms such as
Dijkstra’s algorithm), we can measure the degree of lin-
earity between two data points xi and xj by computing
the ratio Rij = DG

ij/D
E
ij , which is also referred to as the

tortuosity [23]. DE
ij is the Euclidean distance between xi

and xj , and DG
ij is their geodesic distance. It is clear that

DG
ij is never smaller than DE

ij . If DG
ij ≈ DE

ij , then Rij ≈ 1
and we can deem that xi and xj lie on a straight line.
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When it comes to a data patch Xp, we can measure its
linearity as follows:

Rp =
1

N2
p

∑

xi∈Xp

∑

xj∈Xp

Rij , (20)

where Np denotes the number of data in Xp. It is clear
that the smaller Rp is, the better the data in Xp fit a
linear subspace.

With the above measure of linearity, we can partition
the manifold by hierarchical clustering [24]. There are
mainly two branches of hierarchical clustering depend-
ing on their search strategies. In this paper, we use the
top-down hierarchical divisive clustering rather than the
bottom-up hierarchical agglomerative clustering because
of two reasons. For one thing, if we need to partition the
data set into P patches, as P is usually much smaller
than the number of data points, top-down methods are
more efficient than bottom-up ones. For another, top-
down methods tend to construct patches with the same
or similar sizes. As a result, the tangent spaces estimated
by these patches tend to have similar dimensionalities,
which fits the manifold assumption better. Specifically,
given a data set X = {x1, . . . ,xN}, our top-down
partition algorithm aims to partition X into a number
of patches (subsets) until there is no patch (subset)
containing more than M data points, which consists of
the following steps:

1) Initialize P = 1, X = {Xp}Pp=1
= {X1} =

{x1, . . . ,xN1
}, where N1 = N . Compute the Eu-

clidean distance matrix DE , the geodesic distance
matrix DG (approximated by the shortest path
algorithms such as Dijkstra’s algorithm), and the
patch linearity R1 according to (20).

2) From {Xp}Pp=1
, select the patch Xp (p ∈ 1, . . . , P )

having the highest value of Rp · Np. From Xp,
select two data points xl and xr having the largest
geodesic distance DG

lr. Create two new patches
Xp

l = {xl} and Xp
r = {xr}. Update Xp ← Xp \

{xl,xr}.
3) Construct the k′-nearest neighbor sets of Xp

l and
Xp

r denoted by N p
l and N p

r , respectively. Construct
the joint neighbor set N p

joint = N p
l ∩ N

p
r . Update

N p
l ← N

p
l \ N

p
joint, N

p
r ← N

p
r \ N

p
joint.

4) Update Xp
l ← Xp

l ∪(N
p
l ∩X

p), Xp ← Xp\ (N p
l ∩X

p),
Xp

r ← Xp
r ∪ (N p

r ∩Xp), Xp ← Xp \ (N p
r ∩Xp).

5) Compute the patch linearity Rp
l and Rp

r for Xp
l and

Xp
r , respectively. Let Nl and Nr be the number of

data in Xp
l and Xp

r . If Rp
l · Nl > Rp

r · Nr, update
Xp

r ← Xp
r ∪ N

p
joint, or update Xp

l ← Xp
l ∪ N

p
joint

otherwise. Repeat steps 3) ∼ 5) until Xp = ∅.
6) Xp has been partitioned into Xp

l and Xp
r . Update

P ← P + 1, Xp ← Xp
l , XP ← Xp

r . Go to step 2),
until there is no patch having Np > M , where M
is the maximum patch size.

Generally, in order to obtain the patch in which data
lie in a linear subspace, we should divide the patch
with the largest Rp in each turn of partition. In our

algorithm, we combine the patch linearity Rp and its
size Np together to select the patch that should be further
divided, because the scope of subspaces should be small
enough so that the Taylor expansion in (11) and (12) can
be justified. Two parameters in the proposed partition
algorithm should be determined, i.e., the neighborhood
size k′ and the maximum patch size M . It is worth
noting that to estimate tangent spaces accurately, each
patch should satisfy two competing requirements. On
the one hand, we should keep sufficient data in each
patch so that the tangent space can be well estimated.
On the other hand, the patch should be small enough
to preserve the local manifold structure. Therefore, we
use M rather than the number of subspaces P as the
threshold to control the termination of the algorithm.

