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Abstract—Multiobjective evolutionary algorithm based on
decomposition (MOEA/D) decomposes a multiobjective optimiza-
tion problem (MOP) into a number of scalar optimization
subproblems and then solves them in parallel. In many MOEA/D
variants, each subproblem is associated with one and only one
solution. An underlying assumption is that each subproblem has
a different Pareto-optimal solution, which may not be held, for
irregular Pareto fronts (PFs), e.g., disconnected and degener-
ate ones. In this paper, we propose a new variant of MOEA/D
with sorting-and-selection (MOEA/D-SAS). Different from other
selection schemes, the balance between convergence and diversity
is achieved by two distinctive components, decomposition-based-
sorting (DBS) and angle-based-selection (ABS). DBS only sorts L
closest solutions to each subproblem to control the convergence
and reduce the computational cost. The parameter L has been
made adaptive based on the evolutionary process. ABS takes use
of angle information between solutions in the objective space to
maintain a more fine-grained diversity. In MOEA/D-SAS, differ-
ent solutions can be associated with the same subproblems; and
some subproblems are allowed to have no associated solution,
more flexible to MOPs or many-objective optimization problems
(MaOPs) with different shapes of PFs. Comprehensive experi-
mental studies have shown that MOEA/D-SAS outperforms other
approaches; and is especially effective on MOPs or MaOPs with
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irregular PFs. Moreover, the computational efficiency of DBS
and the effects of ABS in MOEA/D-SAS are also investigated
and discussed in detail.

Index Terms—Angle-based-selection (ABS), decomposition-
based-sorting (DBS), diversity, evolutionary multiobjective opti-
mization, many-objective optimization.

I. INTRODUCTION

ULTIOBJECTIVE optimization problems (MOPs)

involve the optimization of more than one objective
function. Since these objectives usually conflict with each
other, no single optimal solution exists to optimize all the
objectives simultaneously. Instead, Pareto-optimal solutions,
which are their best tradeoff candidates, can help decision
makers to understand the tradeoff relationship among different
objectives and choose their preferred solutions. In the field of
multiobjective optimization, the set of all the Pareto-optimal
solutions is usually called the Pareto set (PS) and the image
of (PS) on the objective vector space is called the Pareto
front (PF) [30]. Over the past decades, multiobjective evolu-
tionary algorithms (MOEAs) have been recognized as a major
methodology for approximating the PF [5], [9], [10], [12],
[18], [36]-[38].

In MOEAs, selection is of great importance for the perfor-
mance of MOEAs. Usually, it is desirable to balance between
convergence and diversity for obtaining good approximation
to the set of Pareto-optimal solutions [4], [17]. Convergence
can be measured as the distance of solutions toward the PF,
which should be as small as possible. Diversity can be mea-
sured as the spread of solutions along the PF, which should
be as uniform as possible.

Based on the above two requirements for selec-
tion, the current MOEAs can be categorized into the
domination-based (see [15], [42], [44]), the indicator-
based (see [2], [3], [24], [43]), and the decomposition-based
MOEAs (see [20], [21], [35], [40]). A representative of
decomposition-based MOEAs is MOEA based on decompo-
sition (MOEA/D) [40], which can be regarded as a general-
ization of cMOGA [31]. MOEA/D decomposes an MOP into
a number of single objective optimization subproblems and
then solves them in parallel. The objective function in each
subproblem can be a linear or nonlinear weighted aggregation
function of all the objective functions in the MOP in question.
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Fig. 1.

In MOEA/D, each solution is associated with a subproblem,
and two subproblems are called neighbors if their weight
vectors are close to each other. MOEA/D explores correla-
tion relationships among neighboring subproblems to speed
up its search. The diversity is implicitly achieved by speci-
fying a wide spread of the directions in the objective space.
Several variants of MOEA/D have been proposed and studied
(see [1], [6], [7], [19], [23], [26], [28], [29], [39]). For exam-
ple, an online geometrical metric was proposed to enhance the
diversity of MOEA/D in [19]. In [28], a global stable matching
(STM) model is integrated into MOEA/D for suitable matches
between subproblems and solutions. In MOEA/D-STM, each
subproblem prefers the solution with better aggregation func-
tion value, which indicates a better convergence along its
search direction. Therefore, the preferences of subproblems
encourage convergence. Meanwhile, each solution agent ranks
all subproblems according to its distance to the weight vec-
tor of these subproblems. Therefore, the preferences of the
solutions can promote the diversity. The STM between sub-
problems and solutions achieves an equilibrium between their
mutual-preferences and thus, a balance between convergence
and diversity can be achieved.

The motivations of this paper are based on the following

considerations.

1) In many MOEA/D variants, e.g., MOEA/D-STM, each
subproblem is allowed to associate with one and only
one solution. An underlying assumption is that each
subproblem leads to a diversely located Pareto opti-
mal solution in PF. It could hold if the weight vectors
of the subproblems are appropriately assigned priori.
However, for the real-world MOPs, both shape and
spread of the PFs are unknown and this assumption is
not likely to be held, especially for disconnected and
degenerate PFs [22]. Fig. 1 shows the ideal selection
results for such a PF as well as the ones obtained by
MOEA/D and MOEA/D-STM. The population diversity
for both MOEA/D and MOEA/D-STM has not been
well-maintained due to the above assumption. Under this
circumstance, it is not reasonable to force one subprob-
lem to associate with one solution. The framework of
MOEA/D can be more flexible to accommodate MOPs
with different shapes of PFs.

X0

()

Ilustrative examples of different selection results. (a) Ideal selection result. Selection result obtained by (b) MOEA/D and (c) MOEA/D-STM.

2) As a  state-of-the-art  variant of MOEA/D,
MOEA/D-STM can usually, achieve good balance
between the convergence and diversity. However, the
computational cost of its selection scheme is still high
[O(NM log M), where N is the population size and M
is 2*N], due to the use of global STM model.! The
selection of local solutions for each subproblem can be
used to reduce the computational complexity.

Although some advanced diversity maintenance
schemes, e.g., niche-counts [14], have been adopted
for MOEA/D to further increase its diversity [27].
Nevertheless, such scheme is, in some sense, very
coarse-grained: it does not distinguish subproblems
with the same niche-counts and it is possible that
solutions associated with different subproblems may
be close to each other while solutions associated with
the same subproblems may be far from each other.
To further increase the diversity, a more fine-grained
diversity maintenance scheme is desired.

Based on the above considerations, this paper pro-
poses a new variant of MOEA/D with sorting-and-
selection (MOEA/D-SAS) for MOPs. Different from other
selection schemes, the balance between convergence and diver-
sity is achieved by two distinctive components, decomposition-
based-sorting (DBS) and angle-based-selection (ABS). DBS
only sorts L closest solutions to each subproblem to con-
trol the convergence and reduce the computational cost. The
parameter L has been made adaptive based on the evolutionary
process. ABS takes use of angle information between solutions
in the objective space to maintain a more fine-grained diver-
sity. In addition, different solutions can be associated with the
same subproblems; and some subproblems are allowed to have
no associated solution, which is more flexible to MOPs with
different shapes of PFs.

