
Solving Multiobjective Optimization Problems in
Unknown Dynamic Environments: An Inverse

Modeling Approach
Sen Bong Gee, Kay Chen Tan, Fellow, IEEE, and Cesare Alippi, Fellow, IEEE

Abstract—Evolutionary multiobjective optimization in
dynamic environments is a challenging task, as it requires the
optimization algorithm converging to a time-variant Pareto
optimal front. This paper proposes a dynamic multiobjective
optimization algorithm which utilizes an inverse model set
to guide the search toward promising decision regions. In
order to reduce the number of fitness evalutions for change
detection purpose, a two-stage change detection test is proposed
which uses the inverse model set to check potential changes
in the objective function landscape. Both static and dynamic
multiobjective benchmark optimization problems have been con-
sidered to evaluate the performance of the proposed algorithm.
Experimental results show that the improvement in optimization
performance is achievable when the proposed inverse model set
is adopted.

Index Terms—Change detection, decomposition, dynamic
multiobjective optimization, evolutionary computation.

I. INTRODUCTION

MULTIOBJECTIVE optimization in dynamic
environments involves simultaneous optimization

of several time-varying constraints and/or objective functions.
This is a challenging optimization problem as the fitness
landscape may change over time. Moreover, the time variance
in the fitness landscape is mostly unknown or not observable
which further complicates the optimization problem [1]–[3].
Recently, there is a rising interest in using evolutionary algo-
rithms (EAs) to address this challenging issue [4]–[7] partly
due to the success of EAs in solving static multiobjective
optimization problems (MOPs) [8]–[14] and dynamic opti-
mization problems [15]–[17]. However, most of the existing
literature considers that the change profile of the fitness
landscape is known and happens in between algorithm’s

Manuscript received February 25, 2016; revised June 12, 2016; accepted
August 11, 2016. This work was supported by the Singapore Ministry of
Education Academic Research Fund Tier 1 under Project R-263-000-A12-112.
This paper was recommended by Associate Editor Q. Zhang.

S. B. Gee and K. C. Tan are with the Department of Electrical and Computer
Engineering, National University of Singapore, Singapore 117576 (e-mail:
a0039834@u.nus.edu; eletankc@nus.edu.sg).

C. Alippi is with the Dipartimento di Elettronica,
Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan,
Italy, and also with the Università della Svizzera Italiana, 6900 Lugano,
Switzerland (e-mail: cesare.alippi@polimi.it).

This paper has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.org provided by the authors. The supplementary PDF
file provides the optimization performances of the proposed IM-MOEA/D on
static multiobjective benchmark test suites. The total size of the file is 72.9 KB.

evolutionary generations. Typically, in these algorithms, the
population is diversified to avoid premature convergence after
the change in fitness landscape is detected. In this direction,
the random immigrant scheme approach adds randomly
generated solutions into the population to enhance its solution
diversity [18], [19], whereas hyper-mutation scheme one
enhances the solution-space exploration by adapting the
mutation rate [20]–[22]. Another popular approach is to learn
the pattern of the time-varying optimal solution set in decision
space and predicts the location of the consecutive optimal
solution set after the change is recognized [4], [23]–[25].
Although these algorithms have partly solved the dynamic
MOP, their effectiveness is still questionable if the change
in the environment is, as mostly happens, uknown or hardly
predictable.

To adapt to the change affecting the fitness landscape in
environments with unknown dynamics, there are two major
strategies that can be used: 1) active and 2) passive. In the
active case, the change detection mechanism is implemented
in the optimization algorithm and aims at detecting changes
in fitness landscape. Once the change has been detected, the
optimization algorithm takes certain action to search for Pareto
optimal solutions. This approach is effective only if the change
affecting the dynamic environment is detectable. In the pas-
sive case, there are no dedicated change detection mechanisms.
An optimization algorithm adopting passive approach evolves
based on available information independently from the fact
that change happened or not. Aging scheme [26], [27] is
a typical example of a passive approach. Instead of detect-
ing changes in fitness landscape, aging scheme re-evaluates
or discards individual solutions which survive more than a
predefined number of generations. In [7], a multipopulation
multiobjective EA framework is proposed to solve dynamic
MOP in undetectable environments. An environment is unde-
tectable when there is not enough available information for a
detection algorithm to effectively detect a change. For exam-
ple, there are some dynamic problems whose fitness landscape
only changes on some random subareas in the search space [7].
The framework uses a hierarchical clustering technique to
track multiple optima. It limits the survival of solutions based
on the improvement of the solution over evolutionary genera-
tions without using any detection mechanism. On one hand, a
passive approach is more robust to different types of changes
and it can be used in undetectable dynamic environment.
On the other hand, an active approach could provide additional

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works. To access the final edited and published work see http://dx.doi.org/10.1109/TCYB.2016.2602561

mailto:a0039834@u.nus.edu
mailto:eletankc@nus.edu.sg
mailto:cesare.alippi@polimi.it
http://ieeexplore.ieee.org
http://dx.doi.org/10.1109/TCYB.2016.2602561

2

information of changes in the fitness landscape which could
facilitate the decision making process. This paper focuses on
the active approach and develops a detection mechanism for
changes associated with a drift or an abrupt in the fitness
function.

One of the most commonly used change detection strate-
gies in dynamic multiobjective EAs is to regularly re-evaluate
the fitness of certain solutions, (see [28], [29]). As the
purpose of solution re-evalutions is to detect the change in
fitness landscape, these solutions are usually called detec-
tors [30]. Detectors monitor the change of objective values
by comparing recently evaluated objective vectors with past
evaluated ones. When the difference of these two objective
vectors is larger than a certain threshold, it is concluded
that there is a change in the fitness landscape. The thresh-
old is influenced by the noise level and uncertainty in the
fitness evaluations. Although this approach is simple and
easy to be implemented, extra fitness function evaluations
are required for detecting purpose. Moreover, an appropriate
number of detectors has to be chosen, as excessive number
would introduce an unneccessary computational cost whereas
an insufficient number of detectors would fail in detecting
the change or introduce a high level of false positives [31].
Change detection based on solution decision and objective
distribution information is another attractive mechanism as
it does not require additional function evaluations. However,
the detection may not be accurate as there is no dedicated
detectors [30], [32].

Most of the existing dynamic multiobjective optimization
literature assumes that the change of fitness landscape happens
in between generations. However, in the real world scenario,
the change may happen within a generation. To the best of
the authors’ knowledge, there are relatively few studies in the
literature focusing on this issue. Detecting change within a
generation requires finer time scale to define the processing
sequence. In this respect, this paper considers the solutions
are evaluated in a serial manner and change may happen in
between solutions’ evaluation.

In the evolutionary dynamic multiobjective optimization
literature [18], [25], it is commonly assumed that the change
of the optimization problem is gradual, i.e., the fitness
landscape changes smoothly over. Convergence speed of
the dynamic EAs is a crucial issue due to the stringent
time constraint of the problem. As the fitness landscape of
the dynamic multiobjective problem is changing over time,
diversity of the solution set is important to avoid prema-
ture convergence after the change happens. Therefore, the
balance between population convergence and diversity is
extremely important for the practical use of optimization
algorithms [4]. Inspired by the recently proposed inverse
modeling approach [33] which has empirically shown fast
convergence speed, this paper presents a decomposition-based
multiobjective EA, inverse modeling-based multiobjective EA
(IM-MOEA/D), with inverse modeling, to solve the dynamic
MOP. The proposed algorithm continuously monitors the fit-
ness landscape for changes by observing the error between
the target objective value and the current evaluated objective
discrepancy.

