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Abstract

In many applications, data from different sensors are aggregated in order to obtain more reliable information

about the process that the sensors are monitoring. However, the quality of the aggregated information is intricately

dependent on the reliability of the individual sensors. In fact, unreliable sensors will tend to report erroneous

values of the ground truth, and thus degrade the quality of the fused information. Finding strategies to identify

unreliable sensors can assist in having a counter-effect on their respective detrimental influences on the fusion

process, and this has has been a focal concern in the literature. The purpose of this paper is to propose a solution

to an extremely pertinent problem, namely, that of identifying which sensors are unreliable without any knowledge

of the ground truth. This fascinating paradox can be formulated in simple terms as trying to identify stochastic liars

without any additional information about the truth. Though apparently impossible, we will show that it is feasible

to solve the problem, a claim that is counter-intuitive in and of itself. To the best of our knowledge, this is the first

reported solution to the aforementioned paradox. Legacy work and the reported literature have merely addressed

assessing the reliability of a sensor by comparing its reading to the ground truth either in an online or an offline

manner. The informed reader will observe that the so-called Weighted Majority Algorithm is a representative

example of a large class of such legacy algorithms. Unfortunately, the fundamental assumption of revealing the

ground truth cannot be always guaranteed (or even expected) in many real life scenarios. Indeed, accessing the

ground truth might be impossible, and since only noisy reports from the sensors are available, rendering the task of

identifying the unreliable sensors is apparently impossible. While some extensions of the Condorcet Jury theorem

[9] can lead to a probabilistic guarantee on the quality of the fused process, they do not provide a solution to the

Unreliable Sensor Identification (USI) problem. The essence of our approach involves studying the agreement of

each sensor with the rest of the sensors, and not comparing the reading of the individual sensors with the ground

truth – as advocated in the literature. Under some mild conditions on the reliability of the sensors, we can prove

that we can, indeed, filter out the unreliable ones. Our approach leverages the power of the theory of Learning

Automata (LA) so as to gradually learn the identity of the reliable and unreliable sensors. To achieve this, we resort
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to a team of LA, where a distinct automaton is associated with each sensor. The solution provided here has been

subjected to rigorous experimental tests, and the results presented are, in our opinion, both novel and conclusive.

Keywords: Sensor Fusion, Learning Automata

1 Introduction

In many applications, data from different sources is received, processed and then fused, to obtain more reliable

information about the process being monitored. This is often the case in industrial applications where multiple

redundant sensors are used to measure the same quantities [20, 21], and for example, in nuclear or space applica-

tions, where human intervention is not possible. Sensors usually provide imprecise and uncertain observations.

The field of sensor fusion involves a set of redundant sensors measuring the same physical quantity. This redun-

dancy permits the operators to obtain a robustness of sorts, whenever some sensors are prone to error.

Furthermore, fused data will reduce or eliminate the effects due to failures of a few sensors operating in the

system. Most of the research on fusing multiple sensor data merely assume that the confidence levels in the mea-

surements are known. The accuracy of an observation can be computed by comparing the current observation

with the reference data set and/or by performing physical investigation. However, performing a physical inves-

tigation or having a reference data set is not practical in many monitoring scenarios, although it is possible to

adopt such measures during training or within a limited scope. To the best of our knowledge, trying to assess the

reliability of a sensor without any additional information about the ground truth is still an open research question

that has not been addressed before, and our strategy for resolving this will be discussed in the body of this paper.

The first question to be addressed is whether the problem of detecting an unreliable sensor without knowing

the ground truth is even a solvable problem. Our position is that if there is no other information, it is a futile

venture. But if we consider the fact that there is a set of sensors, all of which are measuring the same quantity,

the information provided by the other sensors can provide invaluable metrics about how good any specific sensor

is. This, indeed, is the philosophy that we advocate. The question of how the information from the other sensors

is to be gleaned and processed is really, in and of itself, unsolved. Suffice it to state that we emphasize that our

solution to the problem lies in investigating the level of agreement between the various data sources/sensors,

which, in turn, constitutes valuable information to fuse them in an efficient manner. In simple words, we assert

the rather fascinating claim that given a group of sensors, we can find the sub-group of unreliable sensors without

any knowledge of the ground truth, if we also permit each sensor to be compared to the others!

In order to position our work in relation with the existing work, we shall present a brief review of the state-of-

the-art related to data fusion. The legacy research has focused on fusing sensor information under either known or

estimated confidence levels. Most current data fusion methods employ probabilistic descriptions of observations

and processes, and use Bayesian principles to combine this information. Other approaches rely on principles de-

rived from evidential reasoning including Dempster-Shafer inference theory [8] and subjective logic [23]. Elmen-

reich [17] presented a novel algorithm that uses the estimated variance of each sensor measurement in order to

find the optimal averaging weights. Another theme akin to multi-sensor fusions involves “prediction using expert

advice” [28], where the performance is always nearly as good as the best forecasting strategy. The fault-tolerant

averaging algorithm was first introduced by Marzullo [29] in the context of time synchronization in distributed

systems. Afterwards, it was used in the domain of information fusion to fuse a set of abstract sensors into a single
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reliable abstract sensor that is correct even when some of the original sensors are incorrect or faulty. Consensus

algorithms, such as majority voting, are suitable for fusing binary measurements.

Most approaches rely on accessing the ground truth to compute the accuracy of a sensor. The work by Hossain

[22] is representative of such approaches: It computes the accuracy by comparing the observations provided by

the sensor with the ground truth in the training data. This can be experimentally computed by comparing the

outcome of the online sensor observations with the ground truth, and by repeating this process multiple times. The

approach of Hossain and his colleagues considers the opinions of the sensors in performing a common observation,

and proceeds to group the opinions into two subgroups, namely those which support the occurrence of the event

and those which oppose it. The scheme then determines the winning group and increases the confidence of the

sensors in that group (by considering this event as a “reward”), while, at the same time, it decreases the confidence

of the sensors of the other group.

The research presented here also relates to the field of “Softsensing”, which is an emerging technology that

can be perceived as a software alternative or complement to traditional hardware sensors, where several measure-

ments are processed simultaneously. With the increasingly wide deployment of sensor technology in the industry,

obtaining robust indirect measurements has become unquestionably recognized as a central topic. While the prob-

lem is particularly interesting to the industry, it is also extremely appealing from a research perspective.

A myriad of pieces of literature can be cited that concentrate on using majority voting to faulty sensor fu-

sion. The premise for invoking majority voting is that the decision of the group is better than the decision of the

individual sensor.

The Condorcet Jury Theorem demonstrates that the Majority group is always better at selecting superior al-

ternatives than any single individual member [9]. There are some limitations to the hypotheses governing the

theorem. In fact, it requires that each individual makes the right decision with a probability p > 0.5, and that all

individuals are homogenous in p. Probably the most notable extension of this is the scenario when the population

is not homogenous. Boland [9] assumes that the voters can be divided into two groups. The first group consists of

individuals whose “true” interest lie in one direction, while the other group consists of those whose “true” inter-

ests lie in the other. When mapped to the case of sensor aggregation, we again have two groups, where the first

group consists of reliable sensors that possess the “true” interest of reporting the ground truth, while the alternate

group of unreliable sensors possess a “true” interest in misreporting it.

It is worth mentioning that the theory of sensor fusion has found wide deployment in the field of “reputation

systems” where users who want to promote a particular product or service can flood the domain (i.e., the social

network) with sympathetic votes, while those who want to get a competitive edge over a specific product or ser-

vice can “badmouth” it unfairly. Thus, although these systems can offer generic recommendations by aggregating

user-provided opinions, unfair ratings may degrade the trustworthiness of such systems. This problem, of sep-

arating “fair” and “unfair” agents for a specific service, is called the Agent-Type Partitioning Problem (ATPP ).

Determining ways to solve the (ATPP ) [55] and thus counter the detrimental influence of unreliable agents on a

Reputation System, has been a focal concern of a number of very interesting studies [11, 16, 33, 46, 56, 57].