The rest of this paper is organized as follows. Section II
introduces some preliminaries on multiobjective optimization
and decomposition methods. Section III describes the pro-
posed sorting-and-selection (SAS) scheme, which contains
two important components, DBS and ABS. In Section IV,

3)

TMost high computational cost originates from sorting for the preference
orderings of the whole population.
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SAS is integrated into MOEA/D. Section V introduces
the benchmark test functions and the performance indica-
tors used in this paper. Experimental studies and discussion
are presented in Section VI, where we compare our pro-
posed algorithm with four classical MOEAs: 1) NSGA-II;
2) MOSOPS-II; 3) MOEA/D; and 4) MOEA/D-DE; and three
state-of-the-art MOEA: 1) MOEA/D-STM; 2) NSGA-III; and
3) MOEA/D-AWA on MOPs or many-objective optimization
problem (MaOPs). The effects of DBS and ABS are also inves-
tigated and discussed in Section VI. Section VII concludes this

paper.

II. PRELIMINARIES

This section first gives some basic definitions of multiob-
jective optimization. Then, some basic knowledge about the
decomposition methods used in this paper is also introduced.

A. Basic Definitions
An MOP can be defined as follows:

minimize F(x) = (fj(x), ... ,fm(x))T
subject to x € Q (D)

where 2 is the decision space, F : Q — R™ consists of m
real-valued objective functions. The attainable objective set is
{F(x)|x € Q}.

Let u,v € R™, u is said to dominate v, denoted by u < v,
if and only if u; < v; for every i € {1,...,m} and u; < v;
for at least one index j € {I, ..., m}.2 A solution x* € Q is
Pareto-optimal to (1) if there exists no solution x € €2 such that
F(x) dominates F(x*). F(x*) is then called a Pareto-optimal
(objective) vector. In other words, any improvement in one
objective of a Pareto-optimal solution is bound to deteriorate
at least another objective.

B. Decomposition Methods

In principle, many methods can be used to decompose an
MOP into a number of scalar optimization subproblems [30].
Among them, the most popular ones are weighted sum (WS),
Tchebycheff (TCH), and penalty boundary intersection (PBI)
approaches [40]. The mathematical definition of these decom-
position methods are as follows.

1) WS Approach: This approach considers a convex com-

bination of all the objectives. One single objective
subproblem s* is defined as

m
minimize g"* <x|kk) = Z)»{'Cfi(x)
i=1
subject to x € (2)

where Af = (Ak e, Aﬁl)r is the direction vector of sub-
problem s¥, and kf.‘ >0,i€l,...,mand ) I, Af =1.
The optimal solution to (2) is a Pareto-optimal solution
to (1). A set of different Pareto-optimal solutions can be
obtained simply by using different direction vectors, to
approximate the PF when it is convex.

2In the case of maximization, the inequality signs should be reversed.

2) TCH Approach: In this approach, one single objective
subproblem s* is defined as

minimize gte(ka,z*) = max [[f,-(x) — Zﬂ/kf}
1<i<m
subject to x € Q 3)

¥ = (z’f, R z:‘n)T is the ideal objective vector, where
z;" < min{fj(x)|x € 2}, i € 1,...,m. For convenience,
AK = 0 is replaced by A¥ = 107, because A¥ = 0 is not
allowed as a denominator in (3).

3) PBI Approach: This approach is a variant of normal-
boundary intersection approach [11]. A subproblem s*
is defined as

minimize g~ (xl)»k, Z*) =d| + Bd
T
dy = (F(x) — ) 2571135
d = |IF) — 2 = (di /1341341

subject to x € Q (@)
where ||.|| denotes the Ly-norm, and g is the penalty
parameter.

III. SELECTION OPERATORS

This section elaborates the selection operator based on the
DBS and the ABS (SAS) scheme.

Given a set of N subproblems S and a set of M solutions,
Z, the goal of SAS is to select N solutions from Z to form P.

For each subproblem j that has a direction vector A/, P/(L)
denotes the set of the first L closest solutions to A/ in Z. The
“closeness” is defined by the acute angle between the solution
x and the direction vector A/, based on
(F() — 2% )

(&)

angle(x, )J) = arccos |
1F(x) =z [I2/]]

The input parameter L in the current call of SAS has been
adaptive, based on the value of output « in the previous call of
SAS (see step 3 of Algorithm 4). L is defined as the number
of closest solutions to each subproblem and « is the number
of selected solution sets, which is explained in Section III-A.

A. Framework of SAS

The pseudo-code of SAS is presented in Algorithm 1.

1) Sorting: In step 1, P is first initialized to be an
empty set. The DBS is conducted iteratively. DBS, presented
in Algorithm 2, is detailed in Section III-B. In the ith
iteration of DBS, L solution sets (fronts) Q(i_l)*LH, el
QU=+ Q"L can be obtained by sorting population
Z (or part of the population Z, depending on the value of L).
Then, these sorted solution sets are added to P and eliminated
from Z (lines 5-8). This process is repeated until the total
number of sorted solutions |P| exceeds the population size N.

After step 1, the population Z (or part of the population Z) is
divided into Lx (i — 1) solution sets (fronts): Q!, ..., QL=
where i — 1 is the total number of iterations of DBS and L
is the number of closest solutions in the population Z to each
subproblem. Note that possible overlapped solutions may exist



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS

Algorithm 1: SAS(Z, z*, L, N)

Algorithm 2: DBS(Z, 7*, L)

Input:
1) Z: the solution set;
2) z*: the ideal objective vector;
3) L: the number of closest solutions to each
subproblem;
4) N: the size of P.
Output:
1) the population P;
2) the number of selected fronts «.

Step 1 Sorting:

P =0;

i=1;

do

[Q(i—l)*L-{—l7 L Qi*L] = DBS (Z, Z*, L),

fork=(G(—1)xL+1toixL do
pP=rJok
Z=7\0%

end

i=i+1;

while |P| < N;

Step 2 Selection:

1 P =y,

12 k=1,

13 while [P J Q| <N do

14 P=PrlJO~

15 k=k+1,

16 end

17 if [P|J QF| > N then

8 | A=0N\P;

19 P = ABS(A, P, z*, N);

o 0 N R W N =

-
=

20 o =k;

21 else

2 a=k—1;
23 end

24 return P and o;

in different fronts Q. The value of i 2 < i < (N + 1)) is
determined by both value of L (1 < L < |Z]) and evolutionary
status of the algorithm. However, two extreme cases in terms
of the value of L can be analyzed as follows. When L = 1,
only the closest solution to each subproblem is chosen, which
indicates only the solution closest to the direction vector of
each subproblem gets involved in sorting. In this case, the
diversity is emphasized and DBS is conducted for multiple
times (i > 2). When L = |Z|, the whole population Z is sorted
for every subproblem and Z is divided into at most |Z| fronts.
In this case, convergence is emphasized and DBS is conducted
for only one time (i = 2). Therefore, more convergence is
likely to be emphasized with the increase of the value of L.
2) Selection: In step 2, N solutions are selected out of the
Lx(i—1) solution sets (fronts) obtained from step 1, as follows.
P is initialized to be an empty set. For the kth front, if the
size of the combined set (P U QX) is smaller than N, then QX
is added to P and the remaining members of P are chosen