This paper is organized as follows. Section II formalizes the
dynamic MOP considered in this paper. The literature about
change detection and surrogate model is briefly reviewed.
Section III proposes the dynamic multiobjective EA and the
change detection mechanism. Experiment results are presented
and analyzed in Section IV. Finally, conclusions are drawn in
Section V.

II. BACKGROUND

In this section, some basic definitions used in the
evolutionary multiobjective optimization community and
change detection literature are introduced. The purpose is
to provide certain background for the understanding of the
sequel.

A. Dynamic Multiobjective Optimization

In this paper, we consider the dynamic MOP as a time-
variant MOP. Without loss of generality, a minimization
problem is considered here. The dynamic multiobjective opti-
mization can be formalized as

minimize
x

f(x, t) = [
f1(x, t) f2(x, t) . . . fm(x, t)

]T

subject to x ∈ � (1)

where fi is the ith objective function out of m objectives; t ∈ N

is the time; f(x, t) ∈ R
m is the objective vector; x ∈ R

n is the
decision vector; n is the number of decision variables and
� ∈ R

n is the feasible decision space. The time value is
often associated with the generation number of an EA. The
generation to time conversion is calculated as follows [28]:

t = 1

nt

⌊
τ

τT

⌋
(2)

where τ is the generation number, nt is number of distinct step
per time unit and τT is the number of generations where the
fitness landscape is fixed. To consider the case where change
happens within a generation, the time value is associated with
the fitness evaluation number of an EA. The fitness evaluation
number to time conversion is calculated as follows:

t = 1

nt

⌊
τeval

τeval,T

⌋
(3)

where τeval is the fitness evaluation number, τeval,T is the num-
ber of fitness evaluations where the fitness landscape is fixed.
Only continuous optimization problems are considered in this
paper. Generally, � can be described by the set of constraints

� = {
x ∈ R

n
∣∣gj(x, t) ≤ 0 for j = 1, . . . , p;

hk(x, t) = 0 for k = 1, . . . , q
}

(4)

where gj(x, t), j = 1, . . . , p, is the jth inequality constraint
and hk(x, t), k = 1, . . . , q, is the kth equality constraint. Even
though the model permits both inequality and equality con-
straints to be time-dependent, here we focus on the relevant
case where only the fitness function f(x, t) is time-variant
and the feasible decision space is fixed throughout the opti-
mization process (time-variant feasible decision space would
require additional mechanisms for validating the feasibility of
the solutions and will be objective of future research).

B. Change Detection

By extending the definition given in [30] to the dynamic
multiobjective optimization case, a change point tcp is
defined as

f
(
x, tcp

) �= f
(
x, tcp + 1

)
(5)

where f(x, tcp) and f(x, tcp + 1) are the underlying objective
vectors given decision vector x, at time tcp and tcp + 1,
respectively. The time is associated with the run-time of the
EA. During the evolutionary search process, some change
points are more important than others. In fact, for a mini-
mization problem, detecting a change that causes the whole
fitness landscape shift upward [or equivalently, fi(x, tcp +1) ≥
fi(x, tcp),∀i ∈ {1, . . . , m}] is more important than detecting a
change that causes the whole fitness landscape shift downward
[or equivalently, fi(x, tcp +1) ≤ fi(x, tcp),∀i ∈ {1, . . . , m}]. As
the goal of an EA is to guide the population toward fitter solu-
tions, evaluated offsprings after a downward change are likely
to replace the parent population. Therefore, the negative effects
of the downward change is less pronounced than the upward
change in fitness landscape. These have been exploited for
change detection in [30].

A change detection algorithm is expected to detect changes
in fitness landscape when condition (5) is fulfilled. There are
two common approaches which are used in the evolutionary
computation community for detecting changes in fitness land-
scape: 1) a fixed detector approach and 2) a behavior-based
approach [30], [32]. Fixed detector approach regularly eval-
uates a number of randomly generated solutions to monitor
the change of the detectors’ objective values. As most of the
existing literature assumes that the change of fitness landscape
happens in between generations, these detectors are usually
re-evaluated at every generation. A behavior-based detection
approach inspects the discrepancy between the objective space
solution statistics with the algorithm’s inherited behavior. This
approach can be found in the evolutionary single-objective
optimization literature [32]. For example, a change point can
be detected by inspecting the trend of the average in offspring’s
fitness value. If there is a sudden increase of average fitness
value in the minimization problem, then there is a change
in fitness landscape. Behavior-based detection approaches are
attractive as there is no need for additional fitness evaluations
to be used to detection purpose.

Change detection latency is an important issue. For the fixed
detector approach, the detection mechanism is activated only
when the detectors are evaluated. To improve the responsive-
ness of the detection mechanism, the evaluations of detectors
are required to be distributed uniformly across different time
instances. Suppose one generation of the EA requires tgeneration
time to evaluate all the individual solutions with the detectors,
the algorithm has to evaluate ndetector/tgeneration detectors per
unit time to ensure that the detection is activated every unit
time where ndetector is the total number of detectors used in
the algorithm. However, this in turn reduces the coverage of
the detectors in the decision space during the activation of the
detection. Therefore, it is clear that there is a tradeoff between

the coverage of the detectors and the responsiveness of the
detection mechanism given a fixed number of detectors.

C. Surrogate and Inverse Modeling

Fitness landscape approximation techniques have been
proposed and applied to assist evolutionary search for almost
two decades [34]. These fitness approximation models also
named surrogates or meta-models are often used to reduce the
computational time in optimization problems [35]. Recently,
an IM-MOEA has been proposed to reduce the computational
cost of the evolutionary optimization procedure [33]. The main
idea of the algorithm is to construct an inverse model which
maps all found nondominated solutions from the objective
space to the decision space. This approach is different from
the fitness landscape approximation approach, which, instead
models the mapping from decision space to objective space.
IM-MOEA uses a Gaussian process-based inverse model on
domination-based multiobjective optimization framework [36]
to solve the optimization problem. By using the inverse model,
the search process can be improved as the model helps to direct
the search toward those promising areas which are more proba-
ble to contain good solutions. This is a desirable feature for an
EA especially when the problem is computationally expensive,
dynamic, or the search space is large.

III. PROPOSED ALGORITHM

A. Basic Idea

IM-MOEA builds a set of probabilistic models to estimate
the probability distribution of the decision vector given the
desired objective vector. The information of current parent
population is used to build the inverse model. The m-input-n-
output probabilistic inverse model is decomposed into m × n
univariate models. As the algorithm makes an implicit assump-
tion that all decision variables are mutually independent,
random grouping strategy is introduced into the algorithm to
alleviate the negative effect of the assumption violation [33].
Different from IM-MOEA, the proposed IM-MOEA/D is
based on decomposition-based MOEA (MOEA/D [37], [38])
rather than domination-based MOEA non-dominated sorting
genetic algorithm (NSGA-II [36]). By using weight vector
of MOEA/D, the task of objective subspace allocation for
different inverse models is simplified.