Besides extracting the piecewise regional consistency,
partitioning the manifold can provide additional ben-
efits. It is clear that an accurate estimation of tangent
spaces is crucial for tangent space based methods. Usu-
ally, tangent spaces are estimated by performing PCA on
the k-nearest neighbors of each data point. This approach
fixes the neighborhood size, which may fail to estimate
the correct tangent spaces when data are sampled non-
uniformly or the manifold has a varying curvature. In
contrast, the proposed MPDA method is more likely to
get a robust estimation, because PCA is performed on
the data in each linear subspace where data naturally lie
on the manifold surface. Figure 2 shows an example that
performing PCA on the fixed-sized neighborhood fails to
capture the correct tangent space. As can be seen, TpM
and Tp′M reflect the correct manifold structure, whereas
TzM computed by z and its two-nearest neighbors
is incorrect. In addition, real data are often complex
whose underlying manifold dimensionality could vary
at different regions. Therefore, it would be better to
adjust the manifold dimensionality for different parts
of the manifold instead of setting a fixed one. As the
number of data varies in each linear subspace, MPDA
adaptively determines the number of dimensions of each
linear subspace by simply employing PCA to preserve
certain percentages of energy, say 95%. This provides
MPDA with more flexibility to handle complex data in
practice.

3.4 Pairwise-variate MPDA

For now, we have presented the MPDA algorithm which
considers both preserving the manifold structure and
distinguishing data from different classes. Since the
data manifold is partitioned into a number of non-
overlapping tangent spaces, MPDA discovers the re-
gional consistency of the data manifold in a piecewise
manner, where the manifold partition strategy plays a
key role in deriving MPDA. If we relax the piece-wise
manifold assumption to the general one, and directly
derive the proposed method from (9) rather than (10)
without partitioning the manifold, we can obtain a
Pairwise-variate MPDA (PMPDA). Then, the objective
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Fig. 2. An example of how performing PCA on the fixed-
sized neighborhood fails to capture the correct tangent

space. Dashed lines indicate the tangent spaces of two
patches Xp and Xp′ . The dotted ellipse indicates the

two-nearest neighborhood of z. The solid line shows the

tangent space estimated by performing PCA on the two-
nearest neighborhood of z.

function (16) becomes:

min
t,v

n
∑

i,j

Wij

[

(

t⊤(xi − xj)− v⊤
xj
T⊤
xj
(xi − xj)

)2

+ γ‖vxi
− T⊤

xi
Txj

vxj
‖2
2

]

, (21)

where the orthonormal basis matrix Txi
is computed by

performing PCA on the k-nearest within-class neighbors
of xi.

Similar to (16), (21) can also be reformulated as a
quadratic form ( t⊤ v⊤ )Sp( t⊤ v⊤ )⊤ where Sp is
a (d + mn) × (d + mn) positive semi-definite matrix,
and v = (v⊤

x1
,v⊤

x2
, . . . ,v⊤

xn
)⊤. The rest steps of PMPDA

are just the same as MPDA except that S is replaced
by Sp. Finally, PMPDA solves the following generalized
eigenvalue problem:

S′f = λ(Sp + αI)f . (22)

Compared with MPDA, PMPDA no longer needs to par-
tition the manifold, but has to estimate tangent vectors
and tangent spaces for each data point, while MPDA
estimates only P of them. On the one hand, PMPDA
is more effective to preserve the manifold geometry, be-
cause it is based on a more general manifold assumption.
On the other hand, PMPDA has to determine tangent
vectors and construct tangent spaces at each data point,
which not only leads to tremendous computational over-
heads, but results in severe storage problems when it
is performed on large data sets. Consequently, PMPDA
can only be performed on small data sets and is hardly
practical. In brief, PMPDA is able to make a better
manifold estimation at the expense of its efficiency, and
the strategy of partitioning the manifold can be viewed
as a trade-off between effectiveness and efficiency of the
manifold estimation.