It is worth noting that the task of combining reports from different witnesses is akin to the problem of fusing

possibly conflicting sources of information [2, 18, 27]. Buchegger and Le Boudec [11] tackled the latter issue as fol-

lows: They proposed a Bayesian reputation mechanism in which each node isolates malicious nodes by applying

a so-called deviation test methodology. Their approach requires each agent to have enough direct experience with
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the services so that he can evaluate the trustworthiness of the reports of the witnesses. While this is a desirable

option, unfortunately, in real life, such an assumption does not always hold, specially when the number of possible

services is large. In [12], Chen and Singh evaluated the quality of feedback responses assuming that a feedback is

credible if it is consistent with the majority of feedback responses for a given user. Their approach, though promis-

ing, unfortunately, suffers from a deterioration in the performance when the ratio of deceptive agents is high.

In [56], Yu and Singh devised a modified weighted majority algorithm to combine reports from several witnesses

to determine the ratings of another agent. The main shortcoming of the work reported in [56] is its relatively slow

rate of convergence. In contrast, in [54], Witby and Jøsang presented a Bayesian approach to filter out dishonest

feedback based on an iterated filtering approach. In their approach, the authors extended the so-called “Beta”

reputation system earlier presented by Jøsang and Ismail [24].

This problem, of separating reliable and unreliable sensors, is called the Sensor-Type Partitioning Problem

(STPP ). Put in a nutshell, in this paper, we propose to solve the above-mentioned paradoxical STTP using tools

provided by Learning Automata (LA), which have proven powerful potential in efficiently and quickly learning

the optimal action when operating in unknown stochastic environments. It adaptively, and in an on-line manner,

gradually learns the identity and characteristics of the sensors that are reliable and those that are unreliable. In

addition, we will provide two approaches for fusing the sensor readings which leverage the convergence result of

our LA-based partitioning. Rigourous theoretical results and a host of empirical results will be presented in this

paper. Our work differs from the aforementioned research since we aim to infer the confidence of the measure-

ments based on their level of agreements in the absence of knowledge of the ground truth.

1.1 Paper Organization

Earlier, in Section 1 we introduced the research problem and presented a brief survey of the available solutions for

dealing with reliable and unreliable sensors. The rest of the paper is organized as follows. First of all, in Section

2, we submit a formal statement of the problem. Then, in Section 3 we present a brief overview of the field of LA.

Thereafter, in Section 4 we present our solution, which is the LA-based scheme for identifying unreliable sensors

in a stochastic environment in the absence of knowledge of the ground truth. Experimental results obtained by

rigorously testing our solution for a variety of scenarios and for agents with different characteristics, are presented

in Section 5. Section 6 concludes the paper and discusses open avenues for future work.

2 Modeling the Problem

We consider a population of N sensors, S = {s1, s2, . . . , sN}. Let the real situation of the environment at the time

instant t be modeled by a binary variable T (t), which can take one of two possible values, 0 and 1. The value of

T is unknown and can only be inferred through measurements from sensors. The output from the sensor si is

referred to as xi. Let π be the probability of the state of the ground truth, i.e., T = 0 with probability π.

To formalize the scenario, we record four possibilities:

• xi = T (where xi = 0 or1): This is the case when the sensor correctly reports the ground truth.

• xi 6= T (where xi = 0 or1): This is the case when the sensor faultily reports the ground truth.

4



In our discussions, we make one simplifying assumption: The probability of the sensor reporting a value

erroneously is symmetric. In other words, in terms of the binary detection problem, we assume that the probability

of a false alarm and the so-called miss probability are both equal. Formally, we assume that:

Prob(xi = 0|T = 1) = Prob(xi = 1|T = 0). (1)

Further, let qi denote the Fault Probability (FP) of sensor si, where:

qi = Prob(xi = 0|T = 1) = Prob(xi = 1|T = 0).

Similarly, we define the Correctness Probability (CP) of sensor si as pi = 1− qi.

It is easy to prove that the total probability Prob(xi = T ) is, indeed, pi, since, in fact:

Prob(xi = T ) = Prob(T = 0)Prob(xi = 0|T = 0) + Prob(T = 1)Prob(xi = 1|T = 1)

= πpi + (1− π)pi

= pi. (2)

Thus, the quantity pi = Prob(xi = T ) can be re-rewritten as pi = Prob(I{xi = T } = 1), where I{.} is the

Indicator function.

We refer to a sensor as being reliable when it has a FP qi < 0.5. Conversely, the sensor is unreliable when it

has a FP qi > 0.5. Equivalently, we can define a reliable sensor to be one that has a CP pi > 0.5 and an unreliable

sensor as one that has a CP of pi < 0.5.

Observe that as a result of this model, a reliable sensor will probabilistically tend to report 0 when the ground

truth is 0, and 1 when the ground truth is 1. Otherwise, it is clearly, unreliable. Our aim, then, is to partition the

sensors as being reliable or unreliable. Furthermore, once partitioned, our aim is to use the partitioning as a basis

for better fusion.

To simplify the analysis1, we assume that every pi can assume one of two possible values from the set {pR, pU},

where pR > 0.5 and pU < 0.5. Then, a sensor si is said to be reliable if pi = pR, and is said be unreliable if pi = pU .

To render the problem non-trivial and interesting, we assume that pR and pU are unknown to the algorithm.

Based on the above, the set of reliable sensors is SR = {si|pi = pR}, and the set of unreliable sensors is SU =

{si|pi = pU}.

We now formalize the Sensor-Type Partitioning Problem (STPP ). The STPP involves a set of N sensors2,

S = {s1, s2, . . . , sN}, where each sensor si is characterized by a fixed but unknown probability pi of it sensing the

ground truth correctly. The STPP involves partitioning S into 2 mutually exclusive and exhaustive groups so

as to obtain a 2-partition G = {GU , GR}, such that each group, GR, of size, NR, and GU , of size NU , exclusively

contains only the sensors of its own type, i.e., which are either reliable or unreliable respectively.

We define P(NR−1,NU ) as the probability of a deterministic majority voting scheme, which involves the opinions

of NR − 1 reliable sensors and NU unreliable ones, to yield the correct decision using the majority rule. In other

words, this is the probability that a majority of more than (NR−1+NU )/2 of the sensors will advocate the ground

truth. Similarly, we define P(NR,NU−1) as the probability of a deterministic majority voting scheme, which involves

1This assumption, however, does not simplify the problem. Indeed, pR can be assigned to be the smallest value of all the values of pi for
the reliable sensors, and pU can be assigned to be the largest value of all the values of pi for the unreliable ones.

2Throughout this paper, since we will be invoking majority-like decisions, we assume that N = NR +NU is an even number.
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the opinions of NR reliable sensors and NU − 1 unreliable ones, to yield the correct decision using the majority

rule. As one can see, this quantity is the same: It too is the probability that a majority of more than (NR+NU−1)/2

of the sensors will, in turn, advocate the ground truth.

To render the problem meaningful and solvable3, we shall assume that:

(NR − 1)pR +NUpU > (NR +NU )/2.

This mild condition that we require in this paper, is founded on a fundamental premise that has to hold in any

sustainable society, where telling the “truth” is considered a virtue, while “lying” is considered detrimental and

harmful to the society. The rationale for invoking this is the following: A reliable sensor will tend to agree with

the averaged/aggregated opinion of the rest of other sensors, and thus by comparing the reading of any specific

sensor with the rest of other sensors, we hypothesize that we will be able to detect sensors that deviate from the

accepted norm even without knowing the ground truth. Of course, in the interest of completeness, we will also

investigate the opposite case in which the phenomenon of “lying” is more prevalent than that of saying the “truth”.

Indeed, we will also present some theoretical results for the case where:

(NR − 1)pR +NUpU < (NR +NU )/2− 1.

3 Stochastic Learning Automata

Learning Automata(LA) have been used in systems that have incomplete knowledge about the Environment in

which they operate [1,35,43,50]. The learning mechanism attempts to learn from a stochastic Teacher which models

the Environment. In his pioneering work, Tsetlin [51] attempted to use LA to model biological learning. In general,

a random action is selected based on a probability vector, and these action probabilities are updated based on the

observation of the Environment’s response, after which the procedure is repeated.