It is possible that the objective function to be optimized
is injective (many-to-one function mapping) or the inverse
function of the objective function may not exist. To relax
the strict assumption that the objective function is globally
bijective (one-to-one function mapping), we assume that the
objective function is invertible locally thus the corresponding
inverse model can be built to approximate the fitness landscape
reasonably. In the proposed IM-MOEA/D, the inverse model
is used for detection purpose and to direct the search toward
promising decision subspace regions. Building a global inverse
model is difficult as training a too complex model is computa-
tionally expensive whereas choosing a too simple model would
degrade the modeling performance. To circumvent the prob-
lem, multiple inverse models are trained to capture the fitness
landscape information in different regions. Furthermore, linear

Fig. 1. Flowchart of the proposed algorithm.

inverse models are employed in the proposed algorithm due to
their relatively low computational cost as compared to other
more complicated nonlinear ones.

The overall flowchart of the proposed algorithm is presented
in Fig. 1. From the figure, the algorithm follows the EA
paradigm and the inverse modeling mechanism is introduced
for the offspring population generation as shown in the shaded
box. In each generation, an offspring solution is generated
using either the crossover operator or the inverse model with
sampling mechanism. A decision procedure is designed to
allocate offspring solution generation between the former two
methods (as shown in Fig. 1). In the following sections,
the decision procedure, inverse model, and sampling mech-
anism will be described in detail. After that, the proposed
change detection scheme which utilizes the inverse model is
presented.

B. Objective Subspace Allocation and
Decision Procedure

Weight vector is an important component in MOEA/D for
scalarizing a given MOP into a set of subproblems. The ele-
ment of a weight vector indicates the relative importance of the
corresponding objective function with respect to other objec-
tive functions in a given MOP. Tchebycheff approach used in
MOEA/D scalarizes a MOP into a set of subproblems using
following function:

g
(
x
∣∣λ, z∗) = max

1≤i≤m

{
λ

j
i

∣∣ fi(x) − z∗
i

}
(6)

where λj = (λ
j
1, . . . , λ

j
m)T is the jth individual’s weight vector,

z∗ = (z1, . . . , zm)T is an approximate ideal vector and fi(x),
i = 1, . . . , m, is the ith objective for static MOP. A weight
vector’s element (λj

i, j = 1, . . . , N) is usually highly corre-
lated to its corresponding evaluated objective value (fi(xj),
j = 1, . . . , N), except during the very early phase of the evo-
lutionary search. This also implies that any two individuals
whose weight vectors are adjacent to each other are usually
neighbors in the objective space. This property is used in
the proposed IM-MOEA/D to allocate different inverse mod-
els to different regions in the objective space. Allocating a
set of adjacent weight vectors to an inverse model has the
same effect as assigning the corresponding objective subspace

Fig. 2. Objective subspace allocation for training inverse models. In this
example, s0 to s4 denote five individual solutions in the population. Each
solution belongs to 2–3 neighborhoods. Line denotes the data flow from a
particular solution to a specific inverse model whereas lightness of line denotes
a specific neighborhood relation. Solutions in the same neighborhood are used
to train the inverse model. For example, solutions s0, s1, and s2 are in the
same neighborhood and their objective and decision vectors are used to train
the inverse model m0.

region to the model. Objective subspace allocation for train-
ing different inverse models is an important task as it directly
affects the performance of the detection and optimization of
the proposed algorithm. To avoid introducing complicated
subspace allocation mechanisms which would introduce addi-
tional computation resources, the proposed algorithm utilizes
the neighborhood relation of MOEA/D for individual solu-
tion assignment. In particular, each individual solution with its
weight vector’s neighbor solutions are used to train an inverse
model. Therefore, the number of inverse models is equal to the
number of individuals in the population. To further illustrate
the concept, a simple example is given in Fig. 2.

MOEA/D takes certain number of generations from the
solution initialization to the existence of high correla-
tion between weight vector’s element to the corresponding
objective value. The actual number of generations is appli-
cation dependent. A simple decision procedure is devised
to decide whether to use the trained inverse model for
generating an offspring solution through the Spearman’s cor-
relation [39] as shown in Algorithm 1. It is often used to
measure the correlation between two variables. An inverse
model is only used if the Spearman’s correlation of the
corresponding weight vector set and the evaluated objective
vector set is higher than the predefined confidence interval.
Conversely, it indicates that the corresponding fitness vectors
may not be adjacent and recombination operator is used for
generating a new offspring solution. In this paper, differen-
tial evolution mutation operator is used as the recombination
operator.

C. Inverse Model

Each individual solution with its weight vector neigh-
borhood solutions are used to form a linear inverse
model. Suppose xi = [x1i, x2i, . . . , xni] ∈ R

n and

Algorithm 1 Decision Procedure For Using Inverse Model
Require:

m: number of objective functions
α: decision threshold for Spearman’s correlation
B(i): neighbour individual indices of ith individual
{fk}: objective vector set for k ∈ B(i) where fk denotes kth
individual’s evaluated objective vector
{wk}: weight vector set for k ∈ B(i) where wk denotes kth
individual’s weight vector

Ensure: Boolean output
1: for j = 1 to m do
2: f∗,j := jth objective values from {fk}
3: w∗,j := jth weight element from {wk}
4: rj := spearman(f∗,j, w∗,j)
5: end for
6: if |rj| > α for j = 1, . . . , m then
7: return True
8: else
9: return False

10: end if

fi = [f1i, f2i, . . . , fmi] ∈ R
m are the decision and objective

vector of the ith individual in the population, respectively.
The neighborhood function of the ith individual is denoted
as B(i) = {b1i, b2i, . . . , bTi} which contains the indices of the
T closest weight vectors to the ith individual’s weight vector,
λi. This neighborhood function is available in the MOEA/D.
The linear regression inverse model of the proposed algorithm
can be written as

X = BF (7)

where X = [xb1i , xb2i , . . . , xbTi] and F = [fb1i, fb2i , . . . , fbTi]
denote the decision and objective matrices; B is the matrix that
captures the relationship of the inverse model. The B matrix
is computed according to the classic least square procedure as
follows:

XFT = BFFT

B = (
XFT)(

FFT)−1
(8)

where {·}T and {·}−1 denote matrix transpose and inverse,
respectively. Matrix B contains the coefficients of the linear
inverse model given in (7).