Input:
1) Z: the solution set;
2) 7*: the ideal objective vector;
3) L: the number of closest solutions to each
subproblem.
Output:
1) L solution sets: 0!, ..., 0%
10'=0*=...=0l=0.
forj=1to N do
3 | PI(L) = Associate(Z, ); /* Associate
subproblem j with the L closest
solutions P in Z, based on 5). =/
4 for k=1 to L do
g(PI(k)|M, 2%); /* Computing the
aggregation function values. x/

~

6 end

Pl = Sort(P)); /% Sort P/ in an ascending
order, based on g(P/|)M,z") values. x/

8 end

9 for k=1 to L do

10 forj=1to N do

u || 0F=0"UP )
12 end

13 end

14 return Q', ..., OF ;

from Qft!. This procedure is continued until no more sets
can be accommodated (lines 13-16). If the size of the com-
bined set (P U Q) is larger than N and say that the set Q% is
the last set beyond which no other set can be accommodated.
Then the previously selected solutions in P are eliminated from
Q% (Q*\P) and stored in an intermediate set A. The ABS is
activated to select solutions from A to fill P. More details
of ABS are presented in Algorithm 3 in Section III-C. The
number of actually selected sets (Ql, ..., 0% is saved as «.

3) Termination: The solution set P and « are returned as
the outputs.

B. Decomposition-Based-Sorting

The detailed procedures of DBS is presented in Algorithm 2
as follows. At the beginning, each subproblem j chooses
its closest L solutions P/ in Z, based on (5) (line 3). The
chosen solutions are sorted into L solution sets (fronts),
o', ..., 0k ..., O (lines 9-13), where QX contains the solu-
tions with the kth best g(x|}/,z*) values, in P/ for every
subproblem j, (1 < j < N) (lines 4-7). Note that it is pos-
sible that |Q%| < N since two different subproblems may have
the same kth best solution in QF. An illustrative example of
DBS can be found in Section I of supplementary material.

C. Angle-Based-Selection

To further improve the diversity in the population, our selec-
tion scheme needs to consider the diversity relationship between
the selecting solutions and the solutions in the previously
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Fig. 2. Tllustration of the angle between solution x and y.

Algorithm 3: ABS(A, P, z*, N)
Input: two populations A and P, the ideal objective
vector z¥, size of P: N
Output: the population P

1 foreach x' € A do

2 ‘ 0; < minxjep{angle(xi,xj)};
3 end

4 fori < 1to |A| do

5 k < argmax{6c};

6 if |P| < N then

7 A < A\ {x});

8 0 < 0\ {Oc}s

9 P < P}

10 foreach ¥ € A do

11 ‘ 0 <~ min{Gj,angle(xk,xj)};
12 end

13 else

14 ‘ break;

15 end

16 end

17 return P;

selected fronts. In this paper, we use acute angles between
objective vectors of solutions to quantify diversity, as follows:

V{VZ
angle(x, y) = arccos| ———— (6)
Iviliiival
where
vi=Fx) —7*
v =F@) — z*.

F(x) and F(y) are, respectively, the objective vectors of solu-
tion x € P and y € A, and z* is the ideal objective vector.
Fig. 2 shows the calculation of diversity, as presented in (6).
The idea of ABS is that, a member is added to P if and only
if its angle with elements in P is the largest.

The pseudo-code of ABS is presented in Algorithm 3. For
each solution x' € A in the selecting front, its minimum angle,
60;, to each solution in P, is calculated (lines 1-3), based on (6).
To maximize the diversity, line 5 obtains the solution (xk) with
the largest angle (6) to P. If the size of P is less than N,

it will be deleted from A and added to P (lines 7-9); and the
corresponding minimum angle between ¥ and P is updated
(lines 10-12); otherwise, the loop is terminated. Finally, P is
returned as the output (line 17). An illustrative example of
ABS can be found in Section II of supplementary material.

D. Computational Cost of the SAS

In DBS (Algorithm 2), the computational cost of associa-
tion operators (N cycles of line 3) for all the subproblems can
be easily reduced by the following two steps. The first step
approximates the objective vectors of all the solutions in Z to
their closest direction vectors, which requires O(mM) compu-
tations, where m is the number of objectives and M = 2N is
the size of population Z. The second step needs O(L) compu-
tations to obtain L neighboring solutions for each subproblem
based on the first step. Therefore, the total computational cost
of association operators for all the subproblems can be reduced
to O(LN). The complexity to calculate g(x) for all the sub-
problems is O(mLN) (N cycles of lines 4-6). O(NLlogL)
comparisons are used to sort g(x) values (N cycles of line 7).
So the complexity of Algorithm 2 is the larger one of O(mLN)
and O(NLlogL).

In ABS (Algorithm 3), the computational cost can also be
reduced if each solution in A only calculates its angle to each
solution x' in § C P, where S is T < |P| neighboring solutions
of x' € P. Suppose that the size of solution set A is N,. The
calculation of minimum angles between each solution in A
and S (lines 1-3) needs O(mN,T) computations. The cycles
from lines 4-16 are executed at most N, times. Line 11 is
executed N, x (N, — 1)/2 times. Therefore, in the worst case,
the complexity of Algorithm 3 is O(Ng) (Ny < N).

In SAS (Algorithm 1), at most N solutions are added to
P in step 2, so the computational cost of for-loop in step 1
is O(NlogN). The computational cost of DBS in step 1
is O(mLN) or O(NLlogL). At most N solutions are added
to P in step 2, so the computational cost of while-loop in
step 2 is also O(NlogN). ABS in step 2 needs O(N,N,)
(N4, < N). So the computational cost of the SAS is the larger
one of O(mLN), O(NLlogL) (L < N) and O(NlogN). On
the contrary, the computational cost of the STM model is
O(NM log M). Apparently, either one of O(mLN), O(NLlogL),
and O(NlogN) is much smaller than O(NM log M) and the
computational complexity of SAS has been greatly reduced
compared with STM.

IV. INTEGRATION OF SAS WITH MOEA/D

In this section, SAS is integrated into MOEA/D. The
pseudo-code of our algorithm, called MOEA/D-SAS, is
demonstrated in Algorithm 3.

At each generation, MOEA/D-SAS maintains the following.

1) A population of N solutions, P = {xl, . ,xN}.

2) A set of N subproblems, S = {s',...,sV}.