Like PMPDA, some tangent space based methods such
as TSIMR [10] and PFE [13] also suffer from similar

computational and storage problems. This implies that
although the manifold partition strategy is a crucial part
of MPDA, we can also apply it to the tangent space based
methods to make them more efficient. We provide some
preliminary results in the supplementary material.

3.5 Time Complexity

In this section, we briefly analyze the computational
complexity of both PMPDA and MPDA. The main com-
putational costs of PMPDA lie in building tangent spaces
for n data points and solving the generalized eigenvalue
problem. PMPDA takes O((d2k+k2d)×n) for estimating
n tangent spaces by performing PCA on the k-nearest
neighborhood of each data point. Note that we can
obtain at most k meaningful orthonormal bases for each
tangent space, since there are only k+1 data points as the
inputs of PCA. Therefore, the dimensionalities of tangent
vectors and tangent spaces are at most k. This means that
PMPDA takes O((d + kn)3) for solving the generalized
eigenvalue problem (22).

MPDA first partitions the manifold into P linear sub-
spaces, whose time complexity is dominated by comput-
ing the geodesic distance matrix DG and the hierarchical
divisive clustering for data in each class. Computing DG

based on a k′-NN graph by the Dijkstra’s algorithm with
Fibonacci heaps takes O(n2 log n+k′n2/2). The computa-
tional complexity of the hierarchical divisive clustering

can be approximated as O(
∑C

c=1

∑Pc

p=1
(2p(nc/2

p))2) ≈

O(
∑C

c=1
n2

c), where nc is the number of data in the c-th
class, and Pc is the number of patches partitioned from

the data in the c-th class with
∑C

c=1
Pc = P . Then MPDA

takes O(
∑P

p=1
(d2Np + Np

2d)) for estimating P tangent

spaces and O((d+
∑P

p=1
Np)

3) = O((d+n)3) for solving
the generalized eigenvalue problem.

With the above results, we can find that the most
consuming parts of PMPDA and MPDA lie in the gen-
eralized eigenvalue decomposition. PMPDA needs to
decompose Sp, a large matrix sized (d+mn)× (d+mn),
which will takes O((d+ kn)3). Compared with PMPDA,
MPDA manipulates a much smaller matrix S sized
(d + mP ) × (d + mP ) and only needs to estimate P
tangent spaces rather than n. Since P ≪ n, this leads
to significant computational savings.

3.6 Further Improvement

Based on the above analysis, it is clear that MPDA
avoids both computing tangent spaces for every data
point and solving the eigenvalue problem with a large
matrix, so that it have less computational complexity.
In fact, we can make it more scalable. Note that we
use the product Rp · Np to determine the patch that
should be further divided and the manner that how this
patch is divided, where Np is predominant to control
our partition algorithm. When the number of data is
very large, we can deem that the Euclidean distance
is approximately equal to the geodesic distance within
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a small region, which leads to Rp ≈ 1. Therefore, the
partition algorithm can be simplified by omitting the
computation of DG and Rp, so that we can save the time
for performing Dijkstra’s algorithm and computing Rp.

In addition, the computational costs of MPDA can
be reduced by estimating tangent vectors and tangent
spaces only at anchor points. In this case, we are inter-
ested in selecting a portion of points from the original
data set as the anchor points, and the rest can be rep-
resented according to the first-order Taylor expansion at
their nearest anchor points. Therefore, the data manifold
can be estimated by using the anchor points only. It is
natural to specify the center of each linear subspaces,
which is not necessary a data point among the training
set, as the anchor point. As a result, MPDA can be
performed on only P anchor points rather than the
whole data set, such that the corresponding computa-
tional complexity for solving the generalized eigenvalue
problem can be reduced to O((d + P )3).