D. Sampling Method

Availability of an inverse model enables the generation of
the offspring decision vector by specifying the desired objec-
tive vector, fdesired. The estimated decision vector is computed
as follows:

xestimated = Bfdesired. (9)

The fdesired is generated by sampling the objective space. The
sample point should be close to the objective subspace used
to train the inverse model. As the sample point moves away
from the training data, the modeling error tends to increase and
the accuracy of the estimated decision vector suffers. Besides,
point sampling should move toward directions enhancing the

Algorithm 2 Sampling Mechanism
Require:

fi: i-th individual’s evaluated fitness vector
z∗: estimated ideal vector
B: i-th model’s inverse model matrix
δsampling: Sampling parameter to ensure |�diff| > 0

Ensure: Offspring decision variable, xoffspring
1: �diff = diag(|fi − z∗ + δsampling|)
2: fdesired ∼ N (fi, �diff)

3: while fdesired ⊀ fi do
4: fdesired ∼ N (fi, �diff)

5: end while
6: xoffspring = Bfdesired
7: return xoffspring

converging speed of the algorithm. As such, the proposed
algorithm samples the objective subspace according to the
Gaussian distribution and imposes the condition that the sam-
pled point has to dominate its parent solution. The mean
and standard deviation of the Gaussian distribution is deter-
mined by the parent solution and the estimated ideal point
in MOEA/D. For ith individual with previously evaluated
objective vector, fi, the Gaussian distribution is

fdesired ∼ N (fi, �diff) (10)

where �diff is a diagonal matrix which contains the absolute
difference between fi and estimated ideal vector, z∗. The pseu-
docode of the sampling mechanism is shown in Algorithm 2.
In line 3 of the pseudocode, “fdesired ⊀ fi” means objective
vector fdesired does not dominate objective vector fi.

E. Two-Stage Change Detection Test

In a dynamic environment with unknown change, change
detection mechanisms are crucial to avoid keeping obsolete
solutions. Empirical studies have shown that fixed detector
approaches outperform behavior-based ones especially when
change detection is difficult [30]. However, a fixed detec-
tor approach significantly increases the number of function
evaluations since a high number of detectors is desirable. To
reduce the number of function evaluations and improve the
coverage of the detection region, a two-stage change detection
approach is proposed. In the first stage, a sequential change
point detection test is used to monitor potential changes in fit-
ness landscape. The first-stage detection mechanism has larger
coverage of the detectable region than the fixed detectors’
approach. Each offspring solution generated by the inverse
model acts as a weak detector in the decision space to probe
potential changes in the fitness landscape. The second stage
has to confirm the suspected change by the fixed detector
approach. The proposed method reduces the required number
of fitness evaluations for the detection purpose as compared
to the fixed detector approach because it is not required to
re-evaluate a fixed number of solutions in correspondence with
every generation. In addition, a subset of the whole popula-
tion acts as weak detectors during the evolutionary search and
this improves the coverage of the detectable decision space as

6

Fig. 3. Flowchart of the two-stage CDT.

compared to the fixed detector approach. The flow chart of
the proposed two-stage change detection mechanism is shown
in Fig. 3.

In the first stage, the inverse model set is used to assist the
task of change detection. The linear inverse model set captures
the objective-to-decision mapping information of the explored
regions. This information is utilized to determine whether there
is a change in the fitness landscape of the explored regions. As
the algorithm takes explicit action to respond to a change in the
fitness landscape, an online change detection mechanism [40]
is more suitable to the problem. The error of the actual objec-
tive vector and the desired objective vector is used to detect
the change in the fitness landscape

e = fdesired − factual (11)

where fdesired is the desired objective vector in (9) and factual
is the evaluated objective vector given the input xestimated.
There are at least two important sources which contribute
to this error. First, the proposed algorithm uses the linear
model to approximate the regional objective-to-decision map-
ping information. This error is related to the nonlinearity of the
fitness landscape. Second, the input vector, xestimated, is esti-
mated using previously evaluated objective vectors. If there
is a change in the fitness landscape, the change will con-
tribute to the error as the amplitude of this error is related
to the change magnitude of the explored fitness landscape
region. To ease the detection task, the second source of error
is assumed to dominate over the first contribution. With this
assumption, detecting changes by monitoring the abnormal-
ity of the error signal is possible. By transforming the task
of detecting changes in fitness landscape to identifying abnor-
mality in the signal, sequential change-point detection tests
can be applied to solve the problem [41], [42].

In this paper, a fixed sliding window method [40], [43] has
been used for detecting the change in the first stage. nwindow
samples (window size) are taken from the end of sequential
signal values and a decision rule is applied on hypothesis

H0 : f(x, t) = f(x, tlast), f(x, t) ∈ δi

H1 : f(x, t) �= f(x, tlast), f(x, t) ∈ δi

Algorithm 3 Z-Score-Based Change Detection
Require:

{xk}: input signal values for k = 1, 2, . . . , τeval where τeval
is the current number of evaluations
nwindow: size of the sliding window
θd: detection threshold

Ensure: Boolean output
1: Estimated global and window statistic values, which are

mean and standard deviation (μ̂global, σ̂global, μ̂window,
σ̂window), are required to detect the change. To online
compute the estimated global mean, Welford’s method is
used [45].

2: μ̂global, σ̂global = Welford(xτeval)
3: if τeval < nwindow then
4: return False
5: else
6: μ̂window = mean([xτeval , xτeval−1, . . . , xτeval−nwindow+1])
7: σ̂window = stdev([xτeval , xτeval−1, . . . , xτeval−nwindow+1])
8: SE = (σ̂global − σ̂window)/

√
nwindow

9: z = (μ̂window − μ̂global)/ SE
10: if z > θd then
11: return True
12: else
13: return False
14: end if
15: end if

where tlast is the time of the previously evaluated objective
function and δi is the objective subspace covered by the
ith individual with its neighborhood. Any sequential change
detection algorithm can be employed for detecting the change
in the fitness landscape. To accomplish the task, a simple
change detector based on the Z-score [40], [44] is used to
detect the change in the fitness landscape. The change detec-
tor monitors the absolute value of the error signal and makes
a decision about whether there is a change in the fitness land-
scape or not. The pseudo-code of the detection algorithm used
in this paper is given in Algorithm 3. Notice that the algo-
rithm detects the fitness landscape changes when the Z-score
is higher than the predefined detection threshold (as shown in
line 10, Algorithm 3). The input signal to the Algorithm 3 is
the error signal computed using (11) (as shown in Fig. 3).

Once the first-stage detection is triggered, a second-stage
detection is executed to confirm the change by randomly
re-evaluating a fixed number of individuals in the popula-
tion. If the recently evaluated function values are significantly
different from the previously evaluated ones, change in the
fitness landscape is confirmed. The fitness values of the rest
of the population are evaluated as well. Since the first-stage
detection can be triggered any time during the evolutionary
search, there is no assumption that the change in fitness land-
scape only happened in between generations. The pseudo-code
for the two-stage change detection test (CDT) is shown in
Algorithm 4. There, nmin-int denotes the minimum number
of fitness evaluations between two fitness landscape changes.
This parameter is used to control the number of activations

Algorithm 4 Two-Stage CDT
Require:

{xk}: input signal values for k = 1, 2, . . . , τeval where τeval
is the current number of evaluations
nwindow: size of the sliding window
θd: detection threshold
nfixed: number of fixed detectors used
τeval,min-int: minimum number of fitness evaluations
between two changes
τeval,triggered: a global variable which records the latest
evaluation number when the change detection is triggered

Ensure: Boolean output
1: if τeval,triggered is not initialized then
2: τeval,triggered = 0
3: end if
4: for each new observation, xτeval do
5: Feed xτeval into Algorithm 3 for the first-stage change

detection test and get the output, θ .
6: τeval,int = τeval − τeval,triggered
7: if τeval,int ≥ τeval,min-int and θ is true then
8: Re-evaluate nfixed randomly selected solutions to

confirm the change.
9: if change is confirmed then

10: The first-stage change detection is reset and set
τeval,triggered = τeval.