The term “Learning Automata” was first publicized by Narendra and Thathachar [35]. The goal of LA is to

“determine the optimal action out of a set of allowable actions” [1]. The distinguishing characteristic of automata-

based learning is that the search for the optimizing parameter vector is conducted in the space of probability

distributions defined over the parameter space, rather than in the parameter space itself [49].

In the first LA designs, the transition and the output functions were time invariant, and for this reason these

LA were considered “Fixed Structure Stochastic Automata” (FSSA). Tsetlin, Krylov, and Krinsky [51] presented

notable examples of this type of automata.

Later, Vorontsova and Varshavskii [35] introduced a class of stochastic automata known in the literature as

Variable Structure Stochastic Automata (VSSA). The solution we present here, essentially falls within this family

and so we shall explain this family in greater detail in Section 4. In the definition of a VSSA, the LA is completely

defined by a set of actions (one of which is the output of the automaton), a set of inputs (which is usually the

response of the Environment) and a learning algorithm, T . The learning algorithm [35] operates on a vector

(called the Action Probability vector)

P(t) = [p1(t), . . . , pR(t)]T,

where pi(t) (i = 1, . . . , R) is the probability that the automaton will select the action αi at time ‘t’,

pi(t) = Pr[α(t) = αi], i = 1, . . . , R, and it satisfies

3If this condition is not satisfied, it means that we are dealing with a system from which no meaningful measurements can be inferred.

6



∑R
i=1 pi(t) = 1 ∀ t.

Note that the algorithm T : [0,1]R × A × B→ [0,1]R is an updating scheme where A = {α1, α2, . . . , αR}, 2 ≤ R

<∞, is the set of output actions of the automaton, and B is the set of responses from the Environment. Thus, the

updating is such that

P(t+1) = T (P(t), α(t), β(t)),

where P(t) is the action probability vector, α(t) is the action chosen at time t, and β(t) is the response it has obtained.

If the mapping T is chosen in such a manner that the Markov process has absorbing states, the algorithm is

referred to as an absorbing algorithm. Many families of VSSA that possess absorbing barriers have been reported

[35]. Ergodic VSSA have also been investigated [35, 38]. Further, in order to increase their speed of convergence,

the concept of discretizing the probability space was introduced [38,48]. This concept is implemented by restricting

the probability of choosing an action to a finite number of values in the interval [0,1]. Following the discretization

concept, many of the continuous VSSA have been discretized; indeed, discrete versions of almost all continuous

automata have been reported [38]. Finally, Pursuit and Estimator-based LA were introduced to be faster schemes,

characterized by the fact that they pursue what can be reckoned to be the current optimal action or the set of current

optimal actions [38]. The updating algorithm improves its convergence results by using the history to maintain

an estimate of the probability of each action being rewarded, in what is called the reward-estimate vector. Families

of Pursuit and Estimator-based LA have been shown to be faster than VSSA [49]. Indeed, even faster discretized

versions of these schemes have been reported [1, 38].

With regard to applications, the entire field of LA and stochastic learning has had a myriad of applications

[26,34,35,43,50], which (apart from the many applications listed in these books) include solutions for problems in

network and communications [32,37,40,42], network call admission, traffic control, quality of service routing [3,4,

53], distributed scheduling [47], training hidden Markov models [25], neural network adaptation [30], intelligent

vehicle control [52], and even fairly theoretical problems such as graph partitioning [39]. Besides these fairly

generic applications, with a little insight, LA can be used to assist in solving (by, indeed, learning the associated

parameters) the stochastic resonance problem [13], the stochastic sampling problem in computer graphics [14],

the problem of determining roads in aerial images by using geometric-stochastic models [6], and various location

problems [10]. Similar learning solutions can also be used to analyze the stochastic properties of the random

waypoint mobility model in wireless communication networks [7], to achieve spatial point pattern analysis codes

for GISs [44], to digitally simulate wind field velocities [41], to interrogate the experimental measurements of global

dynamics in magneto-mechanical oscillators [15], and to analyze spatial point patterns [5]. LA-based schemes have

already been utilized to learn the best parameters for neural networks [30], optimizing QoS routing [53], and bus

arbitration [37] – to mention a few other applications.

4 The Solution

4.1 Overview of Our Solution

In this paper, we provide a novel solution to the STTP , based on the field of LA that was briefly surveyed above.

We intend to take advantage of the fact that LA combine rapid and accurate convergence with low computational

complexity. In addition to its computational simplicity, unlike most reported approaches, as mentioned earlier,
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our scheme does not require prior knowledge of the ground truth. Rather, it adaptively, and in an on-line manner,

gradually learns the identity and characteristics of the sensors which tend to provide reliable readings, and of

those which tend to provide unreliable ones.

Our solution involves a team of LA where each LA is uniquely attached to (or rather, associated with) a specific

sensor, on a one-to-one basis. Each automaton Ai attached to sensor si, has two actions.

By suitably modeling the agreement or disagreement of the opinions about the sensed ground truth between

each sensor and the rest of the other sensors, we can appropriately model these as responses from the correspond-

ing “Environment”. Using these synthesized responses, our scheme will intelligently group the sensors according

to the readings that they report about the ground truth. Since a sensor is reliable if it reports the ground truth

correctly with a probability pi > 0.5 (and unreliable otherwise), we will design our scheme so that it can infer

the similar sensors and collect them into their respective groups. In other words, we will infer the crucial sensor

identities from the random stream of sensor reports.

The fusion part of our scheme will be based on the result of a prior partitioning phase. Ultimately, the aim be-

hind identifying the set of unreliable sensors, SU , is to improve the performance of the fusion process for inferring

the ground truth. The result of the convergence of the team of LA, which results in a partitioning that infers the

identity of the sensor, will serve as an input to the fusion process. In this vein, we shall present two approaches

for fusing the results, and study their performances in the section that describes the experimental result. The first

fusion approach only considers the measurements from the reliable sensors as being informative, and simulta-

neously discards measurements from the unreliable sensors. As opposed to this, the second approach attempts

to intelligently combine (or fuse) the measurements from both the reliable and the unreliable sensors to yield an

accurate value of the ground truth. In this approach, the reading from an unreliable sensor is modified so that it

can be considered informative.

The first formal result concerning the performance of the LA is given below.

Theorem 1. Consider the scenario when (NR− 1)pR+NUpU > (NR+NU )/2 and when NR+NU − 1 ≥ 3. Let si ∈ SR.

Consider now the agreement between the opinion of a reliable sensor si and the opinion of the majority formed by all the rest

of the sensors S\{si} = (SR\{si}) ∪ SU . Let y(NR−1,NU ) be the decision of a majority voting scheme S\{si}, based on the

responses of NR − 1 reliable and NU unreliable sensors. Then, if xi is the output of si: Prob(xi = y(NR−1,NU )) > 0.5.

Proof: Since NR+NU −1 is an odd number, (NR+NU )/2 is the smallest integer that suffices to yield a majority

vote among NR +NU − 1 votes.

Let P(NR−1,NU ) be the probability that the majority of the votes of the sensors S\{si} adheres to the ground

truth, where si belongs to SR. Formally P(NR−1,NU ) can be written as:

P(NR−1,NU ) = Prob(y(NR−1,NU ) = T ), (3)

where y(NR−1,NU ) denotes the decision of the majority voting mechanism as a result of the sensors S\{si}. We see

that y(NR−1,NU ) is a random variable defined as below:

y(NR−1,NU ) =















1 If
NR+NU
∑

k=1
k 6=i

I{xk = 1} ≥ (NR +NU )/2

0 Otherwise.
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A simple observation of the complementary case under which y(NR−1,NU ) = 0, permits us to re-write the above

expression as:

y(NR−1,NU ) =



























1 If
NR+NU
∑

k=1
k 6=i

I{xk = 1} ≥ (NR +NU )/2

0 If
NR+NU
∑

k=1
k 6=i

I{xk = 0} ≥ (NR +NU )/2.