3) Objective function values, FV!, ..., FVV, where FV' is

the F-value of x'.
The algorithm works as follows.
Step 1: [Initialization: Initialize P.
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Algorithm 4: MOEA/D-SAS

Input:
1) MOP(1);
2) a stopping criterion;
3) N: the number of subproblems; the population size of
Pand Y;
4) AL AN asetof N weight vectors;
5) T: the size of the neighborhood for each subproblem.
Output: population P.
Step 1 Initialization:
a) Compute the Euclidean distances between any two
weight vectors and obtain 7 closest weight vectors to

each weight vector. For each i =1,..., N, set
B(i) = {i1, ..., ir} where A AT are the T closest
weight vectors to A,

b) Generate an initial population P = {xl, N }
randomly.

¢) Initialize z* = (27, ..., Zi)T by setting
ZF = min{fi(x"), ..., M)}

d) Initialize @« = 2 % N.

Step 2 New Solution Generation:

Foreachi=1,...,|P|, do:

a) Selection of the Mating Solutions:

1) Associate each solution x’ with its closest
subproblem k based on (5).

2) If rand(0, 1) < 8, then set D to the set of
solutions associated with all the subproblems
in B(k), else, set D = P.

b) Reproduction: Set x' = x’ and randomly select two
indices r, and r3 from D, and then generate a new
solution y' from x’!, x"2 and x"3 by DE.

¢) Evaluation y' : FV/ = F(y').

d) Update of * : For each j = 1,....m, if z > £,
then set z;‘ =£0".

Step 3 Sorting-and-Selection: Set L = min{« + T, 2N},
[P,a] = SAS(P|JY,z", L, N).

Step 4 Stopping Criteria: If stopping criteria is satisfied,
then stop and output P. Otherwise, go to Step 2.

New Solution Generation: Generate a set of new
solutions Y.
Sorting and Selection: Use Y to update P.
Stopping Condition: If a preset stopping condition
is met, output P. Otherwise, go to step 2.

The pseudocode of MOEA/D-SAS is given in Algorithm 4.
The details of steps 1-3 are given as follows.

Step 2:

Step 3:
Step 4:

A. Initialization

MOEA/D-SAS decomposes an MOP into N single objective
optimization subproblems by using a decomposition approach
(WS, TCH, or PBI) with N weight vectors

T
x":(x’f,...,,\fn) k=1,....N 7

where Af e RY and Z:":lkf = 1. The subproblem s* is
defined by (2), (3), or (4), in Section II-B.
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For each k = 1,..., N, let B(k) be the set containing the
indices of the T closest weight vectors to AX in terms of
the Euclidean distance. If i € B(k), subproblem i is called
a neighbor of subproblem k.

Solution x’ in P can be generated randomly or by using
a single objective heuristic on the subproblem i. The ideal
objective vector is initialized as the minimum values of all
the solutions in P along each objective. « is initialized as 2N.

B. New Solution Generation

An offspring population Y (size of N) is generated in step 2.
For each solution x’ in P, the process for generating a new
solution y' is as follows.

In step 2a, the mating pool D for solution x’ is set to the
set of solutions associated with all the subproblems in B(k)
with probability § or the population P with probability 1 — 8.
In step 2b, an offspring solution is reproduced, using par-
ent solutions from the mating pool D. Any genetic operator
or mathematical programming technique can serve this pur-
pose, although differential evolution (DE) [32] and polynomial
mutation [13] are used in this paper. We set one parent solu-
tion X' = xi{. The other two parent solutions, x’2 and x'3,
are randomly selected from mating pool D, for generating an
offspring solution as follows:

J J (8)

1

s otherwise

B {x;1 +F x (x(z - xr3), if rand < CR or j = jiand

Yi =
where j = 1,...,n, rand € [0, 1], jrand € [1, 7] is a random
integer uniformly generated from 1 to n; and CR and F are
two control parameters.

The polynomial mutation operator is applied on y to

generate y = (y1, ..., yn)!

~__)yj+ 0 x (bj —aj), with probability py, ©)
S A with probability 1 — p
with
1
(2 x rand) "*T — 1, if rand < 0.5
0j = e , (10)
1 —(2—2 xrand) "+, otherwise

where rand is a random number uniformly generated from
[0, 1]; the distribution index n and the mutation rate p,, are
two control parameters; and a; and b; are the lower and upper
bounds of the jth decision variable.

In step 2c, the new solution y’ is evaluated. The ideal
objective vector z* is updated in step 2d. The procedure
(steps 2a-2d) is repeated N times, so a population ¥ =
(', ..., ¥V} can be obtained.

C. Sorting-and-Selection

SAS is called to updated P, that is to select N solutions
out of combined population P U Y. The neighborhood size L
for sorting in SAS, is adaptively controlled by the number of
selected fronts in the last call of SAS. The maximum value of
L is set to 2 * N while the minimum value is set to o + 7.
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TABLE I
PARAMETER SETTINGS IN MOEA/D-SAS, MOEA/D-STM, MOEA/D-DE, MOEA/D,
MSOPS-II, AND NSGA-II FOR 2-OBJECTIVE TEST INSTANCES

Population size | # of neighbors | Crossover rates | Mutation rates | # of function evaluations
B UF(1-7) UF(1-7) UF(1-7) UF(1-7) UF(1-7)
MOEA/D-SAS 300 10 (20 for UF3) 1.0 1/n 300,000
MOEA/D-STM 300 20 1.0 1/n 300,000
MOEA/D-DE 300 20 1.0 1/n 300,000
MOEA/D 300 20 1.0 1/n 300,000
MSOPS-1I 300 - 0.7 - 300,000
NSGA-II 300 - 0.9 1/n 300,000
TABLE II

PARAMETER SETTINGS IN MOEA/D-SAS,

MOEA/D-STM, MOEA/D-DE, MOEA/D,

MSOPS-II, AND NSGA-II FOR 3-OBJECTIVE TEST INSTANCES

Population size # of neighbors Crossover rates Mutation rates # of function evaluations
B UF(8-10) | DTLZ(1-7) | UF(8-10) | DTLZ(1-7) | UF(8-10) | DTLZ(1-7) | UF(8-10) | DTLZ(1-7) | UF(8-10) [ DTLZ(I-7)

MOEA/D-SAS 600 300 20 20 1.0 1.0 1/n 1/n 300,000 300,000
MOEA/D-STM 600 300 20 20 1.0 1.0 1/n 1/n 300,000 300,000
MOEA/D-DE 600 300 20 20 1.0 1.0 1/n 1/n 300,000 300,000
MOEA/D 600 300 20 20 1.0 1.0 1/n 1/n 300,000 300,000
MSOPS-II 600 300 — — 0.7 0.7 — — 300,000 300,000
NSGA-IT 600 300 — — 0.9 0.9 1/n 1/n 300,000 300,000

D. More Discussions on MOEA/D-SAS

In a very recent work [34], a decomposition-based MOEA
(named WASF-GA) is proposed. In WASF-GA, the population
is also divided into different fronts based on decomposition
function values for subproblems. However, the selection of
MOEA/D-SAS is fundamentally different from WASF-GA in
the following two aspects.

