
Sequence-Based Deterministic Initialization for Evolutionary
Algorithms

Author:
Elsayed, S; Sarker, R; Coello Coello, CA

Publication details:
IEEE Transactions on Cybernetics
v. 47
Chapter No. 9
Medium: Print-Electronic
pp. 2911 - 2923
2168-2267 (ISSN); 2168-2275 (ISSN)

Publication Date:
2017-09-01

Publisher DOI:
https://doi.org/10.1109/TCYB.2016.2630722

License:
https://creativecommons.org/licenses/by-nc-nd/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/unsworks_42911 in https://
unsworks.unsw.edu.au on 2024-04-25

http://dx.doi.org/https://doi.org/10.1109/TCYB.2016.2630722
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://hdl.handle.net/1959.4/unsworks_42911
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


IEEE TRANSACTIONS ON CYBERNETICS 1

Sequence-based Deterministic Initialization for
Evolutionary Algorithms

Saber Elsayed1, Ruhul Sarker1 and Carlos Coello Coello2

Abstract—It is well known that the performances of evo-
lutionary algorithms are influenced by the quality of their
initial populations. Over the years, many different techniques
for generating an initial population by uniformly covering as
much of the search space as possible have been proposed.
However, none of these approaches considers any input from
the function that must be evolved using that population. In this
paper, a new initialization technique, which can be considered
a heuristic space-filling approach, based on both the function to
be optimized and the search space, is proposed. It was tested
on two well-known unconstrained sets of benchmark problems
using several computational intelligence algorithms. The results
obtained reflected its benefits as the performances of all these
algorithms were significantly improved compared with those
of the same algorithms with currently available initialization
techniques. The new technique also proved its capability to
provide useful information about the function’s behaviour and,
for some test problems, the initial population produced high-
quality solutions. This method was also tested on a few multi-
objective problems, with the results demonstrating its benefits.

Keywords—evolutionary algorithms, population initialization,
experimental design

I. INTRODUCTION

SOLVING optimization problems involves finding the val-
ues of their decision variables so that one or more objec-

tive functions is optimized (either maximized or minimized)
[1]. Generally, these problems may possess different mathe-
matical properties, i.e., different types of variables, and their
objective function can be linear or nonlinear, continuous or
discontinuous and uni- or multi-modal. They can be found in
many fields including, but not limited to, science, engineer-
ing and business [2]. Mathematically speaking, they can be
formulated as

minimize or maximize f(−→x )

subject to: xj≤xj≤xj , j = 1, 2, . . . , D (1)

wheref(−→x ) is the objective function, −→x = [x0, x2, ..., xD] a
vector with D decision variables with each xj has lower and
upper limits xj and xj , respectively.

Depending on a problem’s complexity, researchers and
practitioners choose either traditional optimization approaches
[3] or computational intelligence (CI) methods to solve it.
Of the CI methods, evolutionary algorithms (EAs), such as
genetic algorithms (GAs) [4], differential evolution (DE) [5]
and evolution strategy (ES) [6], as well as swarm intelligence

1The authors are with the School of Engineering and Information
Technology, University of New South Wales Canberra, Australia, emails:
s.elsayed@adfa.edu.au, r.sarker@adfa.edu.au.

2The author is with the Depto. de Computación, CINVESTAV-IPN,
Mexico, email: ccoello@cs.cinvestav.mx.

approaches, such as particle swarm optimization (PSO) [7]
are very popular. EAs, the type of approach considered in
this paper, have many advantages over traditional optimization
techniques [8], including the fact that they do not impose spe-
cific mathematical requirements (e.g., differentiability). Also,
they operate on a set of solutions, instead of one at a time,
which minimizes the chance of their becoming trapped in local
optima, and work well in the presence of noise and in dynamic
environments. However, they also have some drawbacks [8],
including that: (1) in general, they cannot be guaranteed to
produce the global optimum (i.e., they can become stuck in a
local optimum); (2) their performances are sensitive to their
parameters which are problem dependent; and (3) they do
not normally exploit any domain information that may be
available.

Over the years, researchers have attempted to overcome
these drawbacks by proposing (1) approaches for maintaining
diversity within the population [9]; (2) self-adaptive tech-
niques for automatically determining their control parameters
[10], [11]; and (3) frameworks that combine more than one
EA or operator [12] [13]–[16].

Due to the influence of the initialization step in the perfor-
mance of an EA, recently, a rapidly increasing number of new
initialization techniques has been proposed, with their main
motivation to uniformly cover the search space. They claim
an increase in the probability of finding global optima and/or
a reduction in computational costs for obtaining near-optimal
solutions, i.e., an increase in the convergence rate, or both
[17], [18] [19]. Based on a recent research study [19], existing
initialization techniques can be categorized in the following
three groups: (1) randomness, an initialization method which
generates different individuals using a pseudo-random number
generator (PRNG) [19]which, if it uses different initial seeds
(those fed into the generator) and produces different individu-
als, is considered stochastic whereas, if it produces the same
individuals regardless of any initial seed, such as the chaotic
number generator (CNG) [20], is considered deterministic; (2)
compositionality whereby all basic techniques which gener-
ate initial individuals in only one step are considered non-
compositional and those consisting of more than one, such as
the opposition-based learning (OBL) method, compositional
[21]; and (3) generality which consists of either generic
or application-specific techniques, with the former meaning
that an initialization mechanism can be directly used for all
problems while, in the latter, a technique is specially designed
for particular real-world problems, i.e., timetabling [22].

However, existing approaches suffer from some drawbacks;
for instance, none considers any information from the behavior
of the function to be optimized despite the fact that such
information may provide important clues to identifying the
approximate regions of interest for exploration. It is worth
noting that exploring regions of the search space that do not
contain useful solutions may consume unnecessary computa-
tional efforts. As shown in the plots provided in Section IV,

mailto:s.elsayed@adfa.edu.au, r.sarker@adfa.edu.au
mailto:ccoello@cs.cinvestav.mx


IEEE TRANSACTIONS ON CYBERNETICS 2

for different functions, existing initialization methods provide
either very little or no useful information about the function’s
behavior. Although it is common trying to generate an initial
population by covering the whole search space, the individuals
generated by many approaches do not uniformly cover the
search space,. In this case, the evolutionary search process may
not find good-quality solutions in an efficient way. Although
uniform experimental and orthogonal designs [9] have the
capability to tackle this drawback, they do not provide any
indication of the function’s behavior that may help to generate
a good mix of individuals for an effective and efficient
evolution.

Motivated by the abovementioned research gap, in this
paper, a new initialization technique that generates individuals
by covering the entire search space is proposed. In this
process, the entire search space is divided into a number
of unit spaces in a given sequence within the variables’
bounds. Individuals are then generated by taking the corner
points of those unit spaces. When the fitness values of these
individuals are considered in the sequence in which they are
generated, they may provide interesting behaviour, as shown
in Section IV. This type of analysis can help us choose an
initial population from the search space with non-uniform
discrete points that would positively influence the optimization
process. To the best of our knowledge, no such technique has
been proposed in the literature. It is worth mentioning that this
method is different from an orthogonal design as it does not
require the construction of orthogonal arrays, and from Latin
hypercube sampling (LHS) in the way points are generated
and their sequence, as is clarified later.

Firstly, a set of 13 well-known test problems was chosen to
analyze the functions’ behaviors using the proposed method
and judge the influence of the initial population generated on
the performance of a well-known DE algorithm. This approach
was then tested using several state-of-the-art DE algorithms to
solve another set of well-known 30 unconstrained problems.
For the first set of test problems, the proposed method pro-
vided interesting insights about the functions’ behaviors that
cannot be obtained using the other four popular initialization
methods considered in this paper. In addition, the initial
population generated improved the algorithm’s performance
by 43%. A similar analysis was conducted using five well-
known DE algorithms to solve the second set of test problems,
with the proposed method able to significantly improve their
performances.

This method was also tested with other CI approaches,
namely, GA, CMA-ES and two variants of PSO, with the
results demonstrating its benefits for improving the perfor-
mances of those algorithms. Furthermore, the results obtained
from a well-known multi-objective technique for solving
three well-known multi-objective problems showed that this
algorithm was able to achieve better performance using the
proposed method.

The remainder of this paper is organized as follows. An
overview of different initialization approaches and a brief
review of DE are presented in Section II. Our proposed
approach is then discussed in Section III. The experimental
results and conclusions are discussed in Sections IV and V,
respectively.

II. REVIEW

In this section, a brief review of different initialization
techniques and DE is provided.

A. Initialization Methods
The most commonly used technique for initializing a popu-

lation of individuals in an EA is the PRNG which generates a
sequence of numbers the characteristics of which approximate
those of sequences of random numbers [19], that is, the points
are scattered according to a statistical distribution, such as the
uniform one described in equation 5. In fact, it is quite difficult
to ensure that the sequence generated by the PRNG is truly
random, as it is determined by a small set of initial values
(the PRNG’s seed) [23]. Although this mechanism is simple,
it suffers from the curse of dimensionality [24] and cannot
generate properly distributed points [19], [25].