(4)

Based on the above expressions, we can now compute the total probability P(NR−1,NU ) as:

P(NR−1,NU ) = Prob(y(NR−1,NU ) = T )

= Prob(y(NR−1,NU ) = 0|T = 0)Prob(T = 0) + Prob(y(NR−1,NU ) = 1|T = 1)Prob(T = 1)

= πProb(

NR+NU
∑

k=1
k 6=i

I{xk = 0} ≥ (NR +NU )/2|T = 0)

+ (1 − π)Prob(

NR+NU
∑

k=1
k 6=i

I{xk = 1} ≥ (NR +NU )/2|T = 1).) (5)

By virtue of the symmetric fault model that we have invoked, expressed in Eq. (1), it is easy to prove that:

Prob(

NR+NU
∑

k=1
k 6=i

I{xk = 0} ≥ (NR +NU )/2|T = 0) = Prob(

NR+NU
∑

k=1
k 6=i

I{xk = 1} ≥ (NR +NU )/2|T = 1). (6)

Replacing Eq. (6) in Eq. (5) yields:

P(NR−1,NU ) = πProb(y(NR−1,NU ) = 0|T = 0) + (1 − π)Prob(y(NR−1,NU ) = 0|T = 0)

= Prob(y(NR−1,NU ) = 0|T = 0) = Prob(y(NR−1,NU ) = 1|T = 1). (7)

Since si ∈ SR, we see that S\{si} = (SR\{si}) ∪ SU contains NR − 1 reliable sensors and NU unreliable ones.

Indeed, as a consequence of this, by considering the various possible combinations by which the voting can take

place, we see that the exact expression of Prob(y(NR−1,NU ) = 0|T = 0) is given by [9]:

Prob(y(NR−1,NU ) = 0|T = 0) =

NR+NU−1
∑

x1=(NR+NU−1)/2

NU
∑

x2=k

(

NR − 1

x1

)(

NU

x2

)

px1

R (1− pR)
NR−1−x1px2

U (1 − pU )
NU−x2

where k = x1 − (NR − 1) if x1 − (NR − 1) > 0, and k = 0 otherwise.

We can avoid evaluating the above complicated expression by a subtle result due to Miller [31]. In fact, if we

define p̄(NR−1,NU ), the mean competence of individual si in a heterogeneous group S\{si} = SR\{si} ∪ SU as:

p̄(NR−1,NU ) =
(NR − 1)pR +NUpU

NR +NU − 1
, (8)

we can apply Theorem 4 due to Boland [9], which is an extension of the Condorcet Jury theorem for heterogonous

groups, to demonstrate that:
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If p̄(NR−1,NU ) >
1
2 + 1

2(NR+NU−1) and |S\{si}| = NR − 1 +NU ≥ 3,

then the following equation holds:

Prob(y(NR−1,NU ) = 0|T = 0) > p̄(NR−1,NU ).

Now let us prove that Eq. (9) below holds true within the settings of our problem space:

Prob(y(NR−1,NU ) = 0|T = 0) > p̄(NR−1,NU ). (9)

We achieve this by proving that the condition p̄(NR−1,NU ) >
1
2 + 1

2(NR+NU−1) is met. Indeed, since we assumed

that (NR − 1)pR +NUpU > (NR +NU )/2 is true:

(NR − 1)pR +NUpU > (NR +NU )/2 ⇒
(NR − 1)pR +NUpU

NR +NU − 1
>

NR +NU

2(NR +NU − 1)

⇒ p̄(NR−1,NU ) >
(NR +NU − 1) + 1

2(NR +NU − 1)

⇒ p̄(NR−1,NU ) >
1

2
+

1

2(NR +NU − 1)
. (10)

By virtue of having proved Eq. (10), we can deduce that the fundamental result of Eq. (9) is true.

Since from Eq. (10), p̄(NR−1,NU ) >
1
2 + 1

2(NR+NU−1) , we see that, trivially, p̄(NR−1,NU ) > 1/2. Utilizing the latter

inequality in conjunction with Eq. (9) yields:

Prob(y(NR−1,NU ) = 0|T = 0) > 1/2. (11)

Using Eq. (7) together with the above equation, we obtain:

P(NR−1,NU ) > 1/2. (12)

Eq. (12) confirms the elegant result that the aggregated opinion formed by a majority voting scheme from

among the S\{si} = SR\{si} ∪ SU sensors, namely y(NR−1,NU ), will tend to inform us of the ground truth with a

probability larger than 1/2.

Now let us compute the mutual agreement probability Prob(xi = y(NR−1,NU )) between the reading xi of the

sensor si ∈ SR, and the aggregated opinion y(NR−1,NU ) of the rest of the sensors S\{si} = SR\{si} ∪ SU . Indeed,

Prob(xi = y(NR−1,NU )) = Prob[(xi = T ∧ y(NR−1,NU ) = T ) ∨ (xi = 1− T ∧ y(NR−1,NU ) = 1− T )]

= Prob[xi = T ∧ y(NR−1,NU ) = T ] + Prob[xi = 1− T ∧ y(NR−1,NU ) = 1− T ]

= Prob(xi = T ) · Prob(y(NR−1,NU ) = T ) + Prob(xi = 1− T ) · Prob(y(NR−1,NU ) = 1− T )

= Prob(xi = T ) · Prob(y(NR−1,NU ) = T ) + (1− Prob(xi = T )) · (1 − Prob(y(NR−1,NU ) = T ))

= pR · P(NR−1,NU ) + (1− pR) · (1− P(NR−1,NU )), (13)

10



where the second line in the above set of equations is because of the mutually exclusive nature of the events, and

the third line is because of the independence of xi and y(NR−1,NU ).

We will now prove that Prob(xi = y(NR−1,NU )) > 1/2. In order to prove this inequality, let us consider the

function g(.) defined as the convex combination:

g(ρ) = pR · ρ+ (1− pR) · (1− ρ),

whence, it is easy to see that:

g(P(NR−1,NU )) = Prob(xi = y(NR−1,NU )). (14)

Let us investigate the dynamics of g(ρ) by studying its derivative function, g′(ρ), which specifically, has the

form g′(ρ) = 2pR−1. Since, by definition, pR > 1/2, we can confirm that 2pR−1 > 0 which is equivalent to stating

that g′(ρ) > 0. g(ρ) is thus a strictly increasing function.

We further know that g(1/2) = 1/2pR + 1/2(1− pR) = 1/2. Thus, by virtue of the strictly increasing property

of the function g(.):

ifρ > 1/2 ⇒ g(ρ) > g(1/2) = 1/2. (15)

Observe that, in particular, we can apply the inequality (15) for the particular case when ρ = P(NR−1,NU ). Since we

have previously demonstrated in Eq. (12) that P(NR−1,NU ) > 1/2, if we replace ρ by P(NR−1,NU ) in the inequality

(15), we get:

g(P(NR−1,NU )) > 1/2.

As per Eq. (14), this is equivalent to

Prob(xi = y(NR−1,NU )) > 1/2, (16)

which concludes the proof!

We shall now consider the converse case of omitting an unreliable sensor, and prove the analogous result.

Theorem 2. Consider the scenario when (NR − 1)pR + NUpU > (NR + NU )/2 and when NR + NU − 1 ≥ 3. Let

si ∈ SU . Consider now the agreement between the opinion of an unreliable sensor si and the opinion of the majority

formed by all the rest of the sensors S\{si} = SR ∪ SU\{si}. Let y(NR,NU−1) be the decision of a majority voting scheme

formed of S\{si}, based on the responses of NR reliable and NU − 1 unreliable sensors. Then, if xi is the output of si:

Prob(xi = y(NR,NU−1)) > 0.5.

Proof: As in the previous case, since NR +NU − 1 is an odd number, (NR +NU )/2 is the smallest integer that

suffices to yield a majority vote among NR +NU − 1 votes. Further, since we are now dealing with the exclusion

of a single unreliable sensor, this excluded one belongs to the group SU , implying that the entire set that we are

taking the voting from consists of NR reliable sensors and NU − 1 unreliable sensors, i.e., S\{si} = SR ∪ SU\{si}.