11: return True
12: else
13: return False
14: end if
15: end if
16: return False
17: end for

for second-stage CDT which can be triggered in a genera-
tion. Different from the first-stage CDT, the second-stage CDT
requires additional fitness evaluations. The number of second-
stage CDTs per generation is limited to �N/nmin-int� where N
is the population size.

F. Overall Algorithm

The pseudo-code of the overall procedure is shown in
Algorithm 5. In each generation, the proposed algorithm
makes a decision about whether to use an inverse model for
each offspring solution generation. If an inverse model is used
for generating an offspring solution, the generated solution acts
as a weak change detector for the first-stage CDT. The error
signal [using (11)] is computed to feed the first-stage CDT.
Once the first-stage CDT is triggered, the second-stage CDT
will be performed to confirm the change. A comparison test
is designed for the second-stage CDT. If any of the recently
evaluated objective values are different from the stored objec-
tive values, it is confirmed that there is a change in the fitness
landscape.

For simplicity, this paper only considers noiseless fitness
landscape. For the case of noisy fitness landscape, modification

Algorithm 5 Dynamic IM-MOEA/D
Require:

A dynamic multiobjective problem
A stopping criterion
N: Population size
T: Number of the weight vectors in the neighbourhood
nr: Maximal number of solutions can be replaced
δ: Probability that neighborhood is used over population
α: Cutoff for using an inverse model
nwindow: Size of the sliding window
θd: detection threshold

Ensure:
Current approximated POF at time t, {f1, . . . , fN}
Current approximated POS at time t, {x1, . . . , xN}
Step 1 ➢ Initialization:

1) Generate evenly spread weight vectors. Find the T
closest weight vectors (in terms of Euclidean dis-
tance) for each vector. Set B(i) = i1, . . . , iT , where
λi1, . . . , λiT are the T closest weight vectors to λi.

2) Generate an initial population, x1, . . . , xN , by uni-
formly random sampling the decision space. Evaluate
each solution and set fi = f(xi, t).

3) Initialize z by setting zk = min
j=1,...,N

f j
k where k =

1, . . . , m and f j
k is the k element of fj.

Step 2 ➢ Update: Set For i = 1, . . . , N, do
1) Mating selection/update pool: Set P = B(i) if

uniformly distributed random number, rand() < δ.
Otherwise, set P = {1 . . . , N}.

2) Decision procedure: Apply Algorithm 1 to decide
whether an inverse model is used to generate an
offspring solution.

3) Reproduction: Based on the decision from the previ-
ous step, generate the solution either using a heuristic
crossover operator or an inverse model. If the inverse
model is used, compute the B matrix (8) and use
Algorithm 2 to generate fdesired and offspring solution
with decision vector y. Apply mutation operator and
repair the solution y if it is not in the feasible decision
space.

4) Update of z: Evaluate y to get factual = f(y, t). If
fj(y) < zj for any j ∈ {1, . . . , m}, set zj = fj(y, t).

5) Update of solutions: Apply decomposition-based
selection [38]. Set c = 0 and then do the following:
a) If c = nr, exist the inner loop. Otherwise, randomly

pick an index j ∈ P.
b) If g(y|λj, z) <= g(x|λj, z), set xj = y, fj = f(y, t)

and increment c by one.
c) Remove j from P and go to a).

Step 3 ➢ Change detection: If the inverse model is
used, compute |fdesired = factual| and feed the value into
Algorithm 4. Re-evaluate the rest of the population and go
to Step 1.3 to reset z if the returned value is true.
Step 4 ➢ Stopping criterion: If the stopping crite-
rion is satisfied, stop the process, output {x1, . . . , xN} and
{f1, . . . , fN}. Otherwise, go to Step 2.

is needed for the second-stage CDT and the evolutionary selec-
tion to account for the uncertainty in the fitness values [46].
For the evolutionary selection, one possibility is to mod-
ify the subproblem in the MOEA/D to account for the
uncertainty [47]. For the second-stage CDT, one example
is to set a specific threshold for the acceptable amount of

8

objective function deviation for the detectors [28]. Once the
objective deviation is greater than a predefined threshold, the
second-stage CDT confirms there is a change in the fitness
landscape.

Although the fitness landscape is desired to be locally
invertible, it is not a strict requirement for the proposed algo-
rithm to work properly. A good local linear inverse model
would guide the search toward promising decision regions
and have higher change detection accuracy. When the fitness
landscape is not locally invertible, the inverse model directs
the search direction toward less promising decision regions.
Besides, the error between the desired objective vector and
the evaluated objective vector would be increased and cause a
spike of error signal. As the proposed sampling method and
recombination operator introduce randomness in the search
process, the inverse model unlikely causes the solution pop-
ulation trapping into some local optima. The spike of error
signal likely triggers the second-stage CDT and fixed detection
approach is performed. This means poor local linear model
leads to an increase number of triggering second-stage CDT.
The proposed detection algorithm takes advantage of the pos-
sibility to reduce fitness evaluations using local linear inverse
model. If the inverse model is not useful, the two-stage CDT
still behaves like a fixed detection approach.

IV. EXPERIMENT RESU LTS

In this section, comparative studies are performed to
investigate the optimization performance of the proposed
algorithm in dynamic environments. Furthermore, a sec-
tion is devoted to study the fitness landscape change
detection performance. The optimization performance of
the proposed algorithm in static environment can be
found in the supplementary material. Zitzler–Deb–Thiele test
suite [48], Walking Fish Group test suite [49], Congress
on Evolutionary Computation 2009 MOEA Competition test
suite (CEC-09) [50], Farian–Deb–Amato test suite (FDA) [28],
and Gee–Tan–Abbass test suite (GTA) [51] benchmarks have
been considered. All results are obtained by performing 30
independent runs for each test problem under a specific set-
ting. NSGA-II [36] and MOEA/D [38] serve as benchmark
algorithms in the comparative studies. Differential Evolution
mutation operator is used as genetic operator as reported
in [38]. Inverted generational distance (IGD) [38] and gen-
erational distance (GD) [36] are used as performance metrics
in this paper. For each experiment setting, all MOEAs have
the same number of fitness evaluations to ensure the fair com-
parative studies. The total number of fitness evaluations equals
to the product of the population size and the generation num-
bers. Welch’s t-test [52] is conducted to test the significance
performance difference between the IM-MOEA/D and other
algorithms. The null hypothesis is that there is no significant
performance difference between the IM-MOEA/D and other
algorithm given that the two algorithm’s performances have
unequal variances.

A. Parameter Settings

The parameter settings of the algorithms used in the
experiment are shown in Table I. The proposed inverse model

TABLE I
PARAMETER SETTINGS

set introduces α which serves as a threshold for decid-
ing whether to use the inverse model in offspring solution
generation. As the Spearman’s rank correlation coefficient
ranges from −1 to 1, the recommended range for the α is
from 0.5 to 1.0. The higher the α threshold, the less likely
that the inverse model set is used. The number of fixed detec-
tors, nfixed, controls the number of sampling points to decide
whether there is a change in fitness landscape. This parameter
is not specific to the proposed algorithm and it has been com-
monly used in existing dynamic MOEAs. In this paper, the
minimum value for nfixed is used to demonstrate the minimum
amount of fitness re-evaluation for detection purpose. To avoid
more than one second-stage CDT triggered in a generation,
nmin-int can be set to the population size. Size of sliding
windows is a common parameter for sequential CDT [40].
It is recommended to use the same value as the population
size. Sampling parameter, δsampling, is used to avoid infinite
loop when fi is equal to z∗ happened.