1) MOEA/D-SAS can also deal with MOPs with irreg-
ular PFs, e.g., the disconnected and degenerate ones.
Therefore, for the same case in Fig. 1, WASF-GA can
only achieve the selection results in Fig. 1(b), while
MOEA/D-SAS can achieve the ideal results in Fig. 1(a),
due to the following two distinctive characteristics of
MOEA/D-SAS.

a) Different solutions are allowed to associate with
the same subproblems and some subproblems may
have no associated solutions.

b) ABS adopts the angle information to select solu-
tions with the best diversity.

2) Different from WASF-GA, which conducts sorting on
all the solutions for each subproblem, DBS only sorts
L closest solutions to each subproblem to control the
convergence and reduce the computational cost.

V. EXPERIMENTAL SETTING
A. Test Problems

Two well-known test suites are considered in our exper-
imental studies. One is the UF test suite which contains
ten unconstrained MOP test instances (UF1-UF10) from the
CEC2009 MOEA competition [41]. Seven of them (UF1-UF7)
are 2-objective test functions, and the rest (UF8—UF10) are
3-objective functions. For all UF test functions, the num-
ber of decision variables is set to 30. Another test suite is
DTLZ [16]. All DTLZ instances can be scaled to any number
of objectives and decision variables. In this paper, the number

of objectives is set to 3 and the number of decision variables is
set to 10.

B. Parameter Settings

All the algorithms were implemented in MATLAB. The
parameters of NSGA-II, MSOPS-II, MOEA/D, MOEA/D-DE,
and MOEA/D-STM were set according to [15], [20], [25],
[28], and [40]. The parameters of MSOPS-II, MOEA/D,
MOEA/D-STM, and MOEA/D-SAS were set in such a
way that they shared the same key parameter values with
MOEA/D-DE. Their parameter settings for 2- and 3-objective
benchmark functions are listed in Tables I and II, respectively.

The setting of N weight vectors (Al, AN ) is controlled
by a positive integer parameter H, which specifies the granular-
ity or resolution of weight vectors, as in [40]. Each individual
weight takes a value from

0 1 H
TaHl
The number of weight vectors is determined by both parameter

H and the number of objectives m: N = CI"_}I_:n_l.

C. Performance Metrics

Inverted generational distance (IGD) [8], [45] is used as the
performance metric in our studies. IGD measures the average
distance from a set of reference points P* in the PF to the
approximation set P. It can be formulated as follows:

1 .
> dist(v, P)

IGD(P, P*) =
||
vep*

Y

where dist(v, P) is the Euclidean distance between the solution
v and its nearest point in P, and |P*| is the cardinality of P*. If
|P*| is large enough to represent the PF very well, IGD(P, P*)
could measure both diversity and convergence of P in a sense.
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MEAN AND STANDARD DEVIATION VALUES OF IGD, OBTAINED BY MOEA/D-SAS, MOEA/D,

MOEA/D-DE, MSOPS-II, AND NSGA-IT oN UF AND DTLZ INSTANCES

. IGD
mnstance MOEA/D-SAS MOEA/D MOEA/D-DE MSOPS-II NSGAI
UF1 1.644E-03 (5.52E-05) | 9.807E-02 (5.92E-02) T | 2.439E-03 (4.94E-04) T | 7.425E-02 (5.44E-03) T | 8.390E-02 (1.17E-02) T
UF2 7.162E-03 (2.57E-03) | 7.712E-02 (3.40E-02) T | 1.118E-02 (3.21E-03) T | 5.716E-02 (2.10E-02) T | 3.272E-02 (2.32E-03) T
UF3 9.987E-03 (8.25E-03) | 2.912E-01 (5.23E-02) T | 2.539E-02 (2.12E-02) T | 3.141E-01 (1.75E-02) T | 7.031E-02 (1.14E-02) T
UF4 5.699E-02 (2.52E-03) | 9.186E-02 (6.82E-03) T | 6.767E-02 (2.80E-03) T | 5.671E-02 (4.09E-03) 7.606E-02 (1.35E-02) T
UF5 2.358E-01 (3.14E-02) | 1.178E+00 (1.62E-01) T | 2.901E-01 (4.56E-02) T | 3.437E-01 (9.80E-02) T | 6.793E-01 (9.88E-02) T
UF6 9.963E-02 (5.76E-02) | 4.958E-01 (1.58E-01) T | 1.868E-01 (1.34E-01) T | 2.985E-01 (2.29E-01) T 3.217E-01 (7.60E-02) T
UF7 2.480E-03 (6.28E-04) | 2.546E-01 (2.50E-01) T | 4.067E-03 (9.31E-04) T | 4.181E-02 (7.21E-03) T | 3.504E-01 (8.65E-03) T
UF8 3.356E-02 (4.03E-03) | 7.324E-02 (2.35E-02) T | 6.213E-02 (7.45E-03) T | 1.912E-01 (5.38E-03) T | 2.671E-01 (5.44E-02) T
UF9 2.925E-02 (3.88E-03) | 1.228E-01 (4.90E-02) T | 6.111E-02 (3.85E-02) T | 2.354E-01 (3.42E-02) T 1.840E-01 (6.91E-02) T
UF10 | 5.236E-01 (6.87E-02) | 4.827E-01 (7.29E-02) 4.971E-01 (4.44E-02) 2.490E-01 (1.20E-01) ¥ | 6.632E-01 (6.81E-02) T
DTLZ1 | 1.081E-02 (1.21E-04) | 1.600E-02 (5.88E-05) T | 1.611E-02 (1.32E-04) T | 1.573E+00 (6.27E-01) T | 4.158E+00 (2.56E+00) T
DTLZ2 | 2.897E-02 (3.68E-05) | 3.727E-02 (8.30E-05) T | 3.725E-02 (8.69E-05) T | 3.757E-02 (2.16E-03) T | 5.972E-02 (7.90E-03) T
DTLZ3 | 3.363E-02 (3.33E-04) | 3.868E-02 (2.52E-04) T | 3.885E-02 (1.86E-04) T | 4.866E+00 (2.64E+00) T | 1.458E+01 (8.01E+00) T
DTLZ4 | 3.404E-02 (2.41E-04) | 1.292E-01 (1.83E-01) T | 5.971E-02 (7.34E-02) T | 3.321E-02 (4.57E-04) ¥ | 7.318E-02 (2.84E-02) T
DTLZ5 | 3.598E-03 (1.43E-04) | 4.394E-03 (1.11E-05) T | 4.402E-03 (9.04E-06) T | 1.578E-02 (3.82E-03) T | 1.836E-03 (1.34E-04) ¥
DTLZ6 | 3.685E-03 (1.95E-04) | 4.420E-03 (3.18E-06) T | 4.583E-03 (1.56E-04) T | 9.139E-01 (7.54E-02) T | 5.388E-03 (1.53E-03) T
DTLZ7 | 6.837E-02 (5.13E-02) | 3.586E-01 (2.82E-01) T | 1.151E-01 (2.70E-03) T | 1.240E-01 (1.29E-01) T 7.828E-01 (1.20E-01) T

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-SAS and each of the other competing algorithms. T and ¥ denotes that
the performance of the corresponding algorithm is significantly worse than or better than that of MOEA/D-SAS, respectively. The best mean is highlighted

in boldface.