Again, as we stated, we are dealing with a society where “truth prevails over lying”, and so:

(NR − 1)pR +NUpU > (NR +NU )/2.

11



Since we know that pR > pU , pR − pU > 0, whence we can obtain the interesting conclusion:

(NR − 1)pR +NUpU > (NR +NU )/2 ⇒ (NR − 1)pR +NUpU + (pR − pU ) > (NR +NU )/2 + (pR − pU )

⇒ NRpR + (NU − 1)pU > (NR +NU )/2 + (pR − pU ) > (NR +NU )/2

⇒ NRpR + (NU − 1)pU > (NR +NU )/2. (17)

Let P(NR,NU−1) be the probability that the majority of the votes of the sensors S\{si} adheres to the ground

truth, where si belongs to SU . Formally P(NR,NU−1) can be written as:

P(NR,NU−1) = Prob(y(NR,NU−1) = T ),

where y(NR,NU−1) is the decision of the majority voting scheme decided on by S\{si}.

Following the same line of arguments as in the proof of Theorem 1 (the details are omitted to avoid repetition),

we can conclude that:

Prob(xj = y(NR,NU−1)) = pU · P(NR,NU−1) + (1− pU ) · (1− P(NR,NU−1)). (18)

Let p̄(NR,NU−1) =
NRpR+(NU−1)pU

NR+NU−1 be the mean value of of individual pi’s in the heterogeneous group. We now

apply the result by Boland (identified as Theorem 4 in [9]), which is, indeed, an extension of the Condorcet Jury

theorem for heterogonous groups. This leads to the result that:

If p̄(NR,NU−1) >
1
2 + 1

2(NR+NU−1) and |S\{si}| = NR − 1 +NU ≥ 3, then the following equation holds:

Prob(y(NR,NU−1) = 0|T = 0) > p̄(NR,NU−1). (19)

Starting from the inequality (17) and following the same arguments of the proof as in Theorem 1 we obtain:

NRpR + (NU − 1)pU > (NR +NU )/2 ⇒
NRpR + (NU − 1)pU

NR +NU − 1
>

NR +NU

2(NR +NU − 1)

⇒ p̄(NR,NU−1) >
1

2
+

1

2(NR +NU − 1)
. (20)

Using the above result and by following steps analogous to those in Theorem 1, we can prove that:

P(NR,NU−1) > 1/2. (21)

We will now prove that Prob(xi = y(NR,NU−1)) < 1/2. To achieve this, consider the function h(.) defined by:

h(ρ) = pU · ρ+ (1− pU ) · (1− ρ) (22)

whence, it is easy to see that: h(P(NR,NU−1)) = Prob(xi = y(NR,NU−1)).

Let us investigate the dynamics of h(ρ) by studying its derivative, h′(ρ). Since h′(ρ) = 2pU − 1, and pU < 1/2,

we see that 2pU − 1 < 0 which is equivalent to the conclusion that h′(ρ) < 0. Therefore h(x) is a strictly decreasing

function.

As a boundary condition, we see that h(1/2) = 1/2pU + 1/2(1 − pU ) = 1/2. Indeed, by virtue of the fact that

12



the function h(.) is strictly decreasing we obtain:

If ρ > 1/2 ⇒ h(ρ) < h(1/2) = 1/2. (23)

In particular, we now apply the inequality (23) for the particular case when ρ = P(NR,NU−1). We have previ-

ously demonstrated in Eq. (21) that P(NR,NU−1) > 1/2. Consequently, we obtain:

h(P(NR,NU−1)) < 1/2

which is equivalent to:

Prob(xi = y(NR,NU−1)) < 1/2,

proving the theorem.

4.2 Construction of the Learning Automata

The results that we presented in the previous section form the basis of our LA-based solution. We explain this

below, including the strategy by which the majority vote is invoked.

In the partitioning strategy, with each sensor si we associate a 2-action LRI automaton Ai, (Σi,Πi,Γi,Υi,Ωi),

where Σi is the set of actions, Πi is the set of action probabilities, Γi is the set of feedback inputs from the Environ-

ment, and Υi is the set of action probability updating rules.

1. The set of actions of the automaton: (Σi)

The two actions of the automaton are αi
k, for k ∈ {0, 1}, i,e, αi

0 and αi
1

2. The action probabilities: (Πi)

P i
k(n) represent the probabilities of selecting the action αi

k, for k ∈ {0, 1}, at step n. Initially, P i
k(0) = 0.5, for

k = 0, 1.

3. The feedback inputs from the Environment to each automaton: (Γi)

Let the automaton select either the the action αi
0 or αi

1. Then, the responses from the Environment and the

corresponding probabilities are tabulated below. For a chosen action, the Environment will respond by a

“Reward”, or a “Penalty”. The conditional probabilities of the “Reward”, and “Penalty” are also specified in

the tables.

ACTION ASSOCIATED PROBABILITY

REWARD PENALTY

αi
0 Prob(xi = y(NR−1,NU )) 1− Prob(xi = y(NR−1,NU ))

αi
1 1− Prob(xi = y(NR−1,NU )) Prob(xi = y(NR−1,NU ))

Table 1: Reward and Penalty probabilities for sensor si ∈ SR

A brief explanation about the equations in these tables could be beneficial.
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ACTION ASSOCIATED PROBABILITY

REWARD PENALTY

αi
0 Prob(xi = y(NR,NU−1)) 1− Prob(xi = y(NR,NU−1))

αi
1 1− Prob(xi = y(NR,NU−1)) Prob(xi = y(NR,NU−1))

Table 2: Reward and Penalty probabilities for sensor si ∈ SU

(a) The LA system is rewarded if it chooses action αi
0, in which case the reading of the sensor si agrees

with the opinion of the majority voting scheme associated with S\{si}. This occurs with probability

Prob(xi = y(NR−1,NU )) whenever si ∈ SR and with probability Prob(xi = y(NR,NU−1)) whenever si ∈

SU .

(b) Alternatively, the system is rewarded if it chooses action αi
1, in which case the reading of the sensor

si disagrees with the opinion of the majority voting scheme associated with S\{si}. This occurs with

probability 1−Prob(xi = y(NR−1,NU )) whenever si ∈ SR and with probability 1−Prob(xi = y(NR,NU−1))

whenever si ∈ SU .

(c) The penalty scenarios are the reversed ones.

4. The action probability updating rules: (Υi)

First of all, since we are using the LRI scheme, we ignore all the penalty responses. Upon reward, we obey

the following updating rule :

If αi
k for k ∈ {0, 1}was rewarded then,

P i
1−k(n+ 1)← θ × P i

1−k(n)

P i
k(n+ 1)← 1− θ × P i

1−k(n),

where 0≪ θ < 1 is the LRI reward parameter.

Before we prove the properties of the overall system, we first state a fundamental result of the LRI learning

schemes which we will repeatedly allude to in the rest of the paper.

Lemma 1. An LRI learning scheme with parameter 0 ≪ θ < 1 is ǫ-optimal, whenever an optimal action exists. In other

words, limθ→1 limn→∞ P i
k(n)→ 1.

The above result is well known [26, 35, 45]. By virtue of this property, we are guaranteed that for any LRI

scheme with the two actions {α0, α1}, if ∃ k ∈ {0, 1} such that cik < ci1−k, then the action αi
k is optimal, and for

this action P i
k(n)→ 1 as n→∞ and θ → 1, where the {cik}, are the penalty probabilities for the two actions of the

automaton Ai.

By invoking the property of the LRI learning scheme, we state and prove the convergence property of the

overall system.

Theorem 3. Consider the scenario when (NR − 1)pR +NUpU > (NR +NU )/2 and when NR +NU − 1 ≥ 3. If each of

the LA in the system uses the LRI scheme with a parameter θ which is arbitrarily close to unity, the following is true:

If si ∈ SR, then limθ→1 limn→∞ P i
1(n)→ 1;

If si ∈ SU , then limθ→1 limn→∞ P i
0(n)→ 1.
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Proof: To prove the theorem, we shall treat the two cases separately.