B. Dynamic Multiobjective Optimization

To assess the optimization performance of the proposed
algorithm on dynamic MOP, FDA and GTA test suites are
used in the simulation experiments. For each test problem,
total generation number, ngen, is set to 500. In this paper, nt

and τT [used in (2)] are set to 5 and 10, respectively. In terms
of fitness evaluation number, the corresponding τeval,T value is
1000. To summarize the overall performance of an algorithm
on optimizing a specific test problem, average of performance
metric values and average of ranks are used. Averages per-
formance metric values of a given algorithm are computed as
follows:

IGDmean = 1

ngen

ngen∑

i=1

IGDi (12)

GDmean = 1

ngen

ngen∑

i=1

GDi (13)

where IGDi and GDi are the IGD and GD values of the algo-
rithm at ith generation. Similarly, the averages ranks of a given
algorithm are computed as follows:

rankmean(IGD) = 1

ngen

ngen∑

i=1

rank(IGDi) (14)

TABLE II
PERFORMANCE COMPARISON USING DYNAMIC MULTIOBJECTIVE OPTIMIZATION TEST INSTANCES

rankmean(GD) = 1

ngen

ngen∑

i=1

rank(GDi) (15)

where rank(·) is an operator which ranks the performance
metric of the algorithm among all algorithms’ performance
metric value at a specific generation. The output of the oper-
ator ranges from 0 to k − 1, where k is the total number
of algorithms used for the comparative study. Table II has
recorded the above-mentioned performance metrics of the
three algorithms used in the experiment. The values in the row
“Ave. rank” are computed using either (14) or (15) whereas the
values in row “Stat.” are calculated using either (12) or (13).
We observe that the proposed algorithm performs well in most
of the benchmarks. This suggests that the inverse model set
used in the proposed algorithm could be useful in improving
the algorithm’s convergence speed.

C. Change Detection

As the main purpose of the proposed two-stage CDT is
to reduce the fitness evaluations used for detection purpose,

number of fitness evaluations spent for monitoring change of
fitness landscape is used as one of the performance metrics.
Average of root mean square error (RMSE) between the actual
objective vectors and the nominal objective vectors is also
used to assess the proposed two-stage CDT’s performance.
A nominal objective vector of an individual is the objective
vector of the past evaluated solution. If there is a change in
the fitness landscape, the nominal objective vector is different
from the actual objective vector. The metric is computed as
follows:

RMSEmean = 1

ngenN

ngen∑

τ=1

N∑

i=1

∣∣
∣∣f

i
τ − f

(
xi,

1

nt

⌊
τ

τT

⌋)∣
∣
∣∣ (16)

where fi
τ is the ith individual’s nominal objective vector at

generation τ ; f(xi, (1/nt)
(τ/τT)�) is the evaluated xi decision
vector at generation τ . A nominal objective vector could be an
obsolete objective vector if the CDT fails to detect a change in
the fitness landscape. A perfect CDT will result in a zero aver-
age of RMSE. This implies that the nominal objective vector
of any decision vector is equal to its actual objective vector.

TABLE III
OPTIMIZATION AND DETECTION PERFORMANCE

Low value of the average RMSE is desired as this implies that
the CDT is able to detect the change of fitness landscape when
the change is significant. High value of average RMSE implies
that the CDT fails to detect the change in fitness landscape
even if the change is significant. A change detection experi-
ment is designed to assess the performance of the proposed
two-stage CDT. Fixed detector approach is a perfect CDT if
the objective evaluation is not noisy and there is no uncer-
tainty in function evaluation. However, fixed detector approach
is expensive as the algorithm is expected to evaluate a fixed
number of detectors in order to monitor possible changes of
fitness landscape. Ignoring the change of fitness landscape is
another approach which does not monitor the change of fitness
landscape. This approach does not spend any fitness evalua-
tion for detection purpose but it fails to detect any change in
the fitness landscape. These two extreme approaches are used
in the experiment to compare the optimization performance
deterioration due to the absence of CDT mechanism. Similar
to previous experiments, test functions from FDA and GTA
test suites are employed in the experiment. The experiment
results are shown in Table III.

In the table, IGD, GD, and average RMSE values of
the ignoring changes approach (denoted as “Ignored”), fixed
detector approach (denoted as “Fixed”), and the proposed two-
stage CDT approach (denoted as “Proposed”) are shown in

“mean±standard deviation” format. The number of fitness
re-evaluations after change is detected is also recorded in
the table (denoted as “Re-evaluation”). The fitness evaluations
spent for monitoring changes in fitness landscape is denoted
as “Check no.” The lowest GD and IGD values for each
approach (under a specific benchmark problem) are shown in
bold font.

For all the test problems, there are 100 changes of fitness
landscape. Therefore, this results 104 fitness evalutions spent
for re-evaluation the individual solutions as the population
number is 100. From the table, it is clear that the proposed
algorithm does not detect all changes in the fitness landscape
as the number of the function re-evaluations is lower than 104.
As mentioned in previous experiment, the generation number
of all the algorithms in the experiment studies is set to 500.
Suppose there is only one fixed detector which is used to mon-
itor the fitness landscape changes. For fixed detector approach,
the total number of fitness evaluations which are used to moni-
tor fitness landscape is equal to 500. By inspecting the Check
no. row in the table, it is clear that the proposed algorithm
spent significantly lower number of fitness evaluations for
the detection. For most of the test problems, the optimiza-
tion performance of the algorithm with proposed two-stage
CDT lies between fixed detector approach and ignoring change
approach. Except for GTA7m and GTA8m test problems, the

proposed two-stage CDT has significantly lower RMSE val-
ues than ignoring change approach’s RMSE values. From the
experiment results, it is observed that the two-stage CDT is
able to detect changes and reduce the RMSE for most of
the problems (except GTA7m and GTA8m test instances).
Pareto optimal front of GTA7m and GTA8m is a single point
at the initial few generation. This results in low correlation
between the weight vector’s element and its corresponding
evaluated objective value when the algorithm output reaches
the optimal point. For these two benchmarks, the inverse
model is not triggered due to the low Spearman’s correla-
tion (decision procedure). Therefore, the detection test is not
triggered throughout the optimization process. To circumvent
this problem, lower confidence interval threshold (parameter
α in Algorithm 1) should be used for dynamic MOP with
degenerate Pareto optimal front geometrics [49].

V. CONCLUSION

This paper has proposed an MOEA to solve dynamic MOP
by using a set of linear inverse models. The inverse model
set is used to direct the optimization search toward promis-
ing decision space and model objective-to-decision mapping
information for fitness landscape change detection purpose. By
using the proposed method, the number of fitness evalutions
for detection can be reduced.

REFERENCES

[1] J. A. D. Atkin, E. K. Burke, J. S. Greenwood, and D. Reeson, “On-line
decision support for take-off runway scheduling with uncertain taxi times
at London Heathrow airport,” J. Sched., vol. 11, no. 5, pp. 323–346,
2008.