VI. EXPERIMENTAL STUDIES AND DISCUSSION

To study the performance of MOEA/D-SAS and understand
its behavior, this section conducts the following experimental
works.

1) Comparisons of MOEA/D-SAS with NSGA-II [15],

MOEA/D [40], MOEA/D-DE [25], and MSOPS-II [20].

2) Comparisons of MOEA/D-SAS with MOEA/D-

STM [28].

3) Investigation of the computational efficiency of DBS.

4) Investigation of the effects of ABS in MOEA/D-SAS.

In our experiments, each algorithm was run 30 times inde-
pendently for each test instance. To make fair comparisons,
TCH approach has been used as decomposition approach
in MOEA/D, MOEA/D-DE, and MOEA/D-SAS on 2- or
3-objective optimization problems.

A. Comparisons With Classical MOEAs

In this section, we compare MOEA/D-SAS with four clas-
sical domination or decomposition-based MOEAs—NSGA-II,
MSOPS-II, MOEA/D, and MOEA/D-DE.

The performances of MOEA/D-SAS, MOEA/D, MOEA/D-
DE, NSGA-II, and MSOPS-II, in terms of IGD, is presented
in Table III. MOEA/D-SAS has the significantly best per-
formance among all the compared algorithms, on all the
test functions, except for UF4, UF10, DTLZ4, and DTLZS.
MSOPS-II has the best performance on UF4, UF10, and
DTLZ4; NSGA-II has the best performance on DTLZS.

To compare the performance of algorithms during the opti-
mization process, the evolution of the average IGD values,
versus the number of function evaluations, for UF and DTLZ
test instances are plotted in Fig. 3. It can be seen clearly from
these figures that MOEA/D-SAS almost always has the best
performances on both convergence speed and quality of the
final nondominated sets. This observation is consistent with
our motivations in Section I.

TABLE IV
MEAN AND STANDARD DEVIATION VALUES OF IGD, OBTAINED BY
MOEA/D-SAS AND MOEA/D-STM oON UF AND DTLZ INSTANCES

instance 1GD
MOEA/D-SAS MOEA/D-STM p-value
UF1 1.644E-03 (5.52E-05) 1.980E-03 (6.32E-05) 3.02E-11
UF2 7.162E-03 (2.57E-03) 7.074E-03 (1.84E-03) 0.7845
UF3 9.987E-03 (8.25E-03) | 3.721E-03 (2.48E-03) | 5.09E-06
UF4 5.699E-02 (2.52E-03) 5.614E-02 (3.75E-03) 0.2340
UF5 2.358E-01 (3.14E-02) 2.522E-01 (2.45E-02) 2.15E-02
UF6 9.963E-02 (5.76E-02) 8.202E-02 (3.75E-02) 0.6520
UF7 2.480E-03 (6.28E-04) 2.658E-03 (6.35E-04) | 4.86E-03
UF8 3.356E-02 (4.03E-03) 6.331E-02 (1.04E-02) | 4.50E-11
UF9 2.925E-02 (3.88E-03) 2.748E-02 (2.26E-03) 0.0555
UF10 5.236E-01 (6.87E-02) | 1.213E+00 (2.09E-01) | 3.02E-11
DTLZI1 1.081E-02 (1.21E-04) | 2.367E+00 (7.91E+00) | 3.82E-10
DTLZ2 | 2.897E-02 (3.68E-05) 3.000E-02 (2.11E-04) 3.02E-11
DTLZ3 | 3.363E-02 (3.33E-04) | 2.499E+00 (7.85E+00) | 6.07E-11
DTLZ4 | 3.404E-02 (2.41E-04) 8.748E-02 (1.10E-01) 3.02E-11
DTLZ5 | 3.598E-03 (1.43E-04) 7.083E-03 (2.63E-05) 3.02E-11
DTLZ6 | 3.685E-03 (1.95E-04) 7.091E-03 (8.72E-07) 3.02E-11
DTLZ7 | 6.837E-02 (5.13E-02) 1.627E-01 (4.52E-02) 5.07E-10

Wilcoxon’s rank sum test at a 0.05 significance level is performed between
MOEA/D-SAS and MOEA/D-STM. Boldface denotes that the performance
of the corresponding algorithm is significantly better than that of the other.

B. Comparisons With MOEA/D-STM

MOEA/D-STM [28] is a state-of-the-art MOEA/D variant,
which adopts an STM model to balance the convergence and
diversity in the selection process of MOEA/D. In this section,
we compare MOEA/D-SAS with it.

Table IV shows the performance of MOEA/D-SAS and
MOEA/D-STM in terms of IGD. We can observe that the per-
formances of MOEA/D-SAS are significantly better than that
of MOEA/D-STM on 12 out of 17 test functions, although its
performance is significantly worse than that of MOEA/D-STM
on UF3. The two compared algorithms have very similar
performances on UF2, UF4, UF6, and UF9.
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three UF and three DTLZ instances. Convergence plot of six algorithms on (a) UF1, (b) UF5, (c¢) UFS8, (d) DTLZI, (e) DTLZ2, and (f) DTLZ7.

Fig. 4 plots all the populations over 30 independent
runs obtained by MOEA/D-SAS, MOEA/D-STM, and
MOEA/D-DE on UF2, UF8, DTLZI1, and DTLZ7. It is very
clear that MOEA/D-SAS performs best among the three algo-
rithms. It is worth to note that, for the benchmark problem with
a disconnected and degenerate PF, such as DTLZ7, MOEA/D-
STM tends to obtain the boundary solutions in PF, as illustrated
in Fig. 1 and explained in Section I, while MOEA/D-SAS is
able to obtain more diverse Pareto approximate solutions.

C. Computational Efficiency of Decomposition-Based-Sorting

DBS conducts sorting only among the neighboring
solutions for each subproblem, which effectively reduces its

computational cost. The number of selected fronts («) at
each generation adaptively determines the number of clos-
est solutions to the direction vectors of subproblems L,
for the next generation, and thus, plays an important role
on the computational efficiency of DBS. Fig. 5 plots the
evolution of o at each generations on different benchmark
problems. It can be observed that the values of o decrease
very quickly during the evolutionary process and level off
at a very small value (@ <« N), in all the benchmark
problems. These observations further support the motivations
in Section I and analysis in Section III, that DBS is able to
use local neighborhood information to reduce its computa-
tional cost.
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Fig. 4. Plots of all the final populations over 30 independent runs obtained by MOEA/D-SAS, MOEA/D-STM, and MOEA/D-DE on two UF instances and
two DTLZ instances. The solution set obtained by (a) MOEA/D-SAS on UF2, (b) MOEA/D-STM on UF2, (c) MOEA/D-DE on UF2, (d) MOEA/D-SAS
on UF8, (¢) MOEA/D-STM on UF8, (f) MOEA/D-DE on UFS, (g) MOEA/D-SAS on DTLZ1, (h) MOEA/D-STM on DTLZI, (i) MOEA/D-DE on DTLZI,
(j) MOEA/D-SAS on DTLZ7, (k) MOEA/D-STM on DTLZ7, and (1) MOEA/D-DE on DTLZ7.