Case 1: si ∈ SR: Based on the result of Theorem 1, we know that the following inequality holds:

Prob(xi = y(NR−1,NU )) > 0.5.

Therefore, we can deduce that

Prob(xi = y(NR−1,NU )) > 1− Prob(xi = y(NR−1,NU )). (24)

If we now consider the entries of Table 1 that specify the penalty probabilities si ∈ SR, we see that:

ci1 = Prob(xi = y(NR−1,NU )) < ci0 = 1− Prob(xi = y(NR−1,NU )),

implying thus that the action αi
1 is the optimal one. Consequently, by virtue of Lemma 1, for this action:

P i
1(n)→ 1 as n→∞ and θ → 1,

proving the result for this case!

Case 2: si ∈ SU : If we now consider the result of Theorem 2, we see that the following inequality holds:

Prob(xi = y(NR,NU−1)) < 0.5.

Consequently, we observe that

Prob(xi = y(NR,NU−1)) < 1− Prob(xi = y(NR,NU−1)). (25)

The analogous actions and associated probabilities from Table 2 specify the penalty probabilities si ∈ SU , as:

ci0 = 1− Prob(xi = y(NR,NU−1)) < ci1 = Prob(xi = y(NR,NU−1)),

implying that the action αi
0 is optimal. Consequently, for this action:

P i
0(n)→ 1 as n→∞ and θ → 1.

The theorem is thus proven.

4.3 Theoretical Results for the Case Where: “Lying Prevails over Truth”

In the previous section, we had investigated the theoretical results for the case when the Environment is charac-

terized by the condition: (NR − 1)pR +NUpU > (NR +NU )/2, which we, informally, expressed as the scenario in

which “Truth Prevails over Lying”. In the application domain, this, of course, corresponds to the scenario when

it is more likely for the sensors to be reliable than unreliable. However, there is also the extremely interesting and

fascinating case when “Lying Prevails over Truth-Telling”, i.e., when it is more likely for the sensors to be unre-

liable than reliable. In this section, we will analyze this scenario, and provide the theoretical results for the case

where (NR − 1)pR +NUpU < (NR +NU )/2− 1.

Theorem 4. Consider the scenario when NRpR + (NU − 1)pU < (NR + NU )/2 − 1 and when NR + NU − 1 ≥ 3. Let

si ∈ SR. Consider now the agreement between the opinion of a reliable sensor si and the opinion of the majority formed by all

the rest of the sensors S\{si} = (SR\{si}) ∪ SU . Let y(NR−1,NU ) be the decision of a majority voting scheme S\{si}, based

on the responses of NR−1 reliable and NU unreliable sensors. Then, if xi is the output of si: Prob(xi = y(NR−1,NU )) < 0.5.
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Proof: The proof relies on a symmetry property which we shall record presently. As mentioned in the theorem’s

statement, we work with the premise that NRpR + (NU − 1)pU < (NR +NU )/2− 1. To begin with, if qR = 1− pR

and qU = 1− pU , we shall prove that under these conditions,

(NR − 1)qR +NUqU > (NR +NU )/2.

Working through the premise of the theorem, we see that:

(NR +NU )/2− 1 > (NR − 1)pR +NUpU ⇒ (NR + (NU − 1))− (NRpR + (NU − 1)PU ) > (NR +NU )/2

⇒ NR(1− pR) + (NU − 1)(1− pU ) > (NR +NU )/2

⇒ NRqR + (NU − 1)qU > (NR +NU )/2. (26)

However, we can affirm that qU − qR > 0 since pR > pU . By utilizing the fact that qU − qR > 0:

NRqR + (NU − 1)qU + (qU − qR) > (NR +NU )/2 + (qU − qR) ⇒ (NR − 1)qR +NUqU > (NR +NU )/2 + (qU − qR)

⇒ (NR − 1)qR +NUqU > (NR +NU )/2

⇒ (NR − 1)qR +NUqU > (NR +NU )/2.

(27)

The last assertion of the above equation, i.e., that (NR − 1)qR + NUqU > (NR + NU )/2, specifies a rather

straightforward, but non-obvious fact. Indeed, by a simple replacement of the variables, (i.e., by replacing pR by

qR, and pU by qU ), and by observing that qU > 0.5 and qR < 0.5, we can invoke arguments similar to those used in

Theorem 1 to prove our intended result.

To do this, let q̄
′

(NR,NU−1) = NRqR+(NU−1)qU
NR+NU−1 be the mean of individual qi’s in a heterogeneous group, where,

by definition, qi is defined as qi = Prob(xi = 1|T = 0) = Prob(xi = 0|T = 1). We now again apply the result

by Boland (identified as Theorem 4 in [9]), which is, indeed, an extension of the Condorcet Jury theorem for these

heterogonous groups. This leads to the result that:

If q̄(NR,NU−1) >
1
2 + 1

2(NR+NU−1) and |S\{si}| = NR − 1 +NU ≥ 3, then the following equation holds:

Prob(y(NR,NU−1) = 1|T = 0) = Prob(y(NR,NU−1) = 0|T = 1) > q̄(NR,NU−1). (28)

By invoking arguments similar to those used in the other proofs, we can deduce:

(NR − 1)qR +NUqU > (NR +NU )/2 =⇒ q(NR,NU−1) > 0.5.

Consequently,

Prob(y(NR,NU−1) = 1|T = 0) = Prob(y(NR,NU−1) = 0|T = 1) > 1/2, (29)

which is equivalent to stating:

Prob(y(NR,NU−1) = 0|T = 0) = Prob(y(NR,NU−1) = 0|T = 0) < 1/2, (30)
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where the latter quantity is, indeed, P(NR,NU−1).

Consider now the following equation that we obtained in the process of proving Theorem 1:

Prob(xj = y(NR,NU−1)) = pU · P(NR,NU−1) + (1− pU ) · (1− P(NR,NU−1)), (31)

using which we shall prove that Prob(xj = y(NR,NU−1)) < 1/2. To do this, we re-consider the same function g(.)

that we defined previously in the proof of Theorem 1. The only difference is that the quantity involved in the

inequality obeys P(NR,NU−1) < 1/2. Utilizing the strictly increasing property of g(.), we obtain for

1/2 > x, g(1/2) = 1/2 > g(x).

Indeed, in particular for x = P(NR,NU−1), we have:

g(P(NR,NU−1)) < 1/2 =⇒ Prob(xi = y(NR−1,NU )) < 0.5,

proving the theorem.

The next theorem, which deals with the analogous case of excluding an unreliable sensor, follows.

Theorem 5. Consider the scenario when NRpR + (NU − 1)pU < (NR + NU )/2 − 1 and when NR + NU − 1 ≥ 3.

Let si ∈ SU . Consider now the agreement between the opinion of an unreliable sensor si and the opinion of the majority

formed by all the rest of the sensors, S\{si} = SR ∪ SU\{si}. Let y(NR,NU−1) be the decision of a majority voting scheme

based on the responses of S\{si}, consisting of NR reliable and NU − 1 unreliable sensors. Then, if xi is the output of si:

Prob(xi = y(NR,NU−1)) > 0.5

Proof: The proof again relies on a symmetry property akin to the one seen in the previous theorem. We, of

course, assume that the society of sensors in which “lying prevails over truth”, and thus, as stated in the theorem

statement, NRpR + (NU − 1)pU < (NR + NU )/2 − 1. Also, without repeating the notation and the arguments

invoked in Theorem 4, we utilize the result that:

NRqR + (NU − 1)qU > (NR +NU )/2. (32)

The proof now follows the same parallel as the previous one. The primary principle involves defining

q̄(NR−1,NU ) =
(NR−1)qR+NU1qU

NR+NU−1 .

Then we continue to prove that P(NR,NU−1)) < 0.5.