Moreover, the two-stage strategy [25] can be adopted
to further reduce the computational costs. We can sep-
arate the generalized eigenvalue problem (19) into two
stages. The first stage maximizes (17) via QR decomposi-
tion to find its solution space. The second one solves (19)
in the solution space of (17). Since S′ is just the extension
of 2XL′X⊤, the rank of S′ is at most d. Consequently,
the time for solving (19) can be reduced to O(d3). Please
refer to [25] for more details.

4 DISCUSSION

Several works have been done to manipulate data in
local subspaces for dimensionality reduction [26], [27],
[28], [29]. Basically, they share the same spirit in aligning
local subspaces to build a global coordinate, where the
connections of local subspaces are considered implicitly.
The main difference between MPDA and these methods
is that MPDA constructs tangent spaces in a piecewise
manner and explicitly characterizes their connections by
estimating tangent vectors.

Local Linear Coordination (LLC) [26] and Coordinated
Factor Analysis (CFA) [27] construct linear subspaces
through the mixture of factor analyzers (MFA) which can
serve as an alternative way to partition the data mani-
fold. However, MFA is optimized by the expectation-
maximization (EM) algorithm, which can be slow and
unstable. Moreover, the number of factor analyzers and
the dimensionality of each linear subspace should be
specified as a priori knowledge, which are difficult to
determine. In contrast, the proposed manifold partition
algorithm for constructing linear subspaces is more ef-
ficient, and the dimensionality of each linear subspace
can be determined automatically by using PCA.

Compared with MPDA, Maximal Linear Embedding
(MLE) [29] also constructs a number of linear subspaces
based on the measure of linearity but follows a different
principle. MLE prefers to construct the linear subspaces
whose sizes should be as large as possible, while MPDA

TABLE 1
Statistics of the data sets: n is the number of data points,

d is the data dimensionality, C is the number of classes,

and δ is the percentages of training data.

Data Set n d C δ

COIL20 1440 1024 20 25%

COIL100 7200 1024 100 25%

FaceDetection 2000 361 2 25%

MNIST 4000 784 10 25%

OptDigits 5620 64 10 25%

Semeion 1593 256 10 25%

Vehicle 846 18 4 50%

constructs a number of linear subspaces with similar and
relatively small sizes to justify the manifold assumption
as well as the Taylor expansion. Another difference
between MPDA and MLE is that although MPDA par-
titions the data manifold to extract piecewise regional
consistency, it still use all the data to discover the un-
derlying manifold, whereas MLE only uses a portion
of data to obtain the resultant global coordinate. This
means that MPDA utilizes more information from data
sets than MLE.

Locally Multidimensional Scaling (LMDS) [28] can be
seen as a sparsified version of LTSA. It constructs tangent
spaces based on a set of overlapping local subspaces
where the number of subspaces should be as small as
possible. This strategy allows LMDS to avoid estimating
tangent spaces for each data point, and thus makes
LMDS more efficient than LTSA. However, if the local
subspaces are non-overlapping, LMDS cannot work nor-
mally any more, because as an alignment based method,
it needs the overlapping parts of local subspaces to serve
as the implicit connections for aligning a global coordi-
nate. In contrast, since MPDA explicitly characterizes the
connections among tangent spaces by estimating tangent
vectors, it can construct a global coordinate based on
non-overlapping local subspaces.

5 EXPERIMENT

5.1 Real-World Data Sets

We focus on supervised dimensionality reduction tasks
and test the proposed PMPDA and MPDA on multiple
real-world data sets. Comparisons are made with: 1)
Classical baseline methods including PCA and LDA;
2) Graph Laplacian based methods including Marginal
Fisher Analysis (MFA) [5], Locality Sensitive Discrim-
inant Analysis (LSDA) [6] and Local Fisher Discrimi-
nant Analysis (LFDA) [7], which are the most related
counterparts of MPDA; 3) Tangent space based methods
Linear Local Tangent Space Alignment (LLTSA) [30] and
linearized PFE (we call it LPFE) which are the linear
variations of LTSA and PFE, respectively; 4) Other types
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TABLE 2
Average error rates (dimensionality) on different data sets.