D. Effects of Angle-Based-Selection

The ABS is proposed as a fine-grained diversity main-
tenance scheme in SAS. In this section, the effects of it
are investigated and analyzed. We compare MOEA/D-SAS
with a variant of itself [named MOEA/D-SAS(a)], in which
the ABS is eliminated. The comparisons between these two
algorithms can be considered as a way to test the effects

of ABS. In addition, we also replace ABS with niche-
counts [14], for MOEA/D-SAS. This variant of MOEA/D-SAS
[named MOEA/D-SAS(n)] is also compared with the original
MOEA/D-SAS.

The experimental results of comparing MOEA/D-SAS
with MOEA/D-SAS(a) and MOEA/D-SAS(n) are presented
in Table V. It can be observed that the performances
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Fig. 5. Number of selected fronts versus the number of generations in the evolutionary process. (a) UF1-7. (b) UF8-10. (c) DTLZ107.

TABLE V

MEAN AND STANDARD DEVIATION VALUES OF IGD, OBTAINED BY MOEA/D-SAS, MOEA/D-SAS(a),
AND MOEA/D-SAS(n) oN UF AND DTLZ INSTANCES

instance

I1GD

MOEA/D-SAS

MOEA/D-SAS(a)

MOEA/D-SAS(n)

UF1

1.644E-03 (5.52E-05)

1.664E-03 (4.68E-05) T

1.655E-03 (4.64E-05)

UF2

7.162E-03 (2.57E-03)

6.888E-03 (1.77E-03)

6.458E-03 (2.10E-03)

UF3

9.987E-03 (8.25E-03)

7.360E-03 (4.17E-03)

7.042E-03 (2.89E-03)

UF4

5.699E-02 (2.52E-03)

5.736E-02 (3.86E-03)

5.773E-02 (3.41E-03)

UF5

2.358E-01 (3.14E-02)

2.541E-01 (3.57E-02) T

2.497E-01 (3.16E-02) T

UF6

9.963E-02 (5.76E-02)

1.072E-01 (5.27E-02)

1.178E-01 (4.80E-02) T

UF7

2.480E-03 (6.28E-04)

2.724E-03 (5.59E-04) T

2.814E-03 (9.01E-04)

UF8

3.356E-02 (4.03E-03)

4.069E-02 (7.37E-03) T

3.813E-02 (5.02E-03) T

UF9

2.925E-02 (3.88E-03)

2.885E-02 (2.84E-03)

2.790E-02 (2.05E-03)

UF10

5.236E-01 (6.87E-02)

5.021E-01 (7.26E-02)

5.178E-01 (6.27E-02)

DTLZ1

1.081E-02 (1.21E-04)

1.084E-02 (2.16E-04)

1.077E-02 (1.94E-04) ¥

DTLZ2

2.897E-02 (3.68E-05)

2.898E-02 (5.48E-05)

2.897E-02 (3.14E-05)

DTLZ3

3.363E-02 (3.33E-04)

3.368E-02 (3.76E-04)

3.355E-02 (2.65E-04)

DTLZ4

3.404E-02 (2.41E-04)

3.419E-02 (2.23E-04) T

3.411E-02 (1.75E-04)

DTLZ5

3.598E-03 (1.43E-04)

6.301E-03 (5.96E-06) T

6.300E-03 (4.98E-06) T

DTLZ6

3.685E-03 (1.95E-04)

6.294E-03 (1.04E-04) T

6.276E-03 (1.75E-04) T

DTLZ7

6.837E-02 (5.13E-02)

7.466E-02 (8.81E-03) T

9.645E-02 (1.30E-01) T

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-SAS and each of the other competing algorithms. T and ¥ denotes that the
performance of the corresponding algorithm is significantly worse than or better than that of MOEA/D-SAS, respectively. Boldface denotes the corresponding

algorithm is better than the two other algorithms.

TABLE VI
PARAMETER SETTINGS IN MOEA/D-SAS AND NSGA-III FOR MANY-OBJECTIVE BENCHMARK PROBLEMS

- M=5 i;l)zlgﬂatf/[iil()ze M=TS # of neighbors | Crossover rates | Mutation rates | # of function evaluations
MOEA/D-SAS | 212 | 156 | 276 136 10 1.0 1/n 300,000
NSGA-III 210 | 156 | 275 135 — 1.0 1/n 300,000

of MOEA/D-SAS are significantly better than that of
MOEA/D-SAS(a) on 8 out of 17 benchmark problems. The
performances between these two algorithms have no signifi-
cant differences on the other nine benchmark problems. The
results validate that ABS is very effective to improve the
diversity of the population in most cases.

In addition, the performances of MOEA/D-SAS are signif-
icantly better on six benchmark problems and worse on one
problem than that of MOEA/D-SAS(n). Both algorithms have
very similar performances on the rest of benchmark prob-
lems. The above results are consistent with our motivations
in Section I that ABS is more fine-grained than niche-counts
scheme.

E. Performance of MOEA/D-SAS on Many-Objective
Optimization Problems

1) MOEA/D-SAS Versus NSGA-111: NSGA-III [14], which
is a state-of-the-art variant of NSGA-II, has shown very good
performance on MOPs. In this section, MOEA/D-SAS and
NSGA-III are compared on the 5-, 8-, 10-, and 15-objective
DTLZ test problems. PBI is used as the decomposition
approach for MOEA/D-SAS, where the penalty parameter S
is set to 3 for DTLZ3 and 10 for all other test problems.
More details with regard to the parameter settings are listed
in Table VI.

The performance of MOEA/D-SAS and NSGA-III, in terms
of IGD values, are presented in Table VII. It can be observed
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Fig. 6. Parallel coordinate plots for the nondominated solution set in the best run obtained by MOEA/D-SAS (left column) and NSGA-III (right

column) on 10-objective DTLZ problems. The middle column shows the parallel coordinate plots of the reference solution sets sampled from the true PFs.
(@), (d), (g), and (j) MOEA/D-SAS. (b), (e), (h), and (k) True PFs. (c), (f), (i), and (1) NSGA-IIL.

that MOEA/D-SAS is able to outperform NSGA-III on most
test problems and MOEA/D-SAS has the increasingly better
performance than NSGA-III when the number of objectives
increases. It is also worth to note that DTLZS and DTLZ6
are the degenerated test problems, whose PFs are irregu-
lar. Nevertheless, MOEA/D-SAS constantly achieves better
performance than NSGA-III on these two test problems.