As in the case of Theorem 2, we use4 the function h(.) and its decreasing property to show that:

h(P(NR,NU−1)) > 1/2 =⇒ Prob(xi = y(NR−1,NU )) > 0.5,

thus proving the theorem.

The final theorem which shows the power of the team of LA in such a scenario, follows.

Theorem 6. Consider the scenario when (NR − 1)pR + NUpU < (NR +NU )/2 − 1 and that NR +NU − 1 ≥ 3. Given

the LRI scheme with a parameter θ which is arbitrarily close to unity, the following is true:

If si ∈ SR, then limθ→1 limn→∞ P i
0(n)→ 1;

If si ∈ SU , then limθ→1 limn→∞ P i
1(n)→ 1.

4The algebraic details of the proof are omitted to avoid repetition.
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Proof: To prove the theorem, we again treat the two cases separately.

Case 1: si ∈ SR: Based on the result of Theorem 4, we can see that the inequality Prob(xi = y(NR−1,NU )) < 0.5

holds. We can thus deduce that:

Prob(xi = y(NR−1,NU )) < 1− Prob(xi = y(NR−1,NU )). (33)

If we now consider the entries of Table 1 that specify the penalty probabilities si ∈ SR, we see that:

ci1 = Prob(xi = y(NR−1,NU )) > ci0 = 1− Prob(xi = y(NR−1,NU )),

implying that for this case, the action αi
0 is the optimal one. Consequently, by virtue of Lemma 1, for this action:

P i
0(n)→ 1 as n→∞ and θ → 1,

proving the result for this case.

Case 2: si ∈ SU : In this case, based on the result of Theorem 5, we see that the following inequality holds:

Prob(xi = y(NR,NU−1)) > 0.5.

Therefore we can confirm that

Prob(xi = y(NR,NU−1)) > 1− Prob(xi = y(NR,NU−1)). (34)

From the entries of Table 2 that specify the penalty probabilities si ∈ SU , we obtain:

ci0 = 1− Prob(xi = y(NR,NU−1)) > ci1 = Prob(xi = y(NR,NU−1)).

This implies that the action αi
1 is the optimal one, and for this action:

P i
1(n)→ 1 as n→∞ and θ → 1.

The theorem is thus proven.

4.3.1 Remarks and some Additional Notation

For the case when NRpR + (NU − 1)p>(NR + NU )/2, once the partitioning has taken place, all the LA will have

converged to their appropriate partitions. From the results of Theorem 3, we see that the reliable sensors will have

converged to action αi
1 , while the unreliable ones will have converged to action αi

0 – both with an arbitrarily large

probability. Analogously, from Theorem 6, we see the similar result for the case when NRpR + (NU − 1)pU <

(NR + NU )/2 − 1. In this case, the actions will be inverted when compared to Theorem 3. In fact, when NRpR +

(NU − 1)pU < (NR +NU )/2− 1, the reliable sensors will converge to action αi
0, while the unreliable ones to action

αi
1 with an arbitrarily large probability. We can summarize these results as below:

• Partitioning when NRpR + (NU − 1)pU > (NR +NU )/2

– GR = {si ∈ S such that limn→∞ P i
1(n) = 1}

– GU = {si ∈ S such that limn→∞ P i
0(n) = 1}.

• Partitioning when NRpR + (NU − 1)pU < (NR +NU )/2− 1

– GR = {si ∈ S such that limn→∞ P i
0(n) = 1}
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– GU = {si ∈ S such that limn→∞ P i
1(n) = 1}.

Indeed, since the results are ǫ-optimal results, if θ is not arbitrarily close to unity, some of the LA might fail

to converge to the optimal action and thus the set SR may not necessary be equivalent to GR. However, as θ is

arbitrarily close to unity, GR will converge exactly to SR.

4.4 Fusion approaches

We now present two simple fusion schemes that make use of the partitionings in order to improve the quality of

the aggregated opinion from the different sensors for guessing the ground truth.

4.4.1 Fusion Scheme with Exclusion: Discarding the opinions of the unreliable sensors

A possible strategy to increase the accuracy of the fusion process is to employ a simple majority voting strategy

that excludes all the sensors whose LA converged to the action GU during the partitioning phase. This means that

the prediction of the ground truth will be exclusively based on the sensors whose LA converged to the action GR.

4.4.2 Fusion Scheme with Inversion: Inverting the opinions of the unreliable sensors

In this subsection, instead of excluding the readings of the unreliable sensors, we propose intelligently combining

the readings from both the reliable and unreliable sensors when evaluating the ground truth. In fact, we opt to

invert the decision of the unreliable sensors as inferred by the LA algorithm, rendering them to be informative.

Thus, for every reading xi from a sensor si whose LA has converged to the action GU , we record the reverse of the

reading. Indeed, the majority voting scheme will be equivalent to one that aggregates the votes from a group of

sensors consisting of:

• NR reliable sensors, each possessing a correctness probability pR, and

• NU unreliable that have been rendered reliable and that possess a correctness probability p
′

U = 1−pU (where

p
′

U = 1− pU > 0.5). By the phrase, rendered reliable, we mean that we are inverting the respective readings

of the sensors in GU .

We now report the experimental results that we have obtained by testing the strategies explained in the previ-

ous sections.

5 Experimental results

The performance of the LA-based partitioning as well as the two fusion schemes that make use of the partitioning,

have been rigorously tested by simulation in a variety of parameter settings, and the results that we have obtained

are truly conclusive. In the interest of brevity, we merely report a few representative (and typical) experimental

results, so that the power of our proposed methodology can be justified. In the experiments, the settings were

chosen so that the condition NRpR + (NU − 1)pU > (NR +NU )/2 was met, reflecting the phenomenon where “the

truth prevails over lying”.
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5.1 Performance of the Partitioning

We first examine the convergence speed of the LA algorithm. Since a LA is associated with every sensor (whether

it is reliable or unreliable), where each possesses its own distinct reward probabilities for its respective actions,

they will, clearly, have different convergence speeds, as is well-known in the theory of LA. Observe that the

convergence of the individual LA is defined in terms of its ǫ-convergence, where the LA were deemed to have

converged if one of its action probabilities attained the value 1− ǫ5. Formally:

• If P i
0(n) ≥ 1− ǫ, then the LA has converged to the action αi

0;

• If P i
1(n) ≥ 1− ǫ, then the LA has converged to the action αi

1.

We also initialized all the LA at time instant t = 0, to have the values: P i
0(t) = P i

1(t) = 0.5.

To render the results meaningful, we took an ensemble average of 1, 000 experiments, and computed the aver-

age convergence times for the LA associated with the sensors in SR and for those in SU . Although the experiments

related to the convergence speeds were performed for different settings, we only report some representative results

in which we fixed NR to 20, NU to 10 and θ = 0.8, and where we also simultaneously varied pR and pU . In fact,

it turns out that these parameters will influence the agreement probability (reward probability), and consequently

the speed of convergence as per the theoretical results reported earlier. The results obtained are given in Table 3.

(pR, pU ) Average Convergence time for si ∈ SR Average Convergence time for si ∈ SU
(0.8, 0.1) 40.91 43.37
(0.8, 0.2) 36.41 44.11
(0.85, 0.1) 31.16 30.84
(0.85, 0.2) 29.53 35.82
(0.9, 0.1) 26.14 26.71
(0.9, 0.2) 25.90 32.81
(0.95, 0.1) 23.51 25.88
(0.95, 0.2) 23.47 32.27

Table 3: Average convergence time for the case when (NR, NU ) = (20, 10).

By examining this table, we observe:

1. Remarkably, the LA converge very rapidly. In fact, on the average, the LA were able to determine the optimal

partition in less than 44.11 time instances, which, incidentally, was the largest value in the table.

2. Earlier, we proved that the probability of a reward is a decreasing function of pU whenever we deal with an

unreliable sensor. As we fix pR and vary pU , we observe that the convergence speed decreases, which, in this

case, translates into a decreased reward probability.