The CNG, which is based on the chaos theory [26] and
studies the behaviors of dynamical systems, has been adopted
with EAs [20]. Mathematically speaking, chaos is the random-
ness of a simple deterministic dynamical system, and a chaotic
system may be considered a source of randomness [20]. To
generate a chaotic sequence, a chaotic mapping is needed in
which, in its simplest form, a variable can be generated as

xti,j = fch
(
xti,j
)

(2)

where fch is the chaotic mapping and xti,j is the jth variable
of the ith individual at generation t. It is worth mentioning that
there are several mapping functions, such as logistic, circle,
sinus and tent, in the literature [20]. Such maps generate real-
values ∈ [0, 1] which can be used in equation (5), by replacing
randj(0, 1), to initialize any individual in the population. Of
seven different chaotic maps adopted with DE, the variant with
the sinus map has shown the best performance [20], better than
that of DE with a uniform initialization [19].

Uniform experimental design (UED) [27] is a kind of space-
filling mechanism which searches for solutions to be uniformly
scattered in a given range. It defines the uniform array as
UMq

D, where Q is the number of levels and M the number
of combinations randomly selected from QD combinations.
However, as evaluating such a large population is practically
impossible, even for small-scale problems, one possible way
of overcoming this drawback is to use an orthogonal design.

The idea behind an orthogonal array is to specify a set
of combinations scattered uniformly over the space of all
possible combinations. As an orthogonal design is applicable
to discrete factors/variables, Leung et al. [9] proposed a
modified variant to improve the performance of GAs. In their
proposed method, the domain of each variable

([
xj , xj

])
was

quantized into Qj values, i.e.,
{
αj,1, αj,2, ..., αj,k, ...αj,Qj

}
,

where Qj was odd and αj,k, ∀ k = {1, 2, ..., Qj} the kth level
of the jth variable as

αj,k =


xj j = 1

xj + (k − 1)
(
xj−xj

Qj−1

)
2 ≤ k ≤ Qj − 1

xj k = Qj

(3)

Then, the smallest positive integer number Jj was calcu-

lated by fulfilling
QJ

j −1

Qj−1 ≥ D. If
QJ

j −1

Qj−1 was not exactly equal
to D, D′ would be set equal to D, otherwise assigned a value

of bQ
J
j −1

Qj−1 c. Subsequently, the orthogonal array
(
L
Q

Jj
j

(QD
′

j )

)
was constructed as described in Algorithm 1 and then, the last
(D′ −D) columns of L

Q
Jj
j

(QD
′

j ) deleted, with this process

undertaken for all variables, i.e., j = {1, 2, ..D}.



IEEE TRANSACTIONS ON CYBERNETICS 3

Algorithm 1 Construction of the orthogonal arrays
1: for r = 1 to J // construct the basic columns do
2: j =

Qr−1
j −1

Qj−1 + 1;
3: for i = 1 to QJj do
4: ai,j = b i−1

QJ−r
j

cmodQj
5: end for
6: end for
7: for r = 2 to J // Construct the nonbasic columns do
8: j =

Qr−1
j −1

Qj−1 + 1;
9: for s = 2 to j − 1 do

10: for t = 1 to Qj − 1 do
11: aj+(s−1)(Qj−1)+t = (as × t+ aj)modQj ;
12: end for
13: end for
14: end for
15: Increment ai,j by one ∀ 1 ≤ i ≤M and 1 ≤ j ≤ D.

In the literature, orthogonal design initialization has been
successfully adopted with different CI approaches, such as
DE [28] and PSO [29], and found to improve performances.

LHS [30] is another kind of space-filling mechanism that
has been successfully adopted with EAs [31], [32]. It creates
the initial grid by dividing the variables into a fixed number
of intervals and then generates a random value within each
interval so that there is only one design in each row or column.
As explained later, the similarity between the proposed method
and a LHS design is that they both divide the search space into
grids. However, their two main significant differences are that,
in the proposed method (1) the points generated are those at
the corner points of grids with a possibility that more than one
point can be generated in more than one grid in the same row
or column; and (2) the generated points are represented in a
two-dimensional plot (the number of generated points accord-
ing to the sequence of generations versus the fitness values)
which provides interesting information about the behavior of
the function to be optimized that a LHS design does not.

Another initialization method that has demonstrated success
over recent years is opposition-based learning (OBL) [21].
It can be seen as a composite method in which an initial
population (original) of individuals is generated using any of
the above methods and then a heuristic rule used to produce
an opposite population (x̃) of the original one, as

x̃i,j = xj+xj−xi,j , ∀ i = {1, 2, ..., PS} , D = {1, 2, ..., D}
(4)

Finally, a subset of the best individuals from (x ∪ x̃) is
selected. Many variations of this method have been proposed
including center-based sampling [33], generalized OBL [34]
and current optimum OBL [35], [36]. Although OBL methods
perform well for solving many optimization problems, they
have the three drawbacks that [19]: (1) they consume a part
of the computational budget to evaluate the fitness functions
and select the best subset of both populations; (2) as the
secondary points are based on the original population, their
performances depend on the quality of the original population
to some extent; and (3) it is most likely that solutions which
have useful information are discarded due only to their low
fitness values.

However, from our perspective, the first drawback can
be ignored when the initial population can capture useful

information about the problem’s characteristics which can
significantly speed up the convergence rate. This is one of
the main motivations for the work reported in this paper.

B. DE
DE is a population-based stochastic algorithm for

global optimization [37]. Initially, a population of ran-
dom D−dimensional vectors is generated, i.e., X =
{−→x 1,

−→x 2, ...
−→x PS}, where PS is the population size. These

individuals are then used to generate a mutant population of
size PS, i.e., V = {−→v 1,

−→v 2, ...
−→v PS}. Then, each solution

(−→x i), in the current population, is recombined with its corre-
sponding mutant vector (−→v i) to generate a trial vector (−→u i),
where i = 1, 2, ...PS, and every −→x i and its corresponding −→u i
are pair-wise compared, with the winning vectors becoming
the parent population (X) in the next generation [1], [38].
Below is a brief description of each step in DE.
• Initialization: each individual in the population is rep-

resented as a D-dimensional vector and each variable is
generated within its allowable boundaries:

xi,j = xj + randj(0, 1)× (xj − xj) ∀ j = {1, 2, ...D}
(5)

where randj(0, 1) is a uniform random number within
[0, 1]. Note that DE was initially proposed to solve only
continuous problems and was later adapted to solve
other types of optimization problems [1].

• Mutation: DE generates new solutions that are pertur-
bations of the current ones in which, in its simplest
form (DE/rand/1), a mutant vector (−→v i) is generated by
adding a scaled difference between two random solution
vectors to a third one (equation (6)).

−→v i = −→x r1 + F × (−→x r2 −−→x r3) (6)

where −→x r1 , −→x r2 and −→x r3 are distinct solution vectors
in the current population and none is similar to −→x i, F
a positive real number that controls the rate at which
the population evolves [1]. −→x r1 is also called the base
vector.
There are many variants of this operator, such as
DE/best/1 [5], DE/rand-to-best/1 [39] and DE/current-
to-best [40]. For more details, readers are referred to
[41].

• Crossover: there are two well-known crossover
schemes for DE: binomial and exponential. The former
(sometimes also called uniform or discrete crossover
[1]) is conducted on every j ∈ [1, D] with a predefined
crossover probability. In particular, for each j, a uniform
random number (randj(0, 1)) is generated. If its value
is less than Cr, the trial value (−→u i,j) is copied from
the corresponding value from the mutant vector (−→v i,j);
otherwise, it is copied from the parent vector (−→x i,j)
that is:

ui,j =

{
vi,j if (randj(0, 1) ≤ cr or j = jrand)
xi,j otherwise

(7)
jrand ∈ {1, 2, ..., D} is a randomly integer index which
ensures that −→ui obtains at least one component from −→vi .
On the other hand, an exponential crossover is similar
to a two-point crossover in which the first cutting point



IEEE TRANSACTIONS ON CYBERNETICS 4

(l) is randomly selected from the range [1, D] and the
second is determined such that L components are copied
from −→v i [42], as follows:

ui,j =

{
vi,j ∀j = 〈l〉D, 〈l + 1〉D, ..., 〈l + L− 1〉D
xi,j ∀j ∈ [1, D]

(8)
where 〈l〉D denotes a modulo function with a modulus
of D and L ∈ [1, D].

• Selection: DE uses a simple one-to-one survivor selec-
tion in which, at generation (t), a trial vector (−→u i,t)
competes against the target/parent vector (−→x i,t), and
the best from them, in terms of the fitness value and/or
constraint violation, is considered a vector in the new
population in the next generation (t+ 1).