[2] A. Isaacs, V. R. Puttige, T. Ray, W. F. Smith, and S. G. Anavatti,
“Development of a memetic algorithm for dynamic multi-objective opti-
mization and its applications for online neural network modeling of
UAVs,” in Proc. IEEE Int. Joint Conf. Neural Netw. World Congr.
Comput. Intell. (IJCNN), Jun. 2008, pp. 548–554.

[3] S. H. Ngo, X. Jiang, V. T. Le, and S. Horiguchi, “Ant-based surviv-
able routing in dynamic WDM networks with shared backup paths,”
J. Supercomput., vol. 36, no. 3, pp. 297–307, 2006.

[4] A. Zhou, Y. Jin, and Q. Zhang, “A population prediction strategy
for evolutionary dynamic multiobjective optimization,” IEEE Trans.
Cybern., vol. 44, no. 1, pp. 40–53, Jan. 2014.

[5] R. Azzouz, S. Bechikh, and L. B. Said, “A multiple reference point-
based evolutionary algorithm for dynamic multi-objective optimization
with undetectable changes,” in Proc. IEEE Congr. Evol. Comput. (CEC),
Beijing, China, 2014, pp. 3168–3175.

[6] R. Azzouz, S. Bechikh, and L. B. Said, “Multi-objective optimization
with dynamic constraints and objectives: New challenges for evolution-
ary algorithms,” in Proc. Genet. Evol. Comput. Conf., Madrid, Spain,
2015, pp. 615–622.

[7] C. Li and S. Yang, “A general framework of multipopulation methods
with clustering in undetectable dynamic environments,” IEEE Trans.
Evol. Comput., vol. 16, no. 4, pp. 556–577, Aug. 2012.

[8] S. B. Gee, K. C. Tan, V. A. Shim, and N. R. Pal, “Online diversity
assessment in evolutionary multiobjective optimization: A geometrical
perspective,” IEEE Trans. Evol. Comput., vol. 19, no. 4, pp. 542–559,
Aug. 2015.

[9] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “An efficient approach
to nondominated sorting for evolutionary multiobjective optimization,”
IEEE Trans. Evol. Comput., vol. 19, no. 2, pp. 201–213, Apr. 2015.

[10] A. Zhou, J. Sun, and Q. Zhang, “An estimation of distribution algorithm
with cheap and expensive local search methods,” IEEE Trans. Evol.
Comput., vol. 19, no. 6, pp. 807–822, Dec. 2015.

[11] B. Chen, W. Zeng, Y. Lin, and D. Zhang, “A new local search-based
multiobjective optimization algorithm,” IEEE Trans. Evol. Comput.,
vol. 19, no. 1, pp. 50–73, Feb. 2015.

[12] W. Hu and G. G. Yen, “Adaptive multiobjective particle swarm opti-
mization based on parallel cell coordinate system,” IEEE Trans. Evol.
Comput., vol. 19, no. 1, pp. 1–18, Feb. 2015.

[13] X. Cai, Z. Yang, Z. Fan, and Q. Zhang, “Decomposition-based-sorting
and angle-based-selection for evolutionary multiobjective and many-
objective optimization,” IEEE Trans. Cybern., to be published.

[14] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary many-
objective optimization algorithm based on dominance and decompo-
sition,” IEEE Trans. Evol. Comput., vol. 19, no. 5, pp. 694–716,
Oct. 2015.

[15] U. Halder, S. Das, and D. Maity, “A cluster-based differential evo-
lution algorithm with external archive for optimization in dynamic
environments,” IEEE Trans. Cybern., vol. 43, no. 3, pp. 881–897,
Jun. 2013.

[16] S. Das, A. Mandal, and R. Mukherjee, “An adaptive differential evolu-
tion algorithm for global optimization in dynamic environments,” IEEE
Trans. Cybern., vol. 44, no. 6, pp. 966–978, Jun. 2014.

[17] T. T. Nguyen and X. Yao, “Continuous dynamic constrained
optimization—The challenges,” IEEE Trans. Evol. Comput., vol. 16,
no. 6, pp. 769–786, Dec. 2012.

[18] K. Deb, N. U. B. Rao, and S. Karthik, “Dynamic multi-objective opti-
mization and decision-making using modified NSGA-II: A case study
on hydro-thermal power scheduling,” in Evolutionary Multi-Criterion
Optimization. Heidelberg, Germany: Springer, 2007, pp. 803–817.

[19] R. Tinós and S. Yang, “A self-organizing random immigrants genetic
algorithm for dynamic optimization problems,” Genet. Program. Evol.
Mach., vol. 8, no. 3, pp. 255–286, 2007.

[20] B. Zheng, “A new dynamic multi-objective optimization evolutionary
algorithm,” in Proc. IEEE ICNC, Haikou, China, 2007, pp. 565–570.

[21] R. W. Morrison, Designing Evolutionary Algorithms for Dynamic
Environments. New York, NY, USA: Springer, 2004.

[22] N. Mori, H. Kita, and Y. Nishikawa, “Adaptation to a changing environ-
ment by means of the feedback thermodynamical genetic algorithm,” in
Parallel Problem Solving from Nature—PPSN V. Heidelberg, Germany:
Springer, 1998, pp. 149–158.

[23] A. Muruganantham, Y. Zhao, S. B. Gee, X. Qiu, and K. C. Tan,
“Dynamic multiobjective optimization using evolutionary algorithm with
Kalman filter,” in Proc. 17th Asia Pac. Symp. Intell. Evol. Syst. (IES),
vol. 24. 2013, pp. 66–75.

[24] W. T. Koo, C. K. Goh, and K. C. Tan, “A predictive gradient strategy for
multiobjective evolutionary algorithms in a fast changing environment,”
Memetic Comput., vol. 2, no. 2, pp. 87–110, 2010.

[25] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang, “Prediction-based
population re-initialization for evolutionary dynamic multi-objective
optimization,” in Evolutionary Multi-Criterion Optimization
(LNCS 4403), S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and
T. Murata, Eds. Heidelberg, Germany: Springer, 2007, pp. 832–846.

[26] A. Ghosh, S. Tsutsui, and H. Tanaka, “Individual aging in genetic algo-
rithms,” in Proc. Aust. New Zealand Conf. Intell. Inf. Syst., Nov. 1996,
pp. 276–279.

[27] G. S. Hornby, “ALPS: The age-layered population structure for reducing
the problem of premature convergence,” in Proc. 8th Annu. Conf. Genet.
Evol. Comput., Seattle, WA, USA, 2006, pp. 815–822.

[28] M. Farina, K. Deb, and P. Amato, “Dynamic multiobjective optimization
problems: Test cases, approximations, and applications,” IEEE Trans.
Evol. Comput., vol. 8, no. 5, pp. 425–442, Oct. 2004.

[29] C.-K. Goh and K. C. Tan, “A competitive-cooperative coevolutionary
paradigm for dynamic multiobjective optimization,” IEEE Trans. Evol.
Comput., vol. 13, no. 1, pp. 103–127, Feb. 2009.