3. In addition, we pR is increased towards unity and as pU is decreased closer to 0, the convergence speed

increases for both the individual LA and for those included in SR. This reflects the concept that the envi-

ronment becomes “easier” when the sensor is less noisy (i.e,(pR, pU ) approaches (1, 0) ) and consequently,

the LA converge faster to the optimal actions. By “easier”, we mean that the difference between the reward

probabilities of the actions of the LA becomes larger, and thus, the LA will converge both faster and with a

higher probability to the optimal action. This is consistent with the well-known results in the field of LA.

5The value of ǫ was set to be 0.01.
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4. Consider the case when (pR, pU ) = (0.95, 0.1) as reported in the table. The respective convergence speeds for

the LA associated with the reliable and unreliable sensors are 23.51 and 25.88 respectively. However, as the

sensors became more noisy by decreasing pR to 0.8, the task of differentiating between the partitions became

more difficult. Indeed, the convergence speed for LA associated with a reliable sensor dropped down to

36.41, and the speed of the LA associated with unreliable sensor became 44.11.

5.2 Fusion Scheme with Exclusion

We now compare the “Fusion Scheme with Exclusion” explained in Section 4.4.1 with the deterministic Majority

Voting (MV) strategy that incorporates all the sensors in S. As detailed earlier, the latter scheme relies exclusively

on the decision of the vote of the majority of the sensors that converged to the GR partition. Let P (Cc) denote the

probability of the consensus being correct, i.e, that the probability that the vote of the majority coincides with the

ground truth. Table 4 reports the result of the comparison for the case when NR and NU are both equal to 10.

(pR, pU ) P (CC) for Fusion Scheme with Exclusion P (CC) for MV for all sensors
(0.75, 0.45) 0.921 0.766
(0.75, 0.4) 0.921 0.87
(0.75, 0.35) 0.921 0.599
(0.75, 0.3) 0.921 0.5
(0.8, 0.45) 0.972 0.84
(0.8, 0.4) 0.972 0.775
(0.8, 0.35) 0.972 0.574
(0.8, 0.3) 0.9672 0.604

Table 4: Comparisons of the value of P (CC), the probabilities of the consensus being correct for different values of
(pR, pU ), and for the different approaches for NR = 10 and NU = 10.

We observe from the table:

1. The distribution of T does not play a role in determining the value of P (Cc) for the Fusion Scheme with

Exclusion because of the symmetry property of the fault. As one can see, the results we report are conclu-

sive. In fact, we were able to increase the value of P (Cc) quite remarkably. For example, for the case when

(pR, pU ) = (0.75, 0.3), our scheme yielded a value of 0.921 for P (CC), while the scheme which operated with

the majority voting involving all the sensors yielded the value of only 0.5.

2. The value of P (CC) for our Fusion Scheme with Exclusion is immune to the variation of pU . For example, for

the entries corresponding to pR = 0.75, we see that P (CC) is equal to 0.921 even if pU changes, for example,

by taking the values 0.45, 0.35 and 0.3.

Consider now the case when we double the value NR from 10 to 20 while the value of NU is equal to 10. As

expected, we see from Table 5, the value of P (CC) for our scheme increases and approaches unity.

5.3 Fusion Scheme with Inversion

In Table 6, we report the results when we fix NR to 20 and NU to 10 and compare the result of a simple MV scheme

involving all sensors with the Fusion Scheme with Inversion presented in Section 4.4.2. We can make the following

observations:
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(pR, pU ) P (CC) for Fusion Scheme with Exclusion P (CC) for MV for all sensors
(0.75, 0.45) 0.9986 0.943
(0.75, 0.4) 0.9986 0.919
(0.75, 0.35) 0.9986 0.888
(0.75, 0.3) 0.9986 0.85
(0.8, 0.45) 0.997 0.98
(0.8, 0.4) 0.997 0.97
(0.8, 0.35) 0.997 0.954
(0.8, 0.3) 0.997 0.934

Table 5: Comparisons of P (CC), the probabilities of the consensus being correct for different values of (pR, pU ),
and for the different approaches for NR = 20 and NU = 10.

1. Under a fixed value of pR, a smaller value of pU yields a higher value for P (CC) for the Fusion Scheme with

Inversion. For example, for a fixed value of pR = 0.8, P (CC) increases from 0.929 to 0.986 as we decrease pU

from 0.45 to 0.3. This is due to the fact that a smaller value for pU actually implies a higher value for 1− pU .

Thus, a sensor which is highly unreliable, can be transformed into one that is highly reliable – thanks to the

operation of inverting its reading!

2. The results for the case where we increase NU to 20 is reported in Table 7. Indeed, in general we can affirm

from Tables 6 and 7 that the Fusion Scheme with Inversion outperforms the simple majority voting involving

all sensors in all the settings.

3. However, by comparing both Tables 6 and 7, we remark that P (CC) for the scheme with inversion does not

necessarily increase as we increase NR, the number of reliable sensors.

(pR, pU ) P (CC) for Fusion Scheme with Inversion P (CC) P (CC) for MV for all sensors
(0.75, 0.45) 0.974 0.943
(0.75, 0.4) 0.984 0.919
(0.75, 0.35) 0.99 0.888
(0.75, 0.3) 0.994 0.85
(0.8, 0.45) 0.992 0.98
(0.8, 0.4) 0.995 0.97
(0.8, 0.35) 0.997 0.954
(0.8, 0.3) 0.998 0.934

Table 6: Comparisons of P (CC) the probabilities of the consensus being correct for different values of (pR, pU ), and
for the different approaches for NR = 20 and NU = 10.

6 Conclusion

Sensor Fusion has become a prevalent research topic due to the wide deployment of sensor technology in the in-

dustry and in our daily life. In this paper, we have considered an extremely pertinent problem in the area of Sensor

Fusion, namely the one of identifying unreliable sensors without knowing the ground truth. Although paradigms

like the one that involves majority voting offer a generic prediction strategy for the ground truth by aggregating

sensor-provided readings, they are prone to error caused by unreliable sensors. Clearly, such unreliable sensors

may degrade the quality of the aggregated information.
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(pR, pU ) P (CC) for Fusion Scheme with Inversion P (CC) for MV for all sensors
(0.75, 0.45) 0.974 0.8821
(0.75, 0.4) 0.985 0.804
(0.75, 0.35) 0.994 0.699
(0.75, 0.3) 0.997 0.571
(0.8, 0.45) 0.987 0.941
(0.8, 0.4) 0.994 0.892
(0.8, 0.35) 0.998 0.816
(0.8, 0.3) 0.998 0.71

Table 7: Comparisons of P (CC) the probabilities of the consensus being correct for different values of (pR, pU ), and
for the different approaches for NR = 20 and NU = 20.

A large body of the research in sensor fusion deduces the reliability of the sensors either online or offline by

assuming that one can access the ground truth. While this is a desirable option, unfortunately, in real life, such an

assumption does not always hold. The question of whether a solution to the problem even exists in this scenario

is open. In this paper, we have presented a novel solution for the problem using tools provided by the family of

Learning Automata (LA). Unlike most reported approaches, our scheme does not require prior knowledge of the

ground truth. Instead, our solution gradually learns the identity and characteristics of the sensors which provide

reliable readings, and of those who provide unreliable measurements.

In addition to presenting rigorous theoretical results for the unsolved problem, we have also included compre-

hensive empirical results that demonstrate that our LA-based scheme achieves optimal partitioning with a high

convergence speed.

A possible extension of this research, which we are currently working on, is to develop the analogous method-

ology for continuous sensor readings instead of boolean ones. In addition, we advocate that it is possible to render

the two phases of partitioning and fusion to be interleaving by using the information contained in the all N vec-

tors P i(t) = [P i
0(t), P

i
0(t)] at time n. Thus, the fusion can take place at each time instant t, instead of delaying

or postponing the execution of the proposed fusion (with/without Inversion/Exclusion) until all the LA have

converged.

The entire issue of whether we can use the field of Random Races [36] to achieve a comparison between the

various sensors also holds a great potential. Finally, the question of investigating the effect of adding more voters

on P (CC) has not been considered here. Some details about this scenario can be found in [19].
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