III. PROPOSED APPROACH

As previously discussed, one objective of this paper is to
propose an initialization method which can cover a reason-
able search space and can directly give an indication of the
function’s behavior. By achieving this, it can be possible to
determine the search areas of interest that an EA can focus
on. The details of the proposed method are discussed below.

Initially, the search domain
[−→x −−→x ] is divided into q+ 1

segment vectors, where the first and last segment vectors are
the lower and upper range vectors of all the decision variables,
respectively. To do this, the interval (I) of each segment vector
can be determined using equation (9).

−→
I =

(−→
x −−→x

)
q

(9)

Then, the kth segment vector(−→
S k, ∀k = {1, 2, ..., q + 1}

)
is generated as follows:

−→
S k =


−→x k = 1
−→
S k−1 +

−→
I 2 ≤ k ≤ q

−→
x k = q + 1

(10)

Example 1. Let’s assume that there are 3 decision variables
(D = 3) and that the lower and upper limits of each of them
are 0 and 1, respectively, i.e., −→x = [0, 0, 0] and

−→
x = [1, 1, 1].

For q = 4,

−→
I =

[1, 1, 1]− [0, 0, 0]

4
= [0.25, 0.25, 0.25] ,

hence 5 (q + 1) segment vectors can be generated as follows:

−→
S 1 = −→x = [0.0, 0.0, 0.0]

−→
S 2 =

−→
S 1 +

−→
I = [0.25, 0.25, 0.25]

−→
S 3 =

−→
S 2 +

−→
I = [0.5, 0.5, 0.5]

−→
S 4 =

−→
S 3 +

−→
I = [0.75, 0.75, 0.75]

−→
S 5 =

−→
x = [1.0, 1.0, 1.0]

Subsequently, a set of sequences can be generated as
described in Algorithm 2. For the kth vector in S

(−→
S k

)
,

some possible points are generated, such that starting with the
last variable, i.e., j = D, by changing its value to all possible
Sk,j ∀ k = {1, 2, ...q + 1}. Note that, every change means a

new point is generated. Also for every change, only the jth
variable is changing, while the remaining variables are set as
those of

−→
S k. At the same time, no redundant points should

be generated. It is worth mentioning that the order in which
the points are generated is very important.

Algorithm 2 Population Initialization

1: define
−→
< = [0, 0, ..., 0]q+1 //used to avoid generating redundant

points;
2: i← 0; //to count a point to generate
3: for k = 1:q + 1 do
4: for j = D : −1 : 1 // for each decision variable) do
5: for r = 1:q + 1 do
6: if (k == r) and (<(k) == 0) then
7: <(k)← 1;
8: i← i + 1;
9: −→x i ←

−→
S k;

10: xi,j ← Sr,j ; // change the jth variable in the ith point
11: else if (k == r) and (<(k) == 1) then
12: r ← r + 1; // skip generating a redundant point
13: else if k ∼= r then
14: i← i + 1;
15: −→x i ←

−→
S k;

16: xi,j ← Sr,j ; // change the jth variable in the ith point
17: end if
18: end for
19: end for
20: end for

Based on this method, the maximum number of individuals
that can be generated is:

(q + 1)× ((D × q) + 1) (11)

which is less than the maximum number of grids Dq ,
assumed by the UED initialization method. For example,
for D = 10 and q = 10, the proposed method generates
(10 + 1) × ((10× 10) + 1) = 1111 points. This number is
significantly less that of UED, which is 1010.

Example 2. Let’s assume that D = 3, and the lower and
upper limits of each of them are 1 and 3, respectively, i.e.,
−→x = [1, 1, 1] and

−→
x = [3, 3, 3], and q = 2. As previously

described in Example 1, S will have q + 1 = 3 vectors, such
as:

S =

[
1 1 1
2 2 2
3 3 3

]
In reference to equation (11), 21 points can be generated in
the following order:

−→x 1 = [1, 1, 1] ;
−→x 2 = [1, 1, 2] ;
−→x 3 = [1, 1, 3] ;
−→x 4 = [1, 2, 1] ;
−→
S 5 = [1, 3, 1] ;
−→x 6 = [2, 1, 1] ;
−→x 7 = [3, 1, 1] ;

−→x 8 = [2, 2, 1] ;
−→x 9 = [2, 2, 2] ;
−→x 10 = [2, 2, 3] ;
−→x 11 = [2, 1, 2] ;
−→x 12 = [2, 3, 2] ;
−→x 13 = [1, 2, 2] ;
−→x 14 = [3, 2, 2] ;

−→x 15 = [3, 3, 1] ;
−→x 16 = [3, 3, 2] ;
−→x 17 = [3, 3, 3] ;
−→x 18 = [3, 1, 3] ;
−→x 19 = [3, 2, 3] ;
−→x 20 = [1, 3, 3] ;
−→x 21 = [2, 3, 3] ;

IV. EXPERIMENTAL RESULTS

In this section, the results obtained for two different un-
constrained data sets, and a few multi-objective problems, are
presented and discussed.



IEEE TRANSACTIONS ON CYBERNETICS 5

A. Proposed initialization and function’s behavior
To judge the capability of the proposed initialization tech-

nique to provide useful information about the behavioral
pattern of the objective function, 13 test problems were
considered. Their mathematical characteristics are provided in
Table 1 in Appendix A where F1 to F7 are unimodal problems
and F8 to F13 multi-modal ones.

For all the problems, 10 and 30 variables were used. An
initial population was generated using the proposed initial-
ization method and the fitness values of all the individuals
calculated, plotted and then compared with those of the (1)
uniform, (2) orthogonal-based, (3) OBL based on a uniform
sampling (OBL-uniform), and (4) LHS initialization methods.
As a sample, we plotted only the 30D problems. For the
proposed method, q was set to a value of 10, which means
that PS was 1111 and 3311, for the 10D and 30D problems,
respectively. Note that for the orthogonal-based initialization
method, PS was 1000 and 3375, respectively. Also, for OBL-
uniform,

⌈
PS
2

⌉
individuals were generated using a uniform

distribution. Then, the opposite points were generated to form
PS. Also, the uniform and LHS methods started with the same
population size as used in the proposed method, i.e., 1111
and 3311, for the 10D and 30D problems, respectively. Note
that the fitness values were plotted according to the sequences
in which the individuals were generated by the initialization
methods.

Considering the unimodal problems (F1 to F7), the fitness
values of the initial population given in figures 1 and 2 in the
supplementary file, with an example for F05 shown in Figure
1, reveal the capability of the proposed method to indicate
that F1 to F7 were unimodal, with the best minimum value
close to zero. In contrast, all the other methods did not directly
provide such important information.

For the multi-modal problems, the fitness values of the
initial population given in figures 3 to 5 in the supplementary
file, with two examples shown in Figure 1. It was found
that the proposed method was able to determine the multi-
modality of the landscapes of F8 and F10, while for the other
4, although the areas of interest were around the center of
the search domain, it was still not clear that the problems
were multi-modal. Therefore, we increased q to 20 and plotted
all the fitness values (the 3rd plot in each sub-figure), which
clearly showed that the problems are multi-modal. For F11

to F13, it was evident that the global solutions were around
the center of the search domain and, by zooming in (i.e.,
generating more points within a smaller search domain around
the center of the search space, i.e., 10% of the search domain),
the problems appeared multi-modal.

Concerning the quality of the initial solutions obtained, the
best fitness value in the initial population of each method and
the average fitness values from 25 runs recorded are presented
in Table I. Note that, in these experiments, the proposed
method used a q value of 10 and its results revealed that it
was able to obtain much better results for all problems, except
F8 with 30D for which the orthogonal-based method was
slightly better. For some test problems the optimal solutions
were obtained within the first initialization. It was also noted
that the performances of the uniform and OBL initialization
methods came in the 2nd and 3rd places, respectively, and,
interestingly, LHS was the worst.