To show the convergence and diversity for these two
compared algorithms, the parallel coordinate plots of the solu-
tion sets obtained from the best run for MOEA/D-SAS and
NSGA-III are shown in Fig. 6. It is clear to see that MOEA/D-
SAS achieves much better diversity than NSGA-III on DTLZ1
and DTLZ2. For DTLZ5 and DTLZ6 whose PFs are degen-
erate, the shapes of parallel coordinate plots obtained by
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TABLE VII
MEAN AND STANDARD DEVIATION VALUES OF IGD, OBTAINED BY
MOEA/D-SAS AND NSGA-III ON DTLZ INSTANCES

instance

MOEA/D-SAS

NSGA-III

p-value

DTLZ1

6.667E-02 (1.447E-03)

5.193E-02 (1.753E-04)

3.02E-11

DTLZ2

2.337E-01 (9.387E-03)

1.332E-01 (2.645E-04)

3.02E-11

DTLZ3

1.851E+00 (2.254E+00)

1.341E-01 (3.200E-03)

3.02E-11

DTLZ4

2.108E-01 (1.228E-02)

1.331E-01 (1.266E-04)

3.02E-11

DTLZ5

2.043E-02 (1.241E-03)

9.550E-02 (2.769E-02)

3.02E-11

DTLZ6

2.029E-02 (1.010E-03)

1.364E+00 (9.325E-02)

3.02E-11

DTLZ7

5.926E-01 (4.230E-02)

4.116E-01 (1.255E-01)

6.52E-09

DTLZ1

9.579E-02 (7.327E-04)

2.001E-01 (5.059E-02)

1.11E-06

DTLZ2

4.999E-01 (1.240E-02)

5.535E-01 (2.323E-01)

0.1858

DTLZ3

5.735E-01 (6.574E-01)

6.850E-01 (2.437E-01)

0.2282

DTLZ4

5.010E-01 (6.964E-03)

3.654E-01 (1.242E-03)

3.02E-11

DTLZ5

2.524E-02 (8.936E-04)

3.256E-01 (1.126E-01)

3.02E-11

DTLZ6

2.391E-01 (5.993E-01)

4.014E+00 (4.411E-01)

3.02E-11

DTLZ7

1.364E+00 (1.642E-01)

2.286E+00 (3.537E-01)

3.02E-11

10

DTLZ1

9.380E-02 (7.515E-04)

2.318E-01 (4.330E-02)

8.48E-09

DTLZ2

5.215E-01 (5.599E-03)

7.467E-01 (2.207E-01)

7.96E-03

DTLZ3

1.267E+00 (1.907E+00)

8.784E-01 (9.647E-02)

4.94E-05

DTLZ4

5.675E-01 (5.178E-03)

4.159E-01 (2.819E-03)

3.02E-11

DTLZ5

2.064E-02 (2.453E-04)

4.465E-01 (1.092E-01)

3.02E-11

DTLZ6

1.789E-01 (4.577E-01)

4.961E+00 (4.647E-01)

3.02E-11

DTLZ7

1.765E+00 (9.144E-02)

4.572E+00 (7.510E-01)

3.02E-11

15

DTLZ1

7.082E-02 (5.327E-03)

3.121E-01 (8.653E-03)

3.02E-11

DTLZ2

4.510E-01 (3.219E-02)

1.014E+00 (2.716E-02)

3.02E-11

DTLZ3

3.593E-01 (2.267E-01)

1.137E+00 (3.675E-01)

5.57E-10

DTLZ4

1.478E-01 (1.124E-02)

1.031E+00 (2.401E-02)

6.77E-05

Wilcoxon’s rank sum test at a 0.05 significance level is performed between
MOEA/D-SAS and NSGA-III. Boldface denotes that the performance of the

corresponding algorithm is significantly better than that of the other.

TABLE VIII
MEAN AND STANDARD DEVIATION VALUES OF IGD, OBTAINED BY
MOEA/D-SAS AND MOEA/D-AWA ON DTLZ TEST PROBLEMS
WITH DISCONNECTED AND DEGENERATE PFS

M | instance

MOEA/D-SAS

MOEA/D-AWA

DTLZ5

2.043E-02 (1.241E-03)

T.134E-01 (1.560E-02)

DTLZ6

2.029E-02 (1.010E-03)

2.173E-01 (3.213E-02)

DTLZ7

5.926E-01 (4.230E-02)

2.353E-01 (1.035E-02)

DTLZ5

2.524E-02 (8.936E-04)

1.627E-01 (4.401-02)

DTLZ6

2.391E-01 (5.993E-01)

5.790E-01 (2.192E-01)

DTLZ7

1.364E+00 (1.642E-01)

9.570E-01 (1.370E-01)

10 DTLZ5

2.064E-02 (2.453E-04)

2.604E-01 (6.477E-02)

DTLZ6

1.789E-01 (4.577E-01)

7.450E-01 (3.223E-03)

DTLZ7

1.765E+00 (9.144E-02)

1.210E+00 (1.175E-01)

Wilcoxon’s rank sum test at a 0.05 significance level is performed between
MOEA/D-SAS and MOEA/D-AWA. Boldface denotes that the performance
of the corresponding algorithm is significantly better than that of the other.

MOEA/D-SAS is much more similar to that of true PFs than
the ones obtained by NSGA-III.

2) MOEA/D-SAS Versus MOEA/D-AWA: In the MOEA/D
with adaptive weight adjustment (MOEA/D-AWA) [33], an
adaptive weight vector adjustment strategy is introduced. The
weight vectors of subproblems are adjusted periodically to be
redistributed adaptively for obtaining better uniformity of solu-
tions. Different from MOEA/D-AWA, MOEA/D-SAS uses the
fixed set of weight vectors. However, different solutions can
be associated with the same subproblems; and some subprob-
lems are allowed to have no associated solution. To compare
the effects of MOEA/D-AWA and MOEA/D-SAS on irregular
MOPs, experiments are conducted between these two algo-
rithms on 5-, 8-, and 10-objective DTLZ5-7 test problems that

have disconnected or degenerate PFs, as shown in Table VIII.
It can be seen that MOEA/D-SAS performs significantly better
than MOEA/D-AWA on all DTLZ5-6 test problems though it
performs worse than MOEA/D-AWA on DTLZ7.

VII. CONCLUSION

This paper proposed an SAS as the selection operator for
MOEA/D to address MOPs. In SAS, the balance between
convergence and diversity is achieved by two components,
DBS and ABS. Different from other selection schemes, e.g.,
global STM model, DBS only conducts sorting within the
local neighboring solutions, which drastically reduce the com-
putational cost of SAS. Meanwhile, ABS utilizes the angle
information in the objective space to maintain a fine-grained
diversity. Different from many other MOEA/D variants, SAS
allows one subproblem to associate with any number of solu-
tions, or even no solutions, which makes it more flexible for
MOPs with different shapes of PFs. SAS is integrated into
MOEA/D and the algorithm, called MOEA/D-SAS, is com-
pared with four classical (NSGA-II, MSOPS-II, MOEA/D, and
MOEA/D-DE) and three state-of-the-art MOEAs (MOEA/D-
STM, NSGA-III, and MOEA/D-AWA) on continuous MOPs
or MaOPs. The experimental results show that MOEA/D-SAS
outperforms other compared algorithms. In addition, the com-
putational efficiency of DBS and the effects of ABS are also
discussed in this paper in detail.
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