Methods COIL20 COIL100 FaceDetection MNIST OptDigits Semeion Vehicle

Baseline 4.71%(1024) 10.49%(1024) 7.97%(361) 12.78%(784) 2.11%(64) 14.51%(256) 36.75%(18)
PCA 3.24%(23.95) 7.48%(38.55) 4.85%(23.45) 10.90%(32.75) 2.03%(35.05) 11.83%(34.75) 36.62%(13.95)
LDA 3.11%(19) 13.99%(99) 7.44%(1) 18.98%(9) 4.66%(9) 14.66%(9) 26.67%(3)
MFA 2.30%(15.8) 7.50%(27.35) 2.93%(22.35) 12.21%(47.4) 2.52%(34.65) 12.69%(30.65) 20.20%(11.15)
LSDA 3.31%(19.6) 8.79%(27.65) 3.54%(27.65) 11.77%(34.65) 2.52%(28.45) 12.66%(19.1) 22.09%(10.6)
LFDA 1.89%(17.2) 7.39%(33.1) 2.82%(44.8) 13.53%(34.75) 2.33%(27.95) 12.22%(29.2) 19.63%(10.65)
LLTSA 6.49%(23.65) 15.72%(49) 4.85%(26.55) 17.27%(32) 3.94%(22.55) 19.92%(17.3) 23.84%(17.45)
LSDR 4.12%(48.15) - 7.68%(85.6) 12.40%(123.4) - 14.30%(120.05) 36.37%(14.45)
LPFE 3.23%(50.05) 9.60%(155.35) 5.74%(71.85) 18.42%(124.3) 8.68%(28.1) 21.01%(112.6) 49.43%(11.4)
PMPDA 1.45%(14.45) - 1.64%(25.1) 9.70%(22) - 9.26%(22.6) 22.27%(11.6)
MPDA 1.25%(13.85) 6.69%(25.75) 2.15%(26.9) 10.09%(28.7) 1.90%(23.9) 8.86%(22.45) 19.55%(8.9)

of supervised dimensionality reduction methods Least-
Squares Dimension Reduction (LSDR) [17]. Seven real-
word data sets are used including COIL20, COIL100 [31],
Face Detection [32], a subset of MNIST [33] containing
the first 2k training and test images, and three UCI
data sets including OptDigits, Semeion Handwritten and
Vehicle [34]. The configuration of each data set is shown
in Table 1.

The parameters k, α and γ for both PMPDA and
MPDA are determined by 4-fold cross validation, and
the parameters k′ and M for the partition algorithm in
MPDA are set to be k′ = 6 and M = 10 empirically.
Furthermore, all the parameters for MFA, LSDA, LFDA,
LLTSA, and LPFE are selected by 4-fold cross validation.
The measure for each round of cross validation is the
classification accuracy on the validation set. Specifically,
after training different dimensionality reduction algo-
rithms on the training set, we first perform dimension-
ality reduction on both the training and validation sets,
and then train a classifier using the training set in the
discovered subspace. Finally, by classifying data in the
validation set, we can determine the values of param-
eters according to the classification results. Originally,
LPFE is an unsupervised method. For a fair comparison,
LPFE is performed based on a supervised graph which
is identical to the within-class graph G used in MPDA.
For each data set, we randomly split certain rates of data
as the training set to compute the subspace, and then
classify the rest of data by the nearest neighbor classifier
(1-NN) in the discovered subspace. Every experimental
result is obtained from the average over 20 splits. For
computational efficiency, we use PCA to preserve 95%
energy for the data sets whose dimensionality are larger
than 100. In addition, we also compare the baseline
method that just employs the 1-NN classifier in the orig-
inal space without performing dimensionality reduction.