Furthermore, all initialization methods were implemented
with a well-known DE and well-performing algorithm, known
as JADE [40], and run 25 times to solve all the problems with

Table II. RANKS OF JADE WITH PROPOSED, UNIFORM,
OBL-UNIFORM, LHS, AND ORTHOGONAL INITIALIZATION METHODS

BASED ON FRIEDMAN’S TEST

Criteria JADE
Proposed Uniform OBL-uniform LHS Orthogonal

Best fitness values 2.27 3.19 3.12 3.58 2.85
Average fitness values 2.00 3.38 2.69 3.23 3.69

D = 30. For a fair comparison, the PS was initially set to
a value of 3311, except for the orthogonal-based one which
was set to 3375, and then the best 100 individuals selected
to form the initial population. As selecting the best solutions
from a large population of individuals may reduce diversity,
especially for multi-modal problems, and to gain benefits
from the proposed method, the selected individuals could be
taken from different areas of the search space in which we
were interested; for instance, a1 to a5 in Figure 2 for F8.
Subsequently, we placed more emphasis on the best area (a1)
by taking the best 60 individuals from it and the remaining 40
solutions from all the other areas (the best 10 in each). Note
that, although this selection procedure was undertaken for all
the multi-modal problems (F8 to F13), any other one could
be used depending on the problem considered (as discussed in
Algorithm 3). Also, it was noted that, in Figure 2, a jump in
the fitness values occurred every 301 solutions. The detailed
results shown in Table 2 in Appendix A indicated that JADE
with the proposed initialization method was the best.

solutions
0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300

f(
x)

×104

-1.5

-1

-0.5

0

0.5

1

1.5

a
3

a
1

a
4

a
2

a
5

Figure 2. Search areas of interest for F8

From a statistical perspective, the Friedman test was under-
taken to rank all the variants based on the best and average
fitness values obtained, with the results shown in Table II.
Considering the best results, it was found that JADE with the
proposed method was ranked first, followed by JADE with
the orthogonal, OBL-uniform, uniform and LHS initialization
methods, respectively. Regarding the average results, JADE
with the proposed initialization method was ranked first,
followed by JADE with the OBL-uniform, LHS, uniform and
orthogonal methods, respectively.

In addition, the average numbers of fitness evaluations con-
sumed to reach optimal solutions with a tolerance of 1E− 04
were recorded, as shown in Table IIIin which it is clear that
JADE with the proposed method was faster than all the other
variants. To provide more information, the error bars plots
are depicted in Figure 3, with the curve represent the average



IEEE TRANSACTIONS ON CYBERNETICS 6

Uniform

LHS

OBL-Uniform

Orthogonal

solutions
0 500 1000 1500 2000 2500 3000

f(
x)

×109

0

0.5

1

1.5

2

2.5

3

solutions
0 500 1000 1500 2000 2500 3000

f(
x)

×109

0

0.5

1

1.5

2

2.5

3

(a) F5

solutions
0 500 1000 1500 2000 2500 3000

f(
x)

12

14

16

18

20

22

24

solutions
0 500 1000 1500 2000 2500 3000

f(
x)

0

5

10

15

20

25

solutions
0 2000 4000 6000 8000 10000 12000

f(
x)

0

5

10

15

20

25

(b) F10

solutions
0 500 1000 1500 2000 2500 3000

f(
x)

×109

0

2

4

6

8

10

12

14

solutions
0 500 1000 1500 2000 2500 3000

f(
x)

×109

0

2

4

6

8

10

12

14

solutions
0 2000 4000 6000 8000 10000 12000

f(
x)

×109

0

2

4

6

8

10

12

14

solutions
0 2000 4000 6000 8000 10000 12000

f(
x)

0

50

100

150

200

(c) F13

Figure 1. Fitness values of the initial population using different initialization methods for F1, F9, and F13 with 30D (the plots in red (2nd to 4th plots in
each sub-figure) correspond to the proposed method, where the 2nd and 3nd plots, in each sub-figure, are with q = 10 and 20, respectively, while the 4th plot
in F13 is for 10% of the search domain, i.e., [0.1x, 0.1x̄])



IEEE TRANSACTIONS ON CYBERNETICS 7

Table I. AVERAGE OF BEST SOLUTIONS OBTAINED WITHIN THE INITIAL POPULATION, OUT OF 25 RUNS, USING DIFFERENT INITIALIZATION METHODS

Prob. D Optimal Proposed Uniform OBL-uniform LHS Orthogonal

F1
10D 0.0000E+00 0.0000E+00 7.5401E+03 8.3748E+03 2.7048E+04 2.0000E+04
30D 0.0000E+00 4.7089E+04 4.8362E+04 9.5737E+04 4.0408E+04

F2
10D 0.0000E+00 0.0000E+00 7.5401E+03 8.3748E+03 2.7048E+04 1.6941E+05
30D 0.0000E+00 5.6275E+07 1.0130E+08 1.6420E+13 1.3000E+02

F3
10D 0.0000E+00 0.0000E+00 8.1260E+03 8.2997E+03 1.0787E+04 4.9012E+04
30D 0.0000E+00 6.0228E+04 6.4820E+04 5.6530E+04 2.2367E+05

F4
10D 0.0000E+00 0.0000E+00 4.6789E+01 5.1335E+01 8.0503E+01 5.5556E+01
30D 0.0000E+00 7.4159E+01 7.5353E+01 9.3419E+01 1.0000E+02

F5
10D 0.0000E+00 9.0000E+00 7.2785E+06 9.2222E+06 7.0021E+07 8.1769E+07
30D 2.9000E+01 1.2456E+08 1.3322E+08 3.8244E+08 1.7222E+08

F6
10D 0.0000E+00 0.0000E+00 7.5331E+03 8.3870E+03 2.7034E+04 1.9801E+04
30D 0.0000E+00 4.7110E+04 4.8321E+04 9.5687E+04 4.0479E+04

F7
10D 0.0000E+00 5.2957E-02 2.1332E+00 2.3438E+00 1.1862E+01 4.5446E+00
30D 6.2630E-02 5.8535E+01 6.4948E+01 1.4085E+02 1.6634E+01

F8
10D -4.1898E+03 -3.6518E+03 -2.0411E+03 -1.9911E+03 -1.5707E+03 -2.8573E+03
30D -1.2569E+04 -1.0955E+04 -3.7965E+03 -3.7388E+03 -1.0429E+03 -1.2120E+04

F9
10D 0.0000E+00 0.0000E+00 8.5474E+01 8.7250E+01 1.1805E+02 1.4142E+02
30D 0.0000E+00 3.6385E+02 3.7220E+02 4.8060E+02 1.9271E+02

F10
10D 0.0000E+00 7.9936E-15 1.8089E+01 1.8353E+01 2.0207E+01 1.9875E+01
30D 7.9936E-15 2.0007E+01 2.0107E+01 2.0643E+01 1.3783E+01

F11
10D 0.0000E+00 0.0000E+00 6.8859E+01 7.6370E+01 2.4443E+02 1.8100E+02
30D 0.0000E+00 4.2481E+02 4.3626E+02 8.6263E+02 3.6467E+02

F12
10D 0.0000E+00 2.6507E+00 7.2630E+07 1.2228E+08 2.2617E+09 2.5600E+09
30D 1.6690E+00 2.2131E+09 2.5142E+09 1.0782E+10 3.0547E+09

F13
10D 0.0000E+00 1.0000E+00 2.7971E+07 3.8337E+07 4.4821E+08 4.1006E+08
30D 3.0000E+00 5.0110E+08 5.5257E+08 1.9837E+09 6.2132E+08

Table III. AVERAGE FITNESS EVALUATIONS TO REACH∣∣∣f (−→x best

)
− f

(−→
x∗

)∣∣∣ ≤ 1e− 04 WITH DIFFERENT INITIALIZATION

METHODS FOR 30D PROBLEMS

Prob. Best
Proposed Uniform OBL-uniform LHS Orthogonal

F1 3.3110E+03 2.3875E+04 2.4012E+04 2.4563E+04 2.4399E+04
F2 3.3110E+03 3.6359E+04 3.6496E+04 3.8243E+04 3.6863E+04
F3 3.3110E+03 5.3839E+04 5.1444E+04 5.1451E+04 5.2363E+04
F4 3.3110E+03 5.0155E+04 4.9776E+04 5.0579E+04 5.1579E+04
F5 9.6871E+04 1.0334E+05 1.0650E+05 9.9783E+04 1.0486E+05
F6 3.3110E+03 1.4439E+04 1.4580E+04 1.5283E+04 1.5059E+04
F7 3.0000E+05 1.4439E+04 1.4580E+04 1.5283E+04 1.5059E+04
F8 4.8667E+04 9.9491E+04 9.9864E+04 1.0202E+05 9.6595E+04
F9 3.3110E+03 1.0468E+05 1.0442E+05 1.0524E+05 1.0557E+05
F10 3.4110E+03 3.1427E+04 3.1388E+04 3.1867E+04 4.0807E+04
F11 3.3110E+03 2.6375E+04 2.7444E+04 2.7567E+04 2.6687E+04
F12 1.5095E+04 2.1443E+04 2.1708E+04 2.2331E+04 2.1631E+04
F13 1.9155E+04 2.3811E+04 2.3852E+04 2.4443E+04 2.3895E+04

fitness values over 25 runs for all generations. These figures
clearly indicated the effectiveness of the proposed method and
its capability to converge faster than the other variants. It was
interesting to learn that even the orthogonal-based technique
started with a better initial points then the proposed one when
solving F08, while JADE with the proposed method was able
to converge to the optimal solution first.

1) Computational times: In this subsection, the computa-
tional times of all the methods are compared.