[30] H. Richter, “Detecting change in dynamic fitness landscapes,” in Proc.
IEEE Congr. Evol. Comput. (CEC), May 2009, pp. 1613–1620.

[31] S. Janson and M. Middendorf, “A hierarchical particle swarm optimizer
for noisy and dynamic environments,” Genet. Program. Evol. Mach.,
vol. 7, no. 4, pp. 329–354, 2006.

[32] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic optimiza-
tion: A survey of the state of the art,” Swarm Evol. Comput., vol. 6,
pp. 1–24, Oct. 2012.

[33] R. Cheng, Y. Jin, K. Narukawa, and B. Sendhoff, “A multiobjective
evolutionary algorithm using Gaussian process-based inverse modeling,”
IEEE Trans. Evol. Comput., vol. 19, no. 6, pp. 838–856, Dec. 2015.

[34] Y. Jin, “A comprehensive survey of fitness approximation in evolutionary
computation,” Soft Comput., vol. 9, no. 1, pp. 3–12, 2005.

[35] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,” Swarm Evol. Comput., vol. 1, no. 2, pp. 61–70,
2011.

[36] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[37] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[38] H. Li and Q. Zhang, “Multiobjective optimization problems with compli-
cated Pareto sets, MOEA/D and NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 13, no. 2, pp. 284–302, Apr. 2009.

[39] C. Spearman, “The proof and measurement of association between two
things,” Amer. J. Psychol., vol. 15, no. 1, pp. 72–101, 1904.

[40] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory
and Application, vol. 104. Englewood Cliffs, NJ, USA: Prentice-Hall,
1993.

[41] C. Alippi, G. Boracchi, and M. Roveri, “A hierarchical, nonparametric,
sequential change-detection test,” in Proc. IEEE Int. Joint Conf. Neural
Netw. (IJCNN), 2011, pp. 2889–2896.

[42] S. Muthukrishnan, E. van den Berg, and Y. Wu, “Sequential change
detection on data streams,” in Proc. 7th IEEE Int. Conf. Data Min.
Workshops (ICDM), 2007, pp. 550–551.

[43] E. Ahmed, A. Clark, and G. Mohay, “A novel sliding window based
change detection algorithm for asymmetric traffic,” in Proc. IFIP Int.
Conf. Netw. Parallel Comput. (NPC), 2008, pp. 168–175.

[44] M. F. Triola, Elementary Statistics. Reading, MA, USA:
Addison-Wesley, 2006.

[45] B. Welford, “Note on a method for calculating corrected sums of squares
and products,” Technometrics, vol. 4, no. 3, pp. 419–420, 1962.

[46] R. F. Coelho, “Probabilistic dominance in multiobjective reliability-
based optimization: Theory and implementation,” IEEE Trans. Evol.
Comput., vol. 19, no. 2, pp. 214–224, Apr. 2015.

[47] Q. Chen, C. Fu, and Q. Zhang, “On performance of decomposition-
based MOEAs in noisy environment,” in Proc. IEEE Congr. Evol.
Comput. (CEC), Sendai, Japan, 2015, pp. 3412–3417.

[48] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evo-
lutionary algorithms: Empirical results,” Evol. Comput., vol. 8, no. 2,
pp. 173–195, 2000.

[49] S. Huband, P. Hingston, L. Barone, and L. While, “A review of multiob-
jective test problems and a scalable test problem toolkit,” IEEE Trans.
Evol. Comput., vol. 10, no. 5, pp. 477–506, Oct. 2006.

[50] Q. Zhang et al., “Multiobjective optimization test instances for the
CEC 2009 special session and competition,” School EEE, Univ.
Essex, Colchester, U.K. and Nanyang Technol. Univ., Singapore,
Tech. Rep. CES-487, 2008.

[51] S. B. Gee, K. C. Tan, and H. A. Abbass, “A benchmark test suite
for dynamic evolutionary multiobjective optimization,” IEEE Trans.
Cybern., to be published.

[52] B. L. Welch, “The generalization of ‘Student’s’ problem when sev-
eral different population variances are involved,” Biometrika, vol. 34,
nos. 1–2, pp. 28–35, 1947.

Sen Bong Gee received the B.Eng. (Hons.) degree
in electrical and computer engineering and
the Ph.D. degree from the National University
of Singapore, Singapore, in 2011 and 2016,
respectively.

His current research interests include on evo-
lutionary computation, artificial intelligence, and
machine learning.

Kay Chen Tan (SM’08–F’14) received the B.Eng.
(First Class Hons.) degree in electronics and elec-
trical engineering and the Ph.D. degree from the
University of Glasgow, Glasgow, U.K., in 1994 and
1997, respectively.

He is an Associate Professor with the Department
of Electrical and Computer Engineering, National
University of Singapore, Singapore. He has pub-
lished over 100 journal papers, over 100 papers
in conference proceedings, co-authored five books.
His current research interests include computational

and artificial intelligence, with applications to multiobjective optimization,
scheduling, automation, data mining, and games.

Dr. Tan was a recipient of the 2012 IEEE Computational Intelligence
Society Outstanding Early Career Award for his contributions to evo-
lutionary computation in multiobjective optimization. He is currently
an Editor-in-Chief of the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION. He was an Editor-in-Chief of the IEEE Computational
Intelligence Magazine from 2010 to 2013. He serves as an Associate
Editor/Editorial Board Member of over 15 international journals, such as
the IEEE TRANSACTIONS ON CYBERNETICS, the IEEE TRANSACTIONS

ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, Evolutionary
Computation (MIT Press), the European Journal of Operational Research,
the Journal of Scheduling, and the International Journal of Systems Science.

Cesare Alippi (S’92–M’97–SM’99–F’06) received
the degree (cum laude) in electronic engineering and
the Ph.D. degree from the Politecnico di Milano,
Milan, Italy, in 1990 and in 1995, respectively.

He is currently a Professor of information pro-
cessing systems with the Politecnico di Milano
and of cyber-physical and embedded systems with
the Universita’ della Svizzera Italiana, Lugano,
Switzerland. He has been a Visiting Researcher
with University College London, London, U.K., the
Massachusetts Institute of Technology, Cambridge,

MA, USA, ESPCI ParisTech, Paris, France, Institute of Automation, Chinese
Academy of Sciences, Beijing, China, A*STAR, Singapore. He holds five
patents, has published one monograph book, six edited books, and about
200 papers in international journals and conference proceedings. His current
research interests include adaptation and learning in nonstationary environ-
ments and intelligence for embedded and cyber-physical systems.

Prof. Alippi was a recipient of the Gabor Award from the International
Neural Networks Society and the IEEE Computational Intelligence Society
Outstanding Transaction on Neural Networks and Learning Systems Paper
Award in 2016, the IBM Faculty Award in 2013, the IEEE Instrumentation
and Measurement Society Young Engineer Award in 2004, and the Knight
of the Order of Merit of the Italian Republic in 2011. He is a Board of
Governors Member of the International Neural Network Society, Board
of Directors Member of the European Neural Network Society, the
Vice-President education of the IEEE Computational Intelligence Society, and
was an Associate Editor of the IEEE Computational Intelligence Magazine,
the IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENTS,
and the IEEE TRANSACTIONS ON NEURAL NETWORKS, and a member and
the Chair of many IEEE committees.