Generally, the classification performance varies with
the dimensionality of the subspace. For each method, the
best performance as well as the corresponding dimen-
sionality of the subspace are reported. PMPDA is not
tested on the COIL100 and OptDigits data sets because
of out of memory. LSDR is not tested on the COIL100
and OptDigits data sets since the execution time is too

long. Table 2 shows the average error rates of each
method with corresponding dimensionality on different
data sets, where the best method and the comparable
one based on Student’s t-test with a p-value of 0.05 are
highlighted in bold font. We see that PMPDA or MPDA
outperforms other methods in a statistical significant
manner for all the data sets except the Vehicle data set.
This means that compared with the graph Laplacian
based methods, our methods improve the performance
of supervised dimensionality reduction by taking ad-
vantage of the regional consistency from tangent spaces
and keeping in mind that the within-class similarity
shall be achieved along the varying direction of the data
manifold. LPFE fails to get reasonable results, which is
probably because it has no ability to separate data from
different classes, and it may lose too much (non-linear)
information due to the linearization. It is worth noting
that although MPDA can be viewed as the approxima-
tion of PMPDA, it still obtains comparable or better
results than PMPDA. This suggests that the manifold
partition strategy itself is able to improve the perfor-
mance of dimensionality reduction, because it provides
MPDA with more flexibility to estimate tangent spaces.
In addition, although not shown in Table 2, if we remove
PMPDA out of the comparison, MPDA becomes the best
method based on t-test with p=0.05. This demonstrates
that MPDA is consistently better than its counterparts.
Figure 3 depicts how the mean classification accuracy
varies with respect to the dimensionality of embedding
spaces on different data sets. It shows that MPDA and
PMPDA work quite well. Particularly, except for the
Vehicle data set, MPDA and PMPDA (if applicable)
consistently obtain the best results with respect to the
dimensionality of embedding spaces. To further evaluate
the effectiveness of MPDA, we also conduct experiments
on the data sets that have been tested by the authors of
its counterparts. In this case, results from the existing
algorithms can be cited from the corresponding origi-
nal paper for fairer comparisons. According to Table 2,
LFDA seems to be the best algorithm except for MPDR
and PMPDR. Because of this, we focus on comparing
MPDA with LFDA on the USPS handwritten digit data
set according to the configuration of LFDA’s original
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paper. Again, MPDR and PMPDR outperform their
counterparts with statistical significance. Please refer to
the supplementary material for details.

5.2 Parameter Sensitivity

In this section, we evaluate the parameter sensitivity of
MPDA on the Semeion Handwritten data set. Specifi-
cally, we aim to test how the performance of MPDA
varies with its parameters k, γ, M , and k′, respectively.
To this end, the default values of k, γ, M and k′ are set to
be 5, 1, 10 and 6, respectively. And we alternately change
one of these parameters to evaluate the performance of
MPDA when the other parameters are fixed. Figure 4
implies that k and M are more important than γ and
k′. Their values should be determined properly, while
those of γ and k′ seem to have no significant influence
on the performance of MPDA. Overall, MPDA get stable
results as its parameters change, where the classification
accuracy ranges from 90% to 92%. Therefore, MPDA is
relatively insensitive to the changes of parameters.

6 CONCLUSION

In this paper we have proposed a tangent space based
linear dimensionality reduction method named Manifold
Partition Discriminant Analysis (MPDA). By considering
both pairwise differences and piecewise regional consis-
tency, MPDA can find a linear embedding space where
the within-class similarity is achieved along the direction
that is consistent with the local variation of the data man-
ifold, while nearby data belonging to different classes
are well separated. Different to graph Laplacian methods
that capture only the pairwise interaction between data
points, our method capture both pairwise as well as
higher order interactions (using regional consistency)
between data points.

As a crucial part of MPDA, the manifold partition
strategy plays a key role in preserving the manifold
structure to improve the measure of the within-class
similarity. It not only enables MPDA to adaptively deter-
mine the number of dimensions of each linear subspace,
but also can be adopted by other tangent space base
methods to make them more efficient. The experiments
on multiple real-world data sets have shown that com-
pared with existing works MPDA can obtain better
classification results.
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Fig. 3. Classification accuracy versus embedding dimensionality on different data sets (better viewed in color).
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Fig. 4. Average classification accuracy of MPDA with respect to the values of different parameters on the Semeion
data set.
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