For each method, the average computational times taken to
generate an initial population of 3311 individuals, i.e., q = 10,
for the 13 test problems were calculated. Then, JADE was run
25 times to solve each of the 30D problems, with their average
computational times recorded if one of the following two cri-
teria was met: (1) the maximum number of fitness evaluations
was reached; or (2)

∣∣∣f (−→x best)− f
(−→
x∗
)∣∣∣ ≤ 1e − 04. Note

that all experiments were run on a PC with a Core(TM) i7-
3770 CPU @ 3.40GHz (8 CPUs), 16 GB RAM and Windows
7 using MATLAB 8.5.0.197613 (R2015a).

Based on the results presented in Table IV, to generate 3311
initial points, it was found that the OBL-uniform method was
the fastest. This was expected as only half its population was
uniformly generated with calculations of the opposite points
taking less time than generating them randomly. The uniform

Table IV. AVERAGE COMPUTATIONAL TIME, IN SECONDS, FOR
DIFFERENT INITIALIZATION METHODS OVER13 TEST PROBLEMS WITH

30D

Proposed Uniform OBL-uniform LHS Orthogonal
For initialization 0.00147 0.00111 0.00082 0.24711 0.01026

After optimization 1.17 2.57 2.63 2.83 2.54

initialization method was second, with a small time difference
from the proposed method. Also, the proposed method was
clearly faster than the orthogonal-based and LHS ones. On
the other hand, the computational times after completion of
the optimization process provided different rankings. JADE
with the proposed method was significantly faster than all the
other variants, slower with the OBL-uniform than with the
orthogonal-based and uniform methods and slowest with LHS.

B. Solving CEC2014 test problems
In this section, five well-known DE algorithms are tested

on the CEC2014 test suite [43], which contains 30 problems,
from which F1 to F3 are unimodal functions, F4 to F16

multi-modal, F17 to F22 hybrid and F23 to F30 composi-
tions. The algorithms were (1) DE with self-adaptation of
its control parameters (jDE) [44]; (2) DE with an ensemble
of parameters and mutation strategies (EPSDE) [45]; (3) DE
with composite trial vector generation strategies (CoDE) [46];
(4) success-history parameter adaptation of DE (SHADE)
[47]; and (5) improved SHADE with linear population size
reduction (LSHADE) [48]. For all these algorithms, the PS
was set to a value of 100, except for LSHADE which used
18D individuals as recommended in the corresponding paper,
with all the other parameter settings exactly the same as those
in published papers.

Each algorithm was run 51 times with the proposed initial-
ization method using the uniform, OBL and LHS techniques
and the stopping criterion 10, 000D fitness evaluations, or∣∣∣f (−→x best,t)− f

(−→
x∗
)∣∣∣ ≤ 1e − 08, where f (−→x best,t) and



IEEE TRANSACTIONS ON CYBERNETICS 8

FFEs

101 102 103 104 105 106

|f
∗

−
f
be
s
t|

-2000

0

2000

4000

6000

8000

10000

12000

14000

Uniform
OBL
LHS
Orth
Proposed

(a) F8(x-axis is in log scale)

FFEs

102 103 104 105

|f
∗

−
f
be
s
t|

10-40

10-20

100

1020

Uniform
OBL
LHS
Orth
Proposed

(b) F12 (x- and y-axes are in log scale)

FFEs

102 103 104 105

|f
∗

−
f
be
s
t|

10-40

10-30

10-20

10-10

100

1010

Uniform
OBL
LHS
Orth
Proposed

(c) F13(x- and y-axes are in log scale)

Figure 3. Convergence plots of JADE with all initialization methods for
F08, F12 and F13 with 30D

Algorithm 3 Generating initial points to use in solving the
CEC2014 problems

1: With q = 10, generate an initial population X =
{−→x 1,

−→x 2, ...,
−→x PS}, where PS = 3311, as described in

Section III;
2: Calculate the fitness value of each individual (f(−→x )∀ i =

1, 2, ..., PS)
3: Update the number of fitness evaluations to 3311;
4: Set FFEmax ← 10000D -

(
3311
51

)
≈ 299935;

5: Divide X into ng groups, i.e., X =
{
X1, X2, ..., Xng

}
,

based on the problem on hand, each is of size PSg;
6: Calculate the average fitness value of each group, i.e. f̄g =∑PSg

i=1 f(−→x )

PSg
∀g = 1, 2, ..ng;

7: denominator ←
∑ng

g=1

∑ng
gf=1 f̄gf

fg
8: Determine how many individuals to select from each g,

i.e., rateg =

((∑ng
gf=1 f̄gf

fg

)
× denominator−1

)
, ∀g =

1, 2, ..ng;
PSg =

rateg∑ng
l=1 ratel

× PS
2 ,∀g = 1, 2, ..ng

9: for g = 1 : ng do
10: Insert the best individual in Xg;
11: Insert random PSg − 1 individuals in Xg;
12: end for
13: for g = 1 : ng do
14: for i = 1 : PSg do
15: Generate

−→
4i = {4i,1,4i,2, ...,4i,D}, where

4i,j ∈ [−1, 1];
16: −→x ′i ←

−→x i +
−→
4i;

17: Calculate f
′

i ;
18: if f

(−→x ′i) < f (−→x i) then
19: −→x i ← −→x

′

i

20: fi ← f
′

i
21: end if
22: end for
23: end for
24: Generate the remaining PS

2 using a uniform distribution.

f
(−→
x∗
)

are the fitness values of the best vector in generation
t and optimal solution, respectively, considering only the 30D
problems.It is worth mentioning that, although in the previous
section, the initialization method was deterministic, starting
with a different population in each run was a condition of
the CEC2014 competition problems. Therefore, the procedure
presented in Algorithm 3, was carried out to add randomness
to the initial population generated by the proposed method,
with a pool of individuals based on it with q = 10 generated.
Then, as the corresponding fitness values were calculated,
the number of fitness evaluations was 3311, a step that was
performed only once. To provide a fair comparison, this
number of fitness evaluations was deducted from the overall
stopping criterion and distributed over 51 runs, so that it would
be10000D -

(
3311
51

)
≈ 299935 fitness evaluations. Based on

the shape of the curve of the fitness values of a problem
considered, PS

2 individuals were selected, such that (1) all
3311 were divided into different groups (ng), each of which
was of size PSg; (2) based on the average fitness values in



IEEE TRANSACTIONS ON CYBERNETICS 9

each group, ng solutions were selected, i.e., the best individual
in each group was selected, while the remaining PSg−1 ∀ g =
{1, 2, ..., ng} were selected randomly at the beginning of each
run. Then, for each individual −→x i ∀i =

{
1, 2, ..., PS2

}
, a new

shifted vector was generated, such that −→x ′i = −→x i+
−→
4i, where−→

4i = {4i,1,4i,2, ...,4i,D} and 4i,j ∈ [−1, 1]. Then, −→x ′i
would replace −→x i if f

(−→x ′i) < f (−→x i) and simultaneously

update the number of fitness evaluations. The remaining PS
2

individuals were generated using a uniform distribution.
Firstly, based on the curve of the fitness values obtained

for each problem, it was noted that the CEC2014 benchmark
problems were more difficult and challenging than the 13
problems considered in the previous section. In other words,
most of the problems had many local optima. Some of these
plots are shown in Figure 6 in the supplementary materials.

More detailed results regarding the quality of the solu-
tions obtained are shown in Appendix A with a comparison
summary presented in Table V. From these results, It is
clear that all the algorithms considered were improved by
using the proposed initialization method but, for a few multi-
modal and hybrid functions, were inferior to those using other
initialization approaches. One reason for this might have been
that the initial population contained many solutions close
to each other, a shortcoming that could be tackled by: (1)
considering a different DE mutation operator which could
maintain diversity; (2) changing the control parameters; or (3)
increasing the size of the initial population by adding more
diverse points. Broadly speaking, the proposed method could
provide useful information to help select the proper parameter
settings for solving a problem.

Also, the Wilcoxon signed rank test [49] was used to
statistically compare the algorithms. Using a significance level
of p = 5%, one of three symbols (+, −, and ≈) was assigned,
where + means that the 1st algorithm was statistically superior
to the 2nd, − that the 1st algorithm was statistically inferior
to the 2nd and ≈ that there was no significant difference
between the two algorithms. The results in Table V show
that each algorithm using the proposed initialization method
was statically superior to its corresponding ones using other
initialization mechanisms.

Also, based on the average fitness values obtained, the
Friedman test was undertaken to rank all the variants of
each DE algorithm, as shown in Table VIin which it is clear
that the proposed method was ranked first. Of the uniform,
OBL and LHS initialization methods, it was interesting to
note that one technique might have been the best choice for
one optimization algorithm but the worst for another; for
instance, it was observed that using the uniform initialization
mechanism with jDE, EPSDE and CODE was the worst option
but with SHADE and LSHADE the best. Also, LHS with jDE
was ranked 2nd but with CoDE and LSHADE was the worst.

C. Testing proposed method with other CI methods
In this section, the proposed method is tested on a few

other algorithms : (1) GA with multi-parent crossover (GA-
MPC) [50], (2) covariance matrix adaption-ES (CMA-ES)
[6], (3) global and local PSO variants (g-PSO and l-PSO,
respectively). Both g-PSO and l-PSO followed the variant
proposed in [51]. Note that l-PSO used a typical ring topology,
i.e., each particle interacted with only its immediate left and

Table V. COMPARISON SUMMARY AMONG DIFFERENT ALGORITHMS WITH
UNIFORM, OBL, LHS AND PROPOSED INITIALIZATION METHODS. THE

FIRST ALGORITHMS IN THE FIRST COLUMN USE THE PROPOSED METHOD..
VALUES IN COLUMNS 4, 5 AND 6 REFER TO NUMBERS OF TEST PROBLEMS
WHICH AN OPTIMIZATION ALGORITHM WITH PROPOSED INITIALIZATION
IS BETTER, SIMILAR AND WORSE THAN THE SECOND ALGORITHM IN THE

1ST COLUMN, BASED ON BEST AND AVERAGE FITNESS VALUES
OBTAINED, RESPECTIVELY. p IS A PROBABILITY THAT IS USED TO TAKE A

DECISION BASED ON THE WILCOXON TEST

Algorithms Criteria Better Similar Worse p

jDE vs. jDE(uniform) Best results 18 6 6 0.016(+)
Average results 20 5 5 0.001(+)

jDE vs. jDE(OBL) Best results 19 6 5 0.092(+)
Average results 19 4 7 0.005(+)

jDE vs. jDE(LHS) Best results 17 6 7 0.049(+)
Average results 18 4 8 0.009(+)

EPSDE vs. EPSDE(uniform) Best results 16 6 8 0.097(≈)
Average results 21 5 4 0.0004(+)

EPSDE vs. EPSDE(OBL) Best results 17 6 7 0.03(+)
Average results 18 5 7 0.005(+)

EPSDE vs. EPSDE(LHS) Best results 16 6 8 0.034(+)
Average results 19 4 7 0.004(+)

CoDE vs. CoDE(uniform) Best results 25 0 5 0.0001(+)
Average results 24 0 4 0.0000(+)

CoDE vs. CoDE(OBL) Best results 24 0 6 0.0001(+)
Average results 22 0 8 0.001(+)

CoDE vs. CoDE(LHS) Best results 19 0 11 0.006(+)
Average results 22 1 7 0.0002(+)

SHADE vs. SHADE(uniform) Best results 21 7 2 0.0005(+)
Average results 21 4 5 0.007(+)

SHADE vs. SHADE(OBL) Best results 15 6 5 0.002(+)
Average results 22 4 4 0.001(+)

SHADE vs. SHADE(LHS) Best results 18 6 6 0.008(+)
Average results 20 4 6 0.004(+)

LSHADE vs. LSHADE(uniform) Best results 16 9 5 0.014(+)
Average results 17 8 5 0.024(+)

LSHADE vs. LSHADE(OBL) Best results 16 8 6 0.010(+)
Average results 16 8 6 0.012(+)

LSHADE vs. LSHADE(LHS) Best results 14 8 8 0.022(+)
Average results 18 8 4 0.006(+)

Table VI. RANKS OF ALL VARIANTS OF JDE, EPSDE, CODE,
SHADE AND LSHADE BASED ON THE FRIEDMAN TEST

Proposed Uniform OBL LHS
jDE 1.85 2.87 2.78 2.5

EPSDE 1.83 2.97 2.45 2.75
CoDE 1.65 2.8 2.53 3.02

SHADE 1.7 2.45 2.95 2.9
LSHADE 2.07 2.42 2.53 2.98

right neighbors. The parameter settings of all the algorithms
are shown in Table VII.

Detailed test results are shown in Appendix A, with a com-
parison summary presented in Table VIII. It was found that all
the algorithms were improved using the proposed initialization
method. In addition, the Wilcoxon test was performed on
all the problems and, based on the best and average results
obtained, the GA-MPC, g-PSO and l-PSO algorithms using
the proposed method were statistically superior to those using
other initialization methods. Also, it was found that, when
the proposed method was adopted with CMA-ES, there was
a statistical difference based on the average fitness values but
none considering the best ones.

Furthermore, the Friedman test was undertaken to rank
each variant of the optimization algorithms used based on the
average results it obtained. Table IX presents details of the
rankings, with the results demonstrating the superiority of the
proposed method.

Table VII. CONFIGURATIONS OF GA-MPC, CMA-ES, G-PSO AND
L-PSO

Algorithms Parameter settings
GA-MPC PS = 90, Cr = 1 and p = 0.1 [50]
CMA-ES µ = PS

2 , σ = 0.3, PS = 100 [12], [52]
g-PSO and l-PSO c1 = c2 = 1.49445, χ = 0.729 [51], and PS = 100



IEEE TRANSACTIONS ON CYBERNETICS 10

Table VIII. COMPARISON SUMMARY AMONG GA-MPC, CMA-ES, G-PSO
AND L-PSO WITH DIFFERENT INITIALIZATION TECHNIQUES. THE FIRST

ALGORITHMS IN THE FIRST COLUMN USE THE PROPOSED METHOD.
VALUES IN COLUMNS 4, 5 AND 6 REFER TO NUMBERS OF TEST PROBLEMS
WHICH AN OPTIMIZATION ALGORITHM WITH PROPOSED INITIALIZATION
IS BETTER, SIMILAR AND WORSE THAN THE SECOND ALGORITHM IN THE

1ST COLUMN, BASED ON BEST AND AVERAGE FITNESS VALUES
OBTAINED, RESPECTIVELY. p IS A PROBABILITY THAT IS USED TO TAKE A

DECISION BASED ON THE WILCOXON TEST

Algorithms Criteria Better Similar Worse p

GA-MPC vs. GA-MPC(uniform) Best results 18 4 8 0.038(+)
Average results 22 2 6 0.003(+)

GA-MPC vs.GA-MPC(OBL) Best results 20 4 6 0.001(+)
Average results 24 2 4 0.001(+)

GA-MPC vs. GA-MPC(LHS) Best results 19 4 7 0.041(+)
Average results 22 2 6 0.002(+)

CMA-ES vs. CMA-ES(uniform) Best results 13 8 9 0.227(≈)
Average results 20 4 6 0.012(+)

CMA-ES vs. CMA-ES(OBL) Best results 14 8 8 0.236(≈)
Average results 20 5 5 0.009(+)

CMA-ES vs. CMA-ES(LHS) Best results 17 7 9 0.301(≈)
Average results 21 4 5 0.001(+)

g-PSO vs. g-PSO(uniform) Best results 22 0 8 0.026(+)
Average results 26 0 4 0.000(+)

g-PSO vs. g-PSO(OBL) Best results 22 0 8 0.028(+)
Average results 25 0 5 0.000(+)

g-PSO vs. g-PSO(LHS) Best results 23 0 7 0.022(+)
Average results 26 0 4 0.000(+)

l-PSO vs. l-PSO(uniform) Best results 25 1 4 0.000(+)
Average results 25 0 5 0.001(+)

l-PSO vs. l-PSO(OBL) Best results 21 1 8 0.005(+)
Average results 25 0 5 0.001(+)

l-PSO vs. l-PSO(LHS) Best results 23 1 6 0.004(+)
Average results 23 0 7 0.003(+)

Table IX. RANKS OF ALL VARIANTS OF GA-MPC, CMA-ES, G-PSO
AND L-PSO BASED ON THE FRIEDMAN TEST

Proposed Uniform OBL LHS
GA-MPC 1.63 2.5 3.2 2.67
CMA-ES 1.75 2.67 2.78 2.8

g-PSO 1.43 2.73 2.63 3.2
l-PSO 1.57 3.07 2.70 2.67

D. Solving multi-objective problems
In this section, solving three multi-objective problems using

a well-known multi-objective EA based on decomposition
(MOEA/D) [53] with the uniform and proposed initialization
methods is discussed. The parameter settings of MOEA/D
were the same as those reported in the abovementioned paper.
Three well-known test problems (ZDT1, ZDT2 and ZDT3)
with two objective functions were solved, where D was 30, the
total number of runs 25 and maximum number of generations
(gmax) 50.

To provide a fair comparison, 906, as q = 5, were initially
generated then the best PS = 101 individuals selected
based on the non-dominated sorting criterion [54]. Then, the
hypervolume (HV) [55] indicator was calculated for the final
Pareto front in each run. Note that the reference point was
set at the maximum fitness value of each objective, among
the non-dominated points, attained by both variants. Based
on the HV results reported in Table X, it was found that
MOEA/D was better with the proposed than uniform method.
Furthermore, Figure 4shows the distribution of the final fitness
values of the non-dominated solutions of the run with the best
HV value of each algorithm for each test instance. It was
evident that MOEA/D with the proposed initialization method
was superior to that with the uniform random initialization
one.

V. CONCLUSIONS AND FUTURE WORK

Due to the crucial effect of the initial population on
the performances of EAs, a considerable number of new
initialization techniques has been proposed. However, they

Table X. HV (BEST, MEDIAN, STD) VALUES OBTAINED FOR MOEA/D
WITH UNIFORM AND PROPOSED INITIALIZATION METHODS ON ZDT1,

ZDT2 AND ZDT3 PROBLEMS

Prob. Method best mean median worst std

ZDT1 Uniform 0.7531 0.7385 0.7410 0.6890 0.0126
Proposed 0.7675 0.7669 0.7669 0.7658 0.0005

ZDT2 Uniform 0.3309 0.2790 0.3185 0.0137 0.0940
Proposed 0.3416 0.3411 0.3412 0.3399 0.0005

ZDT3 Uniform 0.9824 0.9554 0.9607 0.9023 0.0216
Proposed 0.9958 0.9886 0.9953 0.9160 0.0217

suffer from some drawbacks, such as (1) they are not able
to directly indicate the pattern of the objective function, i.e.,
uni- or multi-modal; and (2) some do not uniformly cover
the search space. Although some techniques try to tackle the
second shortcoming, the first still exists. Therefore, in this
paper, a new initialization technique was proposed. In it, the
search domain of each decision variable was decomposed
into a set of segments. Then, the search space was filled by
systematically generating combinations of different segments
of all the variables whereby the fitness values of the initial
population were able to provide indications of the pattern
of the function’s behavior. As a consequence, based on the
pattern of the objective values, different points from different
areas of the search space could be selected.

The proposed method was incorporated with a well-known
DE algorithm and tested on a set of 13 test problems. It
was found that, for many problems, optimal or near-optimal
solutions were found in the initial population. In addition, the
proposed approach was found to be superior to four other
initialization mechanisms in terms of the quality of solutions it
obtained and its convergence rate which was 43% faster. Also,
the initial population mechanism was incorporated with other
DE algorithms and used to solve 30 unconstrained problems,
with the results indicating the benefits of the proposed method
compared with three other techniques. Another finding dis-
cussed in this paper was that no single existing initialization
mechanism was the best for all DE algorithms, i.e., one might
work well with one algorithm but not another. A reason for
this might have been the types of search operators and control
parameters used in the optimization algorithm.

Although the proposed method was the best choice for the
algorithms considered in this paper, for some test problems
(multi-modal and hybrid functions) it was not, probably be-
cause the diversity within the initial population was sufficient.
Further investigations into this aspect will be considered as
part of our future research. Also, solving real-world black box
problems will be another way of analyzing the effectiveness
of the proposed technique. Although the selection of points
from those generated by the proposed method depends on the
problem considered, it will be beneficial to develop a general
procedure. Finally, the proposed method’s performance for
solving expensive optimization problems will be tested.

ACKNOWLEDGMENT

The third author gratefully acknowledges support from
CONACyT project no. 221551.

REFERENCES

[1] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution:
a practical approach to global optimization. Springer Science &
Business Media, 2006.



IEEE TRANSACTIONS ON CYBERNETICS 11

f1

0 0.2 0.4 0.6 0.8 1

f
2

0

0.2

0.4

0.6

0.8

1
Proposed

f1

0 0.2 0.4 0.6 0.8 1

f
2

0

0.2

0.4

0.6

0.8

1
Uniform

(a) ZDT1

f1

0 0.2 0.4 0.6 0.8 1

f
2

0

0.2

0.4

0.6

0.8

1
Proposed

f1

0 0.2 0.4 0.6 0.8 1
f
2

0

0.2

0.4

0.6

0.8

1
Uniform

(b) ZDT2

f1

0 0.2 0.4 0.6 0.8 1

f
2

-1

-0.5

0

0.5

1
Proposed

f1

0 0.2 0.4 0.6 0.8

f
2

-0.5

0

0.5

1

1.5
Uniform

(c) ZDT3

Figure 4. Plot of the nondominated front with the maximum HV value found by MOEA/D-proposed (left) and MOEA/D-Uniform (right) for ZDT1, ZDT2
and ZDT3

[2] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “Multi-operator
based evolutionary algorithms for solving constrained optimization
problems,” Computers & operations research, vol. 38, no. 12, pp.
1877–1896, 2011.

[3] D. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
[4] L. Davis et al., Handbook of genetic algorithms. Van Nostrand

Reinhold New York, 1991, vol. 115.
[5] R. Storn and K. Price, “Differential evolution–a simple and efficient

heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[6] N. Hansen, S. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (cma-es),” Evolutionary Computation, vol. 11, no. 1,
pp. 1–18, 2003.

[7] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of Machine
Learning. Springer, 2010, pp. 760–766.

[8] R. Sarker, J. Kamruzzaman, and C. Newton, “Evolutionary optimiza-
tion (evopt): a brief review and analysis,” International Journal of
Computational Intelligence and Applications, vol. 3, no. 04, pp. 311–
330, 2003.

[9] Y.-W. Leung and Y. Wang, “An orthogonal genetic algorithm with

quantization for global numerical optimization,” IEEE Transactions on
Evolutionary Computation, vol. 5, no. 1, pp. 41–53, 2001.

[10] R. Sarker, S. Elsayed, and T. Ray, “Differential evolution with dynamic
parameters selection for optimization problems,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 5, pp. 689–707, Oct 2014.

[11] G. Karafotias, M. Hoogendoorn, and A. Eiben, “Parameter control in
evolutionary algorithms: Trends and challenges,” IEEE Transactions on
Evolutionary Computation, vol. 19, no. 2, pp. 167–187, April 2015.

[12] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “Adaptive configura-
tion of evolutionary algorithms for constrained optimization,” Applied
Mathematics and Computation, vol. 222, pp. 680–711, 2013.

[13] Q. Fan and X. Yan, “Self-adaptive differential evolution algorithm
with zoning evolution of control parameters and adaptive mutation
strategies,” IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 219–
232, Jan 2016.

[14] M. Yang, C. Li, Z. Cai, and J. Guan, “Differential evolution with auto-
enhanced population diversity,” IEEE Transactions on Cybernetics,
vol. 45, no. 2, pp. 302–315, Feb 2015.

[15] M. Z. Ali, N. H. Awad, P. N. Suganthan, and R. G. Reynolds, “An
adaptive multipopulation differential evolution with dynamic popula-
tion reduction,” IEEE Transactions on Cybernetics, vol. PP, no. 99, pp.
1–12, 2016.



IEEE TRANSACTIONS ON CYBERNETICS 12

[16] X. Qiu, K. C. Tan, and J. X. Xu, “Multiple exponential recombination
for differential evolution,” IEEE Transactions on Cybernetics, vol. PP,
no. 99, pp. 1–12, 2016.

[17] S. Kimura and K. Matsumura, “Genetic algorithms using low-
discrepancy sequences,” in Proceedings of the 7th annual conference on
Genetic and evolutionary computation. ACM, 2005, pp. 1341–1346.

[18] Z. Ma and G. A. Vandenbosch, “Impact of random number generators
on the performance of particle swarm optimization in antenna design,”
in 6th European Conference on Antennas and Propagation (EUCAP).
IEEE, 2012, pp. 925–929.

[19] B. Kazimipour, X. Li, and A. Qin, “A review of population initialization
techniques for evolutionary algorithms,” in Evolutionary Computation
(CEC), 2014 IEEE Congress on, July 2014, pp. 2585–2592.

[20] A. B. Ozer, “Cide: chaotically initialized differential evolution,” Expert
Systems with Applications, vol. 37, no. 6, pp. 4632–4641, 2010.

[21] S. Rahnamayan, H. R. Tizhoosh, and M. Salama, “Opposition-based
differential evolution,” IEEE Transactions on Evolutionary Computa-
tion, vol. 12, no. 1, pp. 64–79, 2008.

[22] E. K. Burke, J. P. Newall, and R. F. Weare, “Initialization strategies
and diversity in evolutionary timetabling,” Evolutionary computation,
vol. 6, no. 1, pp. 81–103, 1998.

[23] S. K. Park and K. W. Miller, “Random number generators: good ones
are hard to find,” Communications of the ACM, vol. 31, no. 10, pp.
1192–1201, 1988.

[24] H. Maaranen, K. Miettinen, and M. M. Mäkelä, “Quasi-random initial
population for genetic algorithms,” Computers & Mathematics with
Applications, vol. 47, no. 12, pp. 1885–1895, 2004.

[25] S. Helwig and R. Wanka, “Theoretical analysis of initial particle swarm
behavior,” in Parallel Problem Solving from Nature. Springer, 2008,
pp. 889–898.

[26] H. G. Schuster and W. Just, Deterministic chaos: an introduction. John
Wiley & Sons, 2006.

[27] Y. Wang and K. T. Fang, “A note on uniform distribution and experi-
mental design,” KeXue TongBao, vol. 26, no. 485, p. e9, 1981.

[28] W. Gong, Z. Cai, and L. Jiang, “Enhancing the performance of differ-
ential evolution using orthogonal design method,” Applied Mathematics
and Computation, vol. 206, no. 1, pp. 56–69, 2008.

[29] Z.-H. Zhan, J. Zhang, Y. Li, and Y. hui Shi, “Orthogonal learning
particle swarm optimization,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 6, pp. 832–847, Dec 2011.

[30] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, “Design and
analysis of computer experiments,” Statistical science, pp. 409–423,
1989.

[31] M. Zaman, S. Elsayed, T. Ray, and R. Sarker, “Evolutionary algorithms
for dynamic economic dispatch problems,” IEEE Transactions on
Power Systems, vol. PP, no. 99, pp. 1–10, 2015.

[32] S. M. Elsayed, T. Ray, R. Sarker et al., “A surrogate-assisted differential
evolution algorithm with dynamic parameters selection for solving
expensive optimization problems,” in IEEE Congress on Evolutionary
Computation. IEEE, 2014, pp. 1062–1068.

[33] S. Rahnamayan and G. G. Wang, “Center-based sampling for
population-based algorithms,” in IEEE Congress on Evolutionary Com-
putation. IEEE, 2009, pp. 933–938.

[34] H. Wang, Z. Wu, J. Wang, X. Dong, S. Yu, and C. Chen, “A new
population initialization method based on space transformation search,”
in Fifth International Conference on Natural Computation, vol. 5.
IEEE, 2009, pp. 332–336.

[35] Q. Xu, N. Wang, and R. Fei, “Influence of dimensionality and popu-
lation size on opposition-based differential evolution using the current
optimum,” Information Technology Journal, vol. 12, no. 1, p. 105, 2013.

[36] S. Y. Park and J. J. Lee, “Stochastic opposition-based learning using
a beta distribution in differential evolution,” IEEE Transactions on
Cybernetics, vol. 46, no. 10, pp. 2184–2194, Oct 2016.

[37] R. Storn and K. Price, Differential evolution-a simple and efficient
adaptive scheme for global optimization over continuous spaces. ICSI
Berkeley, 1995, vol. 3.

[38] R. Storn, “Differential evolution research-trends and open questions,”
in Advances in Differential Evolution, ser. Studies in Computational
Intelligence, U. Chakraborty, Ed. Springer Berlin Heidelberg, 2008,
vol. 143, pp. 1–31.

[39] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp.
398–417, 2009.

[40] J. Zhang and A. C. Sanderson, “Jade: adaptive differential evolution
with optional external archive,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 5, pp. 945–958, 2009.

[41] S. Das and P. N. Suganthan, “Differential evolution: a survey of
the state-of-the-art,” IEEE Transactions on Evolutionary Computation,
vol. 15, no. 1, pp. 4–31, 2011.

[42] D. Zaharie, “A comparative analysis of crossover variants in differential
evolution,” Proceedings of IMCSIT, pp. 171–181, 2007.

[43] J. Liang, B. Qu, and P. Suganthan, “Problem definitions and evaluation
criteria for the cec 2014 special session and competition on single
objective real-parameter numerical optimization,” Computational In-
telligence Laboratory, Zhengzhou University, Zhengzhou China and
Technical Report, Nanyang Technological University, Singapore, 2013.

[44] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.

[45] R. Mallipeddi, P. N. Suganthan, Q.-K. Pan, and M. F. Tasgetiren,
“Differential evolution algorithm with ensemble of parameters and
mutation strategies,” Applied Soft Computing, vol. 11, no. 2, pp. 1679–
1696, 2011.

[46] Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with composite
trial vector generation strategies and control parameters,” IEEE Trans-
actions on Evolutionary Computation, vol. 15, no. 1, pp. 55–66, 2011.

[47] R. Tanabe and A. Fukunaga, “Success-history based parameter adap-
tation for differential evolution,” in IEEE Congress on Evolutionary
Computation (CEC), 2013, pp. 71–78.

[48] R. Tanabe and A. Fukunaga, “Improving the search performance of
shade using linear population size reduction,” in IEEE Congress on
Evolutionary Computation (CEC), July 2014, pp. 1658–1665.

[49] G. W. Corder and D. I. Foreman, Nonparametric statistics for non-
statisticians: a step-by-step approach. John Wiley & Sons, 2009.

[50] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “A new genetic algo-
rithm for solving optimization problems,” Engineering Applications of
Artificial Intelligence, vol. 27, pp. 57–69, 2014.

[51] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and
convergence in a multidimensional complex space,” IEEE transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[52] S. M. Elsayed, R. A. Sarker, D. L. Essam, and N. M. Hamza, “Testing
united multi-operator evolutionary algorithms on the cec2014 real-
parameter numerical optimization,” in IEEE Congress on Evolutionary
Computation. IEEE, 2014, pp. 1650–1657.

[53] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on evolutionary compu-
tation, vol. 11, no. 6, pp. 712–731, 2007.

[54] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on
evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[55] E. Zitzler, D. Brockhoff, and L. Thiele, “The hypervolume indicator
revisited: On the design of pareto-compliant indicators via weighted in-
tegration,” in International Conference on Evolutionary Multi-Criterion
Optimization. Springer, 2007, pp. 862–876.

APPENDIX

All appendices can be found in the supplementary materials
attached with the paper, or the personal websites of the
authors.



IEEE TRANSACTIONS ON CYBERNETICS 13

Saber Elsayed (M’10) received the Ph.D. degree
in Computer Science from the University of New
South Wales Canberra, Australia, in 2012. Currently,
Saber is a Research Associate with the School of
Engineering and Information Technology, Univer-
sity of New South Wales Canberra. His research in-
terests include the areas of evolutionary algorithms,
constraint-handling techniques for evolutionary al-
gorithms, scheduling, big data and cybersecurity
using computational intelligence. Dr. Elsayed was
the winner of several IEEE-CEC competitions. He is

an editorial board member of the International Journal of Business Intelligence
and Data Mining and serves as a reviewer in several international journals.
Saber was a member of the program committee of several international
conferences.

Ruhul Sarker (M’03) received his Ph.D. degree
from Dalhousie University, Halifax, Canada, in
1992. He is currently a Professor in the School of
Engineering and Information Technology and the
Director of Faculty Postgraduate Research, Univer-
sity of New South Wales, Canberra Campus, Aus-
tralia. His main research interests are evolutionary
optimization and applied operations research. He is
the lead author of the book Optimization Modelling:
A Practical Approach (CRC, Boca Raton, FL, 2007).
He has published more than 250 refereed articles in

the international journals, edited books, and conference proceedings. Prof.
Sarker is currently an Associate Editor of the Memetic Computing Journal,
Journal of Industrial and Management Optimization (JIMO), and Flexible
Service and Manufacturing Journal (FSMJ)..

Carlos A. Coello Coello (M’98–SM’04–F’11) re-
ceived the Ph.D. degree in Computer Science from
Tulane University, New Orleans, Louisiana, USA,
in 1996. He is a Professor (CINVESTAV-3F Re-
searcher) with the Department of Computer Science,
CINVESTAV-IPN, Mexico City, Mexico. He has
authored or co-authored over 450 technical papers
and book chapters. He has also co-authored a book
entitled Evolutionary Algorithms for Solving Multi-
Objective Problems (Springer, 2007). His publica-
tions currently report over 33 000 Google Scholar

citations and an H-index of 70. His research interests include evolutionary
multiobjective optimization and constraint-handling techniques for evolution-
ary algorithms. Dr. Coello Coello received the 2007 National Research Award
from the Mexican Academy of Sciences in the area of Exact Sciences, the
2013 IEEE Kiyo Tomiyasu Award, and the 2012 National Medal of Science
and Arts in the area of Physical, Mathematical, and Natural Sciences. He
is an Associate Editor of IEEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATION and serves on the editorial board of 12 other international
journals. He is a member of Association for Computing Machinery and the
Mexican Academy of Science.


	Introduction 
	Review
	Initialization Methods
	DE

	Proposed Approach
	Experimental Results
	Proposed initialization and function's behavior 
	Computational times

	Solving CEC2014 test problems
	Testing proposed method with other CI methods
	Solving multi-objective problems

	Conclusions and Future Work
	References
	Appendix
	Biographies
	Saber Elsayed (M’10)
	Ruhul Sarker (M’03)
	Carlos A. Coello Coello (M’98–SM’04–F’11